
1Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdata

Accessible data curation and
analytics for international-scale
citizen science datasets
Benjamin Murray   1 ✉, Eric Kerfoot1, Liyuan Chen1, Jie Deng1, Mark S. Graham   1,
Carole H. Sudre1,2,3, Erika Molteni   1, Liane S. Canas   1, Michela Antonelli1, Kerstin Klaser1,
Alessia Visconti   4, Alexander Hammers   1, Andrew T. Chan   5, Paul W. Franks6,
Richard Davies   7, Jonathan Wolf   7, Tim D. Spector   4, Claire J. Steves4, Marc Modat1,8 &
Sebastien Ourselin1,8

The Covid Symptom Study, a smartphone-based surveillance study on COVID-19 symptoms in the
population, is an exemplar of big data citizen science. As of May 23rd, 2021, over 5 million participants
have collectively logged over 360 million self-assessment reports since its introduction in March 2020.
The success of the Covid Symptom Study creates significant technical challenges around effective
data curation. The primary issue is scale. The size of the dataset means that it can no longer be readily
processed using standard Python-based data analytics software such as Pandas on commodity
hardware. Alternative technologies exist but carry a higher technical complexity and are less accessible
to many researchers. We present ExeTera, a Python-based open source software package designed to
provide Pandas-like data analytics on datasets that approach terabyte scales. We present its design
and capabilities, and show how it is a critical component of a data curation pipeline that enables
reproducible research across an international research group for the Covid Symptom Study.

Introduction
Mobile applications have enabled citizen science1–4 projects that can collect data from millions of individuals.
The Covid Symptom Study5, a smartphone-based surveillance study on self-reported COVID-19 symptoms
started in March 2020, is an exemplar of citizen science. As of May 23rd, 2021, the study contains over 360 mil-
lion self-assessments collected from more than 5 million individuals. The data is provided as daily CSV (comma
separated value) snapshots that are made available to both academic and non-academic researchers to facilitate
COVID-19 research by the wider community.

The Covid Symptom Study dataset presents some demanding data curation challenges. We define data cura-
tion as involving, but not being limited to, the application of a set of transformations to the raw data. Such
transformations include generation or application of metadata, cleaning of noisy and inconsistent values or
relationships between values, and generation of consistent derived measures more suitable for further analysis.
Erroneous values, changing schemas and multiple contemporary mobile app versions all add complexity to the
task of cleaning and consolidating datasets for downstream analysis. Data curation must be performed effec-
tively as a precondition for reproducible science. In terms of the data curation definition provided by Lee et al.6,
we focus primarily on’managing and sharing data’ as defined in Table 1 of their publication.

1King’s College London, School of Biomedical Engineering & Imaging Sciences, London, SE1 7EU, United Kingdom.
2University College London, MRC Unit for Lifelong Health and Ageing, Department of Population Health Sciences,
London, WC1E 7HB, United Kingdom. 3University College London, Centre for Medical Image Computing, London,
WC1E 6BT, United Kingdom. 4King’s College London, Department of Twin Research and Genetic Epidemiology,
Westminster Bridge Road, London, SE1 7EH, United Kingdom. 5Massachusetts General Hospital, 55 Fruit Street, GRJ
825C, Boston, MA, 02116, United States. 6Lund University, Diabetes Centre, CRC, SUS Malmö, Jan Waldenströms
gata 35, House 91:12, SE-214 28, Malmö, Sweden. 7Zoe Limited, 164 Westminster Bridge Road, London, SE1 7RW,
United Kingdom. 8These authors contributed equally: Marc Modat, Sebastien Ourselin. ✉e-mail: benjamin.murray@
kcl.ac.uk

Article

OPEN

https://doi.org/10.1038/s41597-021-01071-x
http://orcid.org/0000-0002-2413-923X
http://orcid.org/0000-0002-4170-1095
http://orcid.org/0000-0001-7773-8140
http://orcid.org/0000-0002-2553-1284
http://orcid.org/0000-0003-4144-2019
http://orcid.org/0000-0001-9530-4848
http://orcid.org/0000-0001-7284-6767
http://orcid.org/0000-0003-2050-3994
http://orcid.org/0000-0002-0530-2257
http://orcid.org/0000-0002-9795-0365
mailto:benjamin.murray@kcl.ac.uk
mailto:benjamin.murray@kcl.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-021-01071-x&domain=pdf

2Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

The primary challenge in curating and analysing Covid Symptom Study data is scale. Scale adds complexity
to otherwise simple operations. Python-based scientific computing libraries such as Numpy7,8 and Pandas9 are
ubiquitous in the academic community, but they are not designed to scale to datasets larger than the amount of
RAM (random access memory) on a given machine. Commodity hardware in 2021 is typically equipped with
16 to 32 GB (gigabytes) of memory. Larger amounts of RAM necessitate expensive server-grade hardware, and
doubling memory only doubles the size of dataset that can be handled.

Datasets too large for standard Python scientific computing tools can be moved to datastores, either tradi-
tional, relational SQL databases or distributed NoSQL datastores, such as key-value stores. Each type of datastore
comes with its own design philosophy and performance trade-offs10. Such datastores can operate on datasets far
larger than RAM but involve considerable additional complexity11 through installation and maintenance bur-
dens, and the need to learn new APIs and concepts. Additional computing power can be accessed through cloud
computing but this brings ongoing costs, particularly for high-memory compute instances. Cloud computing
also adds complexity to a solution, as cloud APIs are non-trivial to work with.

Although most of the principal Python libraries for data science are not designed to work with
larger-than-RAM datasets (see https://pandas.pydata.org/pandas-docs/stable/user_guide/scale.html), they
provide a rich set of design choices and concepts that have proven successful with and are well understood by
data scientists within the Python-using scientific community. By building on those design choices and con-
cepts, but focusing on the provision of key implementation choices and algorithms that are critical for scaling
beyond RAM, one can create highly scalable data analysis software with an API familiar to users of the Python
ecosystem.

Software packages with more scalable implementations of Pandas DataFrames exist. Dask (see https://dask.org)
and PySpark12, for example, offer powerful graph-based execution models capable of performing very large
calculations over multiple cores and machines. They also provide dataframe-equivalent implementations which
appear promising. As we will demonstrate for Dask, the inability to cherry-pick columns from the data frame
causes fundamental issues when dealing with billion element fields, however. Vaex13 is another alternative that
provides similar functionalities at scale, but it is not fully open source as some components are enterprise access
only.

Scale is not the only challenge to consider. Reproducibility of analyses, especially across large research teams,
is also critically important. When data cleaning and generation of analytics is done in an ad-hoc fashion, it is
easy to generate subtly different derivations of a given measure, causing inconsistencies across research teams
and research outputs. Furthermore, full reproducibility requires algorithms to be treated as immutable, so that
the application of a particular algorithm to a particular snapshot of data guarantees identical results, hardware
notwithstanding.

The Covid Symptom Study is delivered as a series of timestamped snapshots. Corresponding entries can be
modified between snapshots, and unless the dataset explicitly records changes to entries over time, one can only
determine the difference by comparing the snapshots, which exacerbates scaling issues. Updating an analysis
from one snapshot to another without such comparison compromises the interpretability of the updated results
in a way that is less obvious when working with individual snapshots.

To address the challenges described above, we have created ExeTera, a software that enables sophisticated
analysis of tabular datasets approaching terabyte scale, such as the Covid Symptom Study dataset, on commod-
ity hardware. ExeTera has an API designed to be familiar to users of Pandas, a ubiquitous tabular data analysis
library within the Python ecosystem, allowing researchers to use their existing expertise. Pandas’ design is itself
based on the data frame of R (see https://www.r-project.org/), another data analysis software popular with the
scientific community.

ExeTera can analyse datasets significantly beyond RAM scale by paying attention to two factors. The first is
a careful selection of data representation that provides the ability to perform operations on tables without them
ever being fully resident in memory. The second is the observation that certain operations become trivially scal-
able when the data is presented in lexical order. With an appropriate representation and the ability to sort table
row order, commodity hardware with modest amounts of RAM can perform sophisticated analyses on datasets
approaching or even exceeding terabyte scales.

