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1 Introduction

The calculation of high-order Feynman integrals is the cornerstone of the precision physics
program at present and future particle accelerators [1]. The systematic development of
modern methods to compute Feynman integrals, going beyond a direct evaluation of their
parametric expression, began with the identification and explicit construction of Integration-
by-Parts (IBP) identities in dimensional regularisation, in refs. [2, 3], and reached a further
degree of sophistication with the development of the method of differential equations [4–6].
These two sets of ideas can be combined into powerful algorithms [7], and the procedure
further streamlined and optimised by the identification of the linear functional spaces where
(classes of) Feynman integrals live [8–10], and by taking maximal advantage of dimensional
regularisation [11]. The combined use of these tools has dramatically extended the range of
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processes for which high-order calculations are available, and has broadened our understanding
of the mathematics of Feynman integrals, as reviewed for example in [1, 12].

It is an interesting historical fact that the idea of studying and eventually computing
Feynman integrals by means of IBPs and differential equations pre-dates all the developments
just discussed, and was originally proposed not in the momentum representation, but in
Feynman-parameter space. Of course, it is well-known that studies of Feynman diagrams
flourished in the S-matrix era, as illustrated in the classic textbook [13]. In particular, the
projective nature of Feynman parameter integrands, and the importance of the monodromy
properties of Feynman integrals under analytic continuation around their singularities, were
soon uncovered, and attracted the attention of mathematicians [14, 15] and physicists [16].
In this context, Tullio Regge and collaborators published a series of papers [17–19] studying
the ‘monodromy ring’ of interesting classes of Feynman graphs: first the ones we would at
present describe as ‘multi-loop sunrise’ graphs in ref. [17], then generic one-particle irreducible
n-point one-loop graphs in ref. [18], and finally the natural combination of these two classes,
in which each propagator of the one-loop n-point diagram is replaced by a k-loop sunrise [19].
All of these papers employ the parameter representation as a starting point, and make heavy
use of the projective nature of the integrand.

At the time, these studies by Regge and collaborators did not immediately yield computa-
tional methods, but it is interesting to notice that, at least at the level of conjectures, several
deep insights that have emerged in greater detail in recent years were already present in the
old literature. For example Regge, in ref. [16], argues, on the basis of homology arguments,
that all Feynman integrals must belong to a suitably generalised class of hypergeometric
functions, an insight that was sharpened much more recently with the introduction of the
Lee-Pomeransky representation [20] of Feynman integrals and the application of the GKZ
theory of hypergeometric functions [21–28]. Regge further argues that such functions obey sets
of (possibly) high-order differential equations, which he describes as ‘a slight generalisation
of the well-known Picard-Fuchs equations’, also a recurrent theme [29].

While general algorithms were not developed at the time, two of Regge’s collaborators,
Barucchi and Ponzano, were able to construct a concrete application of the general formalism
for one-loop diagrams [30, 31]. In those papers, they show that for one-loop diagrams it is
always possible to organise the relevant Feynman integrals into sets (that we would now call
‘families’), and find a system of linear homogeneous differential equation in the Mandelstam
invariants that closes on these sets, with the maximum required size of the system being
2n− 1 for graphs with n propagators.1 These systems of differential equations were of interest
to Barucchi and Ponzano because they effectively determine the singularity structure of the
solutions, and thus the monodromy ring, in agreement with the general results of Regge’s
earlier work. From a modern viewpoint, it is perhaps just as interesting to use the system
directly for the evaluation of the integrals, as done with the usual momentum-space approach:
this is the direction that we will pursue in our exploratory study.

In the present paper, we start from the ideas of refs. [16–19] and the concrete results of
Barucchi and Ponzano [30, 31] to propose a projective framework to derive IBP identities
and systems of linear differential equations for Feynman integrals. In order to do so, we

1This counting has been reproduced with modern (and more general) methods in [33–35].
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need to generalise the Barucchi-Ponzano results in several directions. First of all, those
results predate the widespread use of dimensional regularisation, and do not in principle
apply directly to infrared-divergent integrals. Fortunately, the projective framework naturally
involves the (integer) powers of the propagators appearing in the diagram. These can be
continued to complex values, providing a regularisation that is readily mapped to dimensional
regularisation.2 We are then able to show that the projective framework applies directly to
IR divergent integrals, and we provide some examples. Next, we observe that the procedure
to derive IBP identities in projective space generalises naturally to higher loops. Clearly,
at two loops and beyond it would be of paramount interest to have a generalisation of
the Barucchi-Ponzano theorem, guaranteeing the closure of a system of linear differential
equations, providing an upper limit for its size, and giving a constructive procedure to build
the system. This would require a much deeper understanding of the monodromy ring of
higher-loop integrals. Lacking this knowledge (a gap which certainly points to promising
avenues for future research), we can nonetheless apply the parameter-space IBP technique, and
derive directly sets of differential equations on a case-by-case basis. Indeed, we show that the
method can be successfully applied to two-loop integrals, and we provide examples, including
the two-loop equal-mass sunrise, for which we recover the appropriate elliptic differential
equation. Finally, we note that our application of the projective framework highlights the
importance of boundary terms in IBP identities: contrary to the momentum-space approach
in dimensional regularisation, boundary terms do not in general vanish in the projective
framework: on the contrary, they may play an important role in linking complicated integrals
to simpler ones, as we will see in concrete examples.

We note that the work presented in this paper is part of a recent revival of interest in the
mathematical structure of Feynman integrals in parameter space, and presents interesting
potential connections to several current research topics in this context. In particular, a study
of IBP relations from the viewpoint of D-modules, starting from the Feynman parameter
representation, was carried on in [33, 34]; other relevant connections include the applications
of intersection theory [36–40], the use of syzygy relations in reduction algorithms [41, 42],
the study of generalised hypergeometric systems [43], and the reduction of tensor integrals in
parameter space [44–46]. More generally, for the first time in several decades we are witnessing
a rapid growth of our understanding of the mathematical properties of Feynman integrals, in
particular with regards to analyticity and monodromy (see, for example, [35, 47–50], and the
lectures in ref. [51]), with potential applications to questions of phenomenological interest,
such as the study of infrared singularities [52] and the development of efficient methods
of numerical integration [53, 54].

The structure of our paper is the following. In section 2 we introduce our notation for
the parameter representation of Feynman integrals and for Symanzik polynomials, briefly
reviewing well-known material for the sake of completeness. In section 3 we introduce
projective forms, and we use their differentiation and integration to lay the groundwork for

2Regge and collaborators also use this regularisation, having in mind mostly ultraviolet divergences, since
the framework at the time was constructed for generic massive particles. They refer to the complex values of
the powers of the propagators as ‘Speer parameters’, whereas we would now refer to this procedure as analytic
regularisation.
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the construction of IBP identities for generic projective integrals. In section 4 we specialise
our discussion to Feynman integrals, and give a general procedure to construct IBP identities
in this case. In section 5 and in section 6 we validate our results by discussing several concrete
examples at one and two loops. Four appendices give some further technical details on these
examples. Finally, in section 7 we present an assessment of our results and perspectives
for future work.

2 Notations for parametrised Feynman integrals

In this section we summarise some well-known basic properties of parametrised Feynman
integrals, which will be useful in what follows. We adopt the notations of refs. [12, 55, 56].

