
21 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A Performance Analysis for Confidential Federated Learning

Publisher:

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

IEEE Computer Society

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1961156 since 2024-03-18T09:01:04Z



A Performance Analysis for Confidential Federated Learning

Bruno Casella∗, Iacopo Colonnelli∗, Gianluca Mittone∗, Robert Birke∗,
Walter Riviera†, Antonio Sciarappa‡, Carlo Cavazzoni‡ and Marco Aldinucci∗

∗University of Turin, email: {bruno.casella, iacopo.colonnelli, gianluca.mittone, robert.birke, marco.aldinucci}@unito.it
†University of Verona, email: walter.riviera@intel.com

‡Leonardo SpA, email: {antonio.sciarappa, carlo.cavazzoni}@leonardo.com

Abstract—Federated Learning (FL) has emerged as a solution
to preserve data privacy by keeping the data locally on each
participant’s device. However, FL alone is still vulnerable to
attacks that can cause privacy leaks. Therefore, additional
security measures, at the cost of increasing runtimes, be-
come necessary. The Trusted Execution Environment (TEE)
approach offers the highest degree of security during execution.
However, TEEs suffer from memory limits which prevent
safe end-to-end FL training of modern deep models. State-
of-the-art approaches limit secure training to selected layers,
failing to avert the full spectrum of attacks or adopt layer-
wise training affecting model performance. We benchmark the
usage of a library OS (LibOS) to run the full, unmodified end-
to-end FL training inside the TEE. We extensively evaluate
and model the overhead of the different security mechanisms
needed to protect the data and model during computation
(TEE), communication (TLS), and storage (disk encryption).
The obtained results across three datasets and two models
demonstrate that LibOSes are a viable way to seamlessly inject
security into FL with limited overhead (at most 2x), offering
valuable guidance for researchers and developers aiming to
apply FL in data-security-focused contexts.

1. Introduction

Federated Learning [1] has recently gained popularity
as a promising solution to tackle the challenge of training
models on distributed data without centralizing it. While
FL preserves data privacy by keeping data locally, it raises
important concerns regarding security during communica-
tion, storage, and model execution. It is crucial to ensure
that sensitive data is protected from unauthorized access, the
integrity of information is preserved throughout the process,
and the system is hardened against adversarial attacks. To
achieve this, encryption techniques are essential to guaran-
tee the confidentiality and authenticity of data and models
during various stages of FL. In this work, we benchmark the
runtimes of FL for image classification tasks, employing a
combination of encryption techniques to ensure security.

In a typical FL workload, Deep Learning (DL) models
are trained on local devices, keeping data locally and without
sharing them with a central entity. This approach ensures
data privacy and security, reducing the risks of disclosure

or breach of personal information. The parties involved in
a federation combine locally learned models into a glob-
ally shared one in an iterative way. The first proposed FL
algorithm is FederatedAveraging (FedAvg), where collabo-
ration is achieved by averaging the local model parameters.
However, FL can be subject to privacy leaks either due to
compromised systems allowing unauthorized access to local
training data or via machine learning-based adversarial at-
tacks violating the privacy by inferring/reconstructing (prop-
erties of) the training data [24]. For example, it is possible
to infer training samples held by clients by knowing the
previous aggregated model and the gradient update [15]. En-
cryption of memory, communication, and storage is required
to ensure an end-to-end robust and reliable FL workload.

TEEs offer the opportunity to move (part of) the FL
process into a secure enclave whose code can be attested
and verified. Current secure enclaves present significant
challenges in terms of code porting and adaptation. TEEs
impose architectural constraints, such as limited protected
memory and restriction to CPU resources, to avoid enlarging
the attack surface due to communications over the PCIe
bus. However, the recently released Nvidia H100 allows for
combining enclaves with GPUs, overcoming the CPU-only
limitation by exploiting VM-level isolation solutions such
as Intel TDX. Moreover, TEEs introduce overheads due to
enclave operations, which slow down code execution com-
pared to running in an unprotected environment. Additional
challenges include the difficulty of testing and debugging
enclaves and carefully controlling communication between
the enclave and the host environment. Despite these dif-
ficulties, TEEs provide an important level of security for
applications needing execution and data protection.

Using TEEs directly requires dealing with all the above
constraints. To lower the entry barrier, recently, LibOSes,
like Gramine [12] Fortanix [26] and Anjuna [28], allow to
run unmodified applications inside an enclave with minimal
host requirements and porting efforts. LibOSes can also
lift some TEE restrictions, such as the memory limit, by
transparently and securely swapping in/out memory pages,
enabling more efficient use of TEE functionalities. However,
the impact of such LibOSes on FL workloads has not yet
been investigated systematically.