Although we present ExeTera in the context of the Covid Symptom Study, it is designed to be applicable to
any dataset of related, tabular data. For the Covid Symptom Study, we have created ExeTeraCovid, a repository
of scripts and notebooks that uses ExeTera to create reproducible end-to-end data curation workflows.

The data curation workflow for the Covid Symptom Study has three stages. The first stage is a transformation
of the data from text-based CSV to concrete data types where each row is parsed for validity given metadata
describing the data types. The second stage is the application of a standardised set of cleaning and imputation

Table

Time to import patent table (seconds)

ExeTera Pandas Dask PostgreSQL

Patients 84.81 (141.01) Memory 105.88

Assessments 2266.65 Memory Memory 1946.60

Tests 74.04 37.46 434.40 42.37

Table 1.  Time taken to import the Patient table from the Covid Symptom Study 2021/05/23 snapshot. Figures
in parentheses denote that the import required more than 32 GB of memory to succeed. Memory denotes that
the import was unable to succeed as it required more than 256 GB of memory. Figures in bold indicate the best
import time.

https://doi.org/10.1038/s41597-021-01071-x
https://pandas.pydata.org/pandas-docs/stable/user_guide/scale.html
https://dask.org
https://www.r-project.org/

3Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

algorithms that remove duplicate rows, detect and recover problematic values, and generate derived values from
the source data. The third stage is the development and subsequent publishing of end-to-end scripts that, given
a daily snapshot, can replicate a given analysis.

In the following sections, we present ExeTera’s underlying capabilities and design, as well as its usage within
the Covid Symptom Study as a case study.

Results
ExeTera’s performance has been benchmarked against a combination of artificial data and Covid Symptom
Study data. We examine performance and scalability of ExeTera and its alternatives for key operations such as
importing data, reading subsets of data, and performing joins between tables. We also demonstrate Exetera’s
ability to generate a journalled dataset from snapshots allowing longitudinal analysis able to account for destruc-
tive changes between corresponding rows of the different snapshots. Finally, we present an example of ExeTera’s
analytics capabilities.

We have selected Pandas, PostgreSQL, and Dask to benchmark against ExeTera. Pandas has been selected as
the baseline against which we are testing ExeTera. Dask has been selected as it is the most popular Python-based
open-source library with a Pandas-like API that is explicitly designed for distribution and scale. PostgreSQL
has been selected as it is the most popular fully open-source relational database and is widely used in academia.

Performance is measured on an AMD Ryzen Threadripper 3960 × 24-core processor with 256 GB of mem-
ory. All key benchmarking processes are limited to 32 GB of memory where technically feasible although the
construction of datasets for testing is allowed to use more than 32 GB. The data is read from and written to a 1
TB (terabyte) Corsair Force MP600, M.2 (2280) PCIe 4.0 NVMe SSD.

Datasets.  Benchmarking is performed on part of the Covid Symptom Study dataset and on synthetic data
designed to mimic the relationship between the Patient and Assessment tables of the Covid Symptom Study
dataset.

Covid Symptom Study.  We use the Covid Symptom Study data snapshot from the 23rd of May 2021, unless
otherwise stated. We make use of the three largest tables:

•	 Patients: This table has 202 columns and 5,081,709 rows. It contains biometrics, location, long term health
status and other such values that rarely change over time.

•	 Assessments: This table has 68 columns and 361,190,557 rows. It includes current health status and symp-
toms, behavioural habits such as exposure to others and mask wearing, and other factors that are logged on
an ongoing basis by contributors.

•	 Tests: This table has 20 columns and 6.979,801 rows. Tests are logged whenever a patient gets a Covid test
and updated with the result of the test when available. Test parameters such as the test type and date are also
recorded here.

Artificial data.  In order to demonstrate the ability for ExeTera to scale relative to technologies that explicitly
handle larger than RAM datasets, we construct simple artificial tables with increasingly large column counts.
This is used to evaluate joins at row-counts beyond those of the Covid Symptom Study. The code to generate
these tables is part of the ExeTeraEval repository, listed in the Code Availability section.

The artificial dataset has two tables. The left table is an artificial analogue of the patient data from the Covid
Symptom Study. The right table is an artificial analogue of the assessment data from the Covid Symptom Study.
Each patient has 0 or more entries in the assessment table, with a mean of 10 entries per patient.

Import performance.  We measure the performance of the import activities that must be carried out in order
to perform analysis on the data. We define ‘import’ to mean anything that must be done to the data representation
to minimise/eliminate the parsing required upon subsequent loads.

For ExeTera, we use the exetera import operation that converts CSV data to ExeTera’s HDF5-based
datastore format.

For Pandas, reading from CSV imposes an expensive parse step every time a dataframe is loaded from drive,
so we perform a single preliminary load from CSV as an import, assigning the appropriate metadata so that the
columns are strongly typed, and then save the data as a HDF5 file. All subsequent operations are then bench-
marked on the HDF5-based dataframe.

For Dask, we perform a similar operation in which we read from CSV, assigning metadata and writing to
partitioned HDF5 files. Note that Dask uses Pandas DataFrames for its partitions. As with Pandas, all subsequent
operations are then benchmarked on the HDF5 data.

For PostgreSQL, we import the data through the execution of a SQL script that creates the tables and then
reads the data from CSV. We include the cost of setting up primary keys and foreign key constraints used to
optimise subsequent operations. In the case of the Covid Symptom Study Patient data, this involves the removal
of duplicate rows that are present in the Patient table. This allows the primary key constraint to be established on
the id column and the foreign key constraint to be established on patient_id column for the Assessment
and Test tables.

The results are shown in Table 1. Where the process was not able to complete using 32 GB of memory, the
result is shown in brackets. ‘Memory’ denotes that process was not able to complete using 256 GB.

https://doi.org/10.1038/s41597-021-01071-x

4Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

It should be noted that the presence of columns containing long strings of natural language significantly
impact both Pandas’ and Dask’s ability to convert the Patient table from CSV to HDF5. A detailed analysis of
why is presented in the Avoiding scaling issues with long string data section.

Reading columns.  Reading individual fields from datasets is the most common operation performed during
data analysis. For a typical analysis, we might only need a small subset of the columns in the dataset, and so it is
highly beneficial if the cost of reading this data is proportional to the number of columns being loaded. This test
is carried out on the Patient table and the results are shown in Table 2.

Join performance.  Here we measure the performance of join operations on the dataset. We measure this
both with a snapshot of the Covid Symptom Study and with a synthetic dataset for different row lengths. Figure 1
illustrates a left join operation.

We perform the following joins on the Covid Symptom Study, shown in Table 3:

•	 Left join: Patient < - Assessment
•	 Left join: Assessment < - Patient
•	 Left join: Patient < - Test
•	 Left join: Test < - Patient

The results for left joins performed on artificial data are shown in Table 4.

Field count

Time to read patient fields (seconds)

ExeTera Pandas Dask PostgreSQL

2 fields 0.068 (142.56) NA 3.22

4 fields 0.075 (143.21) NA 8.24

8 fields 0.084 (142.35) NA 9.71

Table 2.  Time taken taken to perform reads of a number of columns of the Patient table from the Covid
Symptom Study 2021/05/23 snapshot. Figures in parentheses denote that the read required more than 32 GB
of memory to succeed. NA denotes that the operation could not be performed due to the dataset not being
successfully imported. Figures in bold indicate the best read time.

Fig. 1  A left join of a simplified dummy Patent and Assessment dataset. This left join matches patient_id
entries in the Patient table to patient_id in the assessment table. The appropriate patient_age values
are mapped to the corresponding rows from the Assessment table.

