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ABSTRACT

Various methodological protocols were tested on milk 
samples from cows fed diets affecting both methano-
genesis and milk synthesis to identify the best approach 
for the prediction of GreenFeed system (GF) measured 
methane (CH4) emissions by milk mid-infrared (MIR) 
spectroscopy. The models developed were also tested 
on a data set from cows fed chemical inhibitors of 
CH4 emission [3-nitrooxypropanol (3NOP)] that just 
marginally affect milk composition. A total of 129 
primiparous and multiparous Holstein cows fed diets 
with different methanogenic potential were considered. 
Individual milk yield (MY) and dry matter intake were 
recorded daily, whereas fat- and protein-corrected milk 
(FPCM) was recorded twice a week. The MIR spec-
tra from 2 consecutive milkings were collected twice a 
week. Twenty CH4 spot measurements with GF were 
taken as the basic measurement unit (BMU) of CH4. 
The equations were built using partial least squares re-
gression by splitting the database into calibration and 
validation data sets (excluding 3NOP samples). Models 
were developed for milk MIR spectra by milking and 
on day spectra obtained by averaging spectra from 
2 consecutive milkings. Models based on day spectra 
were calibrated by using CH4 reference data for a mea-
surement duration of 1, 2, 3, or 4 BMU. Models built 
from the average of the day spectra collected during 
the corresponding CH4 measurement periods were de-
veloped. Corrections of spectra by days in milk (DIM) 
and the inclusion of parity, MY, and FPCM as explana-
tory variables were tested as tools to improve model 
performance. Models built on day milk MIR spectra 
gave slightly better performances that those developed 

using spectra from a single milking. Long duration of 
CH4 measurement by GF performed better than short 
duration: the coefficient of determination of validation 
(R2V) for CH4 emissions expressed in grams per day 
were 0.60 vs. 0.52 for 4 and 1 BMU, respectively. When 
CH4 emissions were expressed as grams per kilogram 
of dry of matter intake, grams per kilogram of MY, 
or grams per kilogram of FPCM, performance with a 
long duration also improved. Coupling GF reference 
data with the average of milk MIR spectra collected 
throughout the corresponding CH4 measurement period 
gave better predictions than using day spectra (R2V 
= 0.70 vs. 0.60 for CH4 as g/d on 4 BMU). Correct-
ing the day spectra by DIM improved R2V compared 
with the equivalent DIM-uncorrected models (R2V = 
0.67 vs. 0.60 for CH4 as g/d on 4 BMU). Adding other 
phenotypic information as explanatory variables did 
not further improve the performance of models built 
on single day DIM-corrected spectra, whereas including 
MY (or FPCM) improved the performance of models 
built on the average of spectra (uncorrected by DIM) 
recorded during the CH4 measurement period (R2V = 
0.73 vs. 0.70 for CH4 as g/d on 4 BMU). When validat-
ing the models on the 3NOP data set, predictions were 
poor without (R2V = 0.13 for CH4 as g/d on 1 BMU) 
or with (R2V = 0.31 for CH4 as g/d on 1 BMU) integra-
tion of 3NOP data in the models. Thus, specific models 
would be required for CH4 prediction when cows receive 
chemical inhibitors of CH4 emissions not affecting milk 
composition.
Key words: methane, milk MIR spectra, dairy cow, 
GreenFeed

INTRODUCTION

Breeding and husbandry strategies to reduce enteric 
methane (CH4) emissions by dairy cows require the 
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estimation of individual CH4 emissions from a large 
number of animals and farms to be successful. Measur-
ing individual daily enteric CH4 emissions using the 
classical reference techniques [i.e., respiration chamber 
(RC) or sulfur hexafluoride (SF6) tracer gas technique] 
has proven difficult, expensive, and not feasible on a 
large scale, and proxies are required (Negussie et al., 
2017). Among other proxies, mid-infrared (MIR) spec-
troscopy on milk has been identified as promising (De-
hareng et al., 2012; Vanlierde et al., 2018, 2021) as it 
is rapid and low-cost and is currently routinely applied 
to the recording of cow milk. These authors published 
MIR prediction models using CH4 reference data from 
RC and SF6 methods. However, among the different 
CH4 measurement techniques, the GreenFeed system 
(GF; C-Lock Inc.) appears to be the most appropri-
ate for application on commercial farms, and allows 
a high throughput of animals, and can measure over 
long periods. As MIR equations need to be consolidated 
routinely, it is thus expected that equations based on 
GF data will be the easiest to be implemented in the 
near future, but such equations are not developed yet.

Both RC and SF6 techniques allow us to measure 
the quantity of CH4 produced continuously over 24 h, 
integrating the diurnal pattern of emission and allowing 
to calculate the cumulated daily CH4 emission. Thus, 
a daily CH4 emission value is easy to compare with 
the corresponding milk MIR spectra to build prediction 
models. However, the GF allows estimation of average 
daily CH4 emissions over a period of variable duration 
from spot samples of breath gas taken when animals 
visit the GF system at different time points spread over 
day and night. Accordingly, several studies have been 
conducted to understand how to manage GF data to 
achieve representative and repeatable CH4 estimation 
(Arbre et al., 2016; Rischewski et al., 2017; Coppa et 
al., 2021). As repeatability of CH4 measurement us-
ing GF increases with long measurement duration, we 
hypothesize that the reliability of CH4 prediction by 
milk MIR may vary as well with the duration of CH4 
measurement. However, little is known about the best 
GF measurement duration to be coupled to milk MIR 
spectra to successfully build CH4 prediction equations. 
Similarly, no research has identified which spectra are 
better to match CH4 measurement by GF covering sev-
eral days (i.e., spectra by milking, average day spectra, 
single day spectra or average spectra, or during the cor-
responding GF measurement period). Because GF is an 
estimation over an extended time period, we hypoth-
esize that an average of several spectra collected over 
the period might better match with the cordoning GF 
CH4 measurement than a single day spectrum. Guide-
lines on this topic are still lacking in the literature. 

Furthermore, Vanlierde et al. (2016, 2021) have proven 
that the performance of MIR prediction models for CH4 
from SF6 and RC reference data can be improved by 
including in the calibration phenotypic variables [such 
as lactation stage, parity, milk yield (MY), and so on] 
describing the physiological status of the cow on the 
day of CH4 measurement. However, as MY and lacta-
tion stage vary over time, we hypothesize that including 
such phenotypic information as additional explicative 
variables in CH4 prediction models based on long pe-
riod measurements as with GF might be less effective, 
but this aspect has yet to be proven.