In this work, we leverage Gramine to run the unmodified
OpenFL [13] federated learning framework and study the



impact of the different security mechanisms required to
run an end-to-end robust and reliable FL workload. We
chose these two because OpenFL provides out-of-the-box
support for Gramine. More in detail, underneath Gramine,
we rely on the Intel® Software Guard Extension (SGX) [11],
a set of CPU instructions that offer application and service
providers a secure environment to stand when managing the
use of the data they consume and collect. SGX provides a
secure, isolated area within the processor where data can
be processed confidentially and protected from potential
threats. This includes preventing unauthorized access by root
users or compromised systems.To ensure the confidentiality
of data stored on disk, we use the secure storage provided
by Gramine, in which files are transparently decrypted/en-
crypted when the application accesses them. Gramine also
allows signing and checking the integrity of all accessed
data and binaries. Finally, we adopt the Transport Layer Se-
curity [10] security protocol to create secure communication
channels among the FL participants.

The main contributions of our work are:

• Using reference image classification datasets, we
benchmark the use of LibOS to run secure end-to-
end FL pipelines and demonstrate its practicality.

• We perform extensive experiments to provide a sys-
tematic study on the runtime overhead of the dif-
ferent security mechanisms required for confidential
FL (CFL) and summarise the results in a model.

• We show that leveraging a LibOS allows the ex-
ploiting of conventional end-to-end training, thus
preserving the model’s performance.

• We release the code to replicate our experiments and
get familiar with FL pipelines on Gramine and SGX.

2. Related Work

We organize the related work into three parts: threats
to FL systems, TEE-enhanced DL and FL frameworks, and
trusted containers.

Threats to FL Systems. FL provides a false sense of
security by keeping data locally and exchanging only model
parameters or gradients. Besides the classic threats, such as
rootkits providing malicious users with root permissions [2],
FL is subject to different types of generic ML attacks. From
a privacy perspective, FL is subject to three main attack
categories. Membership inference attacks [9] aim to identify
if a sample is in the training set. They are particularly
successful when having access to the trained model and its
last layers [8]. Property inference attacks [7] want to infer
a global private property of the data. Strong aggregations
ease this attack [3]. Inversion/extraction attacks try to ex-
tract representative or complete examples from the training
data [6]. These attacks leverage access to early model layers
and their updates on small data batches. Besides those
targeting user privacy, further attacks can be more pernicious
in FL settings. Model extraction attacks aim to duplicate
the functionality of the model [5]. Poisoning attacks try
to bias the resulting model to degrade its performance or

draw predictions that are preferable to the opponent [4].
A mechanism of secure aggregation, by hiding parameter-
s/updates from opponents, although insufficient to avert all
attacks under any threat model, significantly hardens FL in
a broad range of scenarios [20], [24].

TEE-enhanced Deep and FL. Related work leverages
secure enclaves for training DNNs [18]. However, due to
their size, prior work often must adopt ad-hoc strategies to
circumvent the memory limit. A recent solution [19] devises
a ternary partition mechanism and enforces enclaved exe-
cution only on the most sensitive partitions. DarkneTZ [17]
runs only the last layers inside the TEE to avert membership
inference attacks. However, it is critical to protect the full
model to address a broader range of attacks. A recent
work [20] proposes PPFL, a privacy-preserving FL frame-
work leveraging TEEs (Arm TrustZone) in mobile devices.
Authors circumvent the TEE memory limit by adopting a
layer-wise training strategy to train layers one at a time.
While PPFL significantly improves privacy, layer-wise train-
ing introduces a 3x higher delay on the end-to-end model
and affects the model’s accuracy. In contrast, SecFL [21]
proposes an FL framework leveraging SCONE, a LibOS, to
perform training inside TEE enclaves. Like us, SecFL runs
OpenFL inside SGX enclaves; however, the authors do not
provide details on implementation or experimental results.

TEEs. TEEs rely on hardware support, e.g., Intel® SGX
and Arm® TrustZone, to allow the creation of protected
memory regions called enclaves. Leveraging such enclaves
directly is cumbersome, requiring modified executables and
dealing with inherent limitations. Trusted containers aim to
bypass such burdens. Several solutions are proposed [16]
acting either as library OS [12], [26], libc wrapper [22]
or using the WebAssembly System Interface [27]. LibOSes
provide the functionality of an OS as a set of libraries
directly linked to the application in a single address space.
As such, they allow us to easily define boundaries enforcing
security policies and reduce the need to invoke costly system
calls that access the insecure world.

Different from related work, we use Gramine for libOS-
based trusted containers that are able to run unmodified
applications inside SGX enclaves, reducing the porting effort
to a minimum. We conduct an extensive series of experi-
ments, training various image classification models end-to-
end rather than layer-wise on popular datasets. We proceed
with a thorough assessment of the overhead introduced by
the different encryption techniques employed.

