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A B S T R A C T

Data sharing among different institutions represents one of the major challenges in developing distributed
machine learning approaches, especially when data is sensitive, such as in medical applications. Federated
learning is a possible solution, but requires fast communications and flawless security. Here, we propose
SYNDSURV (SYNthetic Distributed SURVival), an alternative approach that simplifies the current state-of-the-
art paradigm by allowing different centres to generate local simulated instances from real data and then gather
them into a centralised hub, where an Artificial Intelligence (AI) model can learn in a standard way. The main
advantage of this procedure is that it is model-agnostic, therefore prediction models can be directly applied in
distributed applications without requiring particular adaptations as the current federated approaches do. To
show the validity of our approach for medical applications, we tested it on a survival analysis task, offering a
viable alternative to train AI models on distributed data. While federated learning has been mainly optimised
for gradient-based approaches so far, our framework works with any predictive method, proving to be a
comparable way of performing distributed learning without being too demanding towards each participating
institute in terms of infrastructural requirements.
1. Introduction

The past few decades have witnessed a massive and growing in-
crease in well-structured clinical data on a global scale [1,2]. The
development of increasingly sophisticated Artificial Intelligence (AI)
techniques capable of fully exploiting large, heterogeneous, and com-
plex data will be of crucial importance for healthcare systems in the
coming years [3,4], and Federated Learning (FL) initiatives are being
developed in healthcare to collaboratively train predictive models with-
out the need to centralise sensitive personal data [5–7]. However, a
main constraint in using clinical data for predictive purposes is that,
despite the relative global abundance, they are limited in individual
centres, especially for rare diseases. Furthermore, sharing and aggre-
gating local datasets is often impossible due to their strict privacy
regulations. Therefore, it is essential to analyse the available clinical
data in a manner that adheres to privacy regulations while still preserv-
ing high accuracy in the predictions. One of the main applications in
healthcare is to predict when specific adverse events of interest to the
patient occur. Survival analysis models address this task and several
machine learning-based techniques have been proposed for prognosis
predictions. However, making distributed versions of survival models
is more complex than others for classification and regression models,
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since it requires ranking evaluations and dealing with ‘‘censored’’ in-
stances. These instances are partially missing temporal data, which
are common in real-world clinical scenarios, where patients can only
sometimes be subject to an arbitrarily long follow-up period.

This work addresses data sharing challenges in critical contexts
by proposing a distributed model tailored for survival analysis. The
proposed framework generates simulated survival data based on real
local datasets and aggregates them into a centralised hub for training.
The primary aims for this work are: (1) to develop accurate predic-
tive models that can improve patient outcomes and advance medical
research without compromising data security; (2) to overcome current
limitations of federated approaches by proposing a simple model-
agnostic data sharing framework which can be easily implemented by
the participating institutes.

1.1. Main contribution

This work shows that we can exploit a more feasible alternative to
FL in the survival analysis context. To prove that, we applied our idea to
the challenging task of time-to-event prediction in a privacy-preserving
way. Specifically:
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• We have developed a proof-of-concept scenario that allows us
to build a global predictive model taking advantage of the ag-
gregated information, and without using combinations of local
losses.

• This approach does not require fast communication methods
among the nodes, which is an issue for current federated ap-
proaches.

• Our framework is model-agnostic and not limited to gradient-
based algorithms, making it a versatile solution since it avoids
distributed optimisations.

• We have considered privacy and developed a way to enhance it
by adding a controlled amount of noise to the synthetic samples
in a Differential Privacy setting.

• We have shown that the performance for Survival Analysis is
very close to what is attainable using real data in a centralised
approach.

.2. Related works

The significant efforts to protect patients’ privacy through limi-
ations on sharing sensitive clinical data can pose a challenge for
esearching rare diseases or developing effective machine learning-
ased predictive tools. Training data distributed across multiple institu-
ions could enhance model performance and generalisation. Recently,
his hurdle has led to the development of novel distributed learning
pproaches, where patients’ data are not directly shared among the
nstitutions [8–11]. In particular, FL, since its first introduction in
017 [12], has been one of the most studied and promising methods to
vercome limitations related to data privacy [13,14].

Among the different supervised learning tasks, Survival Analysis is
ntrinsically more complex to distribute compared to classification and
egression models. Indeed, optimising Cox-like loss functions requires
he knowledge of all individuals’ sorted times, requiring a ranking
valuation (see Eq. (5)). This implies that optimising the function in
‘batches’’ (or per centre) may lead to a different solution, which may
ot be optimal compared to the one obtained using the loss function
omputed on the complete and centralised data.