Finally, the capacity to predict CH4 from milk MIR 
spectra is based on the assumption that milk composi-
tion is related to CH4 emissions. Indeed, existing models 
have included only data from cows fed diets affecting 
the methanogenesis and milk synthesis (Dehareng et 
al., 2012; Vanlierde et al., 2016, 2021). Thus, a specific 
response when predicting CH4 from milk MIR spectra 
from dairy cows supplemented with additives affecting 
methanogenesis only [such as the commercially avail-
able 3-nitrooxypropanol (3NOP), Kim et al., 2020; 
Yanibada et al., 2020] is expected. Consequently, we 
hypothesized that diet affecting methanogenesis but 
not milk synthesis may represent a possible limit of 
application of predictive models in the field. This has 
yet to be studied.

The first aim of the present work was to test various 
methodological protocols both in terms of GF data and 
milk MIR spectra to identify the best approach to pre-
dict enteric CH4 emissions from milk MIR spectra us-
ing the GF reference. A secondary aim was to test the 
application of the models on milk samples from cows 
fed with chemical inhibitors of CH4 emissions without 
affecting milk composition.

MATERIALS AND METHODS

Animal procedures were carried out in accordance 
with the French Ministry of Agriculture guidelines for 
animal research and the applicable European Union 
guidelines and regulations on animal experiments.

Animals and Diets

The present study was carried out using spectra and 
reference data from 3 different experiments carried out 
between 2017 and 2020. The first experiment (described 
in detail by Coppa et al., 2021) was conducted at the 
experimental dairy farm of Les Trinottières (Chambre 
Agriculture, Montreuil sur Loir, France) with 45 lactat-
ing Holstein dairy cows of parity ranging from 1 to 
7. Cows were enrolled within the first week of lacta-
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tion and randomly distributed in 3 groups following a 
randomized block design balanced for parity and MY 
during the first week of lactation. The experiment was 
conducted as a continuous design from wk 2 to 27 of 
lactation with 3 successive periods: (1) pre-experimen-
tal period (wk 2 to 6); (2) dietary treatment transition 
period (wk 7 to 11); (3) experimental period on dietary 
treatments (wk 12 to 27). During the pre-experimental 
period, all the cows received a common diet based on 
corn silage, grass silage, and concentrates. Then, the 
3 groups received different dietary treatments (% on 
a DM basis): (1) a diet based on grass silage with low 
starch (1%) and low lipid (3%) content; (2) a diet based 
on corn silage and concentrates, containing high starch 
(25%) and low lipid (3%) content; and (3) a diet based 
on corn silage and concentrates, containing high starch 
(24%) and high lipid (5%) content.

The other 2 experiments were carried out at the exper-
imental farm of Herbipôle (INRAE, Marcenat, France, 
https: / / doi .org/ 10 .15454/ 1 .5572318050509348E12). 
In the second experiment, described by Pourazad et 
al. (2021), 56 mid-lactating multiparous Holstein 
cows (120 ± 46 DIM) were allocated to 4 equivalent 
groups, balanced for parity and MY. The experiment 
was conducted as a continuous design with 3 successive 
periods: (1) pre-experimental period (4 wk); (2) dietary 
treatment transition period (2 wk); (3) experimental 
period on dietary treatments (10 wk). During the pre-
experimental period, all the cows received a common 
diet based on hay, haylage, and concentrates. Then, 
3 groups were supplemented with different phytogenic 
feed additives (25 g/cow per d; based on cinnamalde-
hyde, condensed tannins, and garlic oil) acting both 
on methanogenesis and milk synthesis and the fourth 
group, without feed additives, was used as a control.

In the third experiment, described by Saro et al. 
(2019), 28 lactating dairy cows were recruited within 
the first week of lactation and randomly distributed in 
2 groups, balanced for parity and MY during the first 
week of lactation, in a randomized block design. Both 
groups received the same diet based on corn silage, hay, 
and concentrates, but one group was supplemented 
with 3NOP (60 mg/kg of DM basis) and the other with 
a placebo from the second lactation week. The trial 
lasted for 14 lactation wk (from wk 14 to 28).

All the experimental diets of the 3 experiments acted 
both on methanogenesis and milk synthesis (Coppa et 
al., 2021; Pourazad et al., 2021), except for the diet 
supplemented with 3NOP in experiment 3, for which 
only methanogenesis was affected, but not milk synthe-
sis (Saro et al., 2019).

In all the experiments, animals were housed in 
freestall barns and had free access to water throughout 

the experiment. The barn was opened at the sides for 
good and natural ventilation. Cows were fed individu-
ally using an electronic gate feeding system and ear-tag 
identification. Feedstuffs were distributed to cows ad 
libitum in the form of a mixed ration, once daily after 
the morning milking, except for the concentrate dis-
tributed by the automatic feeder of the GF. The ration 
offered and refusals were weighed and recorded daily 
throughout the experiment to estimate TMR intake. 
Total DMI was obtained by adding the daily amount of 
commercial concentrate from the GF to ration intake, 
corrected by their DM content, determined through 
oven drying (160°C for 48 h).

Methane Measurements Using GreenFeed

Methane emissions from dairy cows were individually 
estimated using the same 2 coupled GF units in the 
3 experiments. The GF system allowed spot measure-
ments of exhaled gases emitted by individual animals, 
identified by a radio frequency ear-tag, during visits 
to the system. Each GF was fitted with one hopper 
continuously filled with pelleted concentrate (4 mm 
diameter and 15 mm length) used as a bait to attract 
animals with a correct position of the head (head sen-
sor) at least 3 min in the open-circuit head chamber. 
The GF instrument characteristics and settings are 
detailed in Coppa et al. (2021). The GF units were set 
(number of visits per day, duration and time interval 
between visits, number of concentrate drops per visit, 
and so on; details given in Supplemental Figure S1, 
https: / / figshare .com/ articles/ figure/ Visiting _profile 
_over _24 _h _of _GreenFeed _unit/ 21082537; Coppa et 
al., 2022) to achieve at least 20 spot measurements per 
cow in 1 wk (experiments 1 and 3) and 3 wk (experi-
ment 2). The average over 7 to 14 d with a minimum 
of 20 spot samples with GF is considered the minimum 
period [basic measurement unit (BMU)] to produce 
repeatable and reliable averaged daily CH4 emissions 
(Manafiazar et al., 2016); One BMU was therefore con-
sidered equal to a duration of 1 wk in experiments 1 
and 3, and 3 wk in experiment 2, allowing to have at 
least 20 spots per cow.

