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Accessible data curation and 
analytics for international-scale 
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Carole H. Sudre1,2,3, Erika Molteni   1, Liane S. Canas   1, Michela Antonelli1, Kerstin Klaser1, 
Alessia Visconti   4, Alexander Hammers   1, Andrew T. Chan   5, Paul W. Franks6, 
Richard Davies   7, Jonathan Wolf   7, Tim D. Spector   4, Claire J. Steves4, Marc Modat1,8 & 
Sebastien Ourselin1,8

The Covid Symptom Study, a smartphone-based surveillance study on COVID-19 symptoms in the 
population, is an exemplar of big data citizen science. As of May 23rd, 2021, over 5 million participants 
have collectively logged over 360 million self-assessment reports since its introduction in March 2020. 
The success of the Covid Symptom Study creates significant technical challenges around effective 
data curation. The primary issue is scale. The size of the dataset means that it can no longer be readily 
processed using standard Python-based data analytics software such as Pandas on commodity 
hardware. Alternative technologies exist but carry a higher technical complexity and are less accessible 
to many researchers. We present ExeTera, a Python-based open source software package designed to 
provide Pandas-like data analytics on datasets that approach terabyte scales. We present its design 
and capabilities, and show how it is a critical component of a data curation pipeline that enables 
reproducible research across an international research group for the Covid Symptom Study.

Introduction
Mobile applications have enabled citizen science1–4 projects that can collect data from millions of individuals. 
The Covid Symptom Study5, a smartphone-based surveillance study on self-reported COVID-19 symptoms 
started in March 2020, is an exemplar of citizen science. As of May 23rd, 2021, the study contains over 360 mil-
lion self-assessments collected from more than 5 million individuals. The data is provided as daily CSV (comma 
separated value) snapshots that are made available to both academic and non-academic researchers to facilitate 
COVID-19 research by the wider community.

The Covid Symptom Study dataset presents some demanding data curation challenges. We define data cura-
tion as involving, but not being limited to, the application of a set of transformations to the raw data. Such 
transformations include generation or application of metadata, cleaning of noisy and inconsistent values or 
relationships between values, and generation of consistent derived measures more suitable for further analysis. 
Erroneous values, changing schemas and multiple contemporary mobile app versions all add complexity to the 
task of cleaning and consolidating datasets for downstream analysis. Data curation must be performed effec-
tively as a precondition for reproducible science. In terms of the data curation definition provided by Lee et al.6, 
we focus primarily on’managing and sharing data’ as defined in Table 1 of their publication.
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The primary challenge in curating and analysing Covid Symptom Study data is scale. Scale adds complexity 
to otherwise simple operations. Python-based scientific computing libraries such as Numpy7,8 and Pandas9 are 
ubiquitous in the academic community, but they are not designed to scale to datasets larger than the amount of 
RAM (random access memory) on a given machine. Commodity hardware in 2021 is typically equipped with 
16 to 32 GB (gigabytes) of memory. Larger amounts of RAM necessitate expensive server-grade hardware, and 
doubling memory only doubles the size of dataset that can be handled.

Datasets too large for standard Python scientific computing tools can be moved to datastores, either tradi-
tional, relational SQL databases or distributed NoSQL datastores, such as key-value stores. Each type of datastore 
comes with its own design philosophy and performance trade-offs10. Such datastores can operate on datasets far 
larger than RAM but involve considerable additional complexity11 through installation and maintenance bur-
dens, and the need to learn new APIs and concepts. Additional computing power can be accessed through cloud 
computing but this brings ongoing costs, particularly for high-memory compute instances. Cloud computing 
also adds complexity to a solution, as cloud APIs are non-trivial to work with.

Although most of the principal Python libraries for data science are not designed to work with 
larger-than-RAM datasets (see https://pandas.pydata.org/pandas-docs/stable/user_guide/scale.html), they 
provide a rich set of design choices and concepts that have proven successful with and are well understood by 
data scientists within the Python-using scientific community. By building on those design choices and con-
cepts, but focusing on the provision of key implementation choices and algorithms that are critical for scaling 
beyond RAM, one can create highly scalable data analysis software with an API familiar to users of the Python 
ecosystem.

Software packages with more scalable implementations of Pandas DataFrames exist. Dask (see https://dask.org)  
and PySpark12, for example, offer powerful graph-based execution models capable of performing very large 
calculations over multiple cores and machines. They also provide dataframe-equivalent implementations which 
appear promising. As we will demonstrate for Dask, the inability to cherry-pick columns from the data frame 
causes fundamental issues when dealing with billion element fields, however. Vaex13 is another alternative that 
provides similar functionalities at scale, but it is not fully open source as some components are enterprise access 
only.

Scale is not the only challenge to consider. Reproducibility of analyses, especially across large research teams, 
is also critically important. When data cleaning and generation of analytics is done in an ad-hoc fashion, it is 
easy to generate subtly different derivations of a given measure, causing inconsistencies across research teams 
and research outputs. Furthermore, full reproducibility requires algorithms to be treated as immutable, so that 
the application of a particular algorithm to a particular snapshot of data guarantees identical results, hardware 
notwithstanding.

The Covid Symptom Study is delivered as a series of timestamped snapshots. Corresponding entries can be 
modified between snapshots, and unless the dataset explicitly records changes to entries over time, one can only 
determine the difference by comparing the snapshots, which exacerbates scaling issues. Updating an analysis 
from one snapshot to another without such comparison compromises the interpretability of the updated results 
in a way that is less obvious when working with individual snapshots.

To address the challenges described above, we have created ExeTera, a software that enables sophisticated 
analysis of tabular datasets approaching terabyte scale, such as the Covid Symptom Study dataset, on commod-
ity hardware. ExeTera has an API designed to be familiar to users of Pandas, a ubiquitous tabular data analysis 
library within the Python ecosystem, allowing researchers to use their existing expertise. Pandas’ design is itself 
based on the data frame of R (see https://www.r-project.org/), another data analysis software popular with the 
scientific community.

ExeTera can analyse datasets significantly beyond RAM scale by paying attention to two factors. The first is 
a careful selection of data representation that provides the ability to perform operations on tables without them 
ever being fully resident in memory. The second is the observation that certain operations become trivially scal-
able when the data is presented in lexical order. With an appropriate representation and the ability to sort table 
row order, commodity hardware with modest amounts of RAM can perform sophisticated analyses on datasets 
approaching or even exceeding terabyte scales.

