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Abstract: Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e.
jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c
jets is described and a novel method to calibrate them is presented. This newmethod adjusts the entire
distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It
is based on an iterative approach exploiting three distinct control regions that are enriched with either
b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors
evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb−1 at

√
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collected by the CMS experiment in 2017. The closure of the method is tested by applying the
measured correction factors on simulated data sets and checking the agreement between the adjusted
simulation and collision data. Furthermore, a validation is performed by testing the method on
pseudodata, which emulate various mismodelling conditions. The calibrated results enable the use
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learning models. Thus, they are expected to increase the sensitivity of future physics analyses.
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1 Introduction

Quarks and gluons are abundantly produced in proton-proton (pp) collisions at the CERN LHC and
an energetic interaction typically yields collimated streams of particles in the detector, referred to as
a jet. The particles in a jet arise from the showering, fragmentation, and hadronisation of an initially
coloured particle and constitute a colour-neutral final state. Several measurements of standard model
processes, as well as searches for beyond the standard model physics, rely on the identification of
the flavour of the coloured particle that initiates a jet. The jets originating from bottom (b) and
charm (c) quarks are identified using heavy-flavour tagging, which distinguishes them from jets
initiated by light flavour quarks (up, down, strange) or gluons [1, 2]. These algorithms exploit
the hard fragmentation, long lifetimes, and relatively high masses of b and c hadrons to identify
heavy-flavour jets. Although b jet identification algorithms have been deployed for several decades,
the more challenging task of identifying c jets at CMS was addressed for the first time during the
preparation for the data taking with the first 13 TeV centre-of-mass energy pp collisions [2, 3].

The heavy-flavour tagging identification process calculates the probability (discriminator) that a
jet is initiated by a specific quark flavour. Such tagging typically uses machine-learning classification
algorithms to exploit the vast information available for a jet, such as the properties of the individual
constituents as well as the jet as a whole. Currently the CMS Collaboration uses two such algorithms,
called DeepCSV [2] and DeepJet [4, 5], which are based on the use of deep neural networks
(DNNs) [6]; these algorithms differ in the amount of input information, as well as the internal
structure of the network, as explained in section 5. Simulated pp collisions are used to train these
algorithms, and care must be taken to avoid spurious effects resulting from mismodelling along the
simulation chain. Discrepancies between simulation and data can arise from a variety of sources
ranging from the imperfect simulation of the detector to the matrix element calculation, which has
limitations in the modelling of the parton shower, hadronisation and fragmentation processes. When
such algorithms are applied in physics analyses, a calibration of the heavy-flavour tagging output
probabilities in simulated events is needed to match those in actual collision data.
Traditional approaches of flavour tagging usually involve labelling each jet in an event as

“tagged” or “untagged” depending on whether the discriminator output for the jet is higher or lower
than a fixed threshold (working point), thereby making it possible to count the number of b- or
c-tagged jets in each event. To ensure agreement of this number between simulation and data, on
average, the efficiency of selecting (rejecting) each tagged (untagged) jet in a simulated event is
adjusted by a scale factor (SF), that quantifies the difference in selection (rejection) efficiencies of
various flavours of jets between simulation and data for the working point being used. Such SFs are
measured for each flavour of jet for various working points using different selections of jets in data.
SFs for b jets are derived from top quark pair (tt) production and/or from quantum chromodynamics
(QCD) multĳet events where a jet contains a low-energy muon. A selection of events in which a W
boson is produced in association with a charm jet (W+c) is used to derive SFs for c jets. Finally,
light-flavour and gluon jet SFs are derived using QCD multĳet events [2].

However, additional information can also be gained from the full output distribution (discrimi-
nator distribution shapes) of the heavy-flavour tagging discriminators, e.g. by using the discriminator
output for each jet as an input to a machine-learning classifier or by performing a fit of the discrimi-
nator distributions to data. This gives rise to the need for a second type of calibration that maps
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the full simulated distribution to the one observed in data. Such a shape calibration technique has
already been developed for the identification of b jets, and has been successfully applied in the
observation of the Higgs boson H → bb̄ decay mode [7].

This paper presents for the first time a calibration method to correct the differential c tagging dis-
criminator distribution shapes. This novel technique is based on an iterative fit procedure that exploits
three control regions that are enriched in c, b, and light-flavour or gluon jets. The first successful at-
tempt to perform such a charm tagging shape calibration was reported in a study of tt production with
additional c jets [8]. The present paper describes a more advanced strategy that uses higher-purity
control regions and an optimised granularity in the discriminator binning to derive shape calibration
SFs. A similar technique has been demonstrated to work in a search for associated production of
a Higgs boson with a vector boson, where the Higgs boson decays into a pair of charm quarks [9].
In sections 2 to 4, the CMS detector, details of the data and simulated events, and the object

reconstruction are discussed. The c tagging algorithms are introduced in section 5, followed by a
description of the event selection used to derive three control regions in section 6. The iterative fit
strategy is outlined in section 7, and the relevant sources of systematic uncertainties are discussed in
section 8. The results are discussed in section 9, the validation tests are documented in section 10,
and the paper is summarised in section 11.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid with an internal diameter
of 6m, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator
hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. The silicon tracker
consists of 1440 silicon pixel and 15 148 silicon strip detector modules and its new inner part was
installed in 2017 as a part of the Phase-1 pixel detector upgrade. The upgraded high-efficiency and
low-mass detector with four barrel layers provides four-hit pixel coverage to efficiently detect charged
particles within the pseudorapidity range |𝜂 | < 2.5 [10]. Transverse impact parameter resolution
of each track ranges from 20 to 75 𝜇m depending on the transverse momentum (𝑝T) and 𝜂 of the
track [11]. Forward calorimeters, made of steel and quartz fibres, extend the 𝜂 coverage provided by
the barrel and endcap detectors. Muons are detected in gas-ionisation chambers embedded in the steel
flux-return yoke outside the solenoid. Amore detailed description of the CMSdetector, togetherwith a
definition of the coordinate system used and the relevant kinematic variables, can be found in ref. [12].

Events of interest are selected using a two-tiered trigger system [13]. The first level [14], composed
of custom hardware processors, uses information from the calorimeters and muon detectors to select
events at a rate of around 100 kHzwithin a fixed latency of less than 4 𝜇s. The second level, known as the
high-level trigger (HLT), consists of a farmof processors running aversionof the full event reconstruction
software optimised for fast processing, and reduces the event rate to around 1 kHz before data storage.

3 Data and simulated samples

The data used to derive the calibration of the c tagger discriminator distributions were collected
from pp collisions recorded at a centre-of-mass energy of 13 TeV with the CMS detector in 2017,
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and correspond to an integrated luminosity of 41.5 fb−1 [15]. The 2017 data set is the first data
collected after the Phase-1 upgrade of the CMS pixel tracker [10] and is expected to represent the
current heavy-flavour tagging performance of CMS. The collision events are selected using a set of
single-lepton and dilepton triggers. The single-electron (single-muon) trigger requires the presence
of at least one isolated electron (muon) with a 𝑝T above 32 (27)GeV . The dielectron (dimuon)
trigger requires at least two isolated electrons (muons), one with 𝑝T > 23 (17) GeV and another with
𝑝T > 12 (8) GeV. Finally, the electron-muon trigger requires the presence of at least one electron
and at least one muon, where the lepton with the largest 𝑝T is required to have 𝑝T > 23GeV and the
one with the second largest 𝑝T to have 𝑝T > 12 (8) GeV if it is an electron (muon). These trigger
requirements are also imposed on the simulated collision events.

The simulated events are produced using Monte Carlo (MC) generators, which provide a fixed-
order perturbative QCD calculation of up to four noncollinear high-𝑝T hard partons, supplemented
with parton showering (PS) and typical underlying event particles. For all the simulated events,
the PS is simulated using pythia v8.230 [16], using the CP5 underlying event tune [17] with the
NNPDF 3.1 [18] parton distribution function set.

The matrix element (ME) generation of the tt simulation is performed with powheg (v2) [19–22]
at next-to-leading order (NLO) accuracy in QCD, and its cross section is scaled to a theoretical
prediction at next-to-NLO (NNLO) in QCD, including resummation of next-to-next-to-leading
logarithmic soft-gluon terms. The ME generation of theW + jets and Drell-Yan (DY) processes is
performed withMadGraph5_amc@nlo 2.4.2 [23] at leading order (LO) precision, with MLM jet
matching [24] and the cross sections normalised to NNLO calculations [25]. The single top quark
production in the 𝑠-channel was also simulated usingMadGraph5_amc@nlo in the four-flavour
scheme, whereas the single top quark production in the 𝑡-channel was simulated using powheg
also in the four-flavour scheme. The tW channel was simulated using powheg in the five-flavour
scheme [26, 27], with its cross section normalised to the NLO calculations [28]. The diboson
samples are simulated at LO using pythia for the ME generation. Their cross sections are normalised
to those calculated at NLO forWZ and ZZ [29], and NNLO forWW [30].
The interactions between particles and the material of the CMS detector are simulated using

Geant4 [31]. The effect of additional pp interactions within the same or nearby bunch crossings
(pileup) on top of the hard scattering processes is modelled by additional minimum bias collisions
generated with pythia.