Milk Sampling, Analysis, and Spectra Collection

Cows were milked twice daily and MY was individu-
ally recorded at each milking. Twice a week, an indi-
vidual sample (30 mL) obtained by each milking in ex-
periments 2 and 3 or by mixing the milk of the evening 
milking (50% volume) and of the following morning 
milking (50%) in experiment 1 was stored at +4°C with 
Bronopol (2–2-nitropropane-1,3-diol) for determina-
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tion of milk fat and protein concentrations by MIR, 
following the International Dairy Federation (2000) 
protocol. Fat- and protein-corrected milk (FPCM) 
was calculated according to Gerber et al. (2011). Milk 
MIR spectra were collected by 2 Milkoscan FT-Plus 
analyzers (Foss), working within the MIR region from 
5,000 to 1,000 cm−1 from Analis for experiment 1, and 
from Agrolab for experiments 2 and 3. The spectra 
were standardized among laboratories and over time 
through the “Optimir” standardization protocol (Grelet 
et al., 2017).

Reference Data and Spectra Treatment

To avoid redundancy of reference data and spectral 
information within an individual cow, only spectra from 
the weeks of lactation representative of the most im-
portant variations in milk composition reflecting physi-
ological status or dietary changes were included in the 
data set: weeks of lactation 2 to 6 (experiments 1 and 
3), 11 (experiment 1), 15 (experiments 2 and 3), and 
27 (experiments 1 and 2). Accordingly, a total of 280 
morning and 280 evening milking individual milk spec-
tra (experiments 2 and 3) and 315 individual day milk 
spectra (50% vol mix of morning and evening milkings 
from experiment 1) were used.

Because practice spectra from both daily milkings 
may not always be available, a test was performed (using 
samples from experiments 2 and 3 only) to understand 
if the predictive performance is affected when using the 
spectra of a single milking instead of a day spectrum. 
In addition, for the further calibration steps, spectra by 
a single milking of the same day of experiments 2 and 3 
were arithmetically averaged (50% vol of morning and 
50% vol of evening milk) to make them homogeneous 
with the day milk spectra from experiment 1.

Assuming that the repeatability of CH4 emissions 
with GF increases with the duration of measurement 
(Coppa et al., 2021), different CH4 data, varying in 
the duration of the measurement period (the average 
CH4 emissions on 1, 2, 3, or 4 BMU) were coupled to 
the last day spectrum of the BMU. The aim was to 
test the best GF measurement duration for setting the 
MIR prediction equations. Averaging data on 2, 3, or 4 
BMU implied a progressive reduction in the number of 
samples when increasing the number of averaged BMU, 
as it is usual when evaluating the repeatability of CH4 
emission measurement through GF (Arbre et al., 2016; 
Manafiazar et al., 2016; Coppa et al., 2021). A drawback 
of this approach is that a different number of samples 
may limit the comparison of statistical performance of 
the models. However, the great advantage is the main-
tenance of the same biological variability in the refer-

ence data (CH4 emission) within each model, without 
any bias due to a different number of individual cows 
or a different range of lactation stage. In each case, the 
last daily spectrum of the BMU was used.

Similarly, as GF estimates an average CH4 emission 
during the measurement period, the day spectra avail-
able during 1, 2, 3, or 4 BMU were also arithmetically 
averaged (by averaging the absorbance at each wave-
length), to understand whether an average spectrum 
allows better predictive performance when compared 
with the single day spectrum of the same measurement 
period.

The effect of including DIM spectral correction 
through a modified Legendre polynomial (Gengler et 
al., 1999), according to Vanlierde et al. (2015), and 
incorporating parity, MY, and FPCM as explanatory 
variables in prediction models was also tested. The cor-
relation between the residuals of a given model and a 
further phenotypic variable was tested. Such variable 
was added to the model only if the correlation was 
significant, following the same procedure proposed by 
Vanlierde et al. (2021). Data referring to the day of 
milk spectra collection were used for the correction of 
day spectra, whereas the average over the correspond-
ing BMU was used when day spectra were averaged. 
Predictive performances were compared for CH4 emis-
sions expressed as grams per day, grams per kilogram 
of DMI, grams per kilogram of milk, and grams per 
kilogram of FPCM. The MY and FPCM were not used 
as additional explanatory variables when CH4 was ex-
pressed as grams per kilogram of milk and grams per 
kilogram of FPCM, respectively.

Statistical Analysis

For all the options tested to analyze prediction 
performance, the original data set was divided into a 
calibration and a validation set (the number of each 
depending on the total number of available spectra). 
Samples were randomly assigned by cow within each 
experimental treatment to the calibration and valida-
tion sets, making them homogeneous. As the scientific 
bedrock for predicting CH4 emissions by milk MIR is an 
effect of more or less methanogenic diets on milk com-
position, cows fed with 3NOP that reduced CH4 with-
out affecting milk composition were segregated into a 
third independent data set and initially excluded from 
the calibration and validation. The reference data on 
CH4 emissions and phenotypic variables corresponding 
to the samples included in data set are given in Table 
1. The 3NOP data set (80 d spectra) was, however, 
used to validate the model developed without 3NOP 
samples using day spectra and CH4 from 1 BMU to test 
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the prediction capacity on milk exclusively from cows 
fed additives that reduce clearly CH4 emissions with 
just minor changes in milk composition. Thereafter, 
3NOP samples were included in the calibration and 
validation data sets, to test the effect of such sample 
inclusion on the predictive performance. Such a test 
was performed on the model developed on 1 BMU, as 
it was a sole scenario allowing us to maintain several 
3NOP samples to perform both external validation 
and the inclusion of samples in the calibration and 
validation data sets.

The WinISI II Project Manager software, version 1.50 
(Infrasoft International), was used for the statistical 
models. The calibrations were calculated with modified 
partial least square regressions (Shenk and Westerhaus, 
1995). The models were built by using only the segments 
between 2,966 and 2,561 cm−1, between 1,809 and 1,720 
cm−1, and between 1,577 and 968 cm−1, according to 
Vanlierde et al. (2015). A maximum calculation of 16 
latent variables was set for each regression, and critical 
values for Student’s t-test of T = 2.5 were adopted to 
remove any calibration outliers; 2 elimination passes 
during the full cross-validation (randomly dividing the 
data set into 4 cross-validation groups) were performed, 
following the procedure of Coppa et al. (2017). Two dif-
ferent spectral correction procedures and mathematical 
treatments were tested (no correction or first derivative 
with standard normal variate and detrend mathemati-
cal treatment).The tables report the best correction 
procedures and mathematical treatments. The statistics 
used to evaluate the calibration models were as follows: 
the standard error of cross-validation the coefficient of 
determination (R2) for cross-validation, the ratio of the 
standard deviation of the reference data to the standard 
error of cross-validation, the R2 in external validation, 
the standard error of prediction (SEP), the slope, the 
bias, and the standard error of the prediction corrected 
by the bias (SEPC) of the validation set.