Recent studies faced the problem of creating distributed survival
odels by building ‘‘surrogate’’ likelihood functions [15] or aggre-

ating different CoxPH models trained in separated nodes [16,17].
n [18], a classical federation was built on a novel reformulation of
he survival task in terms of pseudovalues, while in [19] the authors
roposed a discrete-time extension of the CoxPH model that makes the
oss separable and turns the survival task into a multiple classification
roblem. However, most of these methods (except [18]) are specifically
ailored either to the linear CoxPH framework, which is additive in the
nput features, or more generally to the CoxPH loss function and its
nderlying assumptions. Thus, they cannot be easily extended to other
ore comprehensive and non-linear algorithms.

The field of synthetic data generation has recently gained much
ttention as a viable strategy for sharing information among different
ata holders that nevertheless avoids the dissemination of real patient
ata [20–23]. However, the generation of synthetic data for Survival
nalysis tasks is not straightforward due to the presence of censored

imes, as outlined by Norcliffe et al. [24], who proposed a generative
dversarial model tailored for survival predictions.

Finally, SYNDSURV idea has similarities with dataset distillation
nd one-shot FL techniques [25–27], since all these methods try to solve
ome FL issues by exploiting more local computational efforts rather
han optimising the communication of algorithms.

. Background

.1. Federated learning

In a FL setting, data are stored in separated data centres and the
2

oal is to train a global predictive model by sharing only its parameters
with the centres. Specifically, each participating institution separately
updates the parameters by performing a fixed number of training
iterations using only its own data and then sends the updates back to a
central server, which computes a weighted aggregation. This procedure
is repeated for 𝑁 communication rounds until convergence. Although
this method has proved to be effective in several predictive tasks, FL
still has some practical and theoretical limitations. Most FL existing
strategies are optimised for standard gradient descent algorithms (like
neural network-based models) for weights updating. This approach
rules out the use of other algorithms that could be more suitable or
perform better in some applications, thus posing a hard constraint on
the development of optimal distributed solutions. Furthermore, issues
related to non-independent and non-identically distributed (non-IID)
data among the participating institutions, communication overheads
during multiple training iterations and security threats are still open
challenges, as outlined in [28,29].

One-shot federated learning
One-Shot FL [30] emerges as a significant variation of traditional

FL, aimed at addressing some limitations. In one-shot FL, the funda-
mental shift lies in the reduction of communication rounds between the
participating institutions and the central server. Unlike conventional
FL, where multiple rounds of parameter updates and aggregations are
necessary, it aims to achieve model convergence with just a single
round of communication. This approach requires that each participat-
ing institution performs extensive local training on its data, and then
the locally updated model parameters are sent to the central server only
once. The server then aggregates these parameters to form a global
model. The advantage here is the drastic reduction in communica-
tion overhead, making one-shot FL particularly beneficial in scenarios
where communication costs are high or where network bandwidth is
limited. However, its effectiveness depends on local training capabil-
ities and the nature of distributed datasets, as there is no iterative
process to refine the model based on aggregated global feedback.

Recently, Distilled One-Shot FL has also emerged as a promising
approach [27]. In this setting, the process begins with each client
performing dataset distillation on their local data, starting from a
common initialised model. This involves condensing the data into a
more compact yet representative version that captures the essential
features and patterns of the original dataset [31]. The learned distilled
datasets are then sent to the central server that aggregates them and
performs the global training. This approach of applying distillation to
the datasets, rather than the models, significantly reduces the size of
the data that need to be communicated, thereby enhancing efficiency
while still preserving privacy.

2.2. Survival analysis

The goal of Survival Analysis (SA), also referred to as time-to-event
prediction, is to predict the time of occurrence of an event of interest,
which can be an adverse event for patients in a clinical setting. In
particular, SA techniques seek to infer the probability distribution of
the time of that event for each patient. The survival function 𝑆(𝑡) is
efined as:

(𝑡) = 𝑃 (𝑇 > 𝑡) = 1 − 𝐹 (𝑡) (1)

here 𝑃 (𝑇 > 𝑡) is the probability that the event of interest occurs after
ime 𝑡, while 𝐹 (𝑡) is the cumulative incidence function (CIF). A function
trictly connected to the survival function is the hazard ℎ(𝑡), defined as:

(𝑡) = lim
𝛥𝑡→0

𝑃 (𝑡 ≤ 𝑇 < 𝑡 + 𝛥𝑡 ∣ 𝑇 ≥ 𝑡)
𝛥𝑡

≥ 0 (2)

This distribution represents the approximate probability that an event
occurs in the time interval [𝑡, 𝑡 + 𝛥[, under the condition that an
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individual would remain event-free up to time 𝑡. Hence, it can be shown
that:

𝑆(𝑡) = exp
[

−∫

𝑡

0
ℎ(𝑢)𝑑𝑢

]

= exp[−𝐻(𝑡)] (3)

where 𝐻(𝑡) is the cumulative hazard. Survival models aim to infer these
distributions for each individual, conditioning them on the covariates
of each patient.