4 Object reconstruction

The particle-flow (PF) event algorithm [32] reconstructs and identifies each particle (physics-object)
in an event with an optimised combination of all subdetector information. In this process, the
identification of the particle type (photon, electron, muon, charged and neutral hadrons) plays an
important role in the determination of the particle direction and energy. Photons (e.g. coming
from π

0 decays) are identified as ECAL energy clusters not linked to the extrapolation of any
charged-particle trajectory to the ECAL. Electrons are identified as a primary charged-particle
track and potentially many ECAL energy clusters corresponding to this track and to possible
bremsstrahlung photons. Muons are identified as tracks in the central tracker consistent with either a
track or several hits in the muon system, and associated with calorimeter deposits compatible with
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the muon hypothesis. Charged hadrons are identified as charged-particle tracks identified neither as
electrons, nor as muons. Finally, neutral hadrons are identified as HCAL energy clusters not linked
to any charged-hadron trajectory, or as a combined ECAL and HCAL energy excess with respect to
the expected charged-hadron energy deposit.
The energy of photons is obtained from the ECAL measurement. The energy of electrons

is determined from a combination of the track momentum at the main interaction vertex, the
corresponding ECAL cluster energy, and the energy sum of all bremsstrahlung photons attached to
the track. The energy of muons is obtained from the corresponding track curvature. The energy of
charged hadrons is determined from a combination of the track curvature and the corresponding
ECAL and HCAL energies, corrected by the response function of the calorimeters to hadronic
showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL
and HCAL energies.

The missing transverse momentum vector, ®𝑝missT , is defined as the negative vector 𝑝T sum of all
the PF candidates in an event, and its magnitude is denoted as 𝑝missT [33]. The ®𝑝missT is modified to
correct the energy scale of the reconstructed jets in the event.

The candidate vertex with the largest value of summed physics-object 𝑝2T is the primary vertex
(PV) of the pp interaction. These physics objects are the jets, the leptons, and the ®𝑝missT . The jets
are reconstructed by the jet-finding algorithm [34, 35] with the tracks assigned to candidate vertices
as inputs.
To identify and reconstruct the prompt leptonic decay modes of vector bosons, electrons

(muons) are used, and are required to be well isolated from jet activity within a cone of radius

Δ𝑅 =

√︃
(Δ𝜂)2 + (Δ𝜙)2 = 0.3 (0.4), where 𝜙 is the azimuthal angle in radians. The relative isolation

is defined as the scalar 𝑝T sum of the PF candidates within the cone divided by the lepton 𝑝T.
Additionally, a set of quality requirements are imposed on these leptons based on the quality
of the track reconstruction, hit multiplicities in the tracking and muon subdetector layers, and
the displacement of these particles with respect to the PV. Electrons and muons that arise from
(semi)leptonic decay modes of hadrons typically have a lower momentum and are surrounded by
hadronic activity of the underlying jet in which these hadrons are created. The branching fraction
of the (semi)leptonic decay modes of heavy hadrons gives rise to the presence of an electron or a
muon inside 20 (10)% of b (c) jets [2]. A set of relaxed kinematic and inverted isolation criteria is
imposed to identify such low-energy (soft) leptons inside jets.
For each event, jets are clustered from these reconstructed particles using the infrared- and

collinear-safe anti-𝑘T algorithm [34, 35] with a distance parameter of 0.4. Jet momentum is
determined as the vector sum of all particle momenta in the jet, and is found from simulation to be,
on average, within 5-10% of the true momentum over the entire 𝑝T spectrum and detector acceptance.
To mitigate the effect of pileup contributing additional tracks and calorimetric energy depositions to
the jet momentum, the charged particles identified as originating from pileup vertices are discarded,
and an offset correction is applied to correct for remaining contributions. Jet energy corrections are
derived from simulations to bring the measured average response of jets to that of generator-level
jets. In situ measurements of the momentum balance in dĳet, γ + jet, Z + jet, and multĳet events
are used to correct any residual differences in jet energy scale in data and simulation [36]. The jet
energy resolution amounts typically to 15–20% at 30GeV, 10% at 100GeV, and 5% at 1 TeV [36].
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Additional selection criteria are applied to each jet to remove jets potentially dominated by anomalous
contributions from various subdetector components or reconstruction failures. Jets overlapping
with isolated electrons or muons within Δ𝑅 < 0.4 are disregarded to remove isolated charged
leptons reconstructed as jets. Since heavy-flavour tagging algorithms strongly rely on the track
reconstruction, only jets within the tracker acceptance (|𝜂 | < 2.5) are used throughout this work.
Additionally, a lower threshold on the jet 𝑝T at 20GeV is imposed, and jets are required to pass tight
identification as well as tight pileup rejection criteria [37].
For simulated jets, a generator-level definition of the jet flavour is needed to train the heavy-

flavour tagging algorithms, as well as to calibrate them using data. This definition is based on a
procedure referred to as ghost-matching [38], which involves reclustering the generator-level jet
constituents after adding the intermediately decayed b or c hadrons to the list of particles used
for the clustering, as already used in ref. [2]. In case there are multiple b (c) hadrons in a decay
chain, only the last b (c) hadron in the chain, i.e., the b (c) hadron that does not further decay into
another b (c) hadron, is reclustered. The moduli of the four-momenta of these generated hadrons are
rescaled to a very small number (resulting in so-called ghost hadrons), to ensure that they do not
affect the reconstructed jet momentum, and only their directional information is kept. If at least one
ghost b hadron has been clustered inside the jet, it is referred to as a bottom jet. If no b hadron is
found, but instead at least one c ghost hadron is clustered inside the jet, it is referred to as a charm
jet. In all other cases the jet is categorised as a light-flavour jet, and hence this category includes
jets originating from light quarks (uds), as well as gluon-initiated (g) jets. Particles from pileup
interactions are not included in the reclustering.

Displaced secondary vertices (SV) from the decays of b or c hadrons are reconstructed using
the inclusive secondary vertex finding algorithm [39]. This algorithm does not a priori assume
any matching of the jets to a SV, but instead takes as input all reconstructed tracks in the event
with 𝑝T > 0.8GeV, and having a distance of closest approach from PV to track, projected onto the
direction of the beam axis, below 0.3 cm. After the iterative procedure of track clustering, the final
set of tracks is matched to the reconstructed jets if the distance between the direction of the SV
displacement (pointing from PV to SV) and the jet axis satisfies Δ𝑅 < 0.4.

5 Charm jet identification

5.1 The c tagging algorithms

The identification of c jets relies on the long lifetime and themass of the c hadron. The average lifetime
of such charmed hadrons in the rest frame is typically a picosecond, resulting in a displacement
of the decay vertex in the detector frame by a few millimetres to a centimetre from the position
of the primary vertex. The reconstructed invariant mass, computed from the four-vectors of the
particles that are assigned to such a secondary vertex, is strongly correlated with the c hadron mass.
The existing heavy-flavour tagging algorithms exploit these properties by combining the features of
tracks inside the jet (momentum, displacement, multiplicity) with the features of reconstructed SVs
(mass and both the direction and the magnitude of the SV displacement from the PV).

These are the same properties that are used to identify b jets. Since the average lifetime and mass
of b hadrons is larger than that of c hadrons, the signatures of b jets are more easily distinguishable
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from those of light-flavour jets than those of c jets. The fact that the discriminating properties of
c jets are distributed midway between those of light-flavour and b jets requires the definition of
two discriminating variables; one to distinguish c jets from light-flavour jets (CvsL) and one to
distinguish c jets from b jets (CvsB). Historically, the first c jet identification algorithm used in the
CMS Collaboration was based on a combination of two boosted decision trees (BDTs), each trained
for one of the above mentioned discrimination purposes [3]. The state-of-the-art heavy-flavour
tagging algorithms are currently based on multi-class deep neural network architectures and predict
separate probabilities for each jet to originate from a given quark flavour (or gluon). Through an
appropriate combination of the probability values computed by these algorithms, these taggers can
function either as a bottom jet or as a charm jet identification algorithm.

The DNN architecture of the DeepCSV algorithm is composed of five fully connected hidden
layers with 100 nodes in each layer. It takes as input a set of 66 reconstructed observables related
to the charged-particle tracks and secondary vertices that are assigned to a given jet, and outputs
four probabilities, 𝑃(b), 𝑃(bb), 𝑃(c) and 𝑃(udsg), that denote the probability of a jet to originate
from one b quark, two b quarks merged into the same jet, one or more c quarks or a light-flavour
quark or gluon, respectively. The DeepJet algorithm uses an architecture composed of subsequent
convolutional, recurrent and fully connected hidden layers. Its input is composed of a set of up to
613 observables related to charged and neutral PF candidates (without a priori selection criteria and
without explicitly classifying charged PF candidates as charged hadron or leptons, and neutral PF
candidates as photons or neutral hadrons) as well as the SVs that are assigned to the jet. Apart from
the fact that DeepJet exhibits a higher-dimensional input space and a more complex architecture, it
further subdivides the output classes into additional categories. In addition to the DeepCSV output
categories, 𝑃(blep) is added to identify leptonic b hadron decays and 𝑃(udsg) is split further into
𝑃(uds) and 𝑃(g) with the goal of separately identifying jets originating from light quarks and gluons,
respectively. More detailed information on the inputs, architecture, and training of these algorithms
can be found in refs. [2, 4, 5].