Consider a connected Feynman graph G, with l loops, n internal lines carrying momenta
qi and masses mi (i = 1, . . . , n), and m external lines carrying momenta pj (j = 1, . . . ,m).
At this stage we do not need to impose restrictions on external masses, so p2

j is unconstrained.
On the other hand, momentum is conserved at all vertices of G, so one can parametrise
the graph assigning l independent loop momenta kr (r = 1, . . . , l) to suitable edges of the
graph. The line momenta are then given by

qi =
l∑

r=1
αirkr +

m∑
j=1

βijpj , (2.1)

where the elements of the incidence matrices, αir and βij , take values in the set {−1, 0, 1}.
Working in d dimensions, with d = 4−2ϵ, and allowing for the possibility of raising propagators
to integer powers νi (i = 1, . . . , n), one may associate to each graph G a family of (scalar)
Feynman integrals

IG (νi, d) = (µ2)ν−ld/2
∫ l∏

r=1

ddkr

iπd/2

n∏
i=1

1(
−q2

i +m2
i

)νi
, (2.2)

where we defined ν ≡
∑n

i=1 νi, and the integration must be performed by circling the poles in
the complex plane of the loop energy variables according to Feynman’s prescription.

The integration over loop momenta in eq. (2.2) can be performed in full generality by
means of the Feynman parameter technique, using the identity

n∏
i=1

1(
−q2

i +m2
i

)νi
= Γ(ν)∏n

j=1 Γ(νj)

∫
zj≥0

dnz δ

1− n∑
j=1

zj

 ∏n
j=1 z

νj−1
j(∑n

j=1 zj

(
−q2

j +m2
j

))ν . (2.3)

By virtue of eq. (2.1), the sum in the denominator of the integrand in eq. (2.3) is a quadratic
form in the loop momenta kr, and can be written as

n∑
j=1

zj

(
−q2

j +m2
j

)
= −

l∑
r,s=1

Mrs kr · ks + 2
l∑

r=1
kr ·Qr + J , (2.4)

where M is an l × l matrix with dimensionless entries which are linear in the Feynman
parameters zi, Q is an l-component vector whose entries are linear combinations of the
external momenta pj , and J is a linear combination of the Mandelstam invariants pi · pj and
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the squared masses m2
j . Translational invariance of d-dimensional loop integrals allows to

complete the square in eq. (2.4): the integral over loop momenta can then be performed,
leading to

IG (νi, d) = Γ(ν − ld/2)∏n
j=1 Γ(νj)

∫
zj≥0

dnz δ

1− n∑
j=1

zj

 n∏
j=1

z
νj−1
j

 U ν−(l+1)d/2

F ν−ld/2 , (2.5)

where the functions

U = U(zi) = detM , F = F
(
zi,

pi · pj

µ2 ,
m2

i

µ2

)
= detM

(
J +QM−1Q

)
/µ2 , (2.6)

are called graph polynomials or Symanzik polynomials. References [12, 55, 56] discuss in
detail the properties of graph polynomials: here we only note that both polynomials are
homogeneous in the set of Feynman parameters, zi, with U being of degree l and F of degree
l+1; furthermore, both polynomials are linear in each Feynman parameter, with the possible
exception of terms proportional to squared masses in F . These homogeneity properties set
the stage for employing the tools of projective geometry, as discussed below in section 3.

Remarkably, Symanzyk polynomials can be constructed directly from the connectivity
properties of the underlying Feynman graph. To do so, let us denote by IG the set of the
internal lines of G, each endowed with a Feynman parameter zi. A co-tree TG ⊂ IG is a set
of internal lines of G such that the lines in its complement T G ⊂ IG form a spanning tree,
i.e. a graph with no closed loops which contains all the vertices of G. The first Symanzik
polynomial for the graph G is then given by

U =
∑
TG

∏
i∈TG

zi . (2.7)

Note that, in the case of an l-loop graph, one needs to omit precisely l lines in order to
obtain a spanning tree: the polynomial U is therefore homogeneous of degree l, as announced.
Similarly, we can consider subsets CG ⊂ IG with the property that, upon omitting the lines
of CG from G, the graph becomes a disjoint union of two connected subgraphs. Clearly, each
subset CG defines a cut of graph G, and contains l + 1 lines. One may further associate with
each cut the invariant mass s (CG), obtained by squaring the sum of the momenta flowing in
(or out) one of the two subgraphs — by momentum conservation, it does not matter which
subgraph we choose. The second Symanzik polynomial is then defined by

F =
∑
CG

ŝ (CG)
µ2

∏
i∈CG

zi − U
∑

i∈IG

m2
i

µ2 zi . (2.8)

As expected, F is homogeneous of degree l + 1 in the Feynman parameters.
To illustrate these rules, consider the one-loop box diagram depicted in figure 1a. As for

any one-loop diagram, it is immediate to see that the first Symanzik polynomial is simply
the sum of the Feynman parameters associated with the loop propagators. In this case

U = z1 + z2 + z3 + z4 . (2.9)
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Figure 1. a) One-loop box diagram. b) Two-loop sunrise diagram.

The second Symanzik polynomial depends on kinematic data. If for example one picks massless
on-shell external legs, all cuts involving two adjacent propagators vanish. One is then left
with the Cutkosky cuts in the s and t channels. Defining s = (p1 + p4)2 and t = (p1 + p2)2

(with all momenta incoming), and assuming all internal masses to be the same, one finds

F = s

µ2 z1z3 +
t

µ2 z2z4 −
m2

µ2 (z1 + z2 + z3 + z4)2 . (2.10)

At two loops, one may consider the sunrise diagram in figure 1b. In this case, each internal
line is a spanning tree (complementary to a co-tree). This implies that the first Symanzik
polynomial is

U = z1z2 + z2z3 + z1z3 . (2.11)

The cut-dependent part of the second graph polynomial is similarly straightforward, since
only one cut exists. Taking equal internal masses, and denoting by p2 the invariant mass
of the incoming momentum, the second Symanzik polynomial is thus

F = p2

µ2 z1z2z3 −
m2

µ2 (z1z2 + z2z3 + z1z3) (z1 + z2 + z3) . (2.12)

In what follows, the crucial property of eq. (2.5) is the projective nature of the integrand.
Indeed, one easily verifies that a change of variables of the form zi → λzi, with λ > 0,
leaves the integrand invariant, except for the argument of the δ function. Since a change
of variables cannot affect the integral, we see that one should properly look at eq. (2.5) as
the integral of a projective form over the (n− 1)-dimensional space PRn−1. This statement
will be further substantiated in the next sections: in section 3 we will show some technology
concerning such integrals, which will then lead to a general integration-by-parts formula
for Feynman parameter integrals in section 4.

3 Projective forms

In this section, we present a brief introduction to projective forms and to their integration
and differentiation. Since the section is somewhat formal, it is useful to keep in mind from the
beginning the announced correspondence between projective forms and parameter integrands,
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which we will try to highlight with explicit examples. The notations and definitions in this
section are based on refs. [15, 16]: from a mathematical standpoint, this approach to the
introduction of projective forms is to some extent historical, but we find it useful, in that
all calculations are very explicit.