From a practical point of view, to obtain time-to-event data, patients
need to be followed in long observational studies, which typically last
years. However, patients frequently drop out before any event occurs.
In this case, it is only possible to know that the event did not occur
before a specific dropping time. This partial knowledge is known in SA
as right censoring, and it needs to be handled by any survival model.
Survival data is composed of tuples

(

𝒙𝑖, 𝑡𝑖, 𝛿𝑖
)

, where 𝒙𝑖 are the patient’s
ovariates, 𝛿𝑖 is a binary event indicator and 𝑡𝑖 is the time of the last
ollow-up visit, which coincides with the event time for uncensored
atients, i.e. when 𝛿𝑖 = 1.

OXPH
Cox proportional hazards model (CoxPH) is the most widely used

echnique to learn from censored survival data. It assumes that the
azard of the 𝑖th patient having an event at time 𝑡 can be modelled
s:

(

𝑡 ∣ 𝑥𝑖1,… , 𝑥𝑖𝑑
)

= ℎ0(𝑡) exp

( 𝑑
∑

𝑗=1
𝑥𝑖𝑗𝛽𝑗

)

(4)

here 𝛽 ∈ R𝑑 are the coefficients associated with each of the 𝑑 features,
hile ℎ0(𝑡) is the baseline hazard function, common to all individuals in

he group and dependent only on time. The second term of factorisation
an be viewed as the relative risk of experiencing the event of interest,
nd it is considered to be constant over time as a direct implication
f the proportional hazard assumption. The coefficients 𝛽 are chosen
hrough maximisation of the partial log-likelihood:
̂= argmax

𝛽
log𝑃𝐿(𝛽) =

= argmax
𝛽

𝑛
∑

𝑖=1
𝛿𝑖

[

𝐱⊤𝑖 𝛽 − log

(

∑

𝑗∈𝑖

exp
(

𝐱⊤𝑗 𝛽
)

)] (5)

here 𝑖 =
{

𝑗 ∣ 𝑡𝑗 > 𝑡𝑖
}

is the risk set of the 𝑖th patient, which contains
ll the subjects that have not experienced an event or been censored
t time 𝑡. The baseline hazard ℎ0(𝑡) can be calculated a posteriori
hrough non-parametric methods such as Nelson–Aalen or Breslow
stimators [32,33].

FT-XGBOOST
The Accelerated Failure Time (AFT) model is another well-known

ethod for survival analysis. Since CoxPH returns an estimate for the
isk associated to each patient and predicts the baseline function in
separated step (usually through non-parametric approaches like the
reslow’s estimator [32]), it does not yield directly a useable prediction
f the time-to-event 𝑡.

With the AFT model, it is possible to predict unknown labels us-
ng only the fitted parameters and a feature vector. This is done by
odelling the survival time 𝑇 as:

n 𝑇 = ⟨𝛽, 𝐱⟩ + 𝜎𝑍 (6)

here 𝑍 is a random variable of a known probability distribution and 𝜎
s a scale parameter. Then, XGBoost method can be naturally embedded
n this formulation by replacing the linear term with the output from
he decision tree ensemble  (𝐱) [34]:

n 𝑇 =  (𝐱) + 𝜎𝑍 (7)

hus, the model is optimised by maximising a revised likelihood func-
ion 𝐴𝐹𝑇 (𝑡,  (𝐱)), which properly takes into consideration censored
nd uncensored labels. The functional form of the likelihood will
3

t

epend on the chosen distribution for the random variable 𝑍. The most
ommonly used are logistic, normal, and extreme distributions.

. Methodology

.1. Model architecture

With the proposed framework, named SYNDSURV (SYNthetic Dis-
ributed SURVival), we address the task of developing a common
urvival model in a decentralised scenario, where data are stored in
eparated centres (e.g. healthcare institutions) and cannot be shared
ue to privacy limitations. The core idea behind our contribution is to
uild a unique survival model using an arbitrarily large set of aggre-
ated synthetic data, that are independently generated at each node
evel. The pseudo-code of the whole procedure is shown in Algorithm
.

Algorithm 1: Pseudo-code of the proposed framework for
distributed survival analysis.