Table 1. Summary of the heavy-flavour tagging definitions for both b and c tagging using the DeepCSV and
DeepJet taggers. 𝑃(a) represents the probability of having an a-type jet (see text).

Tagger BvsC/L CvsB CvsL
DeepCSV 𝑃(b)+𝑃(bb) 𝑃 (c)

𝑃 (c)+𝑃 (b)+𝑃 (bb)
𝑃 (c)

𝑃 (c)+𝑃 (udsg)
DeepJet 𝑃(b)+𝑃(bb)+𝑃(blep)

𝑃 (c)
𝑃 (c)+𝑃 (b)+𝑃 (bb)+𝑃 (blep)

𝑃 (c)
𝑃 (c)+𝑃 (uds)+𝑃 (g)

These output probabilities can be appropriately combined to define a set of b and c tagging
discriminators as summarised in table 1. For b jet identification, a discriminant is defined to
distinguish b jets from either c or light-flavour jets using one single discriminator (BvsC/L). For
c jet identification, two distinct discriminators are defined as the ratios in the second and third
columns in table 1. The normalised distributions of these discriminators for both algorithms are
shown in figure 1 for jets with 𝑝T > 20GeV and |𝜂 | < 2.5 from simulated hadronically decaying tt
events. The performance of these algorithms can be assessed by evaluating the selection efficiency
for c jets as a function of the misidentification rate for either b or light-flavour jets for different
selection thresholds on the discriminator values. These result in a so-called receiver operating
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Figure 1. Unit-normalised distributions of the CvsL (left) and CvsB (right) discriminators for the DeepCSV
(dashed) and DeepJet (solid) algorithms using jets from simulated hadronic tt events with 𝑝T > 20GeV and
|𝜂 | < 2.5. The distributions are shown for b (red), c (green) and light-flavour jets (blue) separately.

characteristic (ROC) curve which is shown in figure 2. It can be seen that the DeepJet algorithm has
a lower mistagging efficiency than the DeepCSV algorithm in both CvsL and CvsB discrimination.
Furthermore, the selection efficiency for c jets can be evaluated as a simultaneous function of b
and light-flavour jet misidentification rates, which produces a two-dimensional (2D) ROC contour
plot as shown in figure 3. This plot shows that the DeepJet algorithm outperforms the DeepCSV
algorithm in simultaneous CvsL and CvsB discrimination over the entire 2D phase space, as well.
The DeepCSV algorithm itself has already shown a significantly improved performance over the
original c tagging algorithm, which was based on a combination of two BDTs [2], demonstrating the
significant advancements that have been made in heavy-flavour identification over the last five years.

The 2D (normalised) distributions of the CvsL and CvsB discriminators of both algorithms are
shown in figure 4 for different jet flavours. In this 2D phase space spanned by the CvsL and CvsB
discriminators, light-flavour jets are situated almost exclusively in the upper left corner, whereas c
jets have a significant fraction along the right edge, and b jets are distributed largely towards the
lower right corner, as expected.

An a priori track selection is applied to define the collection of tracks considered as input to the
DeepCSV algorithm. This selection is optimised to identify tracks from b and c hadrons, while
rejecting tracks from pileup interactions and poorly reconstructed tracks that do not match any
genuine particle passing through the detector. It is therefore possible that a given jet has no tracks
that pass this preselection and therefore no information is present to calculate a heavy-flavour tagging
discriminant. These jets are assigned a default output value of −1. Given the known differences in
track reconstruction efficiency and the poorly reconstructed track rate between the simulation and
collision data, it is important to calibrate the rate of jets with such default discriminator values.
No such preselection criteria are used in the DeepJet algorithm, which instead takes as input

the entire collection of PF candidates associated with a given jet. Therefore, no default values are
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expected to appear in the output probabilities of the DeepJet algorithm. Nevertheless, because of the
definition of the CvsL and CvsB discriminators shown in table 1, an undefined discriminator value
can appear if the denominator becomes zero. This situation is observed when the b jet probability,
𝑃(b)+𝑃(bb)+𝑃(blep), is evaluated to be exactly 1 by the DeepJet algorithm, resulting by construction
in an output value of 0 for all other output probabilities. Consequently, this appears almost exclusively
for b jets. Whenever such a situation appears for a given jet, its c tagging discriminator values, CvsL
and CvsB, are evaluated to be undefined and 0, respectively, and hence constitute a special category
of jets separated from the continuous jet distribution in the 2D CvsL-CvsB plane. For simpler
representation, both CvsL and CvsB values of these jets are defaulted to a value of −1 in this paper.

5.2 Mismodelling of the simulated c tagging discriminators

The need for calibrating the heavy-flavour tagging discriminants arises from possible mismodelling
of the simulated inputs. Important discriminating properties such as the track displacement or the
SV displacement are not very well modelled in simulation and are subject to changes in the detector
alignment. As already evident from other heavy-flavour calibration methods [2], the performance of
the heavy-flavour tagging algorithms is overestimated in the simulation, resulting in higher simulated
b and c tagging efficiencies and lower misidentification probabilities compared with those observed
in the data. Rather than correcting the efficiency of a selection in the discriminator, the full simulated
differential shape of that discriminator can be calibrated to match the shape observed in data. Such a
strategy has been developed in the past for the b tagging discriminator distribution [2]. For the first
time this paper presents a method of calibrating the differential c tagging discriminator shapes. Since
c jet identification relies on both the CvsL and CvsB discriminators simultaneously, the calibration of
the c tagger is performed as functions of both the CvsL and CvsB distributions. Jets with defaulted
values of CvsL and CvsB are calibrated as a separate category. The rest of this paper is devoted to
the discussion of this novel calibration method.

6 Event selections for calibration

The strategy for calibrating the DeepCSV- and DeepJet-based c taggers involves identifying three
samples of jets in the data that are enriched respectively in c, b, and light-flavour jets. This has
resulted in the definition of three jet samples enriched either inW+c events (c enriched), tt events
(b enriched), and DY + jet events (udsg enriched). The flavour tagging algorithms being calibrated
are not used in the construction of these selections to keep the resulting calibration free from
potential biases. However, the sampled c and b jets are required to contain a soft muon inside the jet
cone, to enrich the samples with jets containing semileptonically decaying c and b hadrons, which
increases signal purity. Since soft muons within jets are treated as any other charged PF candidate in
both DeepCSV and DeepJet trainings, as opposed to training the network with explicit soft muon
information, the bias in the discriminator responses arising from using muon-containing c and b jets
as a proxy for all c and b jets, is expected to be minimal. In section 10.2 we further demonstrate the
applicability of the correction factors to inclusive samples despite the nonuniversality of the c and b
jets used for calibration.

The SM physics processes, namely,W+c, tt and DY + jet, chosen to yield the three jet samples,
were experimentally studied with great precision in previous publications [40–43]. These papers did
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not observe any significant deviation from the SM expectations. Therefore, effects of BSM physics,
if any, on these samples are expected to be insignificant when compared with the statistical and
systematic uncertainties associated with the data and simulation. Hence, the distributions of the c
tagger outputs for these jet samples in data are expected to agree with the corresponding calibrated
distributions in simulation within uncertainties.

In this section, the event selection criteria to obtain each of these three topologies are outlined,
followed by a discussion on the purity of the different jet flavours after each selection.

6.1 The c jet enriched selection

Charm jets in data are selected from events with a jet produced in association with a W boson,
following the strategy discussed in the CMSW+c cross section analysis [40] and the c jet identification
SF derivation [3]. The relevant events involve a leptonically decayingW boson (W → 𝑙𝜈, 𝑙 = e, 𝜇)
and a jet originating from the hadronisation of a charm quark. These charm jets are identified using
the semileptonic decay of the c hadron, which produces a soft muon within the jet in the final state.
Charm hadron decays into electrons are not considered, because of the lower efficiency of electron
reconstruction at low energies [44]. Thus, the targeted final state consists of an isolated charged
lepton (electron or muon) from theW boson decay, 𝑝missT due to the presence of a neutrino from the
W boson decay, and at least one jet with a soft, nonisolated muon inside it.

The selected events are divided into two categories:

• Opposite-sign (OS) events, where the soft muon inside the jet and the isolated lepton from the
W boson have opposite charges;

• Same-sign (SS) events, where the soft muon inside the jet and the isolated lepton from theW
boson have similar charges.