RESULTS AND DISCUSSION

Variability in Enteric Methane Emissions  
and Phenotypic Variables

Table 1 gives the descriptive statistics of enteric CH4 
emissions and phenotypic variables (parity, DIM, MY, 
FPCM, and DMI). Overall, the parity ranged from 1 
to 7, the DIM from 8 to 228, MY from 10.1 to 53.8 
kg/d, the FPCM from 11.1 to 50.0 kg/d, and the 
DMI from 9.2 to 34.6 kg/d, covering a wide range of 
physiological status due to individual cow variation, 
lactation stage, parity, and diet. Such variability was 
also reflected by the CH4 emissions, ranging from 107 
to 596 g/d, from 5.8 to 49.2 g/kg of DMI, from 3.0 to 
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33.8 g/kg of milk, and from 2.0 to 47.3 g/kg of FPCM, 
showing values quite similar to those presented by Niu 
et al. (2018) when referring to the average and range 
of a European large data set. The priority given to 
reach at least 20 spot measurements to set 1 BMU led 
to a longer duration of BMU in experiment 2 (3 wk) 
compared with experiments 1 and 3 (1 wk). Even so, 
visits were spread over the 24 h in the 3 experiments 
(Supplemental Figure S1). The longer duration of the 
BMU in experiment 2 may have led to a less efficient 
detection of high and low emissions, smoothing the 
result by cow. However, when comparing the range of 
CH4 values from the 3 experiments (183–531, 339–595, 
and 151–757 g/d, respectively, for experiments 1, 2, 
and 3), the maximums were similar. The minimum of 
experiment 2 was higher, compared with the other ex-
periments, but this was expected as cows were in mid 
lactation, and the lowest CH4 emission are registered 
in early lactation (Vanlierde et al., 2015). As expected, 
the average CH4 emission was 275 g/d for the 3NOP 
data set, and 398, and 372 g/d for the calibration 
and validation data sets, respectively. Similarly, the 
minimum and maximum were 107 and 422 g/d for the 
3NOP data set, and 151 and 596 g/d, and 183 and 
586 g/d for the calibration and validation sets, respec-
tively. Supplementing dairy cows with 3NOP reduced 
CH4 emissions by 31% (Saro et al., 2019), in line with 
a similar reduction by 25 to 29% shown by Kim et al. 
(2020) and Yu et al. (2021).

Effect of Using Spectra by Single Milking  
or an Average Day Milk MIR Spectrum  
on the Predictive Performance of Enteric  
Methane Emissions

During milk recording at an individual level, milk 
is most of the time collected and analyzed by a single 
milking, with sampling during morning and evening 
milking. However, CH4 reference data are expressed by 
day. To the best of our knowledge, the literature con-
tains no evidence of the effect of predicting CH4 from 
the milk MIR spectra of single milkings compared with 
an average day spectrum. Table 2 gives the calibra-
tion and validation statistics of the prediction equa-
tions for daily CH4 emissions based on MIR spectra 
by single milkings or on an average day MIR spectrum 
from experiment 2. The CH4 emissions in grams per 
day were predicted from milk MIR with R2V of 0.51, 
0.48, and 0.54, and an SEPC of 55.7, 56.3, 52.0 g/d for 
the morning milking, evening milking, or their average 
day milk spectra, respectively. Similarly, predictive per-
formances were slightly better when using the average 
day milk MIR spectra instead of the spectra from a 
single milking when CH4 emissions was expressed as 
grams per kilogram of MY and grams per kilogram of 
FPCM, except when expressed as grams per kilogram 
of DMI, for which the model performed similarly. The 
composition of morning milk and evening milk can dif-
fer largely, because of differences either in the time and 
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Table 2. Calibration and validation statistics of the prediction equations for enteric CH4 emissions based on spectra by single milkings or on 
their day arithmetic average

Spectra type

Calibration statistics1

 

Validation (n = 60)2

n SECV R2CV RPD Bias Slope SEP SEPC R2V

CH4 (g/d)           
 Morning milking 138 67.6 0.33 1.22  17.7 0.81 58.0 55.7 0.51
 Evening milking 136 66.8 0.41 1.25  18.8 0.73 58.9 56.3 0.48
 Arithmetic mean 138 64.1 0.41 1.30  21.4 0.79 55.8 52.0 0.54
CH4 (DMI, g/kg)           
 Morning milking 133 4.71 0.73 1.94  0.51 0.95 5.00 5.01 0.70
 Evening milking 130 4.42 0.77 2.08  1.30 0.93 5.04 4.92 0.70
 Arithmetic mean 130 4.44 0.76 2.06  1.09 0.95 5.00 4.91 0.70
CH4 (milk, g/kg)           
 Morning milking 134 2.72 0.77 2.09  0.19 0.81 2.95 2.96 0.73
 Evening milking 131 2.47 0.80 2.25  0.46 0.80 2.94 2.93 0.73
 Arithmetic mean 133 2.67 0.77 2.11  0.88 0.81 2.78 2.67 0.78
CH4

3 (FPCM, g/kg)           
 Morning milking 132 3.87 0.80 2.22  −0.02 0.89 3.71 3.74 0.78
 Evening milking 128 3.27 0.85 2.56  0.89 0.83 4.08 4.02 0.76
 Arithmetic mean 127 3.13 0.86 2.68  0.51 0.92 3.39 3.38 0.81
1n = number of samples included in the calibration set; SECV = standard error for cross-validation; RPD = the ratio of the standard deviation 
of the reference data to the SECV; R2CV = coefficient of determination for cross-validation.
2SEP = standard error of prediction for external validation; SEPC = SEP corrected for the bias; R2V = coefficient of determination for external 
validation.
3Fat- and protein-corrected milk (FPCM) = milk yield (kg/d) × [0.337 + 0.116 × fat (%) + 0.06 × protein (%)] (Gerber et al., 2011).
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intervals between feeding and between milking (Ferlay 
et al., 2010). Thus, the best performance obtained by 
the average day spectra is not surprising as a spectrum 
is coupled to daily CH4 emissions, even more so with 
GF techniques that estimate an average CH4 emission 
over a long period. Accordingly, only models based on 
average day milk MIR spectra were used for further 
methodological exploration in the present research.