Although we present ExeTera in the context of the Covid Symptom Study, it is designed to be applicable to 
any dataset of related, tabular data. For the Covid Symptom Study, we have created ExeTeraCovid, a repository 
of scripts and notebooks that uses ExeTera to create reproducible end-to-end data curation workflows.

The data curation workflow for the Covid Symptom Study has three stages. The first stage is a transformation 
of the data from text-based CSV to concrete data types where each row is parsed for validity given metadata 
describing the data types. The second stage is the application of a standardised set of cleaning and imputation 

Table

Time to import patent table (seconds)

ExeTera Pandas Dask PostgreSQL

Patients 84.81 (141.01) Memory 105.88

Assessments 2266.65 Memory Memory 1946.60

Tests 74.04 37.46 434.40 42.37

Table 1.  Time taken to import the Patient table from the Covid Symptom Study 2021/05/23 snapshot. Figures 
in parentheses denote that the import required more than 32 GB of memory to succeed. Memory denotes that 
the import was unable to succeed as it required more than 256 GB of memory. Figures in bold indicate the best 
import time.
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algorithms that remove duplicate rows, detect and recover problematic values, and generate derived values from 
the source data. The third stage is the development and subsequent publishing of end-to-end scripts that, given 
a daily snapshot, can replicate a given analysis.

In the following sections, we present ExeTera’s underlying capabilities and design, as well as its usage within 
the Covid Symptom Study as a case study.

Results
ExeTera’s performance has been benchmarked against a combination of artificial data and Covid Symptom 
Study data. We examine performance and scalability of ExeTera and its alternatives for key operations such as 
importing data, reading subsets of data, and performing joins between tables. We also demonstrate Exetera’s 
ability to generate a journalled dataset from snapshots allowing longitudinal analysis able to account for destruc-
tive changes between corresponding rows of the different snapshots. Finally, we present an example of ExeTera’s 
analytics capabilities.

We have selected Pandas, PostgreSQL, and Dask to benchmark against ExeTera. Pandas has been selected as 
the baseline against which we are testing ExeTera. Dask has been selected as it is the most popular Python-based 
open-source library with a Pandas-like API that is explicitly designed for distribution and scale. PostgreSQL 
has been selected as it is the most popular fully open-source relational database and is widely used in academia.

Performance is measured on an AMD Ryzen Threadripper 3960 × 24-core processor with 256 GB of mem-
ory. All key benchmarking processes are limited to 32 GB of memory where technically feasible although the 
construction of datasets for testing is allowed to use more than 32 GB. The data is read from and written to a 1 
TB (terabyte) Corsair Force MP600, M.2 (2280) PCIe 4.0 NVMe SSD.

Datasets.  Benchmarking is performed on part of the Covid Symptom Study dataset and on synthetic data 
designed to mimic the relationship between the Patient and Assessment tables of the Covid Symptom Study 
dataset.

Covid Symptom Study.  We use the Covid Symptom Study data snapshot from the 23rd of May 2021, unless 
otherwise stated. We make use of the three largest tables:

•	 Patients: This table has 202 columns and 5,081,709 rows. It contains biometrics, location, long term health 
status and other such values that rarely change over time.

•	 Assessments: This table has 68 columns and 361,190,557 rows. It includes current health status and symp-
toms, behavioural habits such as exposure to others and mask wearing, and other factors that are logged on 
an ongoing basis by contributors.

•	 Tests: This table has 20 columns and 6.979,801 rows. Tests are logged whenever a patient gets a Covid test 
and updated with the result of the test when available. Test parameters such as the test type and date are also 
recorded here.

Artificial data.  In order to demonstrate the ability for ExeTera to scale relative to technologies that explicitly 
handle larger than RAM datasets, we construct simple artificial tables with increasingly large column counts. 
This is used to evaluate joins at row-counts beyond those of the Covid Symptom Study. The code to generate 
these tables is part of the ExeTeraEval repository, listed in the Code Availability section.

The artificial dataset has two tables. The left table is an artificial analogue of the patient data from the Covid 
Symptom Study. The right table is an artificial analogue of the assessment data from the Covid Symptom Study. 
Each patient has 0 or more entries in the assessment table, with a mean of 10 entries per patient.

Import performance.  We measure the performance of the import activities that must be carried out in order 
to perform analysis on the data. We define ‘import’ to mean anything that must be done to the data representation 
to minimise/eliminate the parsing required upon subsequent loads.

For ExeTera, we use the exetera import operation that converts CSV data to ExeTera’s HDF5-based 
datastore format.

For Pandas, reading from CSV imposes an expensive parse step every time a dataframe is loaded from drive, 
so we perform a single preliminary load from CSV as an import, assigning the appropriate metadata so that the 
columns are strongly typed, and then save the data as a HDF5 file. All subsequent operations are then bench-
marked on the HDF5-based dataframe.

For Dask, we perform a similar operation in which we read from CSV, assigning metadata and writing to 
partitioned HDF5 files. Note that Dask uses Pandas DataFrames for its partitions. As with Pandas, all subsequent 
operations are then benchmarked on the HDF5 data.

For PostgreSQL, we import the data through the execution of a SQL script that creates the tables and then 
reads the data from CSV. We include the cost of setting up primary keys and foreign key constraints used to 
optimise subsequent operations. In the case of the Covid Symptom Study Patient data, this involves the removal 
of duplicate rows that are present in the Patient table. This allows the primary key constraint to be established on 
the id column and the foreign key constraint to be established on patient_id column for the Assessment 
and Test tables.

The results are shown in Table 1. Where the process was not able to complete using 32 GB of memory, the 
result is shown in brackets. ‘Memory’ denotes that process was not able to complete using 256 GB.

https://doi.org/10.1038/s41597-021-01071-x
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It should be noted that the presence of columns containing long strings of natural language significantly 
impact both Pandas’ and Dask’s ability to convert the Patient table from CSV to HDF5. A detailed analysis of 
why is presented in the Avoiding scaling issues with long string data section.

Reading columns.  Reading individual fields from datasets is the most common operation performed during 
data analysis. For a typical analysis, we might only need a small subset of the columns in the dataset, and so it is 
highly beneficial if the cost of reading this data is proportional to the number of columns being loaded. This test 
is carried out on the Patient table and the results are shown in Table 2.

Join performance.  Here we measure the performance of join operations on the dataset. We measure this 
both with a snapshot of the Covid Symptom Study and with a synthetic dataset for different row lengths. Figure 1 
illustrates a left join operation.