3.1 Preliminaries

Let us begin by considering the Grassman algebra of exterior forms in the differentials dzi,
where i ∈ D ≡ {1, 2, . . . , N}, for a positive integer N . Let A be a subset of D, of cardinality
|A| = a, and let ωA be its ordered volume form

ωA = dzi1 ∧ . . . ∧ dzia , (3.1)

with ij ∈ A, and i1 < i2 < . . . < ia: for example, if A = {1, 2, 3}, then ωA = dz1 ∧ dz2 ∧ dz3.
The volume form ωA can be ‘integrated’ by defining

ηA =
∑
i∈A

ϵi,A−i zi ωA−i (3.2)

where A− i denotes the set A with i omitted, and we defined the signature factor ϵk,B, for
any B ⊆ D, and for any k /∈ B, by means of

ϵk,B = (−1)|Bk| , Bk = {i ∈ B, i < k} , (3.3)

while ϵk,B = 0 if k ∈ B. Using the properties of the boundary operator d, one easily verifies
that the differential of ηA is proportional to ωA. Indeed

dηA = aωA . (3.4)

As an example, consider again A = {1, 2, 3}: the form ηA is then given by

η{1,2,3} = z1 dz2 ∧ dz3 − z2 dz1 ∧ dz3 + z3 dz1 ∧ dz2 , (3.5)

and its differential in fact is equal to 3 dz1∧dz2∧dz3. Consider next affine q-forms, defined by

ψq =
∑
|A|=q

RA(zi)ωA , (3.6)

where RA is a homogeneous rational function3 of the variables zi with degree −|A| = −q. The
name affine form is a reference to their invariance under dilatations of all variables. Eq. (3.6)
is readily seen to imply that also the (q + 1)-form dψq is affine. Anticipating section 6.1,
an example of an affine form with q = 2 and N = 3, which is therefore the sum of three
elements, is given by the integrand of the two-loop sunrise diagram,

ψ2 (νi, λ, r) = zν1−1
1 zν2−1

2 zν3−1
3 (z1z2 + z2z3 + z3z1)λ

(r z1z2z3 − (z1z2 + z2z3 + z3z1)(z1 + z2 + z3)))
2λ+ν

3
(3.7)

×
[
z1dz2 ∧ dz3 − z2dz1 ∧ dz3 + z3dz1 ∧ dz2

]
,

3Note that this function may depend on external parameters as well, in our case representing kinematic
invariants of the diagram under consideration. Note also that, in order to make room for dimensional
regularisation, we will slightly generalise this definition to include polynomial factors raised to non-integer
powers in both the numerator and the denominator of the functions RA, while preserving the homogeneity
requirement.
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where, as before, ν = ν1 +ν2 +ν3. The parameter λ, which at this stage is taken to be integer,
will acquire a linear dependence on the dimensional regularisation parameter ϵ in the case of
Feynman integrals, as discussed below. With this extension, the integrand will no longer be
a rational function, but the following definitions and the relevant properties remain valid.

An affine form is defined to be projective if it can be identically re-written as a linear
combination of the ‘integrated’ forms ηA, defined in eq. (3.2). Then

ψq =
∑

|B|=q+1
TB(zi) ηB . (3.8)

where the homogeneous functions TB(zi) are obtained by suitably combining the functions
RA(zi) in eq. (3.6) with appropriate factors of zi arising from the definition of ηA in eq. (3.2).
As an example, the form ψ2 in eq. (3.7) is clearly projective, since the differentials reconstruct
the form ηA for A = {1, 2, 3}, given in eq. (3.5). Another example of a projective form
that will appear in the following sections is the integrand of the one-loop massless box
integral, which reads

ψ3 (λ, r) = (z1 + z2 + z3 + z4)λ

(r z1z3 + z2z4)2+λ/2 η{1,2,3,4} , (3.9)

where in the concrete application one will have λ = 2ϵ and r = t/s.

3.2 A useful theorem

A useful result in what follows is the statement that the set of projective forms is closed
under differentiation. In other words

Theorem 1. The boundary of a projective form is itself projective.

Proof. Consider an operator p trasforming an affine q-form into a projective (and therefore
also affine) (q − 1)-form, according to

p :
∑
|A|=q

RA(zi)ωA →
∑
|A|=q

RA(zi) ηA . (3.10)

First, we note that the operator p is nilpotent, i.e. p2 = 0. This can be easily shown for a
single term in eq. (3.10), RA(zi)ωA, and the generalization is then straightforward. In fact

p2
(
RA(zi)ωA

)
= p

(
RA(zi)

∑
i∈A

zi ϵi,A−i ωA−i

)
= RA(zi)

∑
i>j,{i,j}∈A

zizj (ϵi,A−i ϵj,A−i−j + ϵj,A−j ϵi,A−j−i) = 0 . (3.11)

An example can serve the purpose of illustrating the cancellation in the last step:

p2
(
RA(zi) dz1 ∧ dz2 ∧ dz3

)
(3.12)

= RA(zi) p
(
z1 dz2 ∧ dz3 − z2 dz1 ∧ dz3 + z3 dz1 ∧ dz2

)
= RA(zi)

(
z1z2dz3 − z1z3dz2 − z2z1dz3 + z2z3dz1 + z3z1dz2 − z3z2dz1

)
= 0 .
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The cancellation clearly works for any subset A ⊂ D, since there are always two terms in the
sum that are proportional to zizj , and they contribute with opposite sign. Considering for
example i < j, when the factor of zj is generated by the first action of p, the sign of the term
is given by the position of the indices i and j in the ordered list of the elements of A. On the
other hand, when the factor zi is generated by the first action of p, what is relevant is the
position of j in A− i.

The nilpotent operator p can be combined with exterior differentiation to map affine
q-forms into affine q-forms. One can then show that

d ◦ p+ p ◦ d = 0 , (3.13)

when acting on any affine q-form ψq. In order to prove eq. (3.13), we note that

(
p ◦ d

)
ψq =

∑
i/∈A

∂RA

∂zi
(−1)|Ai| ηA∪i =

∑
i/∈A

∑
j∈A∪i

∂RA

∂zi
zj (−1)|Ai| (−1)|(A∪i)j | ωA∪i−j , (3.14)

while (
d ◦ p

)
ψq =

∑
j∈A

∑
i/∈A∨ i=j

(
∂RA

∂zi
zj +RA(zℓ) δi,j

)
(−1)|Aj | dzi ∧ ωA−j . (3.15)

By manipulating the indices and combining terms, the sum of eq. (3.14) and eq. (3.15)
becomes(

d ◦ p+ p ◦ d
)
ψq =

∑
j∈A, i/∈A

∂RA

∂zi
zj

(
(−1)|Ai| (−1)|(A∪i)j | + (−1)|Aj | (−1)|(A−j)i|

)
ωA∪i−j

+
∑

j∈A, i=j

RA δi,j ωA +
∑
i∈D

∂RA

∂zi
zi ωA = 0 , (3.16)

as desired. As an example of this last step, consider

ψ2 = z1 + z3
(z1 + z2)3 dz1 ∧ dz2 , (3.17)

which implies

dψ2 = 1
(z1 + z2)3 dz1 ∧ dz2 ∧ dz3 −→

(
p ◦ d

)
ψ2 = 1

(z1 + z2)3 η{1,2,3} . (3.18)

On the other hand, one easily verifies that

(
d ◦ p

)
ψ2 = d

(
z1(z1 + z3)
(z1 + z2)3 dz2 −

z2(z1 + z3)
(z1 + z2)3 dz1

)
= − z3

(z1 + z2)3 dz1 ∧ dz2 −
z1

(z1 + z2)3 dz2 ∧ dz3 +
z2

(z1 + z2)3 dz1 ∧ dz3

= − 1
(z1 + z2)3 η{1,2,3} , (3.19)

as desired. Eq. (3.13), just established, is actually sufficient to conclude the proof of the
theorem. In fact, it can be shown [16] that all projective q-forms can be constructed by acting
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with the operator p on (q + 1)-forms: in other words, they are p-exact, and any ψq can be
written as ψq = p

(
ξq+1

)
. An example can clarify this statement. Consider a generic affine

two-form

ψ2 = R12 dz1 ∧ dz2 +R13 dz1 ∧ dz3 +R23 dz2 ∧ dz3 , (3.20)

where Rij are homogeneous rational functions of degree −2 in the variables z1, z2 and z3. By
imposing that p(ψ2) = 0 it is immediate to obtain

ψ2 = R12
z3

z3dz1 ∧ dz2 −
R12
z3

z2dz1 ∧ dz3 +
R12
z3

z1dz2 ∧ dz3 , (3.21)

which is a projective form. The generalization to affine n-forms is straightforward, as the
condition generates a system of linear equations that is enough to fix all the rational functions
appearing in the form, but one (the overall coefficient function multiplying the projective
volume form). Using this information on the l.h.s. of eq. (3.16), one sees that the first term
vanishes by the nilpotency of p; the second term must then also vanish, which implies that
dψq is itself p-exact and thus projective, as desired.