Input: Datasets (𝐗1, 𝑡1, 𝛿1), (𝐗2, 𝑡2, 𝛿2), ..., (𝐗𝐶 , 𝑡𝐶 , 𝛿𝐶 ) from 𝐶

nodes

Output: Trained global survival model 

1 for each node 𝑐 do

2
(

(𝐗tr
𝑐 , 𝑡

tr
𝑐 , 𝛿

tr
𝑐 ), (𝐗

tt
𝑐 , 𝑡

tt
𝑐 , 𝛿

tt
𝑐 )
)

= train_test_split(𝐗𝑐 , 𝑡𝑐 , 𝛿𝑐 )

3 𝐗̃𝑐 = Synthetic_generator(𝐗tr
𝑐 )

4 𝑐 = FitAFTModel(𝐗tr
𝑐 )

# fit AFT-survival model to original data

5 𝑡̃𝑐 = 𝑐 (𝐗̃tr
𝑐 )

# predict event times for the synthetic data

6 𝛿𝑐 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑡̃𝑐 > max
(

𝑡tr𝑐
)

1 otherwise

# set synthetic event indicators

7 Send_To_Aggregator(𝐗̃𝑐 , 𝑡̃𝑐 , 𝛿𝑐 )

8 (𝐗̃, 𝑡̃, 𝛿) = AggregateData()

9  = FitModel(𝐗̃, 𝑡, 𝛿) # train global survival model

Evaluate
(

, (𝐗tt, 𝑡tt, 𝛿tt)
)

# evaluate M on aggregated test data

The global model  has been tested twice, using two different
time-to-event predictive methods (CoxPH and DeepHit). The perfor-
mance was assessed in terms of two survival-specific metrics (C-Index
and time-dependent AUC), which were compared to the upper bound
(centralised scenario) and the lower bound (isolated nodes) scores. A
schematic representation of the framework is presented in Fig. 1.

3.2. Data synthesizer

To generate the synthetic data, we have employed the DataSyn-
thesizer tool [35], which is a Python implementation of the PrivBayes
algorithm [36]. It is a generative model that can be represented as a
directed acyclic graph. In the graph, each node 𝑋𝑖 represents a feature,
and each edge from 𝑋𝑗 to 𝑋𝑖 corresponds to Pr(𝑋𝑖|𝑋𝑗 ), the probability
f 𝑋𝑖 given 𝑋𝑗 .

In summary, the algorithm operates in two steps. First, it creates a
-degree Bayesian Network  (where 𝑘 defines the maximum size of
ny parent node set 𝛱𝑖 in  ) that approximates the real distribution of
he features set , such that Pr [] ≈ Pr[]. In particular, under the

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Fig. 1. Schematic representation of the SYNDSURV framework. In this example, there are two participating institutions that cooperate to create a global model. Each one trains a
local AFT survival algorithm using only its own patients’ data. Then, synthetic samples are generated through a Bayesian generative network built with patient covariates at single
institution level, and local models are used to predict survival times for synthetic patients. Finally, all synthetic data are transferred from the data centres to a central aggregation
server that trains the global model. Its performance is evaluated on an external test set composed of real patients from each institution.
assumption that any 𝑋𝑖 and any 𝑋𝑗 ∉ 𝛱𝑖 are conditionally independent
given 𝛱𝑖, we have:

Pr[] = Pr
[

𝑋1, 𝑋2,… , 𝑋𝑑
]

=
𝑑
∏

𝑖=1
Pr

[

𝑋𝑖 ∣ 𝛱𝑖
]

(8)

Thus, the construction of Pr [] can be viewed as an optimisa-
tion problem, where the objective is to minimise the KL-divergence
𝐷𝐾𝐿

(

Pr[] ∥ Pr []
)

, by choosing the optimal parent node set 𝛱𝑖
related to each feature 𝑋𝑖. If 𝑘 is a small value, this procedure becomes
computationally feasible.

The second step is to generate synthetic data from the network
 . This is done by sampling each 𝑋𝑖 from its conditional distribution
Pr[𝑋𝑖|𝛱𝑖] independently, without considering any attribute not in 𝛱𝑖 ∪
{𝑋𝑖}, which is possible thanks to Eq. (8).