Effect of the Duration of Enteric Methane  
Emission Measurement on Its Prediction  
from Milk MIR Spectra

As a period of several days is needed to obtain a 
valid CH4 emission value (g/d) with the GF technique 
(Manafiazar et al., 2016), the duration of CH4 measure-
ment considered for the reference value could affect the 
reliability of the prediction equations. Table 3 gives the 
calibration and validation statistics of the prediction 
equations for daily CH4 emissions based on the last milk 
day spectrum of the BMU, according to the duration of 
CH4 measurement by GF. The CH4 emissions in grams 
per day were predicted by milk MIR spectra with R2V 
of 0.52, 0.49, 0.55, and 0.60, and an SEPC of 61.7, 62.8, 
61.6, and 61.4 g/d for a duration of CH4 measurement 

of 1, 2, 3, or 4 BMU, respectively. Similarly, validation 
performances slightly increased with the duration of 
CH4 measurement, even when CH4 was expressed as 
grams per kilogram of DMI, grams per kilogram of MY, 
and grams per kilogram of FPCM, showing the best 
performance with a duration of 4 BMU. Furthermore, 
validation performances in such CH4 measurement 
unit showed better performances compared with CH4 
expressed as grams per day whatever the BMU dura-
tion (R2V > 0.65). Differences in model performances 
may be partially due to the different number of samples 
included in calibration and validation according to the 
duration of CH4 measurement. However, predictive per-
formance by MIR usually increased with the number of 
samples used for model construction (Vanlierde et al., 
2016; Coppa et al., 2017). We found the best perfor-
mance for models with the lowest number of samples, 
suggesting that other factors than the sample size were 
at the origin of the differences in prediction perfor-
mance. The improvement of model performances when 
increasing the duration of CH4 measurement can be 
due to the parallel increase in the repeatability of CH4 
measurement by GF (Arbre et al., 2016; Manafiazar et 
al., 2016). As GF is based on spot visits, day-to-day 
variations in the timing of sampling and in individual 
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Table 3. Calibration and validation statistics of the prediction equations for enteric CH4 emissions based on single average day mid-infrared 
milk spectra, according to CH4 measurement duration

Duration of CH4 measurement1

Calibration2

 

Validation3

n SECV R2CV RPDCV Bias Slope SEP SEPC R2V

CH4 (g/d)           
 BMU1 334 53.9 0.51 1.43  −8.7 1.03 62.1 61.7 0.52
 BMU2 215 49.4 0.51 1.42  −14.1 1.09 64.1 62.8 0.49
 BMU3 187 52.3 0.45 1.35  −15.0 1.27 63.1 61.6 0.55
 BMU4 162 55.1 0.44 1.33  −14.3 1.34 62.7 61.4 0.60
CH4 (DMI, g/kg)           
 BMU1 328 3.54 0.77 2.09  −0.39 0.95 4.44 4.43 0.65
 BMU2 204 2.87 0.78 2.15  −0.18 0.86 4.78 4.80 0.56
 BMU3 179 3.24 0.77 2.10  −0.65 0.95 4.28 4.25 0.66
 BMU44 156 3.39 0.76 2.04  0.28 0.98 4.12 4.13 0.72
CH4 (milk, g/kg)           
 BMU1 327 2.17 0.81 2.32  −0.54 0.96 2.47 2.42 0.75
 BMU2 215 2.23 0.80 2.22  −0.64 0.91 2.69 2.62 0.70
 BMU3 184 2.27 0.80 2.26  −0.67 0.98 2.47 2.39 0.77
 BMU44 158 2.33 0.79 2.16  −0.50 1.03 2.45 2.41 0.78
CH4 (FPCM, g/kg)           
 BMU1 326 2.87 0.83 2.45  −0.42 0.94 3.39 3.38 0.76
 BMU2 212 2.84 0.83 2.41  −0.70 0.80 4.04 3.99 0.67
 BMU3 182 2.87 0.83 2.42  −0.76 0.88 3.84 3.79 0.71
 BMU44 157 2.91 0.83 2.40  −0.42 0.95 3.35 3.35 0.79
1Basic measurement unit (BMU) = time needed to reach 20 spot measurements of CH4 by the GreenFeed instrument; fat- and protein-corrected 
milk (FPCM) = milk yield (kg/d) × [0.337 + 0.116 × fat (%) + 0.06 × protein (%); Gerber et al., 2011].
2n = number of samples included in the calibration set; SECV = standard error for cross-validation; RPD = the ratio of the standard deviation 
of the reference data to the SECV; R2CV = coefficient of determination for cross-validation.
3SEP = standard error of prediction for external validation; SEPC = SEP corrected for the bias; R2V = coefficient of determination for external 
validation; n for validation BMU1: 171, BMU2: 110, BMU3: 94, BMU4: 78.
4Model developed applying the first derivative transformation and the standard normal variate and detrend to the spectra; models without a 
superscript were developed without any mathematical treatment.
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animal feeding behavior (e.g., many small meals vs. 
a few large meals) could increase measurement esti-
mation error when using short measurement periods 
(Hammond et al., 2016). Increasing the number of spot 
measurements improves the reliability of CH4 emission 
estimation by GF in dairy cows, especially over 80 vis-
its (Arbre et al., 2016; Coppa et al., 2021).

Effect of Averaging Day Milk MIR Spectra During 
for the Corresponding Period of Enteric Methane 
Emission Measurement on Its Prediction

According to the previous section, the best predic-
tive performance emerged for a long duration of CH4 
measurement. During such a period, several day milk 
spectra can be available, but little is known of the pre-
dictive performance of models on milk MIR when using 
a single day spectrum (at the end of the period) or 
the average of all the spectra available during the CH4 
measurement period. Table 4 gives the calibration and 
validation statistics of the prediction equations for daily 
CH4 emissions based on the average of milk spectra col-
lected during the CH4 emission measurement, according 
to the duration of CH4 measurement by GF. The CH4 
emissions in grams per day were predicted by MIR with 
R2V of 0.53, 0.48, 0.66, and 0.70, and an SEPC of 61.0, 