In the context of Feynman parametric integration, the theorem is significant for the following
reason: given that Feynman integrals in the parameter representation are integrals of projective
forms on a simplex (as discussed below), applying the boundary operator d on the integrand
generates relations among forms with the same properties, i.e. other Feynman integrands, or
generalisations thereof. These relations take the form of linear difference equations, which
in turn can be used to build closed systems of differential equations to ultimately compute
the integrals, just as normally done in the momentum-space representation.

4 Feynman integrals as projective forms

This section presents the core results of our paper. We identify the integrands of Feynman
integrals as projective forms of a specific kind, we examine their properties, and finally we
use the fact that the differential of a projective form is still a projective form to write a set of
generic relations among parametric integrands that include and generalise those appearing in
Feynman integrals. These relations take the form of integration-by-parts (IBP) identities
relating different (generalised) Feynman integrals, and can be used to build and simplify
systems of differential equations in parameter space.

To begin with, consider the projective form

αn−1 = ηn−1
Q
(
{zi}

)
DP

(
{zi}

) , (4.1)

where ηn−1 is the complete projective volume form of the projective space PCn−1, while
Q({zi}) is a polynomial of degree (l + 1)P − n and D({zi}) a polynomial of degree (l + 1).
We recognise that the integrand of eq. (2.5) is a specific instance of such a form, with
the polynomial D given by the second Symanzik polynomial of the graph, F , and with
P = ν − ld/2. A first important property of projective forms such as eq. (4.1), and thus
in particular of Feynman integrands, is the following
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Theorem 2. Given two integration domains, O,O′ ∈ Cn, if their image in PCn−1 is the
same simplex, then

∫
O αn−1 =

∫
O′ αn−1.

Proof. This follows immediately from the fact that

i) αn−1 is a closed form;

ii) ηn−1 is null on each surface defined by zi = 0

Indeed, if we denote by ∆ the subset of Cn given by the surface connecting points in
the boundaries of O and O′ that have a common image in the projective space, then∫

O+∆−O′ αn−1 = 0 because of statement i), while
∫

∆ α
n−1 = 0 because of statement ii).

We note that this theorem provides, in particular, a proof of the so-called Cheng-Wu
theorem [83].4 The theorem, in its original form, states that in the argument of the delta
function in the Feynman-parametrised expression, eq. (2.5), it is possible to restrict the sum
to an arbitrary subset of Feynman parameters zi. In fact, consider the integration of eq. (4.1)
on the projection of the n-dimensional simplex, Sn−1 ≡ {zi |

∑n
i=1 zi = 1}. This choice of

integration domain is arbitrary (within the set of projectively equivalent domains), as was
proven above. This means that, for example, the set defined by {zi |

∑n
i=1 zi = 1} and the

set {zi | zn + t
∑n−1

i=1 zi = t} are equivalent for any positive value of t. In the limit t → ∞
the integration domain becomes independent of zn, and becomes a semi-infinite (n − 1)-
dimensional surface based on the simplex {zi |

∑n−1
i=1 zi = 1}. Figure 2 provides an example

in three dimensions of the two mentioned surfaces. Given these preliminary considerations,
we can proceed using the conventional choice of Sn−1 as integration domain. In that case

dzn = −
n−1∑
i=1

dzi , (4.2)

so that ∫
Sn−1

ηn−1
Q(z)
DP (z) =

∫
zi≥0

dz1 . . . dzn δ

(
1−

n∑
i=1

zi

)
Q(z)
DP (z) , (4.3)

where we use the shorthand notation z for the set {zi}. Any consistent choice of the
polynomials Q(z) and D(z), yielding a projective form, provides a natural generalisation
of eq. (2.5). We can now use the fact that the boundary of a projective (n − 2)-form is a
projective (n− 1)-form, to construct integration-by-parts identities in Feynman parameter
space in full generality. To this end, consider the projective (n − 2)-form

ωn−2 ≡
n∑

i=1
(−1)i η{z}−zi

Hi(z)
(P − 1)

(
D(z)

)P−1 , (4.4)

with any suitable choice of the polynomials Hi(z) and D(z). Technically, we need to restrict
the choice of D(z) so that the singularities of ωn−2 lie in a general position with respect to

4The fact that the Cheng-Wu theorem follows from the projective nature of parameter integrands was
shown in ref. [84], and is discussed for example in ref. [12].
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Figure 2. Example of two domains in R3 that are equivalent under projective transformations.

the simplex integration domain Sn−1, and in particular they do not touch the sub-simplexes
forming the boundaries of Sn−1. This case was labeled as case (A) in [16]. When the
singularities reach the integration domain, it is necessary to perform a blow-up of the singular
points and treat the singular regions separately. Note that dimensionally regularized UV and
IR divergent integrals can be treated without difficulties: these divergences are regulated by
the parameter ϵ, which features in the exponents of the parameters, while the restriction
on D(z) is related to external kinematics, which may force the denominator to vanish on
boundary simplexes.

Acting now with the boundary operator d on the form ωn−2 gives

dωn−2 = 1
(P − 1)

(
D(z)

)P−1 η{z}

n∑
i=1

∂Hi(z)
∂zi

−
η{z}(
D(z)

)P n∑
i=1

Hi
∂D(z)
∂zi

. (4.5)

This is the sought-for integration-by-parts identity: the integration of any projective form
of the kind introduced in eq. (4.1), with the choice

Q
(
z
)
=

n∑
i=1

Hi
∂D(z)
∂zi

, (4.6)

can be reduced to the integration of forms with smaller values of P , modulo a possible
boundary term, which can be integrated via the Stokes theorem on sub-simplexes (this is
the reason for the requirement that the singular surface of αn−1 should not intersect the
boundary). The IBP identities needed to perform the reduction are obtained by suitable
choices of the polynomials Hi(z); for example, by letting Hi(z) be non-zero only for a
particular value of i, one can get as many different equations as the number of parameters. It
is important to stress that the possible presence of non-vanishing boundary terms represents
a substantial difference with respect to the conventional IBP identities in momentum space:
in Feynman parametrisation, boundary terms do not in general integrate to zero. In terms of
Feynman diagrams, the integration over sub-simplexes represents the shrinking of a line of
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the diagram to a point. Eq. (4.5) will be the basis for all the applications in the following
sections. We note that, when applied to Feynman integrals, eq. (4.5) is valid for any number
of loops and external legs, since the structure of the integrands in parameter space can
always be written as was done in eq. (4.1). In order to explore its applications, we begin
by specialising to one-loop graphs.