Tables

Covid Symptom Study left join time (seconds)

ExeTera Pandas Dask PostgreSQL

Assessments < - Patients 224.13 NA NA 391.09

Patients < - Assessments 224.31 NA NA 394.33

Tests < - Patients 7.62 NA NA 9.92

Patients < - Tests 7.97 (295.08) NA 10.51

Table 3.  Time taken to perform left joins on the Covid Symptom Study 2021/05/23 snapshot. Figures in
parentheses denote that the join required more than 32 GB of memory to succeed. NA denotes that the
operation could not be performed due to the dataset not being successfully imported. Figures in bold indicate
the best join time.

https://doi.org/10.1038/s41597-021-01071-x

5Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

ExeTera joins are performed through the exetera.core.dataframe.merge function. In order to
access highest-scale joins, the keys must be in lexical order. The dataframe.merge function requires a desti-
nation ExeTera DataFrame instance to write to, so the times presented measure the time taken to read the source
dataframes, perform the merge and write to the destination dataframe.

Joins in Pandas are carried out through the pandas.merge function. Like ExeTera, Pandas takes advantage of
lexically ordered keys to improve merge performance, and so we measure merges on Pandas with ordered keys.

Dask joins are performed through dask.dataframe.merge. As with ExeTera, the merge results must be
written to a destination dataframe serialised to disk to achieve scale, so this is part of the measurement.

PostgreSQL joins are performed through the JOIN statement in SQL. As we are concerned with measuring
scale, we write the results of the JOIN to a table using CREATE TABLE x as followed by the SELECT and
JOIN statements.

To understand the ultimate join scale limitations of the different technologies, we do not restrict the memory
usage of the dataset generation process, but the process that performs the join is restricted to 32 GB of memory,
except for Dask, for which we did not determine a way to limit the working set of the distributed processes.

Journalling operation.  ExeTera can combine snapshots of datasets to create a journalled dataset, keeping
multiple, timestamped copies of otherwise destructive changes to corresponding records between the snapshots.
Table 5 shows the results of journalling together shapshots of the Covid Symptom Study from the August 1st 2020
and September 1st 2020, and the time taken to do so.

Analytics.  ExeTera provides the ability to load data very efficiently, as seen in Table 2. Once loaded, analyt-
ics can be performed through use of libraries such as Numpy and Matplotlib14, using tools that researchers are
familiar with, such as Jupyter Notebook15. Figure 2 shows a histogram of healthy and unhealthy assessment logs
bucketed into seven day periods that must parse 361 million assessments to generate its results.

Discussion
We have presented ExeTera, a Python software package that enables data analytics on datasets of related tables
approaching terabyte scales. ExeTera demonstrates that a commodity computer is capable of performing anal-
yses at scale, given appropriate software. It is a low-complexity solution from a user standpoint, designed to be
familiar to data scientists who are familiar with Python’s scientific computing ecosystem, and does not require
the user to be aware of concurrency or data partitioning factors.

ExeTera’s primary novelty is a design and implementation that allows it to carry out highly scalable operations
between dataframes. Its join functionality, in particular, scales as well as PostgreSQL and even outperforms it in bench-
marks on both synthetic and Covid Symptom Study data. ExeTera is written in Python, requires no server and is triv-
ially installable through the Python software package manager Pip (https://packaging.python.org/key_projects/#pip).

Right row count

Artificial left join time (seconds)

ExeTera Pandas Dask PostgreSQL

1,000,000 0.594 0.174 0.488 0.697

2,000,000 0.662 0.278 1.22 1.47

3,000,000 0.744 0.362 1.76 2.22

4,000,000 0.805 0.450 2.11 2.89

6,000,000 0.946 0.675 3.02 4.51

8,000,000 1.09 0.872 4.29 6.05

10,000,000 1.21 1.06 5.28 7.40

20,000,000 1.88 2.09 12.71 14.41

30,000,000 2.54 3.24 20.92 21.81

40,000,000 3.25 4.36 30.62 32.61

60,000,000 4.55 6.56 54.62 48.09

80,000,000 5.88 9.19 Failed 70.83

100,000,000 7.01 11.93 113.76 87.04

200,000,000 13.60 24.66 Failed 198.87

300,000,000 19.68 Memory Failed 280.83

400,000,000 27.52 Memory Failed 379.4

600,000,000 39.86 Memory Failed 578.19

800,000,000 53.74 Memory Failed 767.43

1,000,000,000 69.19 Memory Failed 964.67

Table 4.  Time taken to perform left joins on an artificial dataset. Row counts shown are for the right table,
which has 10x the row count of the left table (e.g. 100,000,000 rows in the left table when the right table has
1,000,000,000 rows). Memory denotes that the import was unable to succeed as it required more than 32 GB of
memory. Failed denotes that the operation was unable to complete due to reasons other than memory. Figures
in bold indicate the best import time.

https://doi.org/10.1038/s41597-021-01071-x
https://packaging.python.org/key_projects/#pip

6Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

ExeTera’s ability to scale is provided through streamable implementations of key operations operating on
a columnar data format discussed in detail in the Methods section. By taking advantage of the fact that large
tabular datasets such as the Covid Symptom Study typically have orders of magnitude more rows than columns,
ExeTera can achieve excellent scaling and performance.

That said, ExeTera currently has two practical scale limitations. Firstly, although key operations scale to
drive size, some of the more mundane operations do not yet have streaming implementations. As a result, the
user must maintain some awareness of scaling factors when manipulating large numbers of fields concurrently.
Secondly, ExeTera is single core at present.

Data source

Journalling dataset snapshots

Patients Assessments Tests Diet

August 1st row count 4,402,930 129,423,329 749,937 659

September 1st row count 4,480,270 153,655,115 991,128 1,291,237

Rows only in old 2,519 108,231 485 0

Rows only in new 86,301 243,400,017 241,676 1,290,578

Rows updated 1,632,849 702 18,169 630

Rows not updated 2,761,120 129,314,396 731,283 29

Journalled row count 6,122,080 153,764,048 1,009,782 1,291,867

Time to import (seconds) 145.1 2273 6.616 8.179

Table 5.  Journalling Covid Symptom Study snapshots from 1st August 2020 and 1st September 2020. This table
shows results in terms of row counts and the time taken to perform the journalling.

Fig. 2  Seven day summary of assessments from the Covid Symptom Study snapshot dated 16th May 2021. The
upper chart shows the number of assessments, coloured by whether the patient logged as healthy or unhealthy.
The lower chart shows the assessments logged as unhealthy as a fraction of assessments logged for that seven
day period.

https://doi.org/10.1038/s41597-021-01071-x

7Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

We plan to resolve these limitations by adopting graph scheduling and processing technology capable of
managing array operations through dependency management and task scheduling. As of the time of writing,
we are evaluating Dask for this purpose. Dask has powerful task decomposition and scheduling capabilities
that provide distributed, scalable array operation primitives. Rather than making use of Dask’s DataFrame, we
will build our own distributed, scaled versions of key algorithms on the Dask array API as we do currently with
Numpy arrays. This addresses both limitations; all operations on ExeTera fields become streaming by default if
they are based on Dask arrays rather than Numpy arrays and the scheduler provides multi-core / multi-node
distribution that effectively eliminates the need for the user to concern themselves with memory usage. Dask is
also integrated with more specialised back-ends such as Nvidia’s RAPIDs16, enabling execution of distributed
graph processing across GPU clusters. Dask integration should allow ExeTera to handle datasets well into the
multi-terabyte range with minimal overhead.

ExeTera’s ability to store multiple snapshots in a journalled format enables researchers to perform full longi-
tudinal analysis on otherwise unjournalled datasets and facilitates the ability to move between snapshots while
being able to properly explore the impact of doing so on analyses.

ExeTera has played a critical role in supporting the Covid Symptom Study research effort and enables the
ExeTeraCovid repository, which implements the data curation and analytics scripts for many of the papers
published as part of the joint research effort between Zoe Ltd., King’s College London, Massachusetts General
Hospital, and Lund University, a selection of which are referenced here17–24.

Reproducibility is enabled primarily through convention at present. The ExeTeraCovid project is built on
top of ExeTera and achieves reproducibility through the convention that algorithms are treated as immutable
once implemented and deployed. This means that any future version of ExeTeraCovid will have any versions of
algorithms that are implemented now as well as future refinements to those algorithms. This allows the effect of
changing an algorithm to easily be quantified and allows users to update between ExeTeraCovid releases without
affecting analyses. Reproducibility will be directly supported in a future version of ExeTera.