Moreover, the generative process can also be combined with
privacy-preserving approaches like Differential Privacy, which guaran-
tees that the output of an algorithm is statistically indistinguishable
on a pair of neighbouring databases (i.e. a pair of databases that differ
by only one tuple). This concept is formalised with the following
definition [37]:

Definition 3.1 (𝜖-Differential Privacy). A randomised algorithm 𝐺 satis-
fies 𝜖-differential privacy if, for any two datasets 𝐷1 and 𝐷2 that differ
only in one tuple 𝑥, and for any possible output 𝑂 of 𝐺, we have:

Pr
[

𝐺
(

𝐷1
)

= 𝑂
]

≤ 𝑒𝜀 ⋅ Pr
[

𝐺
(

𝐷2
)

= 𝑂
]

. (9)

The parameter 𝜖 is called privacy budget, and it controls how much
the distribution of outputs can depend on data from an individual 𝑥.
In practice, differential privacy is obtained by introducing a Laplacian
noise Lap( 2(𝑑−𝑘)𝑛𝜖 ) into each joint distribution Pr

[

𝑋𝑖,𝛱𝑖
]

, from which
the differential private conditional distributions Pr∗

[

𝑋𝑖 ∣ 𝛱𝑖
]

are then
derived. Here, 𝑑 is the number of features and 𝑛 is the number of
samples in the dataset. It is worth highlighting that higher values of
𝜖 correspond to a lower amount of noise injected into the synthetic
data, and hence to a lower level of privacy. Usually 𝜖 is set in a range
of values that goes from 0.1 to 10 [36,38].

Once completed, this whole procedure leads to the generation of a
new synthetic dataset 𝐗̃𝑐 for each node 𝑐, with the desired sample size,
which depends on how far the sampling process is carried out.
4

3.3. Synthetic labels generation

The generated patients, in order to be used for training a common
survival model, need to be paired with an estimated time-to-event
label. Indeed, this information could not fit properly into the Bayesian
Network due to the presence of the censored data. To overcome this
issue, the proposed solution is to define, for each node, a survival
regression with an accelerated failure time (AFT) model using XGBoost.

An advantage of applying an AFT model is that, unlike traditional
Cox-PH, it yields directly a useable prediction of the time to the event
𝑡, thus avoiding its estimation from the survival function. In addition,
the AFT framework provides a better fit when the proportional hazard
assumption does not hold and, combined with a tree-based Gradient
Boosting method like XGBoost, it also considers nonlinear relationships
among covariates, enriching the model’s capabilities.

For each node, a separated AFT model 𝑐 is trained by using only
the real data of the node 𝑐 and then applied to predict the time-to-
event 𝑡𝑐 related to the synthetic samples 𝐗𝑐 . In addition, in order to
generate realistic survival data, the synthetic patients with a predicted
time greater than the maximum observed event time of that node
(𝑡𝑐,𝑖 > 𝑡𝑚𝑎𝑥,𝑐) were considered right-censored at the time 𝑡𝑚𝑎𝑥,𝑐 , by
setting 𝛿𝑐,𝑖 = 0. This truncation avoids having long-tailed distributions
for the synthetic times.

3.4. Centralised learning and validation strategy

The synthetic tuples
{

(𝐗𝑐 , 𝑡𝑐 , 𝛿𝑐 )
}

𝑐=1,…,𝐶
are then shared with an

aggregation server in order to be jointly used to build a common
survival model . This allows the exploration of any desired survival
algorithm in a centralised-like scenario, thus avoiding all the possible
limitations related to model-specific federation processes.

In this work, to prove the effectiveness of the architecture, we
applied both CoxPH model and DeepHit, which is a more complex
neural network-based model that avoids the proportional hazard and
linearity assumptions. In the CoxPH model we included an ElasticNet
penalty to prevent overfitting [39], treating the penalty strength 𝛼 and
the 𝑙1 𝑟𝑎𝑡𝑖𝑜 as tunable hyperparameters.

DeepHit is a recently developed survival model, which has been
shown to outperform standard CoxPH in both single-event and
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competing-risk survival predictions [40]. DeepHit discretises the sur-
vival times and trains a neural network to learn the estimated joint
distribution of survival time and event, while capturing the right-
censored nature inherent in survival data. The neural network returns
a softmax layer that outputs an estimated probability for each discrete
time interval, and it is trained by using as loss function a convex
combination of a negative log-likelihood and a ranking loss. Both
ElasticNet-CoxPH and DeepHit hyperparameters were optimised by
applying on the internal validation set the tree-structured Parzen es-
timator algorithm [41] (implemented within the Optuna optimisation
framework [42]).

The final model, despite being trained on the synthetic dataset,
needs to be reliable also when applied to real patients. Therefore, for
all simulations, we tested the performance with an external test set of
the real data, which had never been used by the models 𝑐 for the
synthetic labels’ prediction, nor by the centralised synthetic model .
Moreover, in order to analyse the effect of the synthetic dataset’s size on
the final performance, we evaluated different sets of generated patients,
ranging from 101 to 3 × 103 samples per node.