We perform the following joins on the Covid Symptom Study, shown in Table 3:

•	 Left join: Patient < - Assessment
•	 Left join: Assessment < - Patient
•	 Left join: Patient < - Test
•	 Left join: Test < - Patient

The results for left joins performed on artificial data are shown in Table 4.

Field count

Time to read patient fields (seconds)

ExeTera Pandas Dask PostgreSQL

2 fields 0.068 (142.56) NA 3.22

4 fields 0.075 (143.21) NA 8.24

8 fields 0.084 (142.35) NA 9.71

Table 2.  Time taken taken to perform reads of a number of columns of the Patient table from the Covid 
Symptom Study 2021/05/23 snapshot. Figures in parentheses denote that the read required more than 32 GB 
of memory to succeed. NA denotes that the operation could not be performed due to the dataset not being 
successfully imported. Figures in bold indicate the best read time.

Fig. 1  A left join of a simplified dummy Patent and Assessment dataset. This left join matches patient_id 
entries in the Patient table to patient_id in the assessment table. The appropriate patient_age values 
are mapped to the corresponding rows from the Assessment table.

Tables

Covid Symptom Study left join time (seconds)

ExeTera Pandas Dask PostgreSQL

Assessments < - Patients 224.13 NA NA 391.09

Patients < - Assessments 224.31 NA NA 394.33

Tests < - Patients 7.62 NA NA 9.92

Patients < - Tests 7.97 (295.08) NA 10.51

Table 3.  Time taken to perform left joins on the Covid Symptom Study 2021/05/23 snapshot. Figures in 
parentheses denote that the join required more than 32 GB of memory to succeed. NA denotes that the 
operation could not be performed due to the dataset not being successfully imported. Figures in bold indicate 
the best join time.

https://doi.org/10.1038/s41597-021-01071-x
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ExeTera joins are performed through the exetera.core.dataframe.merge function. In order to 
access highest-scale joins, the keys must be in lexical order. The dataframe.merge function requires a desti-
nation ExeTera DataFrame instance to write to, so the times presented measure the time taken to read the source 
dataframes, perform the merge and write to the destination dataframe.

Joins in Pandas are carried out through the pandas.merge function. Like ExeTera, Pandas takes advantage of 
lexically ordered keys to improve merge performance, and so we measure merges on Pandas with ordered keys.

Dask joins are performed through dask.dataframe.merge. As with ExeTera, the merge results must be 
written to a destination dataframe serialised to disk to achieve scale, so this is part of the measurement.

PostgreSQL joins are performed through the JOIN statement in SQL. As we are concerned with measuring 
scale, we write the results of the JOIN to a table using CREATE TABLE x as followed by the SELECT and 
JOIN statements.

To understand the ultimate join scale limitations of the different technologies, we do not restrict the memory 
usage of the dataset generation process, but the process that performs the join is restricted to 32 GB of memory, 
except for Dask, for which we did not determine a way to limit the working set of the distributed processes.

Journalling operation.  ExeTera can combine snapshots of datasets to create a journalled dataset, keeping 
multiple, timestamped copies of otherwise destructive changes to corresponding records between the snapshots. 
Table 5 shows the results of journalling together shapshots of the Covid Symptom Study from the August 1st 2020 
and September 1st 2020, and the time taken to do so.

Analytics.  ExeTera provides the ability to load data very efficiently, as seen in Table 2. Once loaded, analyt-
ics can be performed through use of libraries such as Numpy and Matplotlib14, using tools that researchers are 
familiar with, such as Jupyter Notebook15. Figure 2 shows a histogram of healthy and unhealthy assessment logs 
bucketed into seven day periods that must parse 361 million assessments to generate its results.

Discussion
We have presented ExeTera, a Python software package that enables data analytics on datasets of related tables 
approaching terabyte scales. ExeTera demonstrates that a commodity computer is capable of performing anal-
yses at scale, given appropriate software. It is a low-complexity solution from a user standpoint, designed to be 
familiar to data scientists who are familiar with Python’s scientific computing ecosystem, and does not require 
the user to be aware of concurrency or data partitioning factors.

ExeTera’s primary novelty is a design and implementation that allows it to carry out highly scalable operations 
between dataframes. Its join functionality, in particular, scales as well as PostgreSQL and even outperforms it in bench-
marks on both synthetic and Covid Symptom Study data. ExeTera is written in Python, requires no server and is triv-
ially installable through the Python software package manager Pip (https://packaging.python.org/key_projects/#pip).

Right row count

Artificial left join time (seconds)

ExeTera Pandas Dask PostgreSQL

1,000,000 0.594 0.174 0.488 0.697

2,000,000 0.662 0.278 1.22 1.47

3,000,000 0.744 0.362 1.76 2.22

4,000,000 0.805 0.450 2.11 2.89

6,000,000 0.946 0.675 3.02 4.51

8,000,000 1.09 0.872 4.29 6.05

10,000,000 1.21 1.06 5.28 7.40

20,000,000 1.88 2.09 12.71 14.41

30,000,000 2.54 3.24 20.92 21.81

40,000,000 3.25 4.36 30.62 32.61

60,000,000 4.55 6.56 54.62 48.09

80,000,000 5.88 9.19 Failed 70.83

100,000,000 7.01 11.93 113.76 87.04

200,000,000 13.60 24.66 Failed 198.87

300,000,000 19.68 Memory Failed 280.83

400,000,000 27.52 Memory Failed 379.4

600,000,000 39.86 Memory Failed 578.19

800,000,000 53.74 Memory Failed 767.43

1,000,000,000 69.19 Memory Failed 964.67

Table 4.  Time taken to perform left joins on an artificial dataset. Row counts shown are for the right table, 
which has 10x the row count of the left table (e.g. 100,000,000 rows in the left table when the right table has 
1,000,000,000 rows). Memory denotes that the import was unable to succeed as it required more than 32 GB of 
memory. Failed denotes that the operation was unable to complete due to reasons other than memory. Figures 
in bold indicate the best import time.
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ExeTera’s ability to scale is provided through streamable implementations of key operations operating on 
a columnar data format discussed in detail in the Methods section. By taking advantage of the fact that large 
tabular datasets such as the Covid Symptom Study typically have orders of magnitude more rows than columns, 
ExeTera can achieve excellent scaling and performance.

That said, ExeTera currently has two practical scale limitations. Firstly, although key operations scale to 
drive size, some of the more mundane operations do not yet have streaming implementations. As a result, the 
user must maintain some awareness of scaling factors when manipulating large numbers of fields concurrently. 
Secondly, ExeTera is single core at present.