ExeTera is still at an early stage of development but has a funded, dedicated development team. ExeTera’s
roadmap addresses the advancement of its fundamental performance and capabilities, the breadth of its ana-
lytics API, and the richness of its data curation feature set, and is available on the respository wiki listed in the
Code Availablity section.

Methods
This section is split up into three parts. The first two deal with ExeTera and its design and implementation. The
third part deals with ExeTeraCovid and our data curation methodology for the Covid Symptom Study data.

ExeTera design.  ExeTera achieves its performance through careful design and implementation decisions.
We detail the most important of these here with the background context that motivates them.

Domains of scale.  In order to successfully perform analyses on large datasets such as the Covid Symptom
Study, it is necessary to be able to handle data tables that cannot fit into RAM. Data size and structure, and the
set of operations needed to handle the dataset, must be addressed. We can define three scale domains that neces-
sitate a change of approach at their boundaries.

RAM Scale (1 GB to 16 GB).  This is the scale at which the dataset entirely fits in the computer’s RAM.
Commodity laptops and desktops used by researchers typically have between 16 and 32 GB of RAM. Loading
the data can inflate its memory footprint depending on the datatypes used, and operations can multiply mem-
ory requirements by a small constant factor, but provided peak memory usage does not dramatically exceed
RAM, researchers can make use of programming languages with numerical/scientific libraries such as Numpy
or Pandas to effectively analyse the data.

Drive Scale (16 GB to 1 TB).  At drive scale, only a portion of the dataset can fit into RAM at a given time, so
specific solutions are required to effectively stream the dataset from drive to memory. Datastores become a more
compelling option at this scale, as they already have memory efficient, streaming versions of the operations
that they support, but their usage may not be desirable due to the need to learn a new language or API, and the
installation and maintenance burden they represent. This is the scale of dataset that ExeTera currently targets.

Distributed Scale (>1 TB).  At distributed scale, the use of server-based datastores is typically mandatory. It
becomes necessary to redesign operations to exploit distributed computing across many nodes. Selection of
appropriate datastore technology becomes critical, with specific datastore technologies addressing different roles
within the overall system. This scale will be targeted by ExeTera in future development through the incorpora-
tion of Dask or similar graph scheduling and processing technology.

Serialised data representation.  In order to handle datasets that are larger than memory the data must be stored
on a drive and only a subset of the data loaded into RAM at any given time. Picking an appropriate serialized
data representation is a key factor in achieving fast, scalable operations at any scale. Text-based formats such as
CSV are commonly used to portably represent large datasets, but they come with many drawbacks, primarily a
lack of strong typing/metadata and an inability to rapidly index to a given location in the dataset. These issues
become severe at scale, and so an alternative serialised data representation is required. Binary, strongly typed
data formats that can be copied from their storage representation directly to memory and vice-versa are optimal
for this purpose. Assuming appropriate binary formats are used, the key question is to know how to organise
the data, and this is where ExeTera differs from the software packages against which it has been benchmarked.

https://doi.org/10.1038/s41597-021-01071-x

8Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data representation: row-local vs. column-local data layoutsData storage formats can be classified as primarily
row-local or primarily column-local in terms of their data layouts (see Fig. 3). Row-local data layouts store
groups of related columns for a given data entry together in memory. Column-local data layouts store all data
entries for a specific column together in memory. Alternatively, the two approaches can be combined to create
block-decomposed data layouts. The selection of an appropriate data layout is a critical factor in the potential
performance of operations on the data (see https://people.freebsd.org/ lstewart/articles/cpumemory.pdf.

Row-local data layout.  Row local data layout allows multiple columns for a given record to be updated very
efficiently as the required values for the row are located together in memory. It is less suitable for operations
involving entire columns, as this involves the reading of many disjoint memory locations to access the column
contents as they are spread over the table representation.

CSV files are almost always interpreted in a row-local fashion. Each entry for each column is delimited by
a separator, typically a comma. Rows are terminated by an unescaped newline character. CSV cells can contain
separator and newline characters, and so additionally require escape characters (typically double quote) that
indicate cells containing separator / newline characters. Additionally, such escaped cells can also contain escaped
characters.

SQL databases also store their data in a primarily row-local format, although they typically make some use
of blocking10,25. This allows them to be fast when used for workloads in which many point updates (often several
fields within a single row) are being made concurrently, but it means that monolithic reads of entire columns
require consolidation and copying of many small regions of serialised memory rather than a single monolithic
read. SQL databases have highly refined algorithms that are able to maximise performance given the underlying
data representation.

Column-local data layout.  Column-local data storage enables very efficient access to a given column. All the
entries for a given column are (effectively) contiguous in memory and loading a single column can be done
in an optimal fashion by the memory subsystem. When a dataset has many columns and a given operation
operates on a smaller number of those columns, scaling the operation is a far simpler proposition. Conversely,
column-local data storage performance suffers when multiple small updates are being made to multiple large
columns. Reading and updating a row across multiple columns involves a series of disjointed reads in this case.
This is the approach taken by ExeTera.

Block-decomposed layouts.  Block-decomposed formats attempt to amortise the cost of the poorly per-
forming operation at the expense of the strongly performing operation. In the case of block-decomposed
column-local formats, such as that employed by Pandas, they store blocks of columns of the same datatype
together in memory as 2D Numpy arrays (see https://github.com/pydata/pandas-design/blob/master/source/
internal-architecture.rst).

ExeTera is pure column-local.  ExeTera uses a purely column-local data orientation with no block decompo-
sition. We consider the pure column-local approach is critical to scalability for several reasons. Firstly, it is the
lowest complexity solution from a code standpoint. If a block-decomposition strategy is used, code paths must
account for operations that work across different blocks as well as operations that ideally want to optimise work-
ing within a single block. This necessarily involves more code and additional complexity. Secondly, our goal is to
maximise the row-counts that we can effectively handle for operations that have not yet been provided streaming
implementations. By being able to load a single column into memory at a time, non-streaming operations can
be performed on columns containing billions of rows for most datatypes. Thirdly, such columns can be loaded
with single contiguous reads and we can extend ExeTera to use memory mapping (a fast way of mapping a part
of a drive directly into RAM) very simply. Finally, each column being stored separately allows us to move to

Fig. 3  Figure illustrating different memory layout strategies. In each memory layout, the arrow indicates the
ordering of the cells in memory relative to each other.

https://doi.org/10.1038/s41597-021-01071-x
https://people.freebsd.org/%20lstewart/articles/cpumemory.pdf
https://github.com/pydata/pandas-design/blob/master/source/internal-architecture.rst
https://github.com/pydata/pandas-design/blob/master/source/internal-architecture.rst

9Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

compression techniques such as adaptive run-length encoding based on the data contents of individual fields,
which would be compromised by a block-decomposition strategy.

HDF5 as an initial dataset implementation.  HDF5 (see http://www.hdfgroup.org/HDF5) is a data format
for storing keys and their associated values in a hierarchically organised, nested collection of datasets (a col-
umn / field in ExeTera terms). HDF5 provides the ability to store large arrays of data in a column-local format
(although data can be stored in multi-dimensional arrays, as is done by Pandas). It also allows for data to be
stored as binary, concrete data types. HDF5 permits a user to explore the overall structure and metadata of
stored datasets without loading the data itself. Data is loaded at the point that a user specifically requests the
contents of a given dataset. This can be a direct fetch of the entire dataset or an iterator over the dataset. This
makes it a suitable initial data format for ExeTera, although alternative columnar data storage formats are being
considered to replace HDF5 for future development due primarily to issues of format fragility and shortcomings
relating to concurrent reading / writing and iterator performance.

Field design.  ExeTera supports a number of ubiquitous data types, including numeric and string formats.
These are accessed in the software through various Field types. ExeTera Fields come in two basic types,
dataframe-backed fields and memory fields. Any field read from a dataframe is considered dataframe-backed
and is read from its dataset when requested. Memory fields are generated whenever operations are performed on
fields that are not immediately written back to a dataframe. Memory backed fields can be written to dataframes.
Fields have a rich API of operations that can be performed on them, including arithmetic, logical and compari-
son operations appropriate for their types, as well as operations such as aggregation, filtering and sorting.