If there are multiple soft muons inside the jet, the muon with the highest 𝑝T determines the sign of
the charge.
The major background for the W+c selection, as described above, is the production of a W

boson associated with the radiation of a virtual gluon that decays into a pair of b or c quarks, with one
or more of the resulting jets in the final state having a soft muon inside it. These backgrounds have
50%-50% probabilities of being tagged as OS or SS. In contrast, the leading-order contributions to
the production of aW boson with one c jet always result in an OS signature, as illustrated in figure 5.
Hence, an OS-SS subtraction largely reduces the major background and yields a distribution enriched
inW+c events. All distributions related toW+c selection in this paper are OS-SS subtracted.

A few details of the selection are described as follows:

Isolated lepton: A charged lepton (electron or muon) from theW boson decay that originates close
to the PV and has a relative isolation smaller than 0.05 is required. The events are categorised
into electron and muon channels, depending on the flavour of each charged lepton. The
electron channel requires exactly one isolated electron with a transverse momentum of at least
34GeV and no isolated muon, and the muon channel requires exactly one isolated muon with
a 𝑝T of at least 30GeV and no isolated electron. The events are triggered by a single-electron
and/or single-muon HLT. TheW bosons decaying into 𝜏 leptons are not explicitly excluded,
and may enter the selection through their leptonic decay products.
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Figure 5. Feynman diagrams showing production of charm quarks in association with aW boson (left and
middle) and the major background (right).

W boson candidate: TheW boson transverse mass is defined as

𝑚T ≡
√︃
2𝑝lepT ®𝑝missT

[
1 − cos(𝜙lep − 𝜙 ®𝑝missT

)
]
,

where 𝑝lepT is the 𝑝T of the isolated lepton and 𝜙lep (𝜙 ®𝑝missT
) is the 𝜙 of the isolated lepton

(missing momentum). An 𝑚T of at least 50GeV is required to ensure the presence of a
neutrino produced from aW boson decay.

Jets: Events are required to have at least one and at most three jets lying inside the tracker coverage
(|𝜂 | < 2.5) and with 𝑝T > 20GeV. At least one of these jets is required to contain a low-energy
muon with 𝑝T < 25GeV and a relative isolation of at least 0.2 (0.5) in the electron (muon)
channel. If there are multiple such jets in an event, the jet with the highest 𝑝T (referred to as
the muon jet) is selected. Only jets separated from the isolated lepton (fromW boson decay)
by Δ𝑅 > 0.5 are considered.

DY suppression: To discard events where a prompt muon is misidentified as the muon jet, an
upper threshold of 0.4 (0.6) is applied to the muon energy fraction of the muon jet in the
muon (electron) channel. For only the muon channel, the sum of the muon and the neutral
electromagnetic energy fractions of the muon jet is required to be smaller than 0.7. These two
requirements heavily suppress the DY background in the muon channel by rejecting events
where one of the prompt muons is misidentified as the muon jet, e.g. when the prompt muon
undergoes final-state photon radiation. Furthermore, the invariant mass of the muon inside the
jet and the isolated muon in the muon channel cannot match that of the Z boson (in between
80 and 100GeV) or other dimuon resonances (below 12GeV).

The muon jets selected in these events are the c jet candidates. The OS-SS distributions of
the CvsL and CvsB variables of these candidates are presented in figure 6 for both DeepCSV and
DeepJet taggers. These plots, as well as all other jet distribution plots in this paper, are plotted after
scaling the simulated jets such that the total number of simulated jets matches the number of jets in
data in every channel of every selection. This ensures that any remaining discrepancies between
data and simulation, in terms of cross sections of the contributing processes, are largely reduced.
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Figure 6. Precalibration distributions of CvsL (left) and CvsB (right) obtained from the DeepCSV (upper)
and DeepJet (lower) taggers for jets selected in the W+c (OS-SS) selection. The bin corresponding to a
tagger value of −1 is plotted at −0.1. Vertical error bars in data represent statistical uncertainties in data. The
simulations are shown as stacked histograms.

6.2 The b jet enriched selection

The b jet enriched sample is obtained from tt events by selecting one of the b jets originating from
the decay of the two top quarks. The selection includes both the semileptonic and dileptonic decay
channels of the tt process, each of which is discussed separately below.

6.2.1 Semileptonic tt selection

The strategy for the semileptonic tt selection is to select one of the b jets produced in a semileptonic
tt decay by identifying a leptonically decaying W boson, a jet with a soft muon from a bottom
hadron decay chain inside it, and several additional jets from the other b quark and the hadronically
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decayingW boson. The selection is similar to that of theW+c discussed in the previous subsection
and is kept orthogonal to the latter by requiring at least four jets in the event.

6.2.2 Dileptonic tt selection

The dileptonic tt selection chooses one of the two b jets in dileptonic tt events. The target final state
consists of two isolated, oppositely charged leptons from the twoW boson decays, and a minimum
of two jets, at least one of which has a soft muon inside it. The selection can be subdivided into
three channels depending on the flavour of the isolated leptons, namely dielectron, dimuon and
electron-muon channels. The events in those channels are triggered using the dielectron, dimuon
and electron-muon HLTs, respectively.

The dielectron (dimuon) channel requires exactly two electrons (muons) having 𝑝T of at least 27
and 15 (20 and 12)GeV, and no muons (electrons). The electron-muon channel requires either one
muon with 𝑝𝜇

T > 25GeV and one electron with 𝑝eT > 15GeV, or one electron with 𝑝eT > 27GeV
and one muon with 𝑝𝜇

T > 14GeV. In all cases, the charged leptons are required to have a relative
isolation less than 0.15.

Although the muon-electron channel thus selected is quite pure in b jets, the two other channels
are contaminated by the DY background. Therefore, in the dielectron and dimuon channels, the
event is required to have a 𝑝missT of at least 40GeV, and the invariant mass of the dilepton candidate
is required to be incompatible with that of the Z boson (i.e. outside the range 75–105GeV) or other
dimuon resonances (below 12GeV), to suppress the DY contamination.

The muon jet selected in each semileptonic or dileptonic tt event is the b jet candidate. In case an
event has multiple muon jets, the jet with the highest 𝑝T is selected. The CvsL and CvsB distributions
of these candidates combined from both semileptonic and dileptonic decays are presented in figure 7
for both DeepCSV and DeepJet taggers. We have verified that the c tagger discriminator shapes of
individual flavours agree quite well between semileptonic and dileptonic decay channels for both of
the taggers.

6.3 Light-flavour jet enriched selection

Jets arising from light quarks (uds) and gluons (g) are selected in events containing one or more jets
produced in association with a leptonically decaying Z boson (DY + jet events). The selection is
split into two channels (electron and muon), depending on the flavour of the charged leptons from
the Z boson. The Z bosons decaying into 𝜏 leptons are not explicitly considered, but may enter the
selection through the leptonic 𝜏 decays.

The final state in the electron (muon) channel consists of exactly two isolated, oppositely charged
electrons (muons) having 𝑝T of at least 27 and 15 (20 and 12)GeV and at least one jet. Each of
the two leptons is also required to have a relative isolation less than 0.15 and their invariant mass
is required to be within 10GeV of the Z boson mass. The events are triggered with the dielectron
and dimuon HLTs, respectively. The requirement of a soft muon inside the jet is not imposed for
light-flavour jets. In case there is more than one jet in the event, the jet with the highest 𝑝T is
considered as the light-flavour jet candidate. The CvsL and CvsB distributions of these candidates
are presented in figure 8 for both the DeepCSV and DeepJet taggers.
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Figure 7. Precalibration distributions of CvsL (left) and CvsB (right) obtained from the DeepCSV (upper)
and DeepJet (lower) taggers for jets in the tt selection. The bin corresponding to a tagger value of −1 is
plotted at −0.1. Vertical error bars in data represent statistical uncertainties in data. The simulations are
shown as stacked histograms.

6.4 Summary of selections

To summarise,W+c events (OS-SS subtracted), tt events, and DY+ jet events are used to probe the c
tagger distributions of jet samples in data enriched in c jets, b jets and light-flavour jets, respectively.
The jet yield and percentage of jets of each flavour in each of these samples are summarised in
table 2. These selections yield a c jet purity of 92.9%, b jet purity of 81.0% and light-flavour jet
purity of 86.1% in their respective samples.
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Figure 8. Precalibration distributions of CvsL (left) and CvsB (right) obtained from the DeepCSV (upper)
and DeepJet (lower) tagger for jets in the DY + jet selection. The bin corresponding to a tagger value of −1
is plotted at −0.1. Vertical error bars in data represent statistical uncertainties in data. The simulations are
shown as stacked histograms.

Table 2. The combined jet yield and contribution of each jet flavour to each selection is shown. The jet yield
is reported from data, whereas the per-flavour contribution is determined from simulation. The “purity” of
each selection (row) is highlighted in bold text.

Selection Jet yield c % b % udsg %
W+c 362 002 92.9 0.957 6.14
tt 380 366 12.1 81.0 6.91

DY + jet 8 509 206 8.87 5.05 86.1
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7 Iterative calibration of the c tagging discriminators

A calibration of the full discriminator shape requires deriving SFs to correct for the data-simulation
discrepancy at every value of the discriminator. Since c tagging requires using both CvsL and CvsB
values of a jet simultaneously, this translates into deriving data-to-simulation SFs as functions of
both these parameters to simultaneously adjust the discriminator shape in the 2D plane of CvsL and
CvsB. In addition, mismodelling in simulation is expected to be different for light-flavour, c, and b
jets. This entails deriving different sets of SFs for different jet flavours.