Data source

Journalling dataset snapshots

Patients Assessments Tests Diet

August 1st row count 4,402,930 129,423,329 749,937 659

September 1st row count 4,480,270 153,655,115 991,128 1,291,237

Rows only in old 2,519 108,231 485 0

Rows only in new 86,301 243,400,017 241,676 1,290,578

Rows updated 1,632,849 702 18,169 630

Rows not updated 2,761,120 129,314,396 731,283 29

Journalled row count 6,122,080 153,764,048 1,009,782 1,291,867

Time to import (seconds) 145.1 2273 6.616 8.179

Table 5.  Journalling Covid Symptom Study snapshots from 1st August 2020 and 1st September 2020. This table 
shows results in terms of row counts and the time taken to perform the journalling.

Fig. 2  Seven day summary of assessments from the Covid Symptom Study snapshot dated 16th May 2021. The 
upper chart shows the number of assessments, coloured by whether the patient logged as healthy or unhealthy. 
The lower chart shows the assessments logged as unhealthy as a fraction of assessments logged for that seven 
day period.

https://doi.org/10.1038/s41597-021-01071-x


7Scientific Data |           (2021) 8:297  | https://doi.org/10.1038/s41597-021-01071-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

We plan to resolve these limitations by adopting graph scheduling and processing technology capable of 
managing array operations through dependency management and task scheduling. As of the time of writing, 
we are evaluating Dask for this purpose. Dask has powerful task decomposition and scheduling capabilities 
that provide distributed, scalable array operation primitives. Rather than making use of Dask’s DataFrame, we 
will build our own distributed, scaled versions of key algorithms on the Dask array API as we do currently with 
Numpy arrays. This addresses both limitations; all operations on ExeTera fields become streaming by default if 
they are based on Dask arrays rather than Numpy arrays and the scheduler provides multi-core / multi-node 
distribution that effectively eliminates the need for the user to concern themselves with memory usage. Dask is 
also integrated with more specialised back-ends such as Nvidia’s RAPIDs16, enabling execution of distributed 
graph processing across GPU clusters. Dask integration should allow ExeTera to handle datasets well into the 
multi-terabyte range with minimal overhead.

ExeTera’s ability to store multiple snapshots in a journalled format enables researchers to perform full longi-
tudinal analysis on otherwise unjournalled datasets and facilitates the ability to move between snapshots while 
being able to properly explore the impact of doing so on analyses.

ExeTera has played a critical role in supporting the Covid Symptom Study research effort and enables the 
ExeTeraCovid repository, which implements the data curation and analytics scripts for many of the papers 
published as part of the joint research effort between Zoe Ltd., King’s College London, Massachusetts General 
Hospital, and Lund University, a selection of which are referenced here17–24.

Reproducibility is enabled primarily through convention at present. The ExeTeraCovid project is built on 
top of ExeTera and achieves reproducibility through the convention that algorithms are treated as immutable 
once implemented and deployed. This means that any future version of ExeTeraCovid will have any versions of 
algorithms that are implemented now as well as future refinements to those algorithms. This allows the effect of 
changing an algorithm to easily be quantified and allows users to update between ExeTeraCovid releases without 
affecting analyses. Reproducibility will be directly supported in a future version of ExeTera.

ExeTera is still at an early stage of development but has a funded, dedicated development team. ExeTera’s 
roadmap addresses the advancement of its fundamental performance and capabilities, the breadth of its ana-
lytics API, and the richness of its data curation feature set, and is available on the respository wiki listed in the 
Code Availablity section.

Methods
This section is split up into three parts. The first two deal with ExeTera and its design and implementation. The 
third part deals with ExeTeraCovid and our data curation methodology for the Covid Symptom Study data.

ExeTera design.  ExeTera achieves its performance through careful design and implementation decisions. 
We detail the most important of these here with the background context that motivates them.

Domains of scale.  In order to successfully perform analyses on large datasets such as the Covid Symptom 
Study, it is necessary to be able to handle data tables that cannot fit into RAM. Data size and structure, and the 
set of operations needed to handle the dataset, must be addressed. We can define three scale domains that neces-
sitate a change of approach at their boundaries.

RAM Scale (1 GB to 16 GB).  This is the scale at which the dataset entirely fits in the computer’s RAM. 
Commodity laptops and desktops used by researchers typically have between 16 and 32 GB of RAM. Loading 
the data can inflate its memory footprint depending on the datatypes used, and operations can multiply mem-
ory requirements by a small constant factor, but provided peak memory usage does not dramatically exceed 
RAM, researchers can make use of programming languages with numerical/scientific libraries such as Numpy 
or Pandas to effectively analyse the data.

Drive Scale (16 GB to 1 TB).  At drive scale, only a portion of the dataset can fit into RAM at a given time, so 
specific solutions are required to effectively stream the dataset from drive to memory. Datastores become a more 
compelling option at this scale, as they already have memory efficient, streaming versions of the operations 
that they support, but their usage may not be desirable due to the need to learn a new language or API, and the 
installation and maintenance burden they represent. This is the scale of dataset that ExeTera currently targets.

Distributed Scale (>1 TB).  At distributed scale, the use of server-based datastores is typically mandatory. It 
becomes necessary to redesign operations to exploit distributed computing across many nodes. Selection of 
appropriate datastore technology becomes critical, with specific datastore technologies addressing different roles 
within the overall system. This scale will be targeted by ExeTera in future development through the incorpora-
tion of Dask or similar graph scheduling and processing technology.

Serialised data representation.  In order to handle datasets that are larger than memory the data must be stored 
on a drive and only a subset of the data loaded into RAM at any given time. Picking an appropriate serialized 
data representation is a key factor in achieving fast, scalable operations at any scale. Text-based formats such as 
CSV are commonly used to portably represent large datasets, but they come with many drawbacks, primarily a 
lack of strong typing/metadata and an inability to rapidly index to a given location in the dataset. These issues 
become severe at scale, and so an alternative serialised data representation is required. Binary, strongly typed 
data formats that can be copied from their storage representation directly to memory and vice-versa are optimal 
for this purpose. Assuming appropriate binary formats are used, the key question is to know how to organise 
the data, and this is where ExeTera differs from the software packages against which it has been benchmarked.
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Data representation: row-local vs. column-local data layoutsData storage formats can be classified as primarily 
row-local or primarily column-local in terms of their data layouts (see Fig. 3). Row-local data layouts store 
groups of related columns for a given data entry together in memory. Column-local data layouts store all data 
entries for a specific column together in memory. Alternatively, the two approaches can be combined to create 
block-decomposed data layouts. The selection of an appropriate data layout is a critical factor in the potential 
performance of operations on the data (see https://people.freebsd.org/ lstewart/articles/cpumemory.pdf.