Decoupling presentation from representation.  Note that fields logically represent an array of some type of data
but may have a more complex implementation involving multiple arrays that require non-trivial implementa-
tions of the operations described above. This allows ExeTera to handle string fields with highly variable lengths
in an efficient manner and is only practical because each field is stored separately in the dataset.

Fixed string fields.  Fixed string fields contain string data where each entry is guaranteed to be no longer than
the length specified by the field. Fixed string fields can handle UTF8 unicode data, but this is encoded into bytes
and so the specified length must consider the encoding of the string to a byte array.

Indexed string fields.  Indexed string fields are used for string data where the strings may be of highly variable
length, or where a majority of string entries are empty. The data is stored as two arrays; a byte string of all of the
strings concatenated together, and an array of indices indicating the offset to each entry. Figure 4 illustrates the
data format for an indexed string field.

Numeric/logical fields.  ExeTera supports the standard numeric types supported by Numpy. These are stored
in a standard binary format that can be directly mapped or read as Numpy arrays.

Categorical fields.  Categorical fields map a limited set of string values to a corresponding numeric value. A key
is stored along with the field providing a mapping between string and number, e.g. 0: ‘mild’, 1: ‘moder-
ate’, 2: ‘severe’.

Datetime/date fields.  Datetime fields store date times as posix26 timestamps in double precision floating point
format. The schema can also specify the generation of a ‘day’ field quantising the timestamp to the nearest day
and can also specify whether the field contains empty values, in which case a filter is also generated, as with
numeric fields.

Avoiding scaling issues with long string data.  ExeTera has been explicitly designed to avoid some of the prob-
lems that Pandas (and by extension, Dask) experience when loading the Covid Symptom Study data. Pandas’
internal representation scales poorly with datasets that contain a number of string columns where one or more
of the columns contain very large entries. In the case of the Covid Symptom Study Patient table, the longest
string encountered in the free text data is approximately 600 characters in length. Internally, Pandas stores
all string columns together in a 2D array-like structure. It allocates this array using fixed string format, where
the capacity of every entry is the longest entry encountered in any of the string data. In the case of the Covid
Symptom Study Patient table dated 23rd May, 2021, this means approximately 30 columns imported as string
with approximately 5 million elements per column, resulting in the need to allocate a 90 GB table, despite the
serialized CSV representation being only 3.8 GB. Dask uses Pandas DataFrames internally, and therefore suffers
from the same degenerate memory usage. ExeTera always stores columns (fields) as distinct structures in mem-
ory, and its ability to present string data to the user through memory-efficient indexed strings means that it does
not suffer from degenerate performance when dealing with datasets containing natural language fields. For the
Covid Symptom Study dataset, the imported Patient table is 5.9 GB in size. Our approach further scales to enable
textual analysis of natural language data on the far-larger Assessment table; 360 million assessments logged by
users of the Covid Symptom Study app.

Data importing.  Importing from CSV to strongly typed data formats requires a conversion of string data to
the appropriate data type for each column in the CSV file. This is typically a one-time operation, but can be very
expensive in both time and, more critically, memory. Importing can be performed in multiple stages, where
the first stage imports CSV string values into string-based binary representation in the destination file format,

https://doi.org/10.1038/s41597-021-01071-x
http://www.hdfgroup.org/HDF5

1 0Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

followed by a second stage where the data is then cast to its final type. Alternatively, the data can be read and
converted in a single stage. The latter is preferable but can only be performed if the data is in a clean format
or appropriate converters exist to perform the operation. In the case of the Covid Symptom Study, there are a
number of fields that contain values that break strongly typed constraints. Our approach in this case is to convert
these columns into multiple ExeTera fields.

Numeric field import.  Numeric data in the Covid Symptom Study is allowed to contain empty entries. These
are entries where numeric data is not present. We convert these entries to a strongly typed numeric field with a
user-configurable default value in place of the empty entries, and a corresponding strongly typed boolean field
indicating whether data is present for that entry.

Categorical field import.  Categorical data in the Covid Symptom Study can be a combination of expected cat-
egorical values (e.g.’mild’,’moderate’,’severe’) and free text. ExeTera provides an importer that can split this data
into two fields, the categorical data itself optimally imported as numeric values with a corresponding key, and an
indexed string field that can optimally store the free text data due to the typically large number of empty entries.

Importing via command line.  Importing data from CSV can be performed via the exetera import com-
mand or via the API. The command line import command requires a schema file that describes the fields and
the type conversions that they should undergo. The ExeTera schema file format is a JSON27 format. Each table is
described by an entry inside of a JSON dictionary labelled schema. Each entry in this dictionary is the name of
the table followed by the table descriptor. This has up to three entries. The first is primary_keys, which lists
zero or more fields for the dataset that together represent the primary key for the table. The second is fields and
contains all the field descriptors for the table. The third is foreign_keys and contains the names of foreign
keys in the table and which other tables they relate to.

Schema file field entries.  The schema file entries themselves contain at minimum a field_type entry,
and depending on the specific field type, require additional entries. Box 1 shows an illustrative, minimal
example of a schema file. A full specification can be found in the ExeTera github wiki listed in the Code
Availability section.

Box 1 An illustrative, minimal example of an ExeTera JSON schema for use when importing data from CSV.

https://doi.org/10.1038/s41597-021-01071-x

1 1Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

ExeTera implementation.  ExeTera is implemented in the Python programming language. Python has two
aspects that make it suitable for writing software that performs data analytics and numerical analysis. Firstly, it
is dynamically typed, which reduces code complexity and verbosity28. Secondly, it has a strong ecosystem of sci-
entific libraries and tools to mitigate the performance and memory penalties that come with using a dynamically
typed, byte-code interpreted language and runtime.

Use of python technologies.  Code that is compiled and run directly in CPython (the reference Python imple-
mentation) executes in the Python interpreter. The Python interpreter is extremely slow relative to optimised
code such as that generated by compiled, optimised C/C++; in many cases it is orders of magnitude slower
(see https://numba.pydata.org/numba-doc/latest/user/5minguide.html). Python’s type system does not provide
light-weight objects to represent primitive types. Even numeric values such as integers and floats are stored as
full objects, and typically require 28 bytes for a 4 byte integer value. This overhead precludes efficient memory
usage when iterating over large numbers of values.

Numpy7,8 is the Python community’s main tool for circumventing such time and space inefficiencies.
Amongst other features, it provides a library for space-efficient representations of multi-dimensional arrays, and
a large library of time-efficient operations that can be carried out on arrays.

The performance of such operations can be orders of magnitude faster than native CPython, but this is con-
ditional on minimising the number of transitions between Python code and the internal compiled code in which
the operations are implemented.

Not all code can be easily phrased to avoid transitions between CPython and Numpy internals. Where this is
not possible, Numba29 is used to compile away the dynamic typing and object overhead, resulting in functions
that execute at near optimised C performance levels.

Streaming operations.  Most analysis of tabular data is performed through a combination of joins, sorts,
filters and aggregations. ExeTera operates on arrays of effectively unlimited length, particularly when certain
preconditions are met, using the following techniques.

Sorting.  Sorting is one of the key operations that must scale in order to process large datasets, as imposition
of a sorted order enables operations such as joins to scale. ExeTera uses several techniques to provide highly
scalable sorting.

Generation of a sorted index.  ExeTera sorts data in two steps. A sorted index is first generated, represented
as a permutation of the field element indices. The permuted index is then applied to each field that must be
reordered.

Scaling multi-key sorts on long arrays.  Multi-key sorts are memory intensive when keys are large, and expen-
sive due to the internal creation of tuples in the inner loops of sorts. Multi-key sorts in ExeTera are rephrased as
a series of sorts on individual keys from right to left, where the output of each sorting step is a sorted index that
is the input to the next sorting step, using a stable sort. Box 2 shows pseudocode for this operation.