3. System overview

Fig. 1 presents an overview of the considered CFL sys-
tem. We couple a containerized FL framework with LibOS-
based trusted containers, disk encryption (DE) and secured
network communications. While the overall architecture
is agnostic to the specific FL framework and LibOS, we
adopted OpenFL and Gramine to conduct our experiments.
OpenFL is an FL framework developed by Intel® Internet
of Things Group (IOTG) and Intel® Labs, which is DL
framework-agnostic. Here, we couple it with PyTorch as

2



Disk
encryption

Model execution
inside TEEs

Secure
aggregation

Model exchange
via TLS

Dockerized FL
Application

LibOS

Host OS

TEE-enabled
machine

Workflow

Client 1

Client n

Server

Figure 1: Overview of a generic system of CFL. In our proposed system, the FL framework OpenFL runs inside Gramine,
a libOS requiring a Linux kernel with SGX drivers. Gramine provides disk encryption. Model execution (training and
validation) and aggregation are performed inside Intel® SGX enclaves. TLS provides secure communication.

the DL library. Both client-side and server-side OpenFL
applications are executed within SGX using Gramine. More-
over, we use Gramine to use encrypted disk data option-
ally and optionally configure OpenFL with TLS to secure
all network communications. For ease of deployment, we
further encapsulate the graminized OpenFL inside Docker
images, providing an isolated and portable environment for
execution. The combined use of SGX, Gramine, TLS, and
Docker ensures a high level of security and portability
of the OpenFL application. Below, we provide a detailed
description of the main security-related components.

Intel® SGX. SGX is a hardware-based security tech-
nology for Intel processors first introduced on the Xeon®

server line of CPUs. It aims to offer effective isolation and
protection for sensitive data and code within a TEE. SGX
depends on new processor instructions and architectural ele-
ments that create isolated memory areas known as enclaves.
Enclave code and data are kept in a region of protected phys-
ical memory called the enclave page cache (EPC). These
enclaves are encrypted and secured against outside access,
ensuring that data and computations inside remain private
and essential even in the presence of malicious software,
privileged users, or compromised operating systems. When
a thread needs to run enclave code, the CPU enters enclave
mode, and the control jumps to a predefined enclave entry
point, introducing a performance overhead. To prevent leaks,
enclaves limit the memory, minimizing the trusted code base
to reduce the attack surface and restrict access to OS system
calls since they run as unprotected functions in kernel space.
The use of cryptographic attestation ensures the integrity of
the enclaved content.

Gramine. Gramine is a LibOS developed to run native,
unmodified Linux applications on any platform. If SGX is
available, Gramine can run applications inside the enclave
with minimal requirements and porting efforts, thus pro-
viding security guarantees and protecting against malicious
host OSes. Gramine supports multi-processing and multi-
threading and virtualizes process/thread identifiers. Gramine
attaches itself as a LibOS to an application and intercepts
every request it makes to the host OS. Gramine fully handles
some of these requests, while others are funnelled to the

host OS via an API. In either case, the correctness and
consistency of each application’s request and each host’s
response are checked. Gramine keeps an internal, ”shadow”
state for these checks. As a result, Gramine defends against
Iago attacks [29], a type of assault that exploits vulnera-
bilities of an untrusted OS by returning malicious syscalls.
Moreover, the syscalls handled fully by Gramine improve
the application performance by avoiding costly switches to
the kernel in the unprotected world.
Gramine runs inside a process called picoprocess, which
contains the binary code and the libraries required for the
application to be executed, the LibOS instance, and the
Platform Adapter Layer (PAL), which provides an interface
between the libOS and the kernel. The PAL is responsible
for translating the system calls for the kernel. Gramine offers
two backends: execution on the host OS and execution inside
an SGX enclave. A trusted reference monitor ensures libOS
isolation, handling system calls that affect both the internal
and external picoprocess state. The libOS interfaces with
a small number of PAL functions, thus reducing the attack
surface. Native Gramine, before said Graphene, protects the
system underlying the libOS by isolating the picoprocess.
To benefit from this security, applications can run inside
Gramine with the gramine-direct command. Gramine im-
plemented the functionalities required to be compatible with
SGX enclaves later. To execute applications inside an SGX
enclave by using Gramine, the command is gramine-sgx.

We deployed a “graminized” version of a Docker image
by installing Gramine and OpenFL, which can be run with
the standard Docker commands.

Disk Encryption. Gramine does not simply mirror the
filesystem of the host OS but creates its own view of the
directories and files on the selected portion of the host.
Gramine also provides the mechanism of DE. Encrypted
files are transparently decrypted when accessed by Gramine
or the application running inside Gramine on each file
access via SGX SDK Merkle-tree format. It is possible to
encrypt files by specifying a path and an encryption key.
Additionally, Gramine allows the mounting of different files
and directories with different encryption keys. The benefits
of DE are data confidentiality (only authorized applications

3



running in the SGX enclave can access the data), data
integrity (tamper resistance: encrypted files protect data
from unauthorized changes and alterations), and file swap
protection (an encrypted file can only be accessed when in
a specific host path, preventing unauthorized file swaps).

Transport Layer Security (TLS). TLS is a widespread
cryptographic protocol used to secure communications over
computer networks. TLS is used to protect data in client-
server communications. It mainly introduces overhead at
connection initiation to perform the handshake, and derive
the encryption keys, and encrypt/decrypt all data when
sending/receiving over the secured connection.