63.3, 52.9, and 53.1 g/d when averaging the day spectra 
for a duration of CH4 measurement of 1, 2, 3, or 4 
BMU, respectively. Validation performances were thus 
improved when averaging the spectra for a CH4 mea-
surement period instead of using a single day spectrum, 
especially for a long duration of CH4 measurement (>3 
BMU). Similar results were observed when CH4 was 
expressed as grams per kilogram of DMI, grams per 
kilogram of MY, and grams per kilogram of FPCM. As 
the CH4 measurement by GF expressed an estimation 
of average emissions during the measurement period, 
it is not surprising that using an average spectrum 
based on all the milk spectra available during the same 
period increased predictive performance, especially for 
long measurement periods. Changes in animal physi-
ological status over time (i.e., pregnancy, heat events, 
ruminal diseases, and so on) could affect milk composi-
tion. Furthermore, external factors similar to climatic 
changes (i.e., occurrence of heat stress period) or barn 
management activities (i.e., barn cleaning, veterinary 
visits, insemination practices, and so on) could also af-
fect the feeding behavior and digestive physiology of 
animals (Hammond et al., 2016), with effects on day 
milk composition and consequently on milk spectra. 
Thus, averaging milk spectra can reduce daily varia-
tion in milk composition and provide a better match 
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Table 4. Calibration and validation statistics of the prediction equations for enteric CH4 emissions based on the average of milk spectra collected 
during different durations of CH4 measurement

Duration of CH4 measurement1

Calibration2

 

Validation3

n SECV R2CV RPDCV Bias Slope SEP SEPC R2V

CH4 (g/d)           
 BMU1 335 53.8 0.51 1.43  −4.1 0.99 60.9 61.0 0.53
 BMU2 217 48.2 0.56 1.50  −6.8 1.04 63.4 63.3 0.48
 BMU3 187 46.4 0.58 1.55  −6.2 1.12 53.0 52.9 0.66
 BMU4 163 46.5 0.59 1.57  −7.7 1.25 53.3 53.1 0.70
CH4 (DMI, g/kg)           
 BMU1 329 3.62 0.75 2.00  −0.09 0.99 4.22 4.23 0.68
 BMU2 207 2.92 0.77 2.10  0.55 1.11 3.35 3.32 0.79
 BMU3 181 2.82 0.82 2.33  0.22 1.10 2.95 2.96 0.84
 BMU4 157 2.99 0.81 2.29  0.52 1.09 3.00 2.98 0.86
CH4 (milk, g/kg)           
 BMU1 325 2.14 0.82 2.34  −0.27 0.94 2.40 2.39 0.75
 BMU2 213 2.09 0.82 2.36  −0.21 1.02 1.98 1.98 0.83
 BMU3 181 1.77 0.87 2.80  −0.21 1.02 1.90 1.90 0.85
 BMU4 163 2.17 0.81 2.31  −0.18 1.03 1.98 1.99 0.86
CH4 (FPCM, g/kg)           
 BMU1 324 2.84 0.84 2.50  −0.27 0.94 3.14 3.14 0.80
 BMU2 215 2.68 0.84 2.50  −0.57 1.02 2.44 2.39 0.87
 BMU3 184 2.68 0.84 2.51  −0.01 1.05 2.25 2.26 0.89
 BMU4 160 2.69 0.85 2.57  −0.06 1.04 2.43 2.45 0.89
1Basic measurement unit (BMU) = time needed to reach 20 spot measurements of CH4 by the GreenFeed instrument; fat- and protein-corrected 
milk (FPCM) = milk yield (kg/d) × [0.337 + 0.116 × fat (%) + 0.06 × protein (%); Gerber et al., 2011].
2n = number of samples included in the calibration set; SECV = standard error for cross-validation; RPD = the ratio of the standard deviation 
of the reference data to the SECV; R2CV = coefficient of determination for cross-validation.
3SEP = standard error of prediction for external validation; SEPC = SEP corrected for the bias; R2V = coefficient of determination for external 
validation; n for validation BMU1: 171, BMU2: 110, BMU3: 94, BMU4: 78.
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with an average estimation of reference CH4 data in the 
long term. However, as several day milk spectra over a 
CH4 measurement period may not always be available, 
both models based on a single day spectrum and on the 
average of day spectra per measurement period were 
kept for the further methodological tests.

Effect of DIM Spectra Correction on the Predictive 
Performance of Enteric Methane Emissions

Vanlierde et al. (2015) showed that incorporating 
DIM in the milk MIR prediction model of CH4 emis-
sions measured by the SF6 tracer technique increased 
the validation performances of the models, whereas the 
opposite finding was reported by Shetty et al. (2017) 
using “sniffer” as the reference method for CH4 mea-
surement. Little is known about the effectiveness of 
such an approach when the prediction model is based 
on GF data corresponding to average CH4 emissions for 
a long period rather than on a specific day of lactation, 
or when day spectra were averaged over a period of 
CH4 measurement. Table 5 gives the calibration and 
validation statistics of the prediction equations for CH4 
emissions, based on the correction by DIM of day milk 
MIR spectra or of the average of milk spectra collected 
during the different periods of CH4 measurement. The 
CH4 emissions in grams per day were predicted by MIR 
with R2V of 0.46, 0.59, 0.68, and 0.67, and an SEPC 
of 65.5, 56.6, 52.2, and 56.5 g/d with calibration on 
day spectra corrected by DIM and a duration of CH4 
measurement of 1, 2, 3, or 4 BMU, respectively. In gen-
eral, the R2V were increased and the SEP were reduced 
by DIM correction, when comparing such models to 
the equivalent models run on DIM-uncorrected spectra 
(Table 4) irrespective of the CH4 measurement unit. 
However, the improvement was not systematic for all 
the models. The better performances when DIM cor-
rection is applied to day spectra may derive from a 
lesser influence of the lactation stage on the residuals 
(Vanlierde et al., 2015), but the lack of improvement 
of some models suggested that other factors may be 
related to the residuals, such as parity, MY, or FPCM.

On the other hand, when comparing models developed 
using DIM-corrected average spectra of a CH4 measure-
ment period to the equivalent DIM-uncorrected ones, 
the CH4 emissions in grams per day were predicted by 
milk MIR with R2V of 0.53 versus 0.55, and 0.48 versus. 
0.56, and an SEPC of, 61.0 versus 59.3, and 63.3 versus 
58.3 g/d, for a duration of CH4 measurement of 1 or 
2 BMU, respectively (Tables 5 and 3). When spectra 
were averaged during a CH4 measurement duration of 
3, or 4 BMU, the R2V were higher and the SEP were 
lower for the model using DIM-uncorrected spectra in-

stead of DIM-corrected spectra (0.66 vs. 0.62, and 0.70 
vs. 0.68, and an SEPC of 52.9 vs. 54.8, and 53.1 vs. 55.5 
g/d, 3, or 4 BMU, respectively). The DIM correction on 
the spectra averaged during a CH4 measurement period 
improved model performances only for short durations. 
This is not surprising, as on long duration several ex-
ternal factors and variation in animal physiologic status 
may interfere, as discussed previously, reducing the 
importance of DIM as explanatory factor for CH4 emis-
sion. Furthermore, when CH4 was expressed as grams 
per kilogram of DMI, grams per kilogram of MY, and 
grams per kilogram of FPCM, models based on spec-
tra averaged during any duration of CH4 measurement 
were marginally or negatively affected by DIM correc-
tion, showing similar or lower R2V and higher SEPC. 
However, the MIR DIM-uncorrected or DIM-corrected 
predictive model developed by Vanlierde et al. (2015) 
on RC and SF6 data showed a very close statistical 
performance in cross-validation, but the DIM-corrected 
ones better reflect biological processes that drive CH4 
emissions, particularly when externally validated on 
large independent data sets. The DIM-uncorrected 
model we developed was tested in external validation, 
so this problem should have been taken into account.