4.1 One-loop parameter-based IBP

Consider eq. (2.5) for a one-loop diagram with n internal propagators. In this case one
can write

IG(νi, d) = Γ(ν − d/2)∏n
j=1 Γ(νj)

∫
zj≥0

dnz δ
(
1− zn+1

) ∏n+1
j=1 z

νj−1
j[∑n+1

i=1
∑i−1

j=1 sijzizj

]ν−d/2 , (4.7)

where we introduced the matrix sij (i, j = 1, . . . , n + 1), defined by

sij = (qj − qi)2

µ2 (i, j = 1, . . . , n) , si,n+1 = sn+1,i ≡ −
m2

i

µ2 , (4.8)

as well as the auxiliary quantities

zn+1 ≡
n∑

i=1
zi , νn+1 ≡ ν − d+ 1 . (4.9)

The sij represent then the invariant squared masses of the combinations of external momenta
flowing in or out of the diagram between line i and line j. We can now consider eq. (4.4), and
choose for Hi simply the numerator of eq. (4.7). Furthermore, we can consider separately
the n forms obtained by omitting from the projective volume the variable zi, (i = 1, . . . , n),
in turn. This amounts to setting

Hi = δih

 n∏
j=1

z
νj−1
j

( n∑
k=1

zk

)ν−d

= δih

n+1∏
j=1

z
νj−1
j , (4.10)

for some h ∈ {1, . . . , n}. Supposing νh > 1, this leads to

d

(−1)h η{z}−zh

∏n+1
j=1 z

νj−1
j(

ν − (d+ 1)/2
) (∑n+1

i=1
∑i−1

j=1 sijzizj

)ν−(d+1)/2

 =

=
η{z}(

ν − (d+ 1)/2
) (∑n+1

i=1
∑i−1

j=1 sijzizj

)ν−(d+1)/2

[
(νh − 1)Hi

zh
+ (ν − d) Hi

zn+1

]

−
η{z}(∑n+1

i=1
∑i−1

j=1 sijzizj

)ν−(d−1)/2 Hi

(
n+1∑
k=1

(
skh + sk,n+1

)
zk

)
. (4.11)

where sn+1,n+1 = 0. In order to clarify the structure of this expression, we introduce an
index notation, following ref. [30]. We first define

f
(
{ν1, . . . , νn+1}

)
≡ f

(
{R}

)
= η{z}

∏n+1
j=1 z

νj−1
j(∑n+1

i=1
∑i−1

j=1 sijzizj

)ν−d/2 . (4.12)
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Then we write

f
(
{I}−1 , {J }0 , {K}1) (4.13)

to denote the same function as in eq. (4.12), where however the indices νi ∈ {I,J ,K}
have been respectively decreased by one, left untouched, and increased by one. Note that
we consider sets such that {I} ∪ {J } ∪ {K} = R. Furthermore, the raising and lowering
operations are defined in order to preserve the character of f as a projective form, so the
exponent of the denominator is re-determined after raising and lowering the indices. With
this notation, eq. (4.11) can be written as

dωn−2 +
n+1∑
k=1

(skh + sk,n+1) f
(
{R−k}0 , {k}1

)
= νh − 1
ν − (d+ 1)/2 f

(
{h}−1 , {R − h}0

)
(4.14)

+ ν − d
ν−(d+1)/2 f

(
{n+1}−1 , {R−{n+1}}0

)
.

This is the desired ‘integration by parts identity’ at one loop, which at this stage is kept at
integrand level to emphasise the fact that the boundary integral is not a priori vanishing.
Notice that at the one-loop level one also has the constraint

n∑
i=1

f
(
{R − i}0 , {i}1

)
= f

(
{R − {n+ 1}}0 , {n+ 1}1

)
, (4.15)

immediately following from the definition of f and the one-loop Symanzik polynomial.
Ref. [30] shows that, when the boundary term is zero, eq. (4.14) and eq. (4.15) allow

for the systematic construction of a closed system of first-order differential equations. The
proof proceeds by considering a set of parametric integrals containing all integrals obtained
by raising an even number of parameter exponents by one unit (including the one of the
first Symanzik polynomial). The derivatives of these integrals with respect to sij are then
included in a linear system of equations, as in eq. (4.11) and eq. (4.15), which is then solved in
terms of the original set of integrals. This procedure is constructive and algorithmic, but one
notices empirically that the number of integrals in the system is often higher than the number
of actually independent master integrals, in concrete cases with specific mass assignments.
In section 5, we will use a similar construction, trying to minimize the over-completeness
of the resulting bases.

5 One-loop examples

5.1 One-loop massless box

Let us consider the integral in eq. (4.7) for the one-loop massless box integral, where n = 4, and
for simplicity we set the renormalisation scale as µ2 = (p1 + p4)2 ≡ s, while (p1 + p2)2 ≡ t (all
momenta incoming). In particular, we focus on the simple case where all νi = 1, and we define

Ibox = Γ(2 + ϵ)
∫

Sn−1
η{z}

(z1 + z2 + z3 + z4)2ϵ

(rz1z3 + z2z4)2+ϵ ≡ Γ(2 + ϵ) I(1, 1, 1, 1; 2ϵ) , (5.1)
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where, as in eq. (3.9), we defined r = t/s, and the notation for four-point integrals is from
now on I(ν1, ν2, ν3, ν4; ν5). This notation is set up so that the arguments of the function
correspond directly to the exponents of the propagators in the corresponding Feynman
diagrams. Notice that in this framework, as is well known, the dimension of spacetime
becomes simply a parameter related to the exponents of the first Symanzik polynomial,
and dimensional shift identities are naturally encoded in the parameter-based IBP equation,
eq. (4.14). The matrix sij for Ibox reads

sij =


0 0 r 0 0
0 0 0 1 0
r 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 (5.2)

The construction in ref. [30] shows that the integrals that appear in the final differential
equations system are I(1, 1, 1, 1; 2ϵ) and the ones obtained from it by raising by one the
powers νi for an even number of parameters. Based on this result of ref. [30], we expect
a basis set of integrals to be given by{

I(1, 1, 1, 1; 2ϵ), I(2, 1, 2, 1; 2ϵ), I(1, 2, 1, 2; 2ϵ), I(2, 2, 2, 2; 2ϵ)
}
. (5.3)

In this simple case, we know that this basis is over-complete: only three linearly independent
master integrals are needed for the calculation of the one-loop massless box [57]. We will
comment on this problem at the end of this section. For the moment, we push forward with
this ansatz: to verify that this is indeed a basis (albeit over-complete), and that we can close
the system, we consider first the derivative of I(1, 1, 1, 1; 2ϵ) with respect to r,

∂rI(1, 1, 1, 1; 2ϵ) = −(2 + ϵ) I(2, 1, 2, 1; 2ϵ) , (5.4)

which indeed contains only integrals belonging to the desired set. On the other hand

∂rI(2, 1, 2, 1; 2ϵ) = −(3 + ϵ) I(3, 1, 3, 1; 2ϵ) . (5.5)

In order to proceed, it is necessary to express the integral I(3, 1, 3, 1; 2ϵ) in terms of integrals
belonging to the chosen set. Eq. (4.14) for ν1 = 3, ν3 = 2, ν2 = ν4 = 1 and h = 1 becomes

rI(3, 1, 3, 1; 2ϵ) +
∫
dωn−2 = 2

3 + ϵ
I(2, 1, 2, 1; 2ϵ) + 2ϵ

3 + ϵ
I(3, 1, 2, 1;−1 + 2ϵ) . (5.6)

The boundary term is

z2
1z3 (z1 + z2 + z3 + z4)2ϵ

(3 + ϵ)(rz1z3 + z2z4)3+ϵ

(
z2dz3 ∧ dz4 − z3dz2 ∧ dz4 + z4dz2 ∧ dz3

)∣∣∣∣∣
∂Sn−1

= 0 , (5.7)

which follows from the fact that the projective form η234 vanishes on all boundary sub-
simplexes, except the one defined by z1 = 0, where however the integrand is zero. This
property holds for all the identities used in this section, and the reasoning will not be repeated.
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Consider now eq. (4.14) for ν1 = ν2 = ν3 = 2, ν4 = 1 and h = 2, as well as the sum rule
in eq. (4.15) for I(2, 1, 2, 1;−1 + 2ϵ). One finds