System Tuning. Various factors can combine to cause
undesired performance degradation, depending on the num-
ber of threads and the size of the SGX enclave. In particular,
glibc’s malloc speculatively requests a 64 MB per-thread
arena from the kernel when a thread first calls malloc as
an optimization, as the default settings assume that virtual
memory is almost limitless. However, SGX V1 breaks this
because it requires that any memory request is immediately
backed up by physical memory. When several threads are
spawned (and all call malloc), the per-thread arenas may
use up a significant amount of the memory reserved for the
enclave. Calls to malloc will not fail in this situation since
the allocator will allocate a single page to fulfil the request
in its place. However, the remainder of the page will not
be used, wasting most of this memory. This means that if
64 · NT > E, with NT the application’s thread count, and
E the enclave size, calls to malloc will be much slower
and less memory-efficient than they should be. We found
that our PyTorch workloads spawned 8 threads per physical
core, exceeding E = 16GB (E must be a power of 2, and
it was impossible to increase it to 32 to avoid exceeding
physical memory). We discovered empirically that the best
results, in terms of runtime performance, are achieved when
the number of threads is set equal to the number of core(s)
per socket of the running machine (forty in our case).

Another possible tweaking point is the GNU OpenMP
library (libgomp). The standard libgomp uses raw syscall
instructions, which Gramine handles via a slow path, i.e.,
by catching exceptions. Gramine can be built with a patched
version of libgomp, which uses a fast path by replacing
system calls with direct function calls.Testing a PyTorch DL
application running in Gramine with the patched version of
libgomp showed better runtime performance than running
with the standard one. However, our Dockerized application
showed no significant benefits from using either version, so
we adopted the standard one for our experiments.

4. Experiments Setup

Federation Setup. The entities of the federation work-
flow of OpenFL are the Aggregator (the server) and the
Collaborators (the clients). Each collaborator executes one
training and two validation stages for each federation round.
Firstly, they validate the global model produced by the
aggregator on the local test data. Then, they train the model
on the local training data. Finally, they validate the updated

MNIST CIFAR10 CIFAR100

Dimension 28x28 32x32 32x32
Representation Binary RGB RGB
Train samples 60.000 50.000 50.000
Test samples 10.000 10.000 10.000
Size (MB) 64 170 169

TABLE 1: Statistics of the datasets.

ResNet-18 MobileNetV3-Small

Parameters 11.181.642 1.528.106
Size (MB) 42.69 5.88
Layers 68 210

TABLE 2: Statistics of the models.

(local) model on local test data.
Testbed Setup. All experiments used a distributed envi-

ronment encompassing one Aggregator and three Collabo-
rators, each deployed on a dedicated server. All servers are
dual sockets with two 3rd generation Intel® Xeon Scalable
Platinum 8380 CPUs (40 cores @ 2.30GHz) with SGX
support. The servers communicate via 100Gb/s Ethernet
links. As software, we used OpenFL v1.5 and Gramine v1.4.
We release all the files required to reproduce our exper-
iments (Dockerfiles, OpenFL manifest, and Python code)
at the following link: https://github.com/CasellaJr/SGX-FL-
OPENFL-GRAMINE-BENCHMARK-IMAGES.

Datasets. We used three image classification benchmark
datasets, i.e., MNIST [31], CIFAR10 and CIFAR100 [32].
The statistics of each dataset are summarized in Table 1.

Models. We employed two widely used literature image
classification models: ResNet-18 [14] and MobileNetV3-
Small [23]. We trained each model for 100 rounds using
the cross-entropy loss. Adam was used as optimizer, with a
learning rate 1e−4.Table 2 summarises the statistics of the
two networks for the CIFAR10 dataset. Using more classes,
i.e., CIFAR100, slightly increases the number of parame-
ters and model size by 0.41%. Using smaller inputs/fewer
colours (MNIST) slightly decreases them by 0.06%.

5. Evaluation

We analyzed the impact of all the components shown in
Fig. 1 on the models’ runtimes and final accuracies.

Model Runtime. We train the two models on the three
datasets, starting from the baseline and incrementally adding
security mechanisms. Each one adds some extra execution
steps. Gramine-direct redirects the system calls through
Gramine. SGX further runs the application in the security
enclave. We also selectively enable encrypted disk data (DE)
and secure communications (TLS). Table 3 summarizes the
total wall clock times of each experiment.Results expressed
in the HH:MM time format reveal an easily discernible
pattern. As expected, each addition of a security measure
leads to an increase in execution time. Overall, it is possible
to state that a fully encrypted FL pipeline doubles the

4



execution time. We elaborate on these results further via
ablation studies in the subsequent section.

Model Accuracy. Since our approach preserves accu-
racy without suffering any loss compared to other mecha-
nisms of CFL, the discussion and the plots of the model’s
performance are reported in the Appendix.

5.1. Ablation Studies

We conducted different ablation studies using combina-
tions of the previously presented encryption techniques to
build a performance overhead model and to investigate their
impact on different execution phases.

Performance Overhead Model. Each security mecha-
nism adds extra steps which intuitively (and as seen previ-
ously in Table 3) add a bit to the execution time. Hence,
we can model the execution time T as a linear combination
with one term to capture the relationship with each discussed
security mechanism:

T = Tbaseline +OGramine +OSGX +ODE +OTLS

where Tbaseline is the runtime without any security mecha-
nism and OGramine, OSGX , ODE , OTLS represent the over-
heads introduced by Gramine, SGX, DE, and TLS, respec-
tively. We express each overhead as a cost coefficient C for
the Tbaseline, i.e. O = C · Tbaseline.