Row-local data layout.  Row local data layout allows multiple columns for a given record to be updated very 
efficiently as the required values for the row are located together in memory. It is less suitable for operations 
involving entire columns, as this involves the reading of many disjoint memory locations to access the column 
contents as they are spread over the table representation.

CSV files are almost always interpreted in a row-local fashion. Each entry for each column is delimited by 
a separator, typically a comma. Rows are terminated by an unescaped newline character. CSV cells can contain 
separator and newline characters, and so additionally require escape characters (typically double quote) that 
indicate cells containing separator / newline characters. Additionally, such escaped cells can also contain escaped 
characters.

SQL databases also store their data in a primarily row-local format, although they typically make some use 
of blocking10,25. This allows them to be fast when used for workloads in which many point updates (often several 
fields within a single row) are being made concurrently, but it means that monolithic reads of entire columns 
require consolidation and copying of many small regions of serialised memory rather than a single monolithic 
read. SQL databases have highly refined algorithms that are able to maximise performance given the underlying 
data representation.

Column-local data layout.  Column-local data storage enables very efficient access to a given column. All the 
entries for a given column are (effectively) contiguous in memory and loading a single column can be done 
in an optimal fashion by the memory subsystem. When a dataset has many columns and a given operation 
operates on a smaller number of those columns, scaling the operation is a far simpler proposition. Conversely, 
column-local data storage performance suffers when multiple small updates are being made to multiple large 
columns. Reading and updating a row across multiple columns involves a series of disjointed reads in this case. 
This is the approach taken by ExeTera.

Block-decomposed layouts.  Block-decomposed formats attempt to amortise the cost of the poorly per-
forming operation at the expense of the strongly performing operation. In the case of block-decomposed 
column-local formats, such as that employed by Pandas, they store blocks of columns of the same datatype 
together in memory as 2D Numpy arrays (see https://github.com/pydata/pandas-design/blob/master/source/
internal-architecture.rst).

ExeTera is pure column-local.  ExeTera uses a purely column-local data orientation with no block decompo-
sition. We consider the pure column-local approach is critical to scalability for several reasons. Firstly, it is the 
lowest complexity solution from a code standpoint. If a block-decomposition strategy is used, code paths must 
account for operations that work across different blocks as well as operations that ideally want to optimise work-
ing within a single block. This necessarily involves more code and additional complexity. Secondly, our goal is to 
maximise the row-counts that we can effectively handle for operations that have not yet been provided streaming 
implementations. By being able to load a single column into memory at a time, non-streaming operations can 
be performed on columns containing billions of rows for most datatypes. Thirdly, such columns can be loaded 
with single contiguous reads and we can extend ExeTera to use memory mapping (a fast way of mapping a part 
of a drive directly into RAM) very simply. Finally, each column being stored separately allows us to move to 

Fig. 3  Figure illustrating different memory layout strategies. In each memory layout, the arrow indicates the 
ordering of the cells in memory relative to each other.
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compression techniques such as adaptive run-length encoding based on the data contents of individual fields, 
which would be compromised by a block-decomposition strategy.

HDF5 as an initial dataset implementation.  HDF5 (see http://www.hdfgroup.org/HDF5) is a data format 
for storing keys and their associated values in a hierarchically organised, nested collection of datasets (a col-
umn / field in ExeTera terms). HDF5 provides the ability to store large arrays of data in a column-local format 
(although data can be stored in multi-dimensional arrays, as is done by Pandas). It also allows for data to be 
stored as binary, concrete data types. HDF5 permits a user to explore the overall structure and metadata of 
stored datasets without loading the data itself. Data is loaded at the point that a user specifically requests the 
contents of a given dataset. This can be a direct fetch of the entire dataset or an iterator over the dataset. This 
makes it a suitable initial data format for ExeTera, although alternative columnar data storage formats are being 
considered to replace HDF5 for future development due primarily to issues of format fragility and shortcomings 
relating to concurrent reading / writing and iterator performance.

Field design.  ExeTera supports a number of ubiquitous data types, including numeric and string formats. 
These are accessed in the software through various Field types. ExeTera Fields come in two basic types, 
dataframe-backed fields and memory fields. Any field read from a dataframe is considered dataframe-backed 
and is read from its dataset when requested. Memory fields are generated whenever operations are performed on 
fields that are not immediately written back to a dataframe. Memory backed fields can be written to dataframes. 
Fields have a rich API of operations that can be performed on them, including arithmetic, logical and compari-
son operations appropriate for their types, as well as operations such as aggregation, filtering and sorting.

Decoupling presentation from representation.  Note that fields logically represent an array of some type of data 
but may have a more complex implementation involving multiple arrays that require non-trivial implementa-
tions of the operations described above. This allows ExeTera to handle string fields with highly variable lengths 
in an efficient manner and is only practical because each field is stored separately in the dataset.

Fixed string fields.  Fixed string fields contain string data where each entry is guaranteed to be no longer than 
the length specified by the field. Fixed string fields can handle UTF8 unicode data, but this is encoded into bytes 
and so the specified length must consider the encoding of the string to a byte array.

Indexed string fields.  Indexed string fields are used for string data where the strings may be of highly variable 
length, or where a majority of string entries are empty. The data is stored as two arrays; a byte string of all of the 
strings concatenated together, and an array of indices indicating the offset to each entry. Figure 4 illustrates the 
data format for an indexed string field.

Numeric/logical fields.  ExeTera supports the standard numeric types supported by Numpy. These are stored 
in a standard binary format that can be directly mapped or read as Numpy arrays.

Categorical fields.  Categorical fields map a limited set of string values to a corresponding numeric value. A key 
is stored along with the field providing a mapping between string and number, e.g. 0: ‘mild’, 1: ‘moder-
ate’, 2: ‘severe’.

Datetime/date fields.  Datetime fields store date times as posix26 timestamps in double precision floating point 
format. The schema can also specify the generation of a ‘day’ field quantising the timestamp to the nearest day 
and can also specify whether the field contains empty values, in which case a filter is also generated, as with 
numeric fields.