Based on our results, the spectra correction for lacta-
tion stage in some cases may maintain its relevance in 
improving model performance, even for long durations 
of CH4 measurement, as spectra are still from a precise 
day, but averaging over a long duration of CH4 measure-
ment without DIM correction gave better predictive 
performances. Our findings appear in agreement with 
both the significance of DIM correction in improving 
models shown by Vanlierde et al. (2015) when work-
ing on day spectra and with the lack of improvement 
with DIM inclusion found by Shetty et al. (2017) who 
included in the data set a large part of spectra averaged 
over 2 to 6 wk.

Effect of Inclusion of Phenotypic Information  
as Explanatory Variables on the Predictive 
Performance of Daily Methane Emission Models

Some authors have highlighted the effectiveness of 
including further phenotypic variables (such as MY, 
parity, breed, and so on) to improve MIR predictive 
performances of milk for CH4 emissions in dairy cows 
using “sniffer,” RC and SF6 tracer techniques as ref-
erence methods (Shetty et al., 2017; Vanlierde et al., 
2021). Taking into account the performance of the 
model developed on day spectra and on averaging the 
spectra for a given duration of CH4 measurement by 
GF, we tested the effect of the inclusion of parity, MY, 
and FPCM on the calibration performance of models 
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conceived under 2 scenarios: having (1) several spectra 
or (2) just one day spectrum during a long duration 
of CH4 measurement (Table 6). The CH4 emissions in 
grams per day were predicted by MIR with R2V of 0.67, 
0.58, 0.58, 0.60, and 0.59, and an SEPC of 58.4, 62.5, 
62.6, 61.8, and 61.6 g/d when calibrating on DIM-cor-
rected day spectra with a duration of CH4 measurement 
of 4 BMU and including parity, MY, FPCM, parity + 
MY, and parity + FPCM, respectively. The R2V were 
similar or lower and the SEP were similar or higher, 
when comparing such models to the equivalent models 
run without the inclusion of phenotypic information as 
explanatory variables (R2V = 0.67, SEPC = 56.5 g/d; 
Table 5). Similar considerations can be made when CH4 
was expressed as grams per kilogram of DMI, grams 
per kilogram of milk, or grams per kilogram of FPCM. 
Shetty et al. (2017) also found no model improvement 
when adding lactation stage, parity, and MY to the 
model (based on the “sniffer” technique CH4 reference 
data). The loss of performance of models based on day 
spectra when including MY, or FPCM, may suggest 
that DIM correction includes information related to 
DIM-dependent changes in other phenotypic variables. 
This should not be the case for parity (not affecting 
model performance), which is biologically complemen-
tary to DIM, but that did not seem to give supplemen-
tary information in our study when calibrating models 
on DIM-corrected day spectra. However, this was not 
observed by Vanlierde et al. (2021), who found minor 
model improvements when MY and parity were added 
to DIM-corrected spectra using RC and SF6 reference 
data.

On the other hand, the CH4 emissions in g/d were 
predicted by milk MIR with R2V of 0.73, 0.72, 0.72, 
0.72, and 0.72, and an SEPC of 48.4, 50.5, 50.4, 49.5, 
and 49.6 g/d when averaging the day spectra for a du-
ration of CH4 measurement of 4 BMU and including 
parity, MY, FPCM, parity + MY, and parity + FPCM, 
respectively (Table 6). The R2V were increased and 
the SEP were reduced when comparing such models 
to the equivalent models run without the inclusion of 
phenotypic information as explanatory variables (R2V 
= 0.70, SEPC = 53.1 g/d; Table 5). These findings 
suggest that DIM would be highly informative when 
measuring CH4 emissions day by day (as with RC or 
SF6 techniques), especially at the beginning of lactation 
(Vanlierde et al., 2015), whereas parity, MY, or FPCM 
may be more informative than DIM when spectra are 
averaged over a long measurement duration.

Among phenotypic variables, the best performing 
model for CH4 prediction as grams per day was ob-
tained by including parity, both for models built on 
DIM-corrected day spectra and for models built on 

the average DIM-uncorrected spectra of 4 BMU. In 
this last case, however, the differences in performance 
between models including parity or other phenotypic 
variables were very small. Parity allows in particular 
to correct for the lower CH4 emissions in grams per 
day of primiparous versus multiparous cows (Coppa et 
al., 2021). However, primiparous cows also had lower 
DMI, MY, and FPCM, suggesting that the additional 
information given may be partially redundant. Indeed, 
when expressing CH4 as grams per kilogram of DMI, 
grams per kilogram of milk, or grams per kilogram of 
FPCM, including parity as an explanatory variable did 
not improve model performance, but including MY or 
FPMC increased R2V and reduced SEPC. The predic-
tion improvement by adding MY or FPCM is not sur-
prising, as the relationship between MY and CH4 emis-
sions expressed as grams per day is well known (Niu et 
al., 2018). This prediction improvement suggests that 
MY or FPCM is reflected by spectral data thanks to a 
dilution effect with increasing MY for the majority of 
milk components that share ruminal metabolism with 
CH4 (Dehareng et al., 2012). The detection of changes 
in milk constituent, concentration, and composition re-
lated to MY also seems to be confirmed by the slightly 
better performance of models built on CH4 expressed 
as grams per kilogram of FPCM rather than grams per 
kilogram of MY and by the slightly better performance 
when including FPCM instead of MY as explanatory 
variable. Including both parity and MY or FPCM did 
not further improve the models, once again suggesting 
the redundancy of the additional information given by 
such variables when considering average CH4 emissions 
estimated by GF of long duration.