I(2, 2, 2, 2; 2ϵ) = 1
3 + ϵ

I(2, 1, 2, 1; 2ϵ) + 2ϵ
3 + ϵ

I(2, 2, 2, 1;−1 + 2ϵ) ,

I(2, 1, 2, 1; 2ϵ) = 2I(3, 1, 2, 1;−1 + 2ϵ) + 2I(2, 2, 2, 1;−1 + 2ϵ) , (5.8)

where the symmetry of the integrand under the exchange of (z1, z3) with (z2, z4) has already
been taken into account. This system and eq. (5.6) allow to find a solution for I(3, 1, 3, 1; 2ϵ),
given by

I(3, 1, 3, 1; 2ϵ) = 1
r

[
I(2, 1, 2, 1; 2ϵ)− I(2, 2, 2, 2; 2ϵ)

]
, (5.9)

involving only integrals allowed in the system. Furthermore, one easily sees that the integral
I(2, 2, 2, 2; 2ϵ) is also involved in the equation

∂rI(1, 2, 1, 2; 2ϵ) = −(3 + ϵ)I(2, 2, 2, 2; 2ϵ) . (5.10)

The last derivative to be computed in terms of the chosen set of basis integrals is
∂rI(2, 2, 2, 2; 2ϵ), which is proportional to I(3, 2, 3, 2; 2ϵ). Using the same procedure adopted so
far, it is possible to get a linear system of equations, whose solution for the desired integral is

I(3, 2, 3, 2; 2ϵ) = I(2, 1, 2, 1; 2ϵ)− I(1, 2, 1, 2; 2ϵ) + (3 + ϵ)(1 + ϵ+ 3r)I(2, 2, 2, 2; 2ϵ)
(3 + ϵ)(4 + ϵ) r(1 + r) (5.11)

The system of differential equations for our basis set of integral is now complete, and it reads

∂rb ≡ ∂r


I(1, 1, 1, 1; 2ϵ)
I(2, 1, 2, 1; 2ϵ)
I(1, 2, 1, 2; 2ϵ)
I(2, 2, 2, 2; 2ϵ)

 =


0 −(2 + ϵ) 0 0
0 −3+ϵ

r 0 3+ϵ
r

0 0 0 −(3 + ϵ)
0 − 1

(3+ϵ)r(1+r)
1

(3+ϵ)r(1+r) −
1+ϵ+3r

(3+ϵ)r(1+r)

b . (5.12)

Given eq. (5.12), one can proceed using standard methods. In particular, eq. (5.12) is not
in canonical form [11]. Several techniques are available to solve this problem [58–61, 86].
Here, we simply follow the method of Magnus exponentiation [62]: the necessary steps are
presented in appendix B. Once the system is in canonical form, it can be solved iteratively
as a power series in ϵ by standard methods.5

In the spirit of a proof-of-concept, we have not developed a systematic approach to the
search for useful boundary conditions to determine the unique relevant solution of the system.
In the case at hand, continuity in r = −1, uniform-weight arguments, and the known value
of the residue of the double pole in ϵ can be used to recover the known solution. We find

Ibox = k(ϵ)
r

[ 1
ϵ2
− log r

2ϵ −
π2

4 + ϵ

(1
2 Li3(−r)−

1
2 Li2(−r) log r +

1
12 log3 r

− 1
4 log(1 + r)

(
log2 r + π2

)
+ 1

4 π
2 log r + 1

2ζ(3)
)

+ O(ϵ2)
]
, (5.13)

5We notice that the final system of equations that we reach in this way is not in d log form, which is
connected to the over-completeness of our basis. This is not a problem in this case, since the necessary
iteration can be easily completed to the desired accuracy. As discussed below, when the Barucchi-Ponzano
algorithm is sharpened to generate IBPs closing on an actual basis, the resulting system can be cast in d log
form, as expected.
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matching the result reported, for example, in ref. [57]. The one-to-one correspondence between
the two results is found by setting the overall constant k(ϵ) = 4 − π2

3 ϵ
2 − 40ζ(3)

3 ϵ3.
Let us now consider the issue of the over-completeness of the basis that we have used.

So far, we have directly implemented the Barucchi-Ponzano strategy, since our goal here
is to establish the viability of the method, and to test the procedure of ref. [30] in the
presence of infrared divergences: therefore, we proceeded with the ansatz in eq. (5.3). The
over-completeness issue, however, can lead to problems with the integrability of the resulting
system of differential equations and must be addressed. In the present case, we can first of all
note that (as shown in appendix A) the system we obtain is in fact integrable. Furthermore,
the authors of ref. [30] prove in general that the solution of the system of differential equation
that they derive can be expressed as a series expansion, or via iterated integrals, following
the approach of ref. [32]: this amounts to an explicit algorithm to construct the solution,
which must therefore exist. One is not, however, tied to the original Barucchi-Ponzano
ansatz: indeed, starting from eq. (4.5), it is not difficult to show that one can get to a
different, equivalent IBP system, which closes on a true basis of three master integrals.
This alternative construction is also presented in appendix A.6 Specifically, with a different
choice of the polynomials Hi(z), eq. (4.5) generates a further relation among the integrals
in eq. (5.3), given by

I(1, 2, 1, 2, 2ϵ) = I(1, 1, 1, 1, 2ϵ)− rI(2, 1, 2, 1, 2ϵ) . (5.14)

This result confirms that, for one-loop integrals, the Barucchi-Ponzano strategy works, and the
system of differential equations can be consistently solved. At the same time, the discussion
highlights the importance of an optimal choice of the polynomials Hi(z), especially beyond
one loop, where a general constructive procedure for the solution of the system of differential
equations is not yet available.

5.2 One-loop massless pentagon

We now turn to the natural next step, the one-loop massless pentagon. In dimensional
regularisation, it is well-known that this integral can be expressed as a sum of one-loop boxes
with one external massive leg (corresponding to the contraction to a point of one of the
loop propagators), up to corrections vanishing in d = 4. In this section, we will recover this
result, showing that, in this case, the method connects to the derivation of the pentagon
integral first reported in ref. [63]. From the point of view of projective forms, the analysis of
this case is interesting because it involves non-vanishing boundary terms, contrary to what
happened in section 5.1 and to the analysis of ref. [30].

Consider then eq. (4.11) for a five-parameter integral with ν1 = ν2 = ν3 = ν4 = ν5 = 1,
and the exponent of the U polynomial equal to 2ϵ. Starting with the case h = 1, we
obtain the equation∫

S{1,2,3,4,5}

dω3 + s13 I(1, 1, 2, 1, 1; 2ϵ) + s14 I(1, 1, 1, 2, 1; 2ϵ) =
2ϵ

2 + ϵ
I(1, 1, 1, 1, 1;−1 + 2ϵ) ,

(5.15)
6The alternative construction leads to a system that, provided a suitable transformation matrix, can be

reduced to d log form. The authors thank Yingxuan Xu for providing a proof of this statement via the software
CANONICA [86].
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with

dω3 = d

[
− η{2,3,4,5}

(z1 + z2 + z3 + z4 + z5)2ϵ

(2 + ϵ) (s13z1z3 + s14z1z4 + s24z2z4 + s25z2z5 + s35z3z5)2+ϵ

]
. (5.16)

Using Stokes theorem, and considering the only subset of the boundary of the five-dimensional
simplex where η{2,3,4,5} ̸= 0, the boundary term of this equation becomes∫

S{2,3,4,5}

η{2,3,4,5}
(z2 + z3 + z4 + z5)2ϵ

(s24z2z4 + s25z2z5 + s35z3z5)2+ϵ = I
(1)
box(s25) , (5.17)

where I(1)
box is a one-loop box integral with one massive external leg, with a squared mass

proportional to s25. Effectively, the propagator with index ν1 has been contracted to a point.
Note that, when applying Stokes theorem, the integration over boundary domains corresponds
to the proper integration region, needed to obtain the lower-point Feynman integral, up to a
sign arising from the orientation of the boundary. Reversing this orientation, when needed,
produces a sign that, for example, cancels the minus sign in eq. (5.16).