Avoiding scaling issues with long string data.  ExeTera has been explicitly designed to avoid some of the prob-
lems that Pandas (and by extension, Dask) experience when loading the Covid Symptom Study data. Pandas’ 
internal representation scales poorly with datasets that contain a number of string columns where one or more 
of the columns contain very large entries. In the case of the Covid Symptom Study Patient table, the longest 
string encountered in the free text data is approximately 600 characters in length. Internally, Pandas stores 
all string columns together in a 2D array-like structure. It allocates this array using fixed string format, where 
the capacity of every entry is the longest entry encountered in any of the string data. In the case of the Covid 
Symptom Study Patient table dated 23rd May, 2021, this means approximately 30 columns imported as string 
with approximately 5 million elements per column, resulting in the need to allocate a 90 GB table, despite the 
serialized CSV representation being only 3.8 GB. Dask uses Pandas DataFrames internally, and therefore suffers 
from the same degenerate memory usage. ExeTera always stores columns (fields) as distinct structures in mem-
ory, and its ability to present string data to the user through memory-efficient indexed strings means that it does 
not suffer from degenerate performance when dealing with datasets containing natural language fields. For the 
Covid Symptom Study dataset, the imported Patient table is 5.9 GB in size. Our approach further scales to enable 
textual analysis of natural language data on the far-larger Assessment table; 360 million assessments logged by 
users of the Covid Symptom Study app.

Data importing.  Importing from CSV to strongly typed data formats requires a conversion of string data to 
the appropriate data type for each column in the CSV file. This is typically a one-time operation, but can be very 
expensive in both time and, more critically, memory. Importing can be performed in multiple stages, where 
the first stage imports CSV string values into string-based binary representation in the destination file format, 
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followed by a second stage where the data is then cast to its final type. Alternatively, the data can be read and 
converted in a single stage. The latter is preferable but can only be performed if the data is in a clean format 
or appropriate converters exist to perform the operation. In the case of the Covid Symptom Study, there are a 
number of fields that contain values that break strongly typed constraints. Our approach in this case is to convert 
these columns into multiple ExeTera fields.

Numeric field import.  Numeric data in the Covid Symptom Study is allowed to contain empty entries. These 
are entries where numeric data is not present. We convert these entries to a strongly typed numeric field with a 
user-configurable default value in place of the empty entries, and a corresponding strongly typed boolean field 
indicating whether data is present for that entry.

Categorical field import.  Categorical data in the Covid Symptom Study can be a combination of expected cat-
egorical values (e.g.’mild’,’moderate’,’severe’) and free text. ExeTera provides an importer that can split this data 
into two fields, the categorical data itself optimally imported as numeric values with a corresponding key, and an 
indexed string field that can optimally store the free text data due to the typically large number of empty entries.

Importing via command line.  Importing data from CSV can be performed via the exetera import com-
mand or via the API. The command line import command requires a schema file that describes the fields and 
the type conversions that they should undergo. The ExeTera schema file format is a JSON27 format. Each table is 
described by an entry inside of a JSON dictionary labelled schema. Each entry in this dictionary is the name of 
the table followed by the table descriptor. This has up to three entries. The first is primary_keys, which lists 
zero or more fields for the dataset that together represent the primary key for the table. The second is fields and 
contains all the field descriptors for the table. The third is foreign_keys and contains the names of foreign 
keys in the table and which other tables they relate to.

Schema file field entries.  The schema file entries themselves contain at minimum a field_type entry, 
and depending on the specific field type, require additional entries. Box 1 shows an illustrative, minimal 
example of a schema file. A full specification can be found in the ExeTera github wiki listed in the Code 
Availability section.

Box 1 An illustrative, minimal example of an ExeTera JSON schema for use when importing data from CSV.
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ExeTera implementation.  ExeTera is implemented in the Python programming language. Python has two 
aspects that make it suitable for writing software that performs data analytics and numerical analysis. Firstly, it 
is dynamically typed, which reduces code complexity and verbosity28. Secondly, it has a strong ecosystem of sci-
entific libraries and tools to mitigate the performance and memory penalties that come with using a dynamically 
typed, byte-code interpreted language and runtime.

Use of python technologies.  Code that is compiled and run directly in CPython (the reference Python imple-
mentation) executes in the Python interpreter. The Python interpreter is extremely slow relative to optimised 
code such as that generated by compiled, optimised C/C++; in many cases it is orders of magnitude slower 
(see https://numba.pydata.org/numba-doc/latest/user/5minguide.html). Python’s type system does not provide 
light-weight objects to represent primitive types. Even numeric values such as integers and floats are stored as 
full objects, and typically require 28 bytes for a 4 byte integer value. This overhead precludes efficient memory 
usage when iterating over large numbers of values.

Numpy7,8 is the Python community’s main tool for circumventing such time and space inefficiencies. 
Amongst other features, it provides a library for space-efficient representations of multi-dimensional arrays, and 
a large library of time-efficient operations that can be carried out on arrays.

The performance of such operations can be orders of magnitude faster than native CPython, but this is con-
ditional on minimising the number of transitions between Python code and the internal compiled code in which 
the operations are implemented.

Not all code can be easily phrased to avoid transitions between CPython and Numpy internals. Where this is 
not possible, Numba29 is used to compile away the dynamic typing and object overhead, resulting in functions 
that execute at near optimised C performance levels.

Streaming operations.  Most analysis of tabular data is performed through a combination of joins, sorts, 
filters and aggregations. ExeTera operates on arrays of effectively unlimited length, particularly when certain 
preconditions are met, using the following techniques.

Sorting.  Sorting is one of the key operations that must scale in order to process large datasets, as imposition 
of a sorted order enables operations such as joins to scale. ExeTera uses several techniques to provide highly 
scalable sorting.

Generation of a sorted index.  ExeTera sorts data in two steps. A sorted index is first generated, represented 
as a permutation of the field element indices. The permuted index is then applied to each field that must be 
reordered.

Scaling multi-key sorts on long arrays.  Multi-key sorts are memory intensive when keys are large, and expen-
sive due to the internal creation of tuples in the inner loops of sorts. Multi-key sorts in ExeTera are rephrased as 
a series of sorts on individual keys from right to left, where the output of each sorting step is a sorted index that 
is the input to the next sorting step, using a stable sort. Box 2 shows pseudocode for this operation.