The general idea of deriving SFs employed in this paper is to perform a fit iteratively on three
flavour-enriched jet samples allowing the three flavour components (light, c and b) in each to float
freely until the difference between the distribution of jets in data and simulation in all the samples is
minimised. The simultaneous usage of three samples with different flavour compositions ensures
the existence of a solution, while an iterative fitting approach helps in converging to a physical
value. After motivating two distinct choices of binning in the 2D phase space of the CvsL and
CvsB discriminators below, the algorithm employed in the iterative fit method is discussed in detail.
Finally, an interpolation scheme is discussed that combines the SF results obtained in two different
binning schemes into one set of SFs with finer binning.

7.1 Adaptive binning

Ideally, a perfect calibration would require deriving the flavour-wise correction factors in infinitesi-
mally small areas in the CvsL-CvsB plane. However, the smaller the bin area, the lower the yield of
jets in that bin, and hence the larger the statistical uncertainty in the SF. A large bin area, on the
other hand, results in largely discontinuous SFs, which could be unrepresentative and could result in
an incorrect calibration. To find a trade-off, an adaptive binning approach is adopted with the aim of
having smaller bin areas for SFs of a given flavour in the part of the 2D plane where the yield of jets
of that flavour is large. This results in a more continuous correction in high jet count regions, and
ensures optimised statistical uncertainties over the entire phase space.

In practice, the binning is kept constant along one axis and made adaptive along the other in the
first run, and then the choice is reversed in the second. The 2D plane of SFs for all three flavours is
first divided into ten equal-width bin-slices along one axis (the “fixed axis”). The algorithm treats
each of these slices independently and proceeds to determine the binning along the other axis (the
“variable” axis) on a per-bin-slice basis and independently for each flavour. Thus, for each bin slice
of the SF map of a given flavour, the binning along the variable axis is sequentially increased starting
from a minimum threshold, 𝑏min, in steps of 𝑏min, until at least one of the following two conditions
is fulfilled for each bin:

• the resulting SF for that flavour in that bin has a relative statistical uncertainty smaller than
𝜖max, or,

• the bin width along the variable axis is equal to 𝑏max.

A dedicated scan of these three parameters (𝑏min, 𝑏max, and 𝜖max) is performed and values of
𝑏min = 0.02, 𝑏max = 0.10, and 𝜖max = 2% are chosen as an optimal compromise between the
granularity of the binning and the statistical uncertainties.
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After the SF results are derived using such a binning scheme, the choice of fixed and variable
axes is reversed to yield another binning scheme. For example, at first, the CvsB axis could be
chosen as the fixed axis and CvsL as the variable axis to yield a binning scheme and perform the
iterative fit. Next, the CvsL axis could be chosen as the fixed axis and the CvsB axis as the variable
one. This would yield a second binning scheme using which the iterative fit can be performed.

7.2 Iterative fit

The iterative fit method minimises a global 𝜒2 value that quantifies the data-to-simulation discrepancy
in the projected CvsL distribution over a given (fixed-width) CvsB bin slice, or vice versa. Themethod
proceeds by iteratively evaluating and applying SFs for all three jet flavours in the corresponding
selected topology in which they are enriched.
The algorithm begins by scaling the total number of simulated jets across all contributing

processes in each channel (i.e. muon, electron, or electron-muon, as applicable) of each sample (i.e.
c, b or light-flavour jet enriched) to match the number of jets selected in data in that channel. This
removes any remaining data-simulation discrepancies in terms of the total jet yield, without altering
the discriminator shape, as explained in section 6, and simultaneously ensures that the SFs thus
derived correct only the discriminator shape without significantly altering the jet yield.

Then for each fixed bin slice:

• The three samples are ranked by the purity of the samples for the given bin slice. The purity
of a sample is defined as the percentage contribution of the jet flavour that the sample is meant
to enrich, e.g. fraction of c jets in theW+c selection (see table 2).

• Starting with the purest sample, “signal” is defined as the CvsL (CvsB) distribution of
simulated jets of the flavour 𝑓1 that this sample aims to enrich, when CvsB (CvsL) is chosen
as the fixed axis. Similarly, “background” is defined as the sum of the templates of the other
two flavour components of the same sample in simulation. “Signal in data” is defined as the
difference between the simulated background template and the data distribution. The ratio of
the “signal in data” to “signal”, evaluated as a function of the quantity on the variable axis,
gives the SF for 𝑓1 in this bin slice in this iteration. The ratio (an array of SFs) is calculated in
discrete intervals following the binning scheme determined as explained in section 7.1. If the
yield of simulated jets of flavour 𝑓1 in the enriched sample in any of these bins is less than
one, or if the purity of the sample in any bin is less than a threshold (10%), the resulting ratio
in this bin may have an unphysical central value with a large statistical uncertainty. In all such
bins, a default value of 1 with a 100% statistical uncertainty is assigned as the SF.

In practice, the array of SFs is initialised with the value 1 for all bins and all flavours with the
goal of updating them to the current best estimate of the SF values after every ratio evaluation.
When the difference between the current and previous best estimates after a ratio evaluation in
a given bin is larger than 0.002 (0.005), a change of only 0.002 (0.005) is allowed in that bin
for DeepCSV (DeepJet). This ensures a smooth convergence of the 𝜒2 parameter and prevents
convergence to a local minimum.

• Moving to the second purest sample for this bin slice, the SFs for 𝑓1 are applied to the simulated
template of 𝑓1 in this sample with the same discrete binning used to determine the SFs. Again,
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“signal” is defined as the template of the flavour 𝑓2 that this distribution enriches and thus the
array of SFs for 𝑓2 is evaluated in the same way. The binning of these SFs can, in general, be
different from that of 𝑓1, and will depend on the distribution of jets of flavour 𝑓2 in this bin
slice.

• Proceeding to the third sample, the SFs for 𝑓1 and 𝑓2 are applied to the respective simulated
templates following their respective binnings, and the SFs for 𝑓3 corresponding to this sample
are evaluated. This completes one full iteration for this bin slice.

• The next iteration begins by applying all three SF arrays to the respective simulated templates
of the first sample. The SFs for 𝑓1 are then updated. Proceeding to the next samples, 𝑓2 and 𝑓3
are updated likewise.

• The iterations are continued until a global 𝜒2 is minimised and no longer improves with further
iterations. The 𝜒2 for a given sample, “sel” (sel =Wc, tt , DY), in this bin slice is defined as

𝜒
2
sel =

𝑛∑︁
𝑖=1

(
𝑁sim,𝑖 − 𝑁data,𝑖

)2
𝜎
2
sim,𝑖 + 𝜎

2
data,𝑖

,

where 𝑛 is the number of bins of width 𝑏min in the distribution along the variable axis,
𝑁sim,𝑖 =

∑
𝑓 =c,b,udsg SF 𝑓 ,𝑖𝑁 𝑓 ,𝑖 is the SF-adjusted simulated jet count in the 𝑖-th bin along

the variable axis, 𝑁data,𝑖 is the jet count in data in the 𝑖-th bin, with 𝜎
2
sim,𝑖 and 𝜎

2
data,𝑖 as the

corresponding statistical uncertainties in simulation and data, respectively. This quantity is
always well defined since the width of any given bin is a multiple of 𝑏min by construction, as
explained in section 7.1. The global 𝜒2 of a bin slice is defined as the sum of the three 𝜒2sel
values corresponding to the three samples in this bin slice, and is updated after every iteration.

The same procedure is used for every bin slice and for both DeepCSV and DeepJet taggers. Thus,
three 2D maps of SFs corresponding to three different flavours are obtained for each tagger. Next, the
entire procedure is repeated with the fixed and variable axes interchanged. This gives an additional
set of SFs for the same phase space, but with a different binning. The method of combining the two
sets of results is presented in section 7.3.

7.2.1 Treatment of jets with default discriminator values

Jets that are assigned a default value of −1, because they either do not have sufficient information to
be processed by the tagging algorithm (DeepCSV) or have an undefined value for at least one of the
c tagging discriminators (DeepJet), need to be treated separately in the calibration.

DeepCSV. Jets that have no tracks passing the DeepCSV preselection criteria, and hence have
been assigned default discriminator values CvsL = CvsB = −1, remain excluded from the iterative
fit treatment described above. Therefore, the iterative fit procedure is repeated in the same way for
the jets with defaulted discriminator values in the three samples. However, only the jets from the
electron channel of theW+c selection are used as the c jet enriched sample in this particular fit,
because such jet candidates in the muon channel of W+c are heavily contaminated with prompt
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muons from DY events misidentified as jets and hence are unsuitable for use in a three-flavour fit.
The 𝜒2 for a sample in this case is defined as:

𝜒
2
sel =

(
𝑁sim − 𝑁data

)2
𝜎
2
sim + 𝜎

2
data

,

and the global 𝜒2, defined as the sum of the 𝜒2sel values of the three samples, is minimised iteratively.
This yields three correction factors corresponding to the three flavours. These SFs for the bin
containing jets with default DeepCSV values, when combined with the 2D maps of SFs for the
CvsL-CvsB plane, give the full set of SFs required for the calibration of the DeepCSV c taggers.