As in the case of FL strategies, the performance naturally has
n upper bound and a lower bound. The upper bound represents the
entralised scenario on the real data, i.e. when patients’ data can be
irectly shared to a central node without restrictions. In this case, it is
he performance of the model trained on the aggregated real data from
ll nodes. In contrast, the lower bound indicates the worst-case scenario,
.e. when the model is trained for each isolated node using only its
wn data. Therefore, it is the average performance across all nodes.
he expected behaviour of our method in order to demonstrate its
ffectiveness is that its performance on the test set has to lie somewhere
ithin these two limits. The whole procedure, including the synthetic
atients’ generation from the training data, has been repeated 10 times
y changing the original random train–test split.

.5. Metrics

oncordance index
Harrell’s concordance index is the most frequently used evaluation

etric for survival models [43]. It is a measure of the rank correlation
etween predicted risk scores 𝑟̂ and observed time points 𝑡. It is defined
s the ratio of correctly ordered (concordant) pairs to comparable pairs.

Two samples 𝑖 and 𝑗 are comparable if the sample with lower observed
time 𝑡 experienced an event, i.e., if 𝑡𝑗 > 𝑡𝑖 and 𝛿𝑖 = 1, where 𝛿𝑖 = 1
is the binary event indicator. A comparable pair (𝑖, 𝑗) is concordant if
the estimated risk 𝑟̂ by a survival model is higher for subjects with
lower survival time, i.e. 𝑟𝑖 > 𝑟𝑗 ∧ 𝑡𝑗 > 𝑡𝑖, otherwise the pair is
discordant. However, Harrell’s estimate is based on the proportional
hazard assumption, considering constant risks over time. Therefore,
in this study, a time-dependent formulation of the concordance index
(from Antolini et al. [44]) was used to evaluate the models. It takes into
consideration the whole predicted survival function, and it is defined
as:

𝐶 td = P
{

𝑆̂
(

𝑇𝑖 ∣ 𝐱𝑖
)

< 𝑆̂
(

𝑇𝑖 ∣ 𝐱𝑗
)

∣ 𝑇𝑖 < 𝑇𝑗 , 𝐷𝑖 = 1
}

. (10)

For proportional hazards models, this metric is equivalent to the regular
Harrell’s concordance index.

Time-dependent AUC
The receiver operating characteristic (ROC) curve and the area

under the ROC curve (AUC) can be extended to the survival data by
defining sensitivity and specificity as time-dependent measures [45]. It
is possible to define as cumulative cases the individuals who experienced
an event up to time 𝑡 (𝑡𝑖 ≤ 𝑡), and as dynamic controls those individuals
with 𝑡𝑗 > 𝑡. Hence, the associated cumulative/dynamic AUC can be
expressed as:

ÂUC(𝑡) =
∑𝑛

𝑖=1
∑𝑛

𝑗=1 𝐼
(

𝑡𝑗 > 𝑡
)

𝐼
(

𝑡𝑖 ≤ 𝑡
)

𝜔𝑖 𝐼
(

𝑓
(

𝐱𝑗 , 𝑡
)

≤ 𝑓
(

𝐱𝑖, 𝑡
))

(
∑𝑛 ( )) (

∑𝑛 ( ) )

(11)
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𝑖=1 𝐼 𝑡𝑖 > 𝑡 𝑖=1 𝐼 𝑡𝑖 ≤ 𝑡 𝜔𝑖
Table 1
Summary of survival datasets.

Size # Features % Censored 𝐶 Nodes size

FLChain 6524 7 70% 32 153
METABRIC 1904 9 42% 8 178
SUPPORT 9105 20 32% 32 213
GBSG+Rotterdam 3668 8 50% 16 172

where 𝑓
(

𝐱𝑖, 𝑡
)

is the predicted risk of a patient with covariates 𝐱𝑖 at
time 𝑡 and 𝜔𝑖 are the inverse probability of censoring weights (IPCW),
directly estimated from the censoring distribution of the training set.
This metric quantifies how well a model can distinguish patients who
experience an event in a given time (𝑡𝑖 ≤ 𝑡) from patients who fail after
this time (𝑡𝑗 > 𝑡) and it is mostly relevant when the aim is to predict
the occurrence of an event in a period of time up to 𝑡 rather than at
a specific time point. In our study, we have considered the integral of
the time-dependent AUC over the range of observed event times.