Scaling sorts on very long arrays.  ExeTera has a second sorting algorithm that can be selected if an array is 
too large to fit into memory in its entirety. Such arrays are sorted via a two-phase approach in which the array 
is divided into subsets; each subset is sorted, and the sorted subsets are merged by maintaining a heap of views 

Box 2 Pseudocode for a multi-key sort that outputs a sorted index for subsequent application to many fields. 
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onto the sorted subsets. A separate index is generated and maintained with the sorted chunks, so that the merge 
phase is stable. Box 3 shows pseudocode for this operation.

Box 3 Pseudocode for a streaming sort that outputs a sorted index for subsequent application to many fields.

Fig. 4  Figure illustrating how textual data is represented in ExeTera’s indexed string format. Note that empty 
entries are represented in the index only, as successive entries containing the same offset.

Joining.  Generation of join maps.  Rather than performing the join on the fields themselves, ExeTera first 
generates primary key and foreign key index maps, which are then subsequently applied to the fields to be 
joined.

Joining multiple fields.  As with sorts above, once the mapping indices have been calculated, they are applied to 
each field on the left side to map to the right side of the join, or vice-versa.

Joining on sorted keys.  When the data is sorted on the keys of the respective fields, ExeTera rephrases joins as 
ordered merge operations.

Aggregation.  Generation of aggregation maps/spans.  Aggregation is another operation that ExeTera optimises 
through use of pregenerated indices, particularly in the case that the data is sorted by aggregation key order.

Sorting multiple fields.  The sorts described above, that produce a permutation of the original order, can be 
used to sort multiple fields in a space-efficient fashion. For large arrays, the array can be permuted in turn and 
written back to disk, or the permuted order maintained and reapplied when needed. ExeTera scales to provide 
this functionality even for very large arrays.

Operations on sorted fields.  Many operations become merges with various predicates when performed on 
fields that have been sorted by the key field and can be performed in O(m + n) time where m and n are the 
lengths of the fields to be merged. This includes joins and aggregations. ExeTera performs these operations as 
merges when the key field is sorted. Importantly, arbitrarily large fields can be operated on in this way.
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Fig. 5  Construction of a journalled dataset. Two snapshots of a simplified dummy dataset representing 
COVID-19 tests; one from 2020/08/22 and one from 2020/08/29. These are used to construct a journalled 
dataset, bottom.

Aggregating on sorted keys.  As with joins, when the data is sorted by the keys of the aggregated fields, aggre-
gations are performed by ExeTera in a very scalable and efficient fashion by precomputing spans representing 
ranges of the key field with the same key value. This can be iterated over, and aggregations performed in a 
streaming fashion.
Journalling of snapshots into a consolidated dataset.  Data for the Covid Symptom Study project is delivered as a 
series of timestamped snapshots. The unanonymised data generated by the Covid Symptom Study app is stored 
in a relational database or similar datastore, that is not accessible to query by the broader research community. 
Instead, the data is anonymised and then bulk exported to CSV format. The database is a live view of the dataset, 
however; users can update data through the app, and, unless the database is explicitly journalled and each entry 
made immutable, the prior states are erased. As such, a row corresponding to a given entity in two different 
snapshots can contain conflicting values.

When each snapshot is large, the scaling problem is exacerbated by having to reconcile multiple snapshots. 
The Covid Symptom Study dataset does not have a field that reliably indicates whether the contents of a given 
row have changed and so determining whether a row at time t has changed relative to a row at time t + 1 requires 
a full comparison of all common fields. An example of this can be seen in Fig. 5.

The ExeTeraCovid data curation pipeline.  The ExeTeraCovid project provides functionality that enables 
a data curation pipeline incorporating data curation best practice. The pipeline has the following steps:
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•	 Transform data from CSV to ExeTera’s HDF5 datastore format
•	 Perform standardised cleaning, imputation, and calculate derived values
•	 Run analytics pipelines on the cleaned data

The first stage is a generic operation that applies to any tabular dataset being imported into ExeTera. The 
second and third stages are specific to a given dataset, such as the Covid Symptom Study.

The covid symptom study.  The Covid Symptom Study dataset is collected using the Covid Symptom Study 
app, developed by Zoe Ltd with input from King’s College London, the Massachusetts General Hospital, Lund 
University Sweden, and Uppsala University, Sweden. It is a response to the COVID-19 pandemic based on epi-
demiological surveillance via smartphone-based self-reporting. It asks citizens from the UK, US, and Sweden 
to use a mobile application to log symptoms, record COVID-19 test results and answer lifestyle and occupa-
tional questions. The Covid Symptom Study dataset has generated insights into COVID-19 that have gone on to 
inform government policies for handling of the disease5,30–32. In the UK, the App Ethics has been approved by 
KCL Ethics Committee REMAS ID 18210, review reference LRS-19/20-18210, and all subscribers provided con-
sent. In Sweden, Ethics approval for the study is provided by the Central Ethics Committee (DNR 2020-01803).

As of the 23rd May, 2021, the dataset is composed of seven tables:

Patients: 5.08 million patients with 202 data fields. Patient records store data such as the patients’ physiological 
statistics, long-term illnesses, lifestyle factors, location and other data that only occasionally changes, at the 
patient level.
Assessments: 361.2 million assessments with 68 fields. Patients are asked to give regular assessments through 
the app that cover their current health status and symptoms, aspects of their lifestyle such as potential exposure 
to COVID-19, and, in early versions of the schema, any COVID-19 tests that they have had.
Tests: 6.98 million tests, with 20 fields. Test records are kept for each COVID-19 test that a patient has had along 
with the evolving status of that test (typically from’waiting’ to’positive’,’negative’, or’failed’).
Diet: 1.58 million diet study questionnaires with 89 fields. These ask people at several time points about their 
dietary and lifestyle habits.
Vaccine doses: 2.02 million vaccine dose entries with 14 fields. This table contains various data about the vaccine 
doses administered, including date, vaccine type, and vaccine course.
Vaccine symptoms: 8.11 million vaccine symptom entries with 35 fields. This table contains symptom data 
linked to the days following vaccination.
Mental health: 717,399 mental health entries with 56 fields. This table contains mental health survey data linked 
to lockdown, lifestyle habits, and general mental health.

Assessments, tests and diet study questionnaires are mapped to patients via IDs that serve as foreign keys.

This dataset is delivered as daily snapshots in CSV format. As of 23rd May 2021, the daily snapshot is 100 GB 
in size, and the accumulated daily snapshots are over 20 TB in size. The dataset, excepting fine-grained geoloca-
tion data, is publicly available at https://healthdatagateway.org.