DeepJet. Since the CvsL = CvsB = −1 bin of DeepJet consists almost entirely of b jets, a lack of
data for light-flavour and c jets in this bin makes it both impossible and unnecessary to perform a
three-flavour iterative fit to find DeepJet SFs for udsg and c. Therefore, in this bin, c and udsg SFs
are both set to 1 ± 1, and the b SF is evaluated as:

SFb =
𝑁data − 𝑁sim,c − 𝑁sim,udsg

𝑁sim,b

where 𝑁 represents the jet counts of the respective flavours in the bin containing jets with default
discriminator value in the tt sample.

7.3 Interpolation

For each algorithm, an interpolation of the SF values in the 2D plane is performed on a per-flavour
basis to find more representative corrections on a finer grid. Such an interpolation is feasible because
the SFs have a fairly smooth distribution, as evident to a first degree of approximation from the
data-to-simulation ratios in figures 6–8. Moreover, combining the two sets of SFs, which are derived
using two different binning schemes with such an interpolation approach, is expected to improve the
SF values, given the fact that the two sets of SFs potentially contain complementary information
about rapidly varying SF values at certain parts of the CvsL-CvsB plane. For example, the SF set
derived with an adaptive binning scheme along the CvsB axis could potentially reflect sharp SF
variations along the CvsB axis for a certain flavour of jets in parts of the plane enriched in jets of
that flavour.
At first, a nodal point for the interpolation (a point where the functional value is assumed to

be known exactly) is defined for each bin in the 2D plane for each flavour in each SF set. The
coordinates of this nodal point are defined as the means of the coordinates of all the jets of the
corresponding flavour that are contained in the corresponding bin. Thus, the nodal point (𝑥, 𝑦) of a
bin in an SF map for a given flavour containing 𝑁 jets of that flavour, each with a (CvsL,CvsB)
value of (𝑥𝑖 , 𝑦𝑖), is given by:

(𝑥, 𝑦) =
(∑𝑁

𝑖=1 𝑥𝑖
𝑁

,

∑𝑁
𝑖=1 𝑦𝑖
𝑁

)
.

The value of the SF corresponding to this bin is assigned to this nodal point and is assumed to be
known exactly at this point for the purpose of the interpolation.
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For each flavour, the nodal points obtained from the two SF sets are merged together to form an
irregular grid of points in the 2D plane; an SF value is assigned to each from the respective SF set.
When the same nodal point is found in both the SF sets, only one is used to form the grid. A bivariate
interpolation is performed for each flavour using the SF values at the nodes of the corresponding
irregular grid using the interpolate subpackage of SciPy [45]. The algorithm first triangulates the
nodal points in the 2D plane using Qhull [46] and then constructs a piecewise cubic interpolating
Bézier polynomial [47] on each triangle using a Clough-Tocher scheme [48]. Then the interpolant is
constructed by choosing gradients that approximately minimize the curvature of the interpolating
surface [49, 50].

However, such an interpolant is defined only inside the convex polygon (convex hull) containing
all the nodal points. Furthermore, the interpolant is seen to have unphysical properties in some parts
of the plane inside the convex hull but outside the concave hull of the nodal points. Therefore, a
nearest-neighbour extrapolation (assigning the functional value of the nodal point nearest to a given
point) is performed to assign values to all points in the 2D plane that lie outside the concave hull of
the nodal points. The interpolant along with the extrapolant together define SF values at all points
of the 2D plane (called interpolated SFs hereafter, for simplicity). Even though this allows for a
continuous correction over all the plane, the interpolated SF values are computed at 50 discrete bins
along each axis for convenience, which is a good approximation for a continuous correction.
We have verified that interpolating using nodal points from two sets of SFs derived with two

different binning schemes provides a final set of SFs that exhibits a better closure of the method
than SFs derived with interpolation using nodal points from any one set alone, in case of both
DeepCSV and DeepJet algorithms. Furthermore, we also verified that the piecewise-cubic bivariate
interpolant used here outperforms other methods of interpolation, such as piecewise-linear bivariate
interpolation and smoothing bivariate spline approximation.

8 Uncertainty estimation

The statistical uncertainty in the SF for a given flavour in a given bin is evaluated from the statistical
uncertainty in the number of jets in both data and simulation in that bin in the selection enriched in
that flavour. In this regard, the per-bin uncertainty in simulation, as well as data, of theW+c OS-SS
selection accounts for the individual statistical uncertainties in the OS and SS selections, and is
hence propagated to the statistical uncertainties in the c jet SFs.
For systematic uncertainty estimation, all selections are performed with different sources of

systematic uncertainties shifted by ±1 standard deviation independently, and the whole iterative fit
procedure is performed for every systematic variation. This gives modified SF maps for every source
of uncertainty. The sources of systematic uncertainties considered are:

• Lepton identification: observed differences in electron and muon identification criteria [44,
51, 52] between data and simulation are included by 𝑝T- and 𝜂-dependent SFs and the
corresponding uncertainties are propagated to the calibration of the c tagger discriminator,
separately for electrons and muons.

• Pileup modelling: a weighting is applied to the simulated pileup vertex multiplicity to match
the profile observed in data. This weighting is based on the total inelastic pp cross section of
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69.2mb [53], whereas the corresponding uncertainty is computed by varying this inelastic
cross section by ±4.6%.

• Jet energy resolution: the jet energy resolution (JER) [33, 36] is observed to be worse in data
than in simulation. To mimic more closely the resolution that is observed in data, an additional
smearing is applied to the simulated jet energy. The uncertainties related to this smearing are
a source of systematic uncertainties in the calibration of the c tagger discriminator.

• Jet energy scale: similarly, differences in the observed jet energy scale (JES) [33, 36] between
data and simulation result in corrections to the simulated jet four-momenta. The corresponding
uncertainties related to these adjusted four-momenta are included in the calibration of the c
tagger discriminator.

• Factorisation and renormalisation scales: the choice of the renormalisation and factorisation
scales during the ME calculation may affect kinematical distributions of the final-state objects
and therefore also the heavy-flavour tagging discriminants. Uncertainties in these scales are
estimated by varying each of the two scales independently at the ME level by factors 0.5 and
2, simultaneously across all contributing processes.

• Initial- and final-state radiation in the parton shower: during the parton shower, the
uncertainty in the value of the strong coupling at a given energy scale is estimated by varying
the renormalisation scale of QCD emissions separately in the initial-state radiation (ISR) and
final-state radiation (FSR) up and down by factors of 2 and 0.5, respectively. The resulting
uncertainty of these variations in the c tagger calibration is included in the measurement.

• Cross sections of various physics processes: the cross sections of the different relevant
processes are varied within the uncertainties of the corresponding theoretical predictions [25–
30], up to the order in perturbation theory to which they are scaled in the simulation (see
section 3). Such variations are expected to alter the signal-to-background ratios in the
selections and hence may affect the overall shapes of the heavy-flavour tagging discriminants
in simulation.

• b fragmentation: the uncertainties in the internal parameters of the Bowler-Lund model [54–
56] that is used to parametrise the b quark fragmentation in pythia, are obtained experimentally
from the ALEPH [57], DELPHI [58], OPAL [59], and SLD [60] experiments. The effect of
varying this parametrisation within the uncertainties in the kinematics of the b jet is covered
by a weighting of the “transfer function”, 𝑥b = 𝑝

b hadron
T /𝑝b jetT at the generator level. The

effect of this on the c tagging discriminator shapes, in turn, can be parametrised as a 2D linear
function of CvsL and CvsB values of b jets, separately for DeepCSV and DeepJet. The up and
down variations in this quantity are hence propagated to the b jet template of each selection.

• Flavour composition of V+jet processes: since the method can potentially be sensitive to the
flavour composition of the background jets, additional uncertainties are assigned to the b and
c jet yields in the DY+jet process and the c jet yield in theW+c process. These uncertainties
are estimated to be 2.5 and 9%, respectively, for b and c jets produced in association with a Z
boson, and 8% for c jets produced in association with aW boson; these results are based on the
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uncertainties in the experimental measurement of Z+b/c processes [43] and the experimental
uncertainty in the measurement of theW+c cross section [40].

• Interpolation: although there is no straightforward method to estimate the bounds of the
interpolation uncertainties at non-nodal points in the 2D plane in case of a piecewise-cubic
bivariate interpolant, an approximate order-of-magnitude estimate is attempted. For each
non-nodal point (probe point) in the concave hull of the SF nodal points for a given flavour, the
interpolation uncertainty is quantified as the sum of 10 terms corresponding to the 10 control
points of the cubic Bézier triangle that contains the point. Each of these terms is proportional
to (a) the maximum absolute deviation of the directional derivative of the interpolant at each
point between the control and probe points, from the average slope of the interpolant between
the control and probe points, and (b) the linear distance between the control point and the
probe point. This quantity is expected to be larger in parts of the plane where the interpolant
has a high curvature, and at points farther away from the nodal points. In all cases, the quantity
is computed approximately using numerical methods. This uncertainty is set to zero for points
outside the concave hull of the nodal points.