Effect of Including Samples From Cows 
Supplemented with 3NOP on the Predictive 
Performance of Enteric Methane Emissions

As milk MIR prediction capacity for CH4 emissions 
is based on changes in milk composition related to 
CH4 emissions thanks to actions targeted on common 
pathways in ruminal metabolism, little is known of the 
predictive response on spectra from cows supplemented 
with feed additives affecting methanogenesis without 
changes in milk composition, as already reported with 
3NOP (Saro et al., 2019; Yanibada et al., 2020; Kim et 
al., 2020). To illustrate possible limits of in-field predic-
tive mode applications in the case of milk from a diet 
affecting methanogenesis but not milk synthesis, the 
data set of samples only from cows supplemented with 
3NOP was used to validate the model developed on 
day milk spectra for a duration of CH4 measurement 
of 1 BMU not including 3NOP samples. The R2V was 
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substantially lower and the SEPC was higher when 
compared with the validation performance on the data 
set not including 3NOP samples (0.13 vs. 0.52, and 
67.0 vs. 61.7g/d, respectively; Tables 7 and 3). Similar 
poor performances in validation were observed for CH4 
expressed as grams per kilogram of DMI, grams per 
kilogram of milk, or grams per kilogram of FPCM. 
However, poor predictive performance in calibration 
and in validation (R2V = 0.31 and SEP = 78.5 g/d; 
Table 7) was also observed when a new model was built 
including in the calibration part of the 3NOP database 
and keeping part of it in validation, when compared 
with the performance of the equivalent model without 
3NOP samples. Similar poor performances in valida-
tion were observed for CH4 in the other units. This 
finding confirms an indirect prediction of CH4 emis-
sions by milk MIR spectra based on changes in milk 
composition (Dehareng et al., 2012). Thus, at the 
current knowledge, the application of CH4 predictive 
models by MIR should not be applied to milk samples 
derived from diets affecting only CH4 emissions but not 
milk composition.

CONCLUSIONS

Our study shows that the calibration of MIR predic-
tive models on cow milk for CH4 emission data from 
GF requires specific reference data and management 
of spectra. As GF techniques measure an average CH4 
emission over a period and not on a specific day, long 
duration of CH4 measurement by GF is required to op-
timize MIR predictive performances. Ideally, it would 

be better to obtain the spectra to be coupled to GF 
reference data by averaging several spectra collected 
throughout the period of CH4 measurement by GF. It 
would be preferable to use a day spectrum from the 
average spectra of 2 consecutive milkings, instead of the 
spectrum of a single milking. If only a day spectrum is 
available during a CH4 measurement period, correcting 
day spectra by the lactation stage increased predictive 
performance to close to those obtained with the aver-
age spectra collected during the measurement period. 
However, based on the data sets available, adding phe-
notypic information as additional explanatory variables 
did not further improve the performance of models built 
on day DIM-corrected spectra. On the other hand, add-
ing MY or FPCM improved the performance of models 
built on the average of spectra (uncorrected by DIM) 
recorded during the CH4 measurement period, giving 
the best predictive performance. Specific models would 
be required to achieve reliable prediction on samples 
from cows receiving dietary treatments that decrease 
CH4 emission without affecting milk composition.

ACKNOWLEDGMENTS

The dataset used in this work comes from 3 trials 
on dairy cows carried out in the framework of 3 differ-
ent collaborative projects led by INRAE and co-funded 
by (1) DSM Nutritional Products AG (Kaiseraugst, 
Switzerland); (2) a consortium of 11 institutes and pri-
vate companies [Adisseo France SAS (Antony, France), 
Agrial (Caen, France), APIS-GENE (Paris, France), 
Deltavit (Janzé, France), DSM Nutritional Products AG 

Coppa et al.: DAIRY INDUSTRY TODAY

Table 7. Statistics for the validation on the 3NOP data set of the prediction equations for enteric CH4 emissions built on day spectra excluding 
3NOP milk samples and for the calibration and validation of the equivalent prediction equations developed including 3NOP milk samples1

Model: day milk MIR spectra 
vs. CH4 measured on 4 BMU

Calibration2

 

Validation3

n SECV R2CV RPDCV Bias Slope SEP SEPC R2V

CH4 (g/d)           
 Validation on 3NOP samples      −122.9 0.77 139.8 67.0 0.13
 3NOP included in calibration and validation 382 63.6 0.42 1.31  −11.0 0.86 79.1 78.5 0.31
CH4 (DMI, g/kg)           
 Validation on 3NOP samples      −4.12 0.12 5.62 3.84 0.02
 3NOP included in calibration and validation 379 3.88 0.70 1.81  0.12 0.98 4.68 4.69 0.61
CH4 (milk, g/kg)           
 Validation on 3NOP samples      −3.31 0.36 4.12 2.46 0.22
 3NOP included in calibration and validation 375 2.26 0.79 2.18  −0.45 0.92 2.82 2.79 0.67
CH4 (FPCM, g/kg)           
 Validation on 3NOP samples      −3.51 0.19 5.17 3.83 0.08
 3NOP included in calibration and validation 369 2.72 0.85 2.56  −0.27 0.90 3.57 3.57 0.73
1MIR = mid-infrared; 3NOP = 3-nitrooxypropanol; basic measurement unit (BMU) = time needed to reach 20 spot measurements of CH4 by 
the GreenFeed instrument; fat- and protein-corrected milk (FPCM) = milk yield (kg/d) × [0.337 + 0.116 × fat (%) + 0.06 × protein (%); 
Gerber et al., 2011].
2n = number of samples included in the calibration set; SECV = standard error for cross-validation; RPD = the ratio of the standard deviation 
of the reference data to the SECV; R2CV = coefficient of determination for cross-validation.
3SEP = standard error of prediction for external validation; SEPC = SEP corrected for the bias; R2V = coefficient of determination for external 
validation; n for validation on 3NOP samples: 80; n for validation when 3NOP was included in calibration and validation: 198.
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(Kaiseraugst, Switzerland), Institut de l’Elevage (Paris, 
France), Lallemand (Blagnac, France), Moy Park Beef 
Orléans (Fleury-les-Aubrais, France), Neovia (Saint 
Nolff, France), Techna France Nutrition (Couëron, 
France), and Valorex (Combourtillé, France)]; (3) 
Delacon Biotechnik GmbH (Engerwitzdorf, Austria) 
and the European Union’s Horizon 2020 research and 
innovation program within the transnational access 
activities of the SmartCow project under the Grant 
Agreement no. 730924. The authors especially thank 
the staff of the experimental Unit Herbipôle (INRAE, 
15190 Marcenat, France; https: / / doi .org/ 10 .15454/ 1 
.5572318050509348E12) and of the experimental farm 
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Montreuil sur Loire, France) for animal care, feeding, 
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