Covid symptom study-specific cleaning and processing.  The Covid Symptom Study data schema has seen rapid 
iteration since its inception. The initial app was rapidly released to allow users to contribute as soon as possible 
after the pandemic was declared and required adjustments to ensure its longevity. Furthermore, the evolving 
nature of the pandemic, particularly around prevalence in the population and availability and type of tests, has 
necessitated structural changes to the schema. Finally, this dataset is novel in terms of its scale and deployment 
for epidemiological analysis, and the schema has been altered to better capture data based on lessons learned 
during early phases of the research effort.

Public health surveillance campaigns such as the Covid Symptom Study impose time constraints on software 
development, with frequent changes in database structure and intense versioning to accommodate iterative 
refinements. The evolving epidemiology of COVID-19, the response of governments and populations to the 
pandemic, and academic responses to papers based on the dataset all shape the questions that are added to or 
removed from the app over time.

The dataset is only minimally validated at source. The fields often contain data of mixed type, and different 
fields can be in mutual contradiction. Numeric values are only validated for type rather than sensible value 
ranges. Furthermore, the dataset contains multiple competing schemas for the same underlying data, and the 
app version was tied to the schema version in earlier phases of the Covid Symptom Study. This resulted in users 
who were using older versions of the app to still contribute to otherwise retired schema elements. As such, a 
considerable amount of data cleaning and processing is required to extract data suitable for analysis.

Schema changes.  The handling of COVID-19 tests in the dataset is an example of the complexity created by 
changes to the schema. Testing was initially reported as an assessment logging activity, but this solution had 
several issues. Firstly, a test needed to be logged on the day it was taken for the assessment date to be treatable as 
the test date. Secondly, some users interpreted the test field as something to be logged only when they took a test 
or received the result, whilst other users filled in intermediate assessments with the pending status. Thirdly, this 
system did not allow for users to enter multiple tests unambiguously. Whilst this was not a problem in the initial 
months of the pandemic, the ramping up of test availability necessitated a solution.

A new test table was introduced in June 2020, giving each test a unique ID to allow multiple tests for each 
patient. However, existing tests recorded in the old schema were not connected with new test entries, although 
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many users re-entered old test results in the new test format. Furthermore, new tests continued to be added by 
users in the old, assessment-based schema format, logging on previous versions of the app. As such, there is 
no unambiguous way of determining whether tests in the old format are replicated by tests in the new format. 
This is an example of a postprocessing activity with no unambiguously correct output, which therefore requires 
at least a single, agreed upon algorithm to be consistently deployed to avoid inconsistencies between related 
analyses.
Validation of user-entered values (weight, height, BMI, year of birth).  In the Covid Symptom Study app, 
user-entered numeric values are only validated to ensure that they are numeric, as of the time of writing. There 
are no validations of sensible ranges given the user-selected units of measurement. Some users enter incorrect 
values, and some users enter values that appear sensible but only in some other unit (1.8 is a plausible height if 
the user is entering height in metres, for example).

Quality metrics for test mechanism.  The Covid Test table has a ‘mechanism’ field where the user is free to 
either select a categorical value indicating the test mechanism, or enter free text relating to the test mechanism. 
Some free text clearly indicates the test type, whereas other free text entries only infer the test type weakly, 
through inference such as ‘home test kit’. As such, a set of gradated flags are generated that indicate the quality 
of the categorisation.

Generation of daily assessments.  In case of multiple daily entries by the users, these assessments can option-
ally be quantised into a single daily assessment that, for symptoms, corresponds to the maximum value for each 
symptom that the user reported in the day. This considerably simplifies many downstream analyses.

Generation of patient-level assessment and test metrics.  Analysis often involves the filtering of users/contribu-
tors that are categorised by aspects of the assessments and tests that they have logged. These include metrics such 
as whether the patient logged as being initially healthy, or whether they have ever logged a positive test result.

Reproducibility and algorithm immutability.  Reproducibility depends on the ability to reproduce a given anal-
ysis from a version of the dataset and a set of algorithms run on the dataset. For this to be possible, algorithms 
must be considered immutable once implemented. This allows any subsequent version of the software to gener-
ate results consistent with those of the software version in which the algorithm was introduced.

ExeTeraCovid achieves this by requiring that a version of any given algorithm that is created is treated as 
immutable in the code base. This means that any target script is guaranteed to exhibit the same behaviour, 
provided that the following conditions hold. Firstly, any algorithms written for ExeTeraCovid are explicitly ver-
sioned. Secondly, any randomness introduced must be given consistent random seeds and, ideally, multiple 
sources of randomness should be given different random number generators. Once an algorithm is used in 
analysis, it may no longer be altered in the codebase, even if it is subsequently shown to contain errors. This 
enables researchers to run multiple versions of the same algorithm as part of their analytics and understand 
how sensitive their results are to changes and corrections. An example for this is the multiple versions of height/
weight/body mass index (BMI) cleaning that have been devised over the course of the project; each is available 
as a separate version of the algorithm for reproducibility.

Data availability
The Covid Symptom Study dataset is hosted by Health Data Research UK through the https://healthdatagateway.org  
(HDG), by searching for “COVID-19 Symptom Tracker Dataset”. Access to the data is applied for via a two-stage 
process through HDG. The dataset is accessed via a protected environment provisioned by HDG for successful 
applicants. Access to the data is free of charge at the time of writing but HDG may in future impose cost recovery 
on access requests that are not related to pandemic modelling or understanding or tackling Covid-19.

The code used to generate synthetic evalutation datasets is hosted at https://github.com/KCL-BMEIS/
ExeTeraEval and the 10 million/100 million row synthetic dataset is available for download33.

Code availability
All source code for ExeTera is made available through github under the Apache 2.0 license, at the time of writing. 
The code is split up into two separate projects.

ExeTera ExeTera is hosted at https://github.com/KCL-BMEIS/ExeTera and is available through pypi via pip 
install exetera.
ExeTera has a wiki that can be found at https://github.com/KCL-BMEIS/ExeTera/wiki.
ExeTeraCovid ExeTeraCovid is hosted at https://github.com/KCL-BMEIS/ExeTeraCovid and is available through 
pypi via pip install exeteracovid. Installing exeteracovid installs exetera.
ExeTeraCovid has a wiki that can be found at https://github.com/KCL-BMEIS/ExeTera/wiki.

Received: 3 December 2020; Accepted: 29 September 2021;
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