We fit this model using non-negative linear regression,
leveraging the knowledge that each mechanism only adds
extra work. Table 3 shows the fitted values for both models.

As shown in Table 3, the overhead introduced by
Gramine and by SGX highly depends on the model archi-
tecture. ResNet-18 is more significantly impacted by the
performance penalty caused by Gramine (about 2.7x), whilst
MobileNet-V3 Small is more affected by the performance
penalty caused by SGX (about 5.9x). The first difference
results from ResNet-18’s significantly higher memory oc-
cupancy, about seven times greater than MobileNet’s. As a
result, ResNet-18 relies more on the memory management
introduced by Gramine to satisfy the memory constraints,
resulting in an increased overhead attributable to Gramine.
Conversely, in the case of MobileNetV3-Small, the slow-
down attributed to SGX is more significant. This is because
MobileNetV3-Small has a larger number of layers, about
3.1 times more, which, due to the internals of OpenFL,
increases the number of I/O and network operations. These,
in turn, increase the overhead caused by switching from
the secure enclave to the unprotected world. Finally, the
overheads introduced by DE and TLS are comparable for
both models, although they are slightly higher in the case
of ResNet-18, as its size and magnitude in MB are greater
than MobileNetV3-Small.

Analysis of the Computation Overhead. For each col-
laborator of the federation, the typical OpenFL computation
workload consists of three steps: validation of the previously
received aggregated model from the server, refinement via
training on the local data, and validation of the locally tuned
model. Fig. 4 shows stacked bar plots of compute time

for the three phases, for the three datasets, and different
combinations of security mechanisms. Here, we exclude the
communication as well as synchronization time.

First, as expected, training dominates the execution
time at each collaborator, with validation times of the
aggregated and locally tuned models being only a small
fraction of each round’s compute time. As previously ex-
plained, the slowdown introduced by Gramine is signifi-
cantly higher for ResNet-18 because a model with larger
layers stresses Gramine’s memory manager more. In the
case of MobileNetV3-Small, the overhead caused by SGX
is more noticeable because a model with more layers tends
to incur more switches between the secure enclave and
unprotected worlds, which suffer from SGX overhead costs.

DE causes a small amount of overhead, which aligns
with the Gramine documentation, which expects a 1-10%
cost. Notably, in some cases, SGX and DE are slightly faster
than SGX alone. This happens because SGX is very sensi-
tive to small transient variations in the system conditions.

Surprisingly, we also observe a (small) impact of TLS
on computation times. The combined use of SGX and TLS
adds overhead to using only SGX. TLS has more impact
during the training of ResNet-18 than of MobileNetV3-
Small. However, we are not sure about the exact causes.

Analysis of the Communication Overhead. Unlike the
previous section, here we focus on the sole communication
times (the latency required for the different nodes of the
network to exchange information with the server). These
are reported in Table 4.

One can note that Gramine, SGX, and TLS all add
communication overhead. This happens because Gramine
must relay the system calls to send/receive data through the
kernel. This also requires a switch between the secure en-
clave and the unprotected world, i.e. where the kernel is lo-
cated, which incurs significant overheads [25]. However, the
greater source of communication overhead, as seen from the
cost coefficients of the linear regression models in Table 3, is
given by TLS. This is an expected result because TLS adds a
delay during connection setup to do the TLS handshake and
key derivation and during data transfers to encrypt/decrypt
the data sent over the secure communication channel. While
the relative overhead is comparable between the two models,
the absolute times are a bit surprising. Indeed, while ResNet-
18 has around 7 times the number of trainable parameters
and size (in megabytes) of MobileNetV3-Small, the com-
munication time of MobileNetV3-Small is approximately
twice that of ResNet-18. This happens because in OpenFL,
collaborators request the aggregated model by layers, and
MobileNetV3-Small has roughly 3x the layers of ResNet18
(even if all of them are smaller).
Finally, DE does not introduce any additional delay.

6. Conclusions

In this work, we proposed a performance analysis for
CFL. We leveraged a libOS, Gramine, to execute a fully en-
crypted FL pipeline within a TEE, Intel® SGX. A thorough
analysis and modelling of the overhead caused by various se-

5



ResNet-18 MobileNetV3-Small

MNIST CIFAR10 CIFAR100 MNIST CIFAR10 CIFAR100

Baseline 01:55 02:01 01:54 01:40 01:38 01:29
Gramine-direct 03:10 03:33 03:32 02:12 01:54 02:03
SGX 03:17 03:36 03:49 02:43 02:24 02:36
SGX + DE 03:21 03:41 03:40 02:48 02:26 02:43
SGX + TLS 03:42 03:53 03:59 02:53 02:37 02:55
SGX + TLS + DE 03:51 04:07 04:11 02:54 02:38 03:01

TABLE 3: Wall-clock execution times [HH:MM] to train models on 100 federated training rounds of 1 epoch.

OGramine = CGramine · Tbaseline

OSGX = CSGX · Tbaseline

ODE = CDE · Tbaseline

OTLS = CTLS · Tbaseline

Figure 2: Overhead terms of the wall-clock times.