Scaling sorts on very long arrays.  ExeTera has a second sorting algorithm that can be selected if an array is
too large to fit into memory in its entirety. Such arrays are sorted via a two-phase approach in which the array
is divided into subsets; each subset is sorted, and the sorted subsets are merged by maintaining a heap of views

Box 2 Pseudocode for a multi-key sort that outputs a sorted index for subsequent application to many fields.

https://doi.org/10.1038/s41597-021-01071-x
https://numba.pydata.org/numba-doc/latest/user/5minguide.html

1 2Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

onto the sorted subsets. A separate index is generated and maintained with the sorted chunks, so that the merge
phase is stable. Box 3 shows pseudocode for this operation.

Box 3 Pseudocode for a streaming sort that outputs a sorted index for subsequent application to many fields.

Fig. 4  Figure illustrating how textual data is represented in ExeTera’s indexed string format. Note that empty
entries are represented in the index only, as successive entries containing the same offset.

Joining.  Generation of join maps.  Rather than performing the join on the fields themselves, ExeTera first
generates primary key and foreign key index maps, which are then subsequently applied to the fields to be
joined.

Joining multiple fields.  As with sorts above, once the mapping indices have been calculated, they are applied to
each field on the left side to map to the right side of the join, or vice-versa.

Joining on sorted keys.  When the data is sorted on the keys of the respective fields, ExeTera rephrases joins as
ordered merge operations.

Aggregation.  Generation of aggregation maps/spans.  Aggregation is another operation that ExeTera optimises
through use of pregenerated indices, particularly in the case that the data is sorted by aggregation key order.

Sorting multiple fields.  The sorts described above, that produce a permutation of the original order, can be
used to sort multiple fields in a space-efficient fashion. For large arrays, the array can be permuted in turn and
written back to disk, or the permuted order maintained and reapplied when needed. ExeTera scales to provide
this functionality even for very large arrays.

Operations on sorted fields.  Many operations become merges with various predicates when performed on
fields that have been sorted by the key field and can be performed in O(m + n) time where m and n are the
lengths of the fields to be merged. This includes joins and aggregations. ExeTera performs these operations as
merges when the key field is sorted. Importantly, arbitrarily large fields can be operated on in this way.

https://doi.org/10.1038/s41597-021-01071-x

13Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

Fig. 5  Construction of a journalled dataset. Two snapshots of a simplified dummy dataset representing
COVID-19 tests; one from 2020/08/22 and one from 2020/08/29. These are used to construct a journalled
dataset, bottom.

Aggregating on sorted keys.  As with joins, when the data is sorted by the keys of the aggregated fields, aggre-
gations are performed by ExeTera in a very scalable and efficient fashion by precomputing spans representing
ranges of the key field with the same key value. This can be iterated over, and aggregations performed in a
streaming fashion.
Journalling of snapshots into a consolidated dataset.  Data for the Covid Symptom Study project is delivered as a
series of timestamped snapshots. The unanonymised data generated by the Covid Symptom Study app is stored
in a relational database or similar datastore, that is not accessible to query by the broader research community.
Instead, the data is anonymised and then bulk exported to CSV format. The database is a live view of the dataset,
however; users can update data through the app, and, unless the database is explicitly journalled and each entry
made immutable, the prior states are erased. As such, a row corresponding to a given entity in two different
snapshots can contain conflicting values.

When each snapshot is large, the scaling problem is exacerbated by having to reconcile multiple snapshots.
The Covid Symptom Study dataset does not have a field that reliably indicates whether the contents of a given
row have changed and so determining whether a row at time t has changed relative to a row at time t + 1 requires
a full comparison of all common fields. An example of this can be seen in Fig. 5.

The ExeTeraCovid data curation pipeline.  The ExeTeraCovid project provides functionality that enables
a data curation pipeline incorporating data curation best practice. The pipeline has the following steps:

https://doi.org/10.1038/s41597-021-01071-x

1 4Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

•	 Transform data from CSV to ExeTera’s HDF5 datastore format
•	 Perform standardised cleaning, imputation, and calculate derived values
•	 Run analytics pipelines on the cleaned data

The first stage is a generic operation that applies to any tabular dataset being imported into ExeTera. The
second and third stages are specific to a given dataset, such as the Covid Symptom Study.

The covid symptom study.  The Covid Symptom Study dataset is collected using the Covid Symptom Study
app, developed by Zoe Ltd with input from King’s College London, the Massachusetts General Hospital, Lund
University Sweden, and Uppsala University, Sweden. It is a response to the COVID-19 pandemic based on epi-
demiological surveillance via smartphone-based self-reporting. It asks citizens from the UK, US, and Sweden
to use a mobile application to log symptoms, record COVID-19 test results and answer lifestyle and occupa-
tional questions. The Covid Symptom Study dataset has generated insights into COVID-19 that have gone on to
inform government policies for handling of the disease5,30–32. In the UK, the App Ethics has been approved by
KCL Ethics Committee REMAS ID 18210, review reference LRS-19/20-18210, and all subscribers provided con-
sent. In Sweden, Ethics approval for the study is provided by the Central Ethics Committee (DNR 2020-01803).

As of the 23rd May, 2021, the dataset is composed of seven tables:

Patients: 5.08 million patients with 202 data fields. Patient records store data such as the patients’ physiological
statistics, long-term illnesses, lifestyle factors, location and other data that only occasionally changes, at the
patient level.
Assessments: 361.2 million assessments with 68 fields. Patients are asked to give regular assessments through
the app that cover their current health status and symptoms, aspects of their lifestyle such as potential exposure
to COVID-19, and, in early versions of the schema, any COVID-19 tests that they have had.
Tests: 6.98 million tests, with 20 fields. Test records are kept for each COVID-19 test that a patient has had along
with the evolving status of that test (typically from’waiting’ to’positive’,’negative’, or’failed’).
Diet: 1.58 million diet study questionnaires with 89 fields. These ask people at several time points about their
dietary and lifestyle habits.
Vaccine doses: 2.02 million vaccine dose entries with 14 fields. This table contains various data about the vaccine
doses administered, including date, vaccine type, and vaccine course.
Vaccine symptoms: 8.11 million vaccine symptom entries with 35 fields. This table contains symptom data
linked to the days following vaccination.
Mental health: 717,399 mental health entries with 56 fields. This table contains mental health survey data linked
to lockdown, lifestyle habits, and general mental health.

Assessments, tests and diet study questionnaires are mapped to patients via IDs that serve as foreign keys.

This dataset is delivered as daily snapshots in CSV format. As of 23rd May 2021, the daily snapshot is 100 GB
in size, and the accumulated daily snapshots are over 20 TB in size. The dataset, excepting fine-grained geoloca-
tion data, is publicly available at https://healthdatagateway.org.

Covid symptom study-specific cleaning and processing.  The Covid Symptom Study data schema has seen rapid
iteration since its inception. The initial app was rapidly released to allow users to contribute as soon as possible
after the pandemic was declared and required adjustments to ensure its longevity. Furthermore, the evolving
nature of the pandemic, particularly around prevalence in the population and availability and type of tests, has
necessitated structural changes to the schema. Finally, this dataset is novel in terms of its scale and deployment
for epidemiological analysis, and the schema has been altered to better capture data based on lessons learned
during early phases of the research effort.

Public health surveillance campaigns such as the Covid Symptom Study impose time constraints on software
development, with frequent changes in database structure and intense versioning to accommodate iterative
refinements. The evolving epidemiology of COVID-19, the response of governments and populations to the
pandemic, and academic responses to papers based on the dataset all shape the questions that are added to or
removed from the app over time.

The dataset is only minimally validated at source. The fields often contain data of mixed type, and different
fields can be in mutual contradiction. Numeric values are only validated for type rather than sensible value
ranges. Furthermore, the dataset contains multiple competing schemas for the same underlying data, and the
app version was tied to the schema version in earlier phases of the Covid Symptom Study. This resulted in users
who were using older versions of the app to still contribute to otherwise retired schema elements. As such, a
considerable amount of data cleaning and processing is required to extract data suitable for analysis.