Considering, in a similar way, all the possible values for h, the following system of
equations is obtained

(2 + ϵ)


0 0 s13 s14 0
0 0 0 s24 s25
s13 0 0 0 s35
s14 s24 0 0 0
0 s25 s35 0 0




I(21111; 2ϵ)
I(12111; 2ϵ)
I(11211; 2ϵ)
I(11121; 2ϵ)
I(11112; 2ϵ)

+



I
(1)
4 (s25)
I

(2)
4 (s13)
I

(3)
4 (s24)
I

(4)
4 (s35)
I

(5)
4 (s14)


= 2ϵI(11111;−1 + 2ϵ)


1
1
1
1
1

,

(5.18)
where the integral I(1, 1, 1, 1, 1;−1+2ϵ) is proportional to the pentagon integral in d = 6−2ϵ.
The solution to this system for the pentagon integral I(1, 1, 1, 1, 1; 1 + 2ϵ) =

∑5
i=1 I({i}1) is

2(2 + ϵ) I(1, 1, 1, 1, 1; 1 + 2ϵ) =
{
s13s24 − s13s25 − s14s25 + s14s35 − s24s35

s13s14s25
I

(1)
box

− s13s24 + s13s25 − s14s25 + s14s35 − s24s35
s13s24s25

I
(2)
box

− s13s24 − s13s25 + s14s25 − s14s35 + s24s35
s13s24s35

I
(3)
box

+ s13s24 − s13s25 + s14s25 − s14s35 − s24s35
s14s24s35

I
(4)
box

− s13s24 − s13s25 + s14s25 + s14s35 − s24s35)
s14s25s35

I
(5)
box

}
+2ϵ I(1, 1, 1, 1, 1;−1 + 2ϵ) , (5.19)

recovering the result of ref. [63]. The correspondence between the coefficients reported here
and those of ref. [63] can be derived using the definition ci =

∑5
j=1 Sij in their notation. A

direct consequence of eq. (5.19) is the well-known theorem stating that the one-loop massless
pentagon can be expressed as a sum of one-loop boxes with an external massive leg, up to
O(ϵ) corrections. This last statement is due to the infrared and ultraviolet convergence of
the 6− 2ϵ dimensional pentagon, which implies that the last line of eq. (5.19) is O(ϵ).
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Figure 3. Sunrise diagram.

6 Two-loop examples

The first Symanzik polynomial for l-loop Feynman integrals, with l > 1, displays a much
more varied and intricate structure compared to the one-loop case, corresponding to the
factorially growing variety of graph topologies that can be constructed. Some classes of
diagrams can still be described to all orders: a natural example is given by the so-called
l-loop sunrise graphs, depicted in figure 3, contributing to two-point functions and involving
(l + 1) propagators. The monodromy ring for these graphs was identified in ref. [17], but this
result was not (at the time) translated into a systematic method to construct differential
equations. The simplest non-trivial graph of this kind corresponds to l = 2, and we will
discuss it below, in section 6.1, in the case in which the masses associated with the three
propagators are all equal. We will then consider the other non-trivial topology contributing
to two-point functions at two loops, the five-edge diagram depicted in figure 4.

6.1 Two-loop equal-mass sunrise integral

Sunrise graphs at l loops are characterised by the first Symanzik polynomial

Ul =
l+1∑
i=1

z1 . . . ẑi . . . zl+1 , (6.1)

where ẑi is excluded from the product. Graphs of this class have generated a lot of interest in
recent years. The two-loop sunrise graph with massive propagators is the simplest Feynman
integral involving elliptic curves, and has been extensively studied both in the equal-mass
case and with different internal masses [64–75]; furthermore, sunrise diagrams with massive
propagators at higher loops provide early examples of integrals involving higher-dimensional
varieties, notably Calabi-Yau manifolds [76–80].

In our present context, we would simply like to show how the projective framework that
we are developing leads to the Picard-Fuchs differential equation obeyed by the (equal-mass)
two-loop sunrise integral [65]. To this end, consider again equation eq. (3.7), which gives
the relevant integral. In our present notation

I
(
ν1, ν2, ν3;λ4

)
=
∫

S{1,2,3}

η3 z
ν1−1
1 zν2−1

2 zν3−1
3

(
z1z2 + z2z3 + z3z1)λ4[

r z1z2z3 − (z1 + z2 + z3)
(
z1z2 + z2z3 + z3z1

)] 2λ4+ν

3

, (6.2)
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where here r = p2

m2 , and pµ is the external momentum. For simplicity, we will work in d = 2,
where the integral is finite both in the ultraviolet and in the infrared. In this case, the first
Symanzik polynomial drops out, and the integrand is simply the inverse of the second graph
polynomial. It is important to note that for this diagram both Symanzik polynomials vanish
when approaching the boundary of the simplex S{1,2,3}, at the points zi → zj → 0 and zk → 1.
In principle, this configuration invalidates the application of Stokes theorem, as discussed
in section 4, and one needs to introduce a regularisation, for example by deforming the
boundaries of the simplex near the corners [65, 68, 73]. In the equal-mass case, the domain
deformation can be avoided, since the corresponding corrections cancel: we will therefore
proceed with the general method, applying directly eq. (4.5). For an explicit discussion of
the differences between the two cases, see ref. [81].

Continuing with the strategy adopted at one loop, we use the numerator of eq. (6.2)
(at this stage still for generic d) to define

H(z) = zν1−1
1 zν2−1

2 zν3−1
3

(
z1z2 + z2z3 + z3z1

)λ4 , (6.3)

which gives

∂H

∂zh
= (νh − 1) H

zh
+ λ4

H

U2
(zj + zk) , h = 1, 2, 3 , j ̸= k ̸= h . (6.4)

Furthermore, denoting as before the square bracket in denominator of the integrand in
eq. (6.2) by D(r), we find

∂D(r)
∂zh

= −2U2 + (r − 1)zjzk − z2
j − z2

k , h = 1, 2, 3 , j ̸= k ̸= h . (6.5)

Inserting eq. (6.4) and eq. (6.5) into eq. (4.5), and picking the appropriate value of P to
ensure projective invariance, we arrive at the IBP equations

dω2 = 3
2λ4 + ν − 1

η3[
D(r)

] 2λ4+ν−1
3

[
(νh − 1) H

zh
+ λ4

H

U
(zj + zk)

]
+

− η3[
D(r)

] 2λ4+ν+2
3

[
− 2U + (z − 1)zjzk − z2

j − z2
k

]
H

= 3
2λ4 + ν − 1

[
(νh − 1) f

(
{h}−1

)
+ λ4 f

(
{4}−1, {j}1

)
+ λ4 f

(
{4}−1, {k}1

)]
+

−
[
− 2f

(
{4}1

)
+ (z − 1)f

(
{j, k}1

)
− f

(
{j}2

)
− f

(
{k}2

)]
, (6.6)

where in the second step we used the notation for raising and lowering operators in the
function f as discussed in section 4.1. The functions f are also related by the identity

f
(
{1, 2}1

)
+ f

(
{2, 3}1

)
+ f

(
{3, 1}1

)
= f

(
{4}1

)
. (6.7)