• Extrapolation: the extrapolation uncertainty at a point outside the concave hull of the SF nodal
points for a given flavour, is defined as the difference between the SF value obtained from
a bicubic bivariate smoothing spline extrapolation [45] and the nominal SF value assigned
(using nearest neighbour extrapolation). This uncertainty is set to zero for points inside the
concave hull.

An estimation of the total uncertainty is made by adding statistical and all systematic uncertainties
in quadrature, assuming no correlation. An estimation of the relative contributions of each source of
uncertainty is presented in section 9.

9 Results

9.1 Scale factors

The shape calibration SFs, obtained using the iterative fit method for both DeepCSV- and DeepJet-
based c taggers, are shown in figures 9, 10, and 11 for c, b, and light-flavour jets, respectively. These
figures also show the statistical and total systematic uncertainties associated with each SF value.
Tabulated results are provided in the HEPData record for this measurement [61].

Additionally, the effect of each source of systematic uncertainty in these SFs, when projected
onto each of the 1D CvsL and CvsB distributions, is demonstrated by applying the nominal SFs
separately to c, b, and light-flavour jets taken from a simulated hadronically decaying tt sample, and
then measuring the relative changes in the jet yield distributions by applying each systematic variation
of the SFs. The relative contributions of all systematic uncertainty sources thus projected for both
the taggers are shown in figures 12 (DeepCSV) and 13 (DeepJet). Interpolation and extrapolation
uncertainties have the highest contribution in the SFs in case of c jets. This is a result of the sparse
binning of the nodal points in the c jet SFs all over the 2D plane, which, in turn, is a result of high
statistical uncertainties in the W+c OS-SS selection that predominantly constrains the c jet SFs.
Uncertainties in the factorisation scale alone dominate among the light-flavour SF uncertainties,
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Figure 9. The shape calibration SF values as a function of CvsL for DeepCSV- (left) and DeepJet- (right)
based c taggers for c jets in different ranges of CvsB are shown. The black data points indicate the nominal SF
values at the nodal points obtained with a fixed bin width along CvsB and an adaptive binning scheme along
CvsL. The total uncertainty in the SFs at the nodal points is denoted by the red envelopes around the nominal
values, whereas the statistical uncertainties alone are denoted by the black vertical lines. Gray data points
with the hatched uncertainties denote bins with jet counts or signal purity insufficient for the SF evaluation.
The blue envelopes indicate the range of all nominal interpolated SF values in the corresponding CvsB range.
The quantity, SF(−1)c , denotes the SF for c jets with the default discriminator value, along with the statistical
(first term) and systematic (second term) uncertainties.
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Figure 10. The shape calibration SF values as a function of CvsL for DeepCSV- (left) and DeepJet- (right)
based c taggers for b jets in different ranges of CvsB are shown. The black data points indicate the nominal SF
values at the nodal points obtained with a fixed bin width along CvsB and an adaptive binning scheme along
CvsL. The total uncertainty in the SFs at the nodal points is denoted by the red envelopes around the nominal
values, whereas the statistical uncertainties alone are denoted by the black vertical lines. Gray data points
with the hatched uncertainties denote bins with jet counts or signal purity insufficient for the SF evaluation.
The blue envelopes indicate the range of all nominal interpolated SF values in the corresponding CvsB range.
The quantity, SF(−1)b , denotes the SF for b jets with the default discriminator value, along with the statistical
(first term) and systematic (second term) uncertainties.
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Figure 11. The shape calibration SF values as a function of CvsL for DeepCSV- (left) and DeepJet- (right)
based c taggers for light-flavour jets in different ranges of CvsB are shown. The black data points indicate the
nominal SF values at the nodal points obtained with a fixed bin width along CvsB and an adaptive binning
scheme along CvsL. The total uncertainty in the SFs at the nodal points is denoted by the red envelopes around
the nominal values, whereas the statistical uncertainties alone are denoted by the black vertical lines. Gray
data points with the hatched uncertainties denote bins with jet counts or signal purity insufficient for the SF
evaluation. The blue envelopes indicate the range of all nominal interpolated SF values in the corresponding
CvsB range. The quantity, SF(−1)udsg , denotes the SF for light-flavour jets with the default discriminator value,
along with the statistical (first term) and systematic (second term) uncertainties.
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Figure 12. Contribution of each source of the SF uncertainty, calculated as the square of the relative
uncertainty in the jet yield and expressed as the maximum of the up and down variations, at various values of
the DeepCSV CvsL (left) and CvsB (right) discriminators for c (upper), b (middle), and light (lower) flavours.

The effective total relative uncertainty values (
√︃∑ ( 𝜎SF

SF
)2) per bin are also shown in bold text, for reference.

The bin corresponding to a tagger value of −1 is plotted at −0.1. Statistical uncertainties are not shown.
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Figure 13. Contribution of each source of the SF uncertainty, calculated as the square of the relative
uncertainty in the jet yield and expressed as the maximum of the up and down variations, at various values of
the DeepJet CvsL (left) and CvsB (right) discriminators for c (upper), b (middle), and light (lower) flavours.

The effective total relative uncertainty values (
√︃∑ ( 𝜎SF

SF
)2) per bin are also shown in bold text, for reference.

The bin corresponding to a tagger value of −1 is plotted at −0.1. Statistical uncertainties are not shown.
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especially in parts of the phase space having low yields for the corresponding flavour of jets. The
uncertainties in the ISR and FSR in the PS have the highest contribution to the SF uncertainties for b
jets, since these variations are relatively larger in the tt selections from which the SFs for b jets are
predominantly constrained.

9.2 Adjusted c tagging performance in data

The c tagging shape calibration SFs are used to adjust the tagger discriminator distributions of
simulated jets of each flavour to obtain an estimate of the corresponding distributions of jets in data.
This is performed using an independent sample of jets taken from simulated hadronically decaying
tt events and the adjusted distributions are then used to plot the ROC curves to estimate c tagging
performance in data. Furthermore, the statistical and systematic uncertainties in the SFs are suitably
propagated to the ROC curves. The adjusted ROC curves for CvsL and CvsB discrimination along
with their variations because of statistical and systematic uncertainties are shown in figure 14. In a
similar fashion, the adjusted c tagging efficiencies, as functions of the adjusted b and light-flavour
jet misidentification rates are shown in figure 15.
Individual contributions from each source of uncertainty are also quantified by the change

in the area under the ROC curve from that of the central ROC curve. The relative contributions,
including that of statistical uncertainties, evaluated using the ROC curve variations as described here
are presented graphically in figure 16. The approach of presenting uncertainties as a function of
discriminator values in figures 12 and 13 is essentially different from this interpretation, because
the former disregards the relative abundance of jets at different discriminator values, whereas the
latter includes the absolute change in the jet yields in different parts of the phase space and could
therefore be more representative of the corresponding effect in a physics analysis. In this approach,
uncertainties in the factorisation scale are the dominant contributions to the overall uncertainties in
CvsL discrimination, whereas uncertainties in b fragmentation and in the ISR and FSR in the PS are
among the highest contributors to the uncertainties in the CvsB discriminator, owing to their large
contributions to the b jet SFs.

10 Validation

10.1 Closure test

A closure test is performed by applying the derived shape calibration SFs to the CvsL and CvsB
distributions of the same jet selections for which the SFs were derived. The effect of applying the
DeepCSV (DeepJet) SFs on the DeepCSV (DeepJet) c tagger distributions is shown in figure 17 (18).
A good agreement between the c tagging discriminator distributions of simulated jets and those of
jets in data establishes the closure of this method.

While the derivation of correction factors as well as this closure test were performed inclusively
in jet 𝑝T, we have additionally verified that the same inclusively-derived corrections result in a good
agreement between the discriminator distributions in data and simulation in each case when applied
to jets in exclusive ranges of jet 𝑝T in between 20–30GeV, 30–50GeV, 50–80GeV, and greater than
80GeV . This indicates that there is no strong kinematical dependence of these corrections.
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Figure 14. The ROC curves showing the individual performance of the CvsL (left) and CvsB (right)
discriminators for the DeepCSV (blue) and DeepJet (red) algorithms for simulated jets (the dashed lines) and
the estimation of the same for jets in data (the solid lines). The solid uncertainty bands around the solid lines
represent the statistical uncertainties in the SFs propagated to the ROCs, and the hatched semi-transparent bands
represent statistical and systematic uncertainties in the SFs propagated to the ROCs and added in quadrature.
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Figure 15. The ROC contours showing c tagging efficiencies as functions of b and light-flavour jet
misidentification rates, for the DeepCSV (left) and DeepJet (right) algorithms for simulated jets (the dashed
lines) and the estimation of the same for jets in data (the solid lines). Each line represents points in the plane that
correspond to a fixed value of the c tagging efficiency, which is shown as a number at the centre of each line.
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Figure 16. Relative contributions of each source of uncertainty to the total uncertainty (statistical + systematic)
for both CvsL and CvsB discrimination and for both DeepCSV and DeepJet taggers, quantified by the square
of the change in area under ROC curves.