4. Results

4.1. Survival datasets

To validate our framework, we considered four publicly available
survival datasets, commonly used to assess the performance of the sur-
vival models: the Assay of Serum Free Light Chain [46] (FLCHAIN), the
Molecular Taxonomy of Breast Cancer International Consortium [47]
(METABRIC), the Study to Understand Prognoses Preferences Outcomes
and Risks of Treatment [48] (SUPPORT) and the Rotterdam tumour
bank and German Breast Cancer Study Group [49,50] (GBSG+ Rotter-
dam). FLChain and METABRIC datasets were preprocessed according
to Kvamme et al. [51], while for GBSG+Rotterdam the same prepro-
cessing schema of Royston and Altman [52] was applied, with the only
difference that the data from the two studies were merged to create
a single dataset. As regards SUPPORT, we used the same procedure
of Chapfuwa et al. [53] for data cleaning and imputation, followed by
a final feature selection to decrease the data dimensionality, as it is
summarised in Figure S1 (see Supplementary Materials).

Each dataset was randomly split into training and test sets
(75%–25%), repeating the partitioning 10 times by changing the random
seeds. Then, the samples of the training sets were further distributed
among 𝐶 fictitious centres to simulate a decentralised scenario. The
number of nodes 𝐶 for each dataset was selected so that the perfor-
mance gap between upper and lower bounds (in at least one evaluation
metric) was large enough to justify an advantage in applying a decen-
tralised approach. All the created fictitious centres included ≈2 × 102

samples, which is also a reasonable number of patients for real-world
clinical trials of medium size. Summary statistics for the preprocessed
survival datasets are reported in Table 1.

4.2. Performance comparison

As mentioned above, to properly evaluate the performance of the
synthetic model  in the test data, it must be compared to the upper
bound (centralised scenario) and the lower bound (isolated nodes).
From a preliminary comparison of the performance between CoxPH
and DeepHit in the centralised scenario, as shown in Table 2a and
b, it clearly results that DeepHit outperforms or at least equals the
standard CoxPH method for both metrics, which is expected due to the
greater flexibility and capacity of the model. Conversely, in the isolated
nodes the same consideration does not hold and CoxPH performs better
than DeepHit in 2 out of 4 datasets for both metrics. This is probably
due to the reduced size of the fictitious data, which mostly affects
DeepHit. It is also worth noticing that the performance gap between
upper and lower bounds is not negligible for each dataset and for
both metrics. This confirms the necessity of the proposed approach.
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Table 2
C-Index (a) and Time-dependent AUC (b) metrics on the test set in the centralised
scenario (upper bound) and in the case of isolated nodes (lower bound). The reported
scores represent the mean values over the 10 different test sets; error of the means are
written in brackets. Best scores are highlighted in bold.

(a)

Lower bound Upper bound

COXPH DEEPHIT COXPH DEEPHIT

FLChain 0.766(0.003) 𝟎.𝟕𝟕𝟗(0.003) 0.789(0.003) 0.789(0.003)
METABRIC 𝟎.𝟔𝟏𝟐(0.004) 0.604(0.005) 0.630(0.005) 𝟎.𝟔𝟕𝟒(0.005)
SUPPORT 0.776(0.001) 𝟎.𝟕𝟖𝟓(0.001) 0.802(0.001) 𝟎.𝟖𝟒𝟑(0.001)
GBSG+Rotter. 𝟎.𝟔𝟒𝟏(0.003) 0.604(0.005) 0.671(0.003) 𝟎.𝟔𝟖𝟎(0.003)

(b)

Lower bound Upper bound

COXPH DEEPHIT COXPH DEEPHIT

FLChain 𝟎.𝟕𝟗𝟎(0.004) 0.743(0.004) 0.812(0.004) 𝟎.𝟖𝟏𝟑(0.004)
METABRIC 𝟎.𝟔𝟓𝟗(0.006) 0.631(0.004) 0.688(0.006) 𝟎.𝟔𝟗𝟓(0.005)
SUPPORT 0.866(0.001) 𝟎.𝟖𝟔𝟕(0.001) 0.894(0.002) 𝟎.𝟗𝟐𝟎(0.001)
GBSG+Rott. 0.678(0.005) 0.678(0.005) 0.716(0.005) 𝟎.𝟕𝟐𝟕(0.004)

Fig. 2. Test set C-Index vs. number of generated patients per node, for the CoxPH
model trained on the synthetic data. Reported values represent the mean over 10
different test sets; error bars indicate the errors of the mean.

Hence, we present the results of the global models, trained only with
the synthetic data and evaluated on the external test sets of real pa-
tients. C-index and time-dependent AUC were considered for a variable
number of synthetic patients generated per node, and, for each, the
mean and standard deviation values over 10-times repeated simulations
were computed. The C-Indices for the CoxPH model are reported in
Fig. 2, while those related to DeepHit are shown in Fig. 3. In both
figures, each panel corresponds to a separated survival dataset; red and
black lines represent the lower and upper bounds, respectively. The
time-dependent AUCs are shown in Fig. S3–S5 in the Supplementary
Materials.