Using the sum rule in eq. (6.7), and eq. (6.6), we can build a linear system of equations involving
the integrals I(1, 1, 1, 3ϵ), I(2, 1, 1, 1 + 3ϵ), and a non-vanishing boundary contribution B,
arising from the IBP relation for I(2, 2, 1, 1 + 3ϵ) when taking h = 3 (at this point, it should
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be clear that boundary terms only survive when νh = 1). The linear system is presented
in appendix D, and the boundary term contributes to the equation

B =
∫
dω1 (6.8)

= 1 + 3ϵ
1 + ϵ

I(3, 2, 1; 3ϵ) + (1− z)I(3, 3, 1; 1 + 3ϵ) + 2I(4, 2, 1; 1 + 3ϵ) + 2I(2, 2, 1; 2 + 3ϵ) ,

where ∫
dω1 = 1

2(1 + ϵ)

∫
S{1,2}

η{1,2}
(z1z2)ϵ[

− (z1 + z2)
]2+2ϵ = (−1)2ϵ

2 + 2ϵ
Γ2(1 + ϵ)
Γ(2 + 2ϵ) . (6.9)

Note that the minus sign in the denominator and the factor of (−1)2ϵ come from the convention
of including the masses with a minus sign in the second Symanzik polynomial. As stated
above, we now set d = 2, so that the boundary term simply becomes B = 1

2 .
The linear system given in appendix D is sufficient to yield the following non-homogeneous

differential equations, involving two master integrals (the third master integral appears here
as the non-vanishing boundary term):r

d
dr I(1, 1, 1; 0) = I(1, 1, 1; 0) + 3I(2, 1, 1; 1) ,

r(r − 1)(r − 9) d
dr I(2, 1, 1; 1) = (3− r)I(1, 1, 1; 0) +

(
9− r2) I(2, 1, 1; 1) + 2r ,

.(6.10)

We note that the differential equation system in eq. (6.10) is the same reported in [82],
up to a different normalisation of the non-homogeneous term, which is solely due to our
different normalisation of Feynman integrals. This system can be transformed into a single
second-order differential equation of Picard-Fuchs type by using the OreSys package for
Mathematica: the result is

r

3
d2

dr2 I(1, 1, 1; 0) +
(1
3 + 3

r − 9 + 1
3(r − 1)

)
d

dr
I(1, 1, 1; 0)

−
( 1
4(r − 9) +

1
12(r − 1)

)
I(1, 1, 1; 0) = 2

(r − 1)(r − 9) , (6.11)

corresponding to the elliptic second order differential equation discussed in [64, 82], up to
our different normalisation.

6.2 Two-loop five-edge diagram

As a last example, we consider the two-loop, five-edge diagram represented in figure 4, with
all internal edges taken to be massless. In this way, the only kinematic parameter is the
squared momentum p2 carried by the external legs. This diagram has been extensively
studied, starting with the seminal discussion in ref. [3]. In this section, the result of [3] is
re-derived by using the parameter-space method presented in this article.

The graph polynomials for this diagram are given by

U = (z1 + z2)(z3 + z4) + z5

4∑
i=1

zi ,

F = p2(z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4 +
z1z2z5 + z2z3z5 + z3z4z5 + z1z4z5

)
. (6.12)
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Figure 4. Two-loop five-edge diagram.

The two polynomials (and the corresponding Feynman integral) are symmetric under the
re-labeling

(z1, z2) ←→ (z4, z3) ,
(z1, z3) ←→ (z2, z4) , (6.13)

a property which reflects the symmetries of the graph, and which can be used to simplify
the expressions resulting from the integration by parts identities in eq. (4.5). Indeed, it is a
virtue of all approaches based on parameter space that such symmetries under permutations
of the graph propagators are manifest from the beginning, and one does not have to deal with
the degeneracy of possible graph parametrisations associated with different loop-momentum
assignments, as is the case in momentum space.

To illustrate the use of these symmetries, consider the integral

I(1, 1, 1, 1, 1;−1 + 3ϵ) =
∫

S5
η5
U−1+3ϵ

F1+2ϵ
(6.14)

which is proportional to the Feynman integral associated with figure 4. Eq. (6.12) implies that

I(1, 1, 1, 1, 1;−1 + 3ϵ) = I(2, 1, 2, 1, 1;−2 + 3ϵ) + I(2, 1, 2, 1, 1;−2 + 3ϵ)
+I(2, 1, 2, 1, 1;−2 + 3ϵ) + I(2, 1, 2, 1, 1;−2 + 3ϵ)
+I(2, 1, 2, 1, 1;−2 + 3ϵ) + I(2, 1, 2, 1, 2;−2 + 3ϵ)
+I(2, 1, 2, 1, 2;−2 + 3ϵ) + I(2, 1, 2, 1, 1;−2 + 3ϵ) , (6.15)

and the use of the symmetry properties of the graph polynomials reduces this equation
to the much simpler form

I(1, 1, 1, 1, 1;−1 + 3ϵ) = 2I(2, 1, 2, 1, 1;−2 + 3ϵ) + 2I(2, 1, 1, 2, 1;−2 + 3ϵ)
+ 4I(2, 1, 1, 1, 2;−2 + 3ϵ) . (6.16)

Eq. (6.16) is the first step necessary for reducing integral in eq. (6.14) to a linear combination
of simpler integrals.

Consider now the integration by parts identity in eq. (3.4), with h = 1, and with

ω1 = − η{2,3,4,5}
z3 U−1+3ϵ

(1 + 2ϵ)F1+2ϵ
. (6.17)
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One obtains then the integration by part identity

dω1 = η5
(1 + 2ϵ)F1+2ϵ

∂

∂z1

(
z3 U−1+3ϵ

)
− η5
F2+2ϵ

(
z3 U−1+3ϵ

) ∂F
∂z1

. (6.18)

Upon integration over the simplex S5, this yields

Ω1
1 + 2ϵ = −1− 3ϵ

1 + 2ϵ
[
I(1, 1, 3, 1, 1;−2 + 3ϵ) + I(1, 1, 2, 2, 1;−2 + 3ϵ) + I(1, 1, 2, 1, 2;−2 + 3ϵ)

]
− p2

[
I(1, 2, 3, 1, 1;−1 + 3ϵ) + I(1, 2, 2, 2, 1;−1 + 3ϵ) + I(1, 1, 3, 2, 1;−1 + 3ϵ)

+I(1, 1, 2, 2, 2;−1 + 3ϵ) + I(1, 2, 2, 1, 2;−1 + 3ϵ)
]
. (6.19)

The integral Ω1 can be calculated by means of Stokes’ theorem, with the result

Ω1 ≡ (1 + 2ϵ)
∫

S5
dω1 = (1 + 2ϵ)

∫
∂S5

ω1 =
∫

S4
η{2,3,4,5}

z3 U−1+3ϵ

F1+2ϵ
, (6.20)

where the sign in the definition of ω1, eq. (6.17), is absorbed by the boundary ∂S5 = −S{2,3,4,5},
since the integrand vanishes on the other sub-simplexes comprising ∂S5. The boundary term
Ω1 is proportional to the Feynman integral obtained from the diagram in figure 4 when the
edge labelled 1 shrinks to a point, and the propagator corresponding to edge 3 is raised
to the power of 2. This integral can be evaluated straightforwardly, yielding a product of
Gamma functions (see for example ref. [3]).

A similar strategy can be applied to find the three other equations that are necessary to
reduce the two-loop five-edge integral to simpler integrals. The resulting equations are

1
1 + 2ϵ Ω2 = − 1− 3