ResNet-18 MobileNetV3-Small

CGramine 0.754 0.282
CSGX 0.056 0.330
CDE 0.046 0.040
CTLS 0.197 0.133

Figure 3: Coefficients of the linear regression models.

(a) ResNet-18

Ba
se

lin
e

Gram
ine SG

X
SG

X +
 FS

SG
X +

 TL
S

SG
X +

 TL
S +

 FS

0

10

20

30

40

50

60

Co
m

pu
ta

tio
n 

tim
e 

(s
)

MNIST

Ba
se

lin
e

Gram
ine SG

X
SG

X +
 FS

SG
X +

 TL
S

SG
X +

 TL
S +

 FS

CIFAR10

Ba
se

lin
e

Gram
ine SG

X
SG

X +
 FS

SG
X +

 TL
S

SG
X +

 TL
S +

 FS

CIFAR100

(b) MobileNetV3-Small

Figure 4: Computation times [s] of the models (mean of three clients and 100 federated training rounds) for: a) ResNet-18
and b) MobileNetV3-Small. The orange bar refers to the validation of the aggregated model, the light blue bar refers to the
training time, and the dark blue bar refers to the locally tuned model validation.

ResNet-18 MobileNetV3-Small

MNIST CIFAR10 CIFAR100 MNIST CIFAR10 CIFAR100

Baseline 5.0 ± 0.0 5.0 ± 0.0 5.0 ± 0.0 10.0 ± 0.0 10.05 ± 0.26 5.0 ± 0.0
Gramine-direct 6.91 ± 0.81 6.71 ± 0.66 6.74 ± 0.63 13.32 ± 1.10 13.03 ± 0.79 13.35 ± 0.99
SGX 7.49 ± 0.60 7.44 ± 0.51 7.31 ± 0.53 14.25 ± 0.73 14.19 ± 0.65 14.69 ± 1.06
SGX + DE 7.52 ± 0.61 6.67 ± 0.66 7.26 ± 0.47 14.72 ± 1.11 14.32 ± 0.72 14.94 ± 1.32
SGX + TLS 11.04 ± 0.64 11.09 ± 0.54 11.0 ± 0.0 21.81 ± 0.91 21.28 ± 0.60 22.17 ± 1.28
SGX + TLS + FS 11.21 ± 0.59 11.16 ± 0.57 11.19 ± 0.57 21.33 ± 0.69 21.40 ± 0.64 22.32 ± 1.60

TABLE 4: Communication times in seconds (mean ± standard deviation of three clients and 100 federated training rounds).

curity mechanisms, including DE, TEE for model protection
during computation, and TLS for communications, is carried
out. Results spanning over three datasets and two models
show that libOSes represent a practical way to integrate
security into FL without the prohibitive overhead (up to 2x),
providing crucial knowledge for researchers and developers
looking to implement FL in contexts centred around data
security. One drawback of our method is the underlying vul-
nerability of the TEEs, suffering from side-channel attacks,
such as cache attacks [30]. Here, we consider such attacks
out of scope, relying on the ideal concept of TEE.

For future work, we aim to test the performance of CFL
applications based on VM-level isolation, thanks to recently

released solutions such as Intel TDX, which also allow for
the deployment of the world’s first GPU with confidential
computing capabilities, the Nvidia H100.

Acknowledgment

This work has been partly supported by the Spoke
”FutureHPC & BigData” of the ICSC – Centro Nazionale
di Ricerca in ”High Performance Computing, Big Data
and Quantum Computing”, funded by European Union
– NextGenerationEU, and by the Horizon2020 RIA EPI
project (G.A. 826647). We thank the ”Intel® SMG Customer
Innovation Labs Swindon” laboratory for granting us access
to their SGX-enabled machines.

6



References

[1] McMahan, B., Moore, E., Ramage, D., Hampson, S. & Arcas, B.
Communication-Efficient Learning of Deep Networks from Decentral-
ized Data. Proc. Of The 20th Intl. Conference On Artificial Intelligence
And Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL,
USA. vol. 54 pp. 1273-1282 (2017)

[2] Blunden, B. The Rootkit arsenal: Escape and evasion in the dark
corners of the system. (Jones & Bartlett Publishers,2012)

[3] Mo, F., Borovykh, A., Malekzadeh, M., Haddadi, H. & Demetriou,
S. Layer-wise characterization of latent information leakage in fed-
erated learning. Distributed And Private Machine Learning (DPML)
Workshop ICLR. (2021)

[4] Tian, Z., Cui, L., Liang, J. & Yu, S. A Comprehensive Sur-
vey on Poisoning Attacks and Countermeasures in Machine
Learning. ACM Comput. Surv.. vol. 55, 166:1-166:35 (2023),
https://doi.org/10.1145/3551636

[5] Tramèr, F., Zhang, F., Juels, A., Reiter, M. & Ristenpart,
T. Stealing Machine Learning Models via Prediction APIs.
25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, August 10-12, 2016. pp. 601-618 (2016),
https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/tramer

[6] Fredrikson, M., Jha, S. & Ristenpart, T. Model Inversion Attacks
that Exploit Confidence Information and Basic Countermeasures. Pro-
ceedings Of The 22nd ACM SIGSAC Conference On Computer And
Communications Security, Denver, CO, USA, October 12-16, 2015. pp.
1322-1333 (2015), https://doi.org/10.1145/2810103.2813677