10.2 Validation on jets not biased with muons

Two additional tests are performed to demonstrate applicability of the SFs, which have been derived
using b and c jets containing a soft muon inside them, when applied to jet samples that do not
necessarily contain a soft muon. To construct a sample of jets enriched in b jets without using soft
muons to identify them, the same tt dileptonic selection is used, where the jet with the highest 𝑝T
that was not tagged with a soft muon in it is treated as the “second” b jet candidate.

Similarly, a second sample relatively enriched in c jets is constructed from the tt semileptonic
selection already described in section 6.2.1. All possible triplets of jets in the events are considered
to reconstruct the hadronically decayingW boson candidate, and hence, the top quark candidate.
For each combination, the first two jets are considered as the c and s candidates to reconstruct the
W boson, whereas the third jet is considered as the b jet candidate. All combinations where the
jet tagged with a soft muon is selected as the c jet or s jet candidate are rejected. For all other
combinations, a mass-based 𝜒2 is defined as

𝜒
2
=

(
𝑚W − 80.3
20

)2
+

(
𝑚t − 172.5
30

)2
,

with 𝑚W and 𝑚t as the invariant masses of the reconstructedW boson and top quark candidates,
respectively, in GeV. The combination of jets that yields the lowest value of 𝜒2 for a given event is
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Figure 17. Post-calibration DeepCSV CvsL (left) and CvsB (right) distributions of jet samples selected from
W+c (upper), tt semi- and dileptonic (middle), and DY + jet (lower) events after application of DeepCSV c
tagger shape calibration SFs. The bin corresponding to a tagger value of −1 is plotted at −0.1. Vertical error
bars in data represent statistical uncertainties in data. The simulations are shown as stacked histograms.
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Figure 18. Post-calibration DeepJet CvsL (left) and CvsB (right) distributions of jet samples selected from
W+c (upper), tt semi- and dileptonic (middle), and DY + jet (lower) events after application of DeepJet c
tagger shape calibration SFs. The bin corresponding to a tagger value of −1 is plotted at −0.1. Vertical error
bars in data represent statistical uncertainties in data. The simulations are shown as stacked histograms.
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considered the best combination, and the highest-𝑝T jet assigned to the hadronically decayingW
boson candidate is considered the c jet candidate.

Each jet in both these samples may or may not contain a soft muon, and the proportion of jets
with and without a soft muon should be distributed as it would be in any inclusive selection of jets with
similar event selections and flavour composition. The first sample is expected to contain mainly b jets
and light-flavour jets. Since light-flavour jet SFs are already known to be free from any bias from soft
muons, a validation for this sample would demonstrate applicability of the derived SFs on b jets that
are selected without any requirement related to the presence of a soft muon. The second sample, on
the other hand, is expected to contain c jets with significant contamination from b and light-flavour
jets. A validation using this sample, in combination with the conclusion from the aforementioned
validation on b jets, would demonstrate the applicability of the SFs for all c jets as well.

The pre- and post-calibration distributions of the c tagging discriminator values of the two
samples of jets thus selected are shown in figures 19 (dileptonic tt) and 20 (semileptonic tt). A
much flatter data-to-simulation ratio is achieved after the corrections are applied, compatible with
unity within a few percent for most of the discriminator values.

This extension to a more general selection of jets, however, does not take into account potential
differences in mismodelling across different selections. Such differences need to be accounted for
in physics analyses by constructing separate control regions and studying the data-to-simulation
agreement in them after application of these SFs, and hence fitting the discriminator shapes in the
control regions simultaneously with those in the signal regions, during the extraction of the signal.

10.3 Fit validation with pseudodata

A test is performed to validate the accuracy of the SF values from the iterative convergence. A set of
distributions of “pseudodata” is created by applying artificial, handcrafted SF maps to simulated jet
distributions. To mimic the statistical independence of data from simulation, the central value of
every bin of the pseudodata is set by sampling a random number from a normal distribution, whose
mean is equal to the central value of the corresponding bin in the rescaled simulation and standard
deviation is equal to the statistical uncertainty in the same bin. The relative uncertainty of every bin
in the pseudodata, in turn, is set to the relative uncertainty in the corresponding bin of data. The
iterative fit algorithm is now allowed to run on the same selections replacing data with pseudodata.

The artificial SFs are generated as an arbitrary, continuous 2D function of DeepCSV CvsL and
CvsB values, individually for each jet flavour. A single arbitrary number is assigned as the SF for
jets with the default DeepCSV discriminator value for each flavour. Subsequently, the SF map of
a given flavour is normalised in such a way that the total jet yield of an independent selection of
simulated jets of that flavour taken from a hadronically decaying tt sample remains unchanged upon
application of the SF map under consideration.
Two such maps of artificial SFs are designed, the first (second) of which consists of “mild”

(“strong”) SFs, that is, SFs with values in the range 0.5–1.4 (0.1–3.0). For each map, a total of 50
pseudodata models are created injecting the same set of artificial SFs but using a different random
number seed in each model. For each map, the difference between the injected SFs and the extracted
SFs (“SF pull”) is plotted in figure 21. The differences are measured in units of the statistical
uncertainty of the extracted SFs across all bins, weighted by the relative jet abundance in each bin
in the CvsL-CvsB plane. The figure shows the cumulative results from all 50 models for c, b, and
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Figure 19. DeepCSV CvsB (first row), DeepCSV CvsL (second row), DeepJet CvsB (third row) and DeepJet
CvsL (fourth row) discriminators of dileptonic tt jets not biased with soft muons, before (left) and after (right)
application of SFs. The bin corresponding to a tagger value of −1 is plotted at −0.1. Vertical error bars in
data represent statistical uncertainties in data. The simulations are shown as stacked histograms.
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Figure 20. DeepCSV CvsB (first row), DeepCSV CvsL (second row), DeepJet CvsB (third row) and DeepJet
CvsL (last row) discriminators of semileptonic tt jets not biased with soft muons, before (left) and after (right)
application of SFs. The bin corresponding to a tagger value of −1 is plotted at −0.1. Vertical error bars in
data represent statistical uncertainties in data. The simulations are shown as stacked histograms.
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Figure 21. Distribution of the SF pulls, quantified as the differences between the injected SFs and the SFs
retrieved by the fits in units of the statistical uncertainties in the latter ([SFextracted − SFinjected]/𝜎extracted),
across all bins in the CvsL-CvsB plane, for the SF map with “mild” (left) and “strong” (right) SFs. The 𝑥 and
𝜎 denote the mean and standard deviation of the distributions, respectively.

light favours separately. A mean of around 0 of the SF pulls illustrates a correct convergence of
the method. A standard deviation of around 1 illustrates an optimal estimation of the SF statistical
uncertainties in most cases. A standard deviation smaller than 1 for b jets in case of the “mild” map
illustrates a conservative estimation of SF statistical uncertainties in case of “mild” deviations from
data in simulation.

Whereas these studies show that the statistical uncertainties might be somewhat conservative in
regions of the phase space where SFs for b jets are close to 1, this might not be the case for other
regions where SFs show larger deviations. Since the SFs that map simulated b jets to b jet candidates
in collision data (figure 10) are measured to have high central values close to 2 at some parts of the
phase space, we have decided to not apply any a posteriori reduction of the uncertainties in the case
of collision data.

11 Conclusion

This paper presents a novel method to calibrate the full differential shape of the discriminator
distributions used for charm (c) jet identification at CMS. The method uses three different sets of
event selection criteria, targeting topologies enriched inW+c, top quark pairs, and Drell-Yan+jet
events. These topologies are highly enriched in c, bottom (b) and light-flavour jets, respectively,
resulting in purities of a given jet-flavour that range between 81 and 93%. By employing an iterative
fitting approach in each of these three regions, scale factors (SFs) are derived to match the simulated
discriminator distributions to those observed in data. Since the c tagging algorithm is composed of
two discriminators, one to discriminate c from b jets (CvsB) and another to discriminate c from
light-flavour and gluon jets (CvsL), the SFs are derived as functions of CvsL and CvsB discriminator
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values. An adaptive binning is used to optimise the granularity of the provided calibration with
respect to the statistical uncertainty in each bin. Finally, an interpolation is performed to obtain more
representative corrections over the entire two-dimensional plane.

Validation and closure tests confirm the robustness of the method. Although this paper reports
calibration results with only 2017 data, similar calibrations are obtained with 2016 and 2018 data
separately that are used for the analysis of data collected in the respective years. The calibration of
the full differential discriminator shape allows the use of the c tagging discriminators as inputs to
multivariate techniques (based on machine learning) or by fitting the discriminator shapes to data to
extract observables that are sensitive to the jet flavour. The shape calibration extends the use of c
tagging algorithms beyond the application of discrete working points, and facilitates more advanced
uses for c jet identification in physics analyses.
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