For CoxPH, the synthetic model reaches the upper limit of the C-
Index in all four datasets, even with less than 103 generated patients
per node; when considering the time-dependent AUCs, this happens in
3 out of 4 datasets, even though in the remaining one (METABRIC)
the average scores fall clearly within the desired range. Considering
DeepHit, in all simulations the average performance of the synthetic
model exceeds the lower bound as the number of patients generated
per node is above 102, and most of the time it is closer to the upper
limit when more than 103 patients are generated.

These results show that the survival models trained on the syn-
6

thetic data generated through the proposed method are capable of
Fig. 3. Test set C-Index vs. number of generated patients per node, for the DeepHit
model trained on the synthetic data. Reported values represent the mean over 10
different test sets; error bars indicate the errors of the mean.

generalising well to real patients’ data, achieving a performance always
comparable to that of the centralised scenario or considerably higher
than the lower bound. Moreover, such achievements are not model-
dependent, since the same considerations apply for both CoxPH and
DeepHit models, which are different in terms of baseline assumptions,
optimisation function, and complexity.

4.3. Differential privacy

Finally, we also tested the goodness of the proposed framework in a
Differential Privacy setting. This is done by adding to the Bayesian Net-
work (from which synthetic covariates are sampled) a certain amount
of noise parameterised by the privacy budget 𝜖, as explained in 3.2. In
our experiments, we set 𝜖 = 0.1, which produces a high level of noise
at the expense of the synthetic data quality and hence of the model’s
performance. The results for DeepHit on the datasets considered in this
scenario are presented in Fig. 4.

Due to the added noise, both C-Indices and time-dependent AUCs
are slightly deteriorated on the test set with respect to the scenario
without differential privacy, but they are higher than the lower bound
in all four datasets when more than 5×102 patients per node are gener-
ated. This achievement shows that the framework SYNDSURV is robust
to the presence of high levels of noise in the synthetic data. Moreover,
by controlling the privacy budget 𝜖, it is possible to choose the desired
trade-off between model performance and privacy requirements.

5. Conclusion

We proposed a distributed survival analysis framework to address
the task of creating a common survival model that indirectly uses
time-to-event data from multiple participating institutions, without
sharing patients’ sensitive data. This is achieved by generating synthetic
patients at the level of the single data centres through a two-steps
procedure that properly handles survival labels: (1) the synthetic pa-
tient’s covariates are sampled from a Bayesian generative network; (2)
a survival AFT model trained on the original data is used to predict
the survival times of the synthetic patients. Thus, the synthetic samples
from each institution are shared with a common aggregation server to
train the desired global model.

As demonstrated by simulations performed over four distinct sur-
vival datasets (split among separated fictitious nodes), the global
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Fig. 4. Test set C-Index vs. number of generated patients per node, for the DeepHit
model trained on the synthetic data, using a differential privacy setting with 𝜖 = 0.1.

eported values represent the mean over 10 different test sets; error bars indicate the
rrors of the mean.

odel’s performance on a test set composed of real patients is often
omparable to the centralised scenario, where data are shared without
imitations, or at least significantly greater than the lower bound
isolated nodes scenario). These results prove the applicability of the
ethod as a valid alternative to the current FL approaches used to learn

ommon predictive models. A main advantage of this approach is that
t is flexible to the choice of any desired algorithm for designing the
lobal model, since it does not depend on the algorithm structure as it
appens for the FL methods. In addition, it is also suitable to properly
andle time-to-event data in presence of censoring. Finally, we also
emonstrated that our approach is robust to the presence of noise into
he synthetic data, hence it can be naturally embedded in differential
rivacy settings, which can be necessary when controlling the privacy
udget.

.1. Limitations and future works

Despite its advantages, the proposed framework may have some
imitations. A possible limitation is that the performance of the global
odel depends on the quality of the synthetic samples generated by the

ocal data centres. If the synthetic samples are not representative of the
rue data, the global model may not perform well.

Another limitation is that the proposed method assumes that the
ensoring mechanism is the same across all local data centres, which
ay only sometimes be the case in practice.

Finally, generating synthetic samples at local data centres might
e challenging, especially for datasets with many features. However,
urrent federated approaches may suffer from the same problem.

Future developments include further experiments to test if our
ramework can address more troublesome real-world scenarios, where
odes are highly unbalanced or data are non-IID across the participat-
ng centres. Likewise, different strategies for synthetic data generation
hould be investigated, including Autoencoders (Decoders), Generative
dversarial Networks (GANs) or other generative Bayesian network

echniques.
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