[7] Ganju, K., Wang, Q., Yang, W., Gunter, C. & Borisov, N. Property
Inference Attacks on Fully Connected Neural Networks using Per-
mutation Invariant Representations. Proceedings Of The 2018 ACM
SIGSAC Conference On Computer And Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018. pp. 619-633 (2018),
https://doi.org/10.1145/3243734.3243834

[8] Nasr, M., Shokri, R. & Houmansadr, A. Comprehensive Privacy Analy-
sis of Deep Learning: Passive and Active White-box Inference Attacks
against Centralized and Federated Learning. 2019 IEEE Symposium On
Security And Privacy, SP 2019, San Francisco, CA, USA, May 19-23,
2019. pp. 739-753 (2019), https://doi.org/10.1109/SP.2019.00065

[9] Shokri, R., Stronati, M., Song, C. & Shmatikov, V. Membership
Inference Attacks Against Machine Learning Models. 2017 IEEE
Symposium On Security And Privacy, SP 2017, San Jose, CA, USA,
May 22-26, 2017. pp. 3-18 (2017), https://doi.org/10.1109/SP.2017.41

[10] Rescorla, E. The Transport Layer Security (TLS) Protocol Version
1.3. (RFC Editor,2018,8), https://www.rfc-editor.org/info/rfc8446

[11] McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C., Shafi, H.,
Shanbhogue, V. & Savagaonkar, U. Innovative instructions and soft-
ware model for isolated execution. HASP 2013, The Second Workshop
On Hardware And Architectural Support For Security And Privacy,
Tel-Aviv, Israel, June 23-24, 2013. pp. 10 (2013)

[12] Tsai, C., Arora, K., Bandi, N., Jain, B., Jannen, W., John, J., Kalodner,
H., Kulkarni, V., Oliveira, D. & Porter, D. Cooperation and security
isolation of library OSes for multi-process applications. Ninth Eurosys
Conference 2014, EuroSys 2014, Amsterdam, The Netherlands, April
13-16, 2014. pp. 9:1-9:14 (2014)

[13] Reina, G., Gruzdev, A., Foley, P., Perepelkina, O., Sharma, M.,
Davidyuk, I., Trushkin, I., Radionov, M., Mokrov, A., Agapov,
D., Martin, J., Edwards, B., Sheller, M., Pati, S., Moorthy,
P., Wang, H., Shah, P. & Bakas, S. OpenFL: An open-source
framework for Federated Learning. CoRR. abs/2105.06413 (2021),
https://arxiv.org/abs/2105.06413

[14] He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for
Image Recognition. 2016 IEEE Conference On Computer Vision And
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016. pp. 770-778 (2016)

[15] Geiping, J., Bauermeister, H., Dröge, H. & Moeller, M. Inverting
Gradients - How easy is it to break privacy in federated learning?.
Advances In Neural Information Processing Systems 33: Annual Con-
ference On Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, Virtual. (2020)

[16] Paju, A., Javed, M., Nurmi, J., Savimäki, J., McGillion, B. & Brumley,
B. SoK: A Systematic Review of TEE Usage for Developing Trusted
Applications. The 18th International Conference On Availability, Re-
liability And Security (ARES 2023), August 29 – September 01, 2023,
Benevento, Italy. pp. 15 (2023)

[17] Mo, F., Shamsabadi, A., Katevas, K., Demetriou, S., Leontiadis, I.,
Cavallaro, A. & Haddadi, H. DarkneTZ: towards model privacy at the
edge using trusted execution environments. MobiSys ’20: The 18th
Annual International Conference On Mobile Systems, Applications,
And Services, Toronto, Ontario, Canada, June 15-19, 2020. pp. 161-
174 (2020), https://doi.org/10.1145/3386901.3388946

[18] Tanuwidjaja, H., Choi, R., Baek, S. & Kim, K. Privacy-Preserving
Deep Learning on Machine Learning as a Service - a Com-
prehensive Survey. IEEE Access. 8 pp. 167425-167447 (2020),
https://doi.org/10.1109/ACCESS.2020.3023084

[19] Gu, Z., Huang, H., Zhang, J., Su, D., Lamba, A., Pendarakis, D. &
Molloy, I. Securing Input Data of Deep Learning Inference Systems
via Partitioned Enclave Execution. CoRR. abs/1807.00969 (2018),
http://arxiv.org/abs/1807.00969

[20] Mo, F., Haddadi, H., Katevas, K., Marin, E., Perino, D. & Kourtel-
lis, N. PPFL: privacy-preserving federated learning with trusted ex-
ecution environments. MobiSys ’21: The 19th Annual International
Conference On Mobile Systems, Applications, And Services, Virtual
Event, Wisconsin, USA, 24 June - 2 July, 2021. pp. 94-108 (2021),
https://doi.org/10.1145/3458864.3466628

[21] Quoc, D. & Fetzer, C. SecFL: Confidential Federated Learning using
TEEs. CoRR. abs/2110.00981 (2021), https://arxiv.org/abs/2110.00981