Schema changes.  The handling of COVID-19 tests in the dataset is an example of the complexity created by
changes to the schema. Testing was initially reported as an assessment logging activity, but this solution had
several issues. Firstly, a test needed to be logged on the day it was taken for the assessment date to be treatable as
the test date. Secondly, some users interpreted the test field as something to be logged only when they took a test
or received the result, whilst other users filled in intermediate assessments with the pending status. Thirdly, this
system did not allow for users to enter multiple tests unambiguously. Whilst this was not a problem in the initial
months of the pandemic, the ramping up of test availability necessitated a solution.

A new test table was introduced in June 2020, giving each test a unique ID to allow multiple tests for each
patient. However, existing tests recorded in the old schema were not connected with new test entries, although

https://doi.org/10.1038/s41597-021-01071-x
https://healthdatagateway.org

1 5Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

many users re-entered old test results in the new test format. Furthermore, new tests continued to be added by
users in the old, assessment-based schema format, logging on previous versions of the app. As such, there is
no unambiguous way of determining whether tests in the old format are replicated by tests in the new format.
This is an example of a postprocessing activity with no unambiguously correct output, which therefore requires
at least a single, agreed upon algorithm to be consistently deployed to avoid inconsistencies between related
analyses.
Validation of user-entered values (weight, height, BMI, year of birth).  In the Covid Symptom Study app,
user-entered numeric values are only validated to ensure that they are numeric, as of the time of writing. There
are no validations of sensible ranges given the user-selected units of measurement. Some users enter incorrect
values, and some users enter values that appear sensible but only in some other unit (1.8 is a plausible height if
the user is entering height in metres, for example).

Quality metrics for test mechanism.  The Covid Test table has a ‘mechanism’ field where the user is free to
either select a categorical value indicating the test mechanism, or enter free text relating to the test mechanism.
Some free text clearly indicates the test type, whereas other free text entries only infer the test type weakly,
through inference such as ‘home test kit’. As such, a set of gradated flags are generated that indicate the quality
of the categorisation.

Generation of daily assessments.  In case of multiple daily entries by the users, these assessments can option-
ally be quantised into a single daily assessment that, for symptoms, corresponds to the maximum value for each
symptom that the user reported in the day. This considerably simplifies many downstream analyses.

Generation of patient-level assessment and test metrics.  Analysis often involves the filtering of users/contribu-
tors that are categorised by aspects of the assessments and tests that they have logged. These include metrics such
as whether the patient logged as being initially healthy, or whether they have ever logged a positive test result.

Reproducibility and algorithm immutability.  Reproducibility depends on the ability to reproduce a given anal-
ysis from a version of the dataset and a set of algorithms run on the dataset. For this to be possible, algorithms
must be considered immutable once implemented. This allows any subsequent version of the software to gener-
ate results consistent with those of the software version in which the algorithm was introduced.

ExeTeraCovid achieves this by requiring that a version of any given algorithm that is created is treated as
immutable in the code base. This means that any target script is guaranteed to exhibit the same behaviour,
provided that the following conditions hold. Firstly, any algorithms written for ExeTeraCovid are explicitly ver-
sioned. Secondly, any randomness introduced must be given consistent random seeds and, ideally, multiple
sources of randomness should be given different random number generators. Once an algorithm is used in
analysis, it may no longer be altered in the codebase, even if it is subsequently shown to contain errors. This
enables researchers to run multiple versions of the same algorithm as part of their analytics and understand
how sensitive their results are to changes and corrections. An example for this is the multiple versions of height/
weight/body mass index (BMI) cleaning that have been devised over the course of the project; each is available
as a separate version of the algorithm for reproducibility.

Data availability
The Covid Symptom Study dataset is hosted by Health Data Research UK through the https://healthdatagateway.org
(HDG), by searching for “COVID-19 Symptom Tracker Dataset”. Access to the data is applied for via a two-stage
process through HDG. The dataset is accessed via a protected environment provisioned by HDG for successful
applicants. Access to the data is free of charge at the time of writing but HDG may in future impose cost recovery
on access requests that are not related to pandemic modelling or understanding or tackling Covid-19.

The code used to generate synthetic evalutation datasets is hosted at https://github.com/KCL-BMEIS/
ExeTeraEval and the 10 million/100 million row synthetic dataset is available for download33.

Code availability
All source code for ExeTera is made available through github under the Apache 2.0 license, at the time of writing.
The code is split up into two separate projects.

ExeTera ExeTera is hosted at https://github.com/KCL-BMEIS/ExeTera and is available through pypi via pip
install exetera.
ExeTera has a wiki that can be found at https://github.com/KCL-BMEIS/ExeTera/wiki.
ExeTeraCovid ExeTeraCovid is hosted at https://github.com/KCL-BMEIS/ExeTeraCovid and is available through
pypi via pip install exeteracovid. Installing exeteracovid installs exetera.
ExeTeraCovid has a wiki that can be found at https://github.com/KCL-BMEIS/ExeTera/wiki.

Received: 3 December 2020; Accepted: 29 September 2021;
Published: xx xx xxxx

References
	 1.	 Silvertown, J. A new dawn for citizen science. Trends in ecology & evolution 24, 467–471 (2009).
	 2.	 Newman, G. et al. The future of citizen science: emerging technologies and shifting paradigms. Frontiers in Ecology and the

Environment 10, 298–304 (2012).

https://doi.org/10.1038/s41597-021-01071-x
https://healthdatagateway.org
https://github.com/KCL-BMEIS/ExeTeraEval
https://github.com/KCL-BMEIS/ExeTeraEval
https://github.com/KCL-BMEIS/ExeTera
https://github.com/KCL-BMEIS/ExeTera/wiki
https://github.com/KCL-BMEIS/ExeTeraCovid
https://github.com/KCL-BMEIS/ExeTera/wiki

1 6Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

	 3.	 Follett, R. & Strezov, V. An analysis of citizen science based research: usage and publication patterns. PloS one 10, e0143687 (2015).
	 4.	 Heigl, F., Kieslinger, B., Paul, K. T., Uhlik, J. & Dörler, D. Opinion: Toward an international definition of citizen science. Proceedings

of the National Academy of Sciences 116, 8089–8092 (2019).
	 5.	 Drew, D. A. et al. Rapid implementation of mobile technology for real-time epidemiology of covid-19. Science 368, 1362–1367 (2020).
	 6.	 Lee, D. J. & Stvilia, B. Practices of research data curation in institutional repositories: A qualitative view from repository staff. PLOS

ONE 12, 1–44 (2017).
	 7.	 Walt, S. V. D., Colbert, S. C. & Varoquaux, G. The numpy array: a structure for efficient numerical computation. Computing in science

& engineering 13, 22–30 (2011).
	 8.	 Harris, C. R. et al. Array programming with numpy. Nature 585, 357–362 (2020).
	 9.	 Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der Walt & Jarrod Millman (eds.) Proceedings of

the 9th Python in Science Conference, 56–61 (2010).
	10.	 Stonebraker, M. Sql databases v. nosql databases. Communications of the ACM 53, 10–11 (2010).
	11.	 Seltzer, M. I. & Olson, M. A. Challenges in embedded database system administration. In Proceedings of the Workshop on Embedded

Systems on Workshop on Embedded Systems, WOES’99, 11 (USENIX Association, USA, 1999).
	12.	 Zaharia, M. et al. Apache spark: A unified engine for big data processing. Commun. ACM 59, 56–65 (2016).
	13.	 Breddels, M. A. & Veljanoski, J. Vaex: big data exploration in the era of gaia. Astronomy & Astrophysics 618, A13 (2018).
	14.	 Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in Science & Engineering 9, 90–95 (2007).
	15.	 Kluyver, T. et al. Jupyter notebooks – a publishing format for reproducible computational workflows. In Loizides, F. & Schmidt, B.