[22] Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A.,
Priebe, C., Lind, J., Muthukumaran, D., O’Keeffe, D., Stillwell,
M., Goltzsche, D., Eyers, D., Kapitza, R., Pietzuch, P. & Fet-
zer, C. SCONE: Secure Linux Containers with Intel SGX. 12th
USENIX Symposium On Operating Systems Design And Implemen-
tation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. pp.
689-703 (2016), https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/arnautov

[23] Howard, A., Pang, R., Adam, H., Le, Q., Sandler, M., Chen,
B., Wang, W., Chen, L., Tan, M., Chu, G., Vasudevan, V. &
Zhu, Y. Searching for MobileNetV3. 2019 IEEE/CVF Interna-
tional Conference On Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019. pp. 1314-1324 (2019),
https://doi.org/10.1109/ICCV.2019.00140

[24] Kairouz, P., McMahan, H., Avent, B., Bellet, A., Bennis, M., Bhagoji,
A., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., D’Oliveira,
R., Eichner, H., Rouayheb, S., Evans, D., Gardner, J., Garrett, Z.,
Gascón, A., Ghazi, B., Gibbons, P., Gruteser, M., Harchaoui, Z., He,
C., He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi, T., Joshi,
G., Khodak, M., Konečný, J., Korolova, A., Koushanfar, F., Koyejo, S.,
Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh,
R., Qi, H., Ramage, D., Raskar, R., Raykova, M., Song, D., Song, W.,
Stich, S., Sun, Z., Suresh, A., Tramèr, F., Vepakomma, P., Wang, J.,
Xiong, L., Xu, Z., Yang, Q., Yu, F., Yu, H. & Zhao, S. Advances and
Open Problems in Federated Learning. Found. Trends Mach. Learn..
vol. 14, 1-210 (2021), https://doi.org/10.1561/2200000083

[25] Orenbach, M., Lifshits, P., Minkin, M. & Silberstein, M. Eleos:
ExitLess OS Services for SGX Enclaves. Proceedings Of The
Twelfth European Conference On Computer Systems, EuroSys
2017, Belgrade, Serbia, April 23-26, 2017. pp. 238-253 (2017),
https://doi.org/10.1145/3064176.3064219

[26] Fortanix Fortanix Confidential Computing Manager. (2023,8,8),
https://www.fortanix.com/

[27] Teaclave Apache Teaclave (Incubating). (2023,5,31),
https://teaclave.apache.org

7



[28] Anjuna Security, Inc. Anjuna Enterprise Enclaves. (2023,8,8),
https://www.anjuna.io/

[29] Checkoway, S. & Shacham, H. Iago attacks: why the system
call API is a bad untrusted RPC interface. Architectural Sup-
port For Programming Languages And Operating Systems, ASPLOS
2013, Houston, TX, USA, March 16-20, 2013. pp. 253-264 (2013),
https://doi.org/10.1145/2451116.2451145

[30] Jiang, J., Soriente, C. & Karame, G. On the Challenges of
Detecting Side-Channel Attacks in SGX. 25th International Sym-
posium On Research In Attacks, Intrusions And Defenses, RAID
2022, Limassol, Cyprus, October 26-28, 2022. pp. 86-98 (2022),
https://doi.org/10.1145/3545948.3545972.

[31] LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based
learning applied to document recognition. Proc. IEEE. 86, 2278-2324
(1998)

[32] Krizhevsky, A., Hinton, G. & Others Learning multiple
layers of features from tiny images. (Citeseer,2009),
https://www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf

Appendix

Figures 5 to 7 show the accuracy per round of the
aggregated model of a ResNet-18. We observe similar re-
sults across all experiments. As shown in Figures 5 to 7,
the adoption of encryption techniques has no effect on the
overall accuracy of the model. This is because the model
is trained in a conventional end-to-end way inside Gramine
and the SGX enclave. The observed variability is in line
with the inherent variability of the training algorithm as
can be seen from the baseline case. So, unlike layer-wise
training techniques that have been employed in secure FL
pipelines to circumvent memory constraints [20], the use
of SGX through Gramine preserves the standard training
procedure without any impact on model accuracy.

0 20 40 60 80 10
0

Epochs

96

97

98

99

Ac
cu

ra
cy

MNIST

BASELINE
GRAMINE
SGX
SGX + DE
SGX + TLS
SGX + TLS + DE

Figure 5: Evolution of ResNet-18 accuracy on MNIST with
federated training rounds.

0 20 40 60 80 10
0

Epochs

45

50

55

60

65

Ac
cu

ra
cy

CIFAR10

BASELINE
GRAMINE
SGX
SGX + DE
SGX + TLS
SGX + TLS + DE

Figure 6: Evolution of ResNet-18 accuracy on CIFAR10
with federated training rounds.

0 20 40 60 80 10
0

Epochs

15

20

25

30

35

Ac
cu

ra
cy

CIFAR100

BASELINE
GRAMINE
SGX
SGX + DE
SGX + TLS
SGX + TLS + DE

Figure 7: Evolution of ResNet-18 accuracy on CIFAR100
with federated training rounds.

8