(eds.) Positioning and Power in Academic Publishing: Players, Agents and Agendas, 87–90 (2016).
	16.	 RAPIDS Development Team. RAPIDS: Collection of Libraries for End to End GPU Data Science (2018).
	17.	 Ni Lochlainn, M. et al. Key predictors of attending hospital with covid19: An association study from the covid symptom tracker app

in 2,618,948 individuals. medRxiv (2020).
	18.	 Costeira, R. et al. Estrogen and covid-19 symptoms: associations in women from the covid symptom study. medRxiv (2020).
	19.	 Bowyer, R. et al. Geo-social gradients in predicted covid-19 prevalence and severity in great britain: results from 2,266,235 users of

the covid-19 symptoms tracker app. medRxiv (2020).
	20.	 Bataille, V. et al. Diagnostic value of skin manifestation of sars-cov-2 infection. medRxiv (2020).
	21.	 Sudre, C. H. et al. Symptom clusters in covid-19: A potential clinical prediction tool from the covid symptom study app. Science

Advances 7 (2021).
	22.	 Kifer, D. et al. Effects of environmental factors on severity and mortality of covid-19. Frontiers in Medicine 7, 1088 (2021).
	23.	 Varsavsky, T. et al. Detecting covid-19 infection hotspots in england using large-scale self-reported data from a mobile application:

a prospective, observational study. The Lancet Public Health 6, e21–e29 (2021).
	24.	 Hopkinson, N. S. et al. Current smoking and covid-19 risk: results from a population symptom app in over 2.4 million people.

Thorax (2021).
	25.	 Stonebraker, M. et al. C-store: A column-oriented dbms. Proceedings of the 31st International Conference on Very Large Data Bases

VLDB ’05, 553–564 (2005).
	26.	 Institute, A. N. S. IEEE standard for information technology: Portable Operating System Interface (POSIX): part 2, shell and utilities

(IEEE Computer Society Press, 1993).
	27.	 Pezoa, F., Reutter, J. L., Suarez, F., Ugarte, M. & Vrgoč, D. Foundations of json schema. In Proceedings of the 25th International

Conference on World Wide Web, 263–273 (International World Wide Web Conferences Steering Committee, 2016).
	28.	 Delorey, D. P., Knutson, C. D. & Chun, S. Do programming languages affect productivity? a case study using data from open source

projects. In First International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS’07: ICSE Workshops 2007),
8–8 (2007).

	29.	 Lam, S. K., Pitrou, A. & Seibert, S. Numba: A llvm-based python jit compiler. In Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, LLVM ’15 (Association for Computing Machinery, New York, NY, USA, 2015).

	30.	 Menni, C. et al. Real-time tracking of self-reported symptoms to predict potential covid-19. Nature medicine 26, 1037–1040 (2020).
	31.	 Nguyen, L. H. et al. Risk of covid-19 among front-line health-care workers and the general community: a prospective cohort study.

The Lancet Public Health 5, e475–e483 (2020).
	32.	 Zazzara, M. B. et al. Delirium is a presenting symptom of covid-19 in frail, older adults: a cohort study of 322 hospitalised and 535

community-based older adults. medRxiv (2020).
	33.	 Murray, B. ds_10000000_100000000.hdf5, figshare https://doi.org/10.6084/m9.figshare.16413255 (2021).

Acknowledgements
ZOE Limited provided in-kind support for all aspects of building, running, and supporting the ZOE app and
service to all users worldwide. Support for this study was provided by the National Institute for Health Research
(NIHR)-funded Biomedical Research Centre based at Guy’s and St Thomas’ (GSTT) NHS Foundation Trust.
This work was supported by the UK Research and Innovation London Medical Imaging & Artificial Intelligence
Centre for Value-Based Healthcare (104691) and the Chronic Disease Research Foundation award CDRF-
22/2020. Investigators also received support from the Wellcome Trust (WT203148/Z/16/Z, WT213038/Z/18/Z,
and W212904/Z/18/Z), Medical Research Council (MRC; MR/V005030/1 and MR/M004422/1), British Heart
Foundation, Alzheimer’s Society, EU, NIHR, COVID-19 Driver Relief Fund, Innovate UK, the NIHR-funded
BioResource, and the Clinical Research Facility and Biomedical Research Centre based at GSTT NHS Foundation
Trust, in partnership with Kings College London. This work was also supported by the National Core Studies, an
initiative funded by UK Research and Innovation, NIHR, and the Health and Safety Executive. The COVID-19
Longitudinal Health and Wellbeing National Core Study was funded by the MRC (MC_PC_20030). The work
performed on the Swedish study was supported by grants from the Swedish Research Council, Swedish Heart-
Lung Foundation and the Swedish Foundation for Strategic Research (LUDC-IRC 15-0067). SO was supported by
the French government, through the 3IA C.te d’Azur Investments in the Future project managed by the National
Research Agency (ANR-19-P3IA-0002). ATC was supported by a Stuart and Suzanne Steele MGH Research
Scholar Award and by the Massachusetts Consortium on Pathogen Readiness and M Schwartz and L Schwartz.

Author contributions
B.M., E.K., L.C., J.D., M.S.G. and A.V. contributed to the software. M.S.G., L.C., J.D., C.H.S., E.M., L.S.C.,
and M.A. provided feedback on the application programmer interface. R.J., J.W. and T.D.S. created the Covid
Symptom Study that this software was created to provide data curation for. B.M. and M.M. wrote the manuscript.
B.M., E.K., L.C., J.D., M.S.G., C.H.S., E.M., L.S.C., M.A., A.V., A.H., A.T.C., P.W.F., R.D., J.W,. T.D.S., C.J.S., M.M.
and S.O. reviewed and edited the draft. M.M. and S.O. supervised the project.

https://doi.org/10.1038/s41597-021-01071-x
https://doi.org/https://doi.org/10.6084/m9.figshare.16413255

17Scientific Data | (2021) 8:297 | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

Competing interests
RD is employed by Zoe Limited. JW is a founder of Zoe Limited. TDS, PWF and ATC are or have acted as
consultants to Zoe Limited. ATC previously served as an investigator on a clinical trial of diet and lifestyle in
collaboration with Zoe Limited. The remaining authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to B.M.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1038/s41597-021-01071-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Accessible data curation and analytics for international-scale citizen science datasets

	Introduction

	Results

	Datasets.
	Covid Symptom Study.
	Artificial data.

	Import performance.
	Reading columns.
	Join performance.
	Journalling operation.
	Analytics.

	Discussion

	Methods

	ExeTera design.
	Domains of scale.
	Serialised data representation.
	HDF5 as an initial dataset implementation.
	Field design.
	Avoiding scaling issues with long string data.
	Data importing.

	Box 1 An illustrative, minimal example of an ExeTera JSON schema for use when importing data from CSV.

	ExeTera implementation.
	Use of python technologies.

	Streaming operations.
	Sorting.

	Box 2 Pseudocode for a multi-key sort that outputs a sorted index for subsequent application to many fields.

	Box 3 Pseudocode for a streaming sort that outputs a sorted index for subsequent application to many fields.

	Joining
	Aggregation.
	Journalling of snapshots into a consolidated dataset

	The ExeTeraCovid data curation pipeline.
	The covid symptom study.
	Covid symptom study-specific cleaning and processing.
	Reproducibility and algorithm immutability.

	Acknowledgements

	Fig. 1 A left join of a simplified dummy Patent and Assessment dataset.
	﻿Fig. 2 Seven day summary of assessments from the Covid Symptom Study snapshot dated 16th May 2021.
	Fig. 3 Figure illustrating different memory layout strategies.
	Fig. 4 Figure illustrating how textual data is represented in ExeTera’s indexed string format.
	Fig. 5 Construction of a journalled dataset.
	Table 1 Time taken to import the Patient table from the Covid Symptom Study 2021/05/23 snapshot.
	Table 2 Time taken taken to perform reads of a number of columns of the Patient table from the Covid Symptom Study 2021/05/23 snapshot.
	Table 3 Time taken to perform left joins on the Covid Symptom Study 2021/05/23 snapshot.
	Table 4 Time taken to perform left joins on an artificial dataset.
	Table 5 Journalling Covid Symptom Study snapshots from 1st August 2020 and 1st September 2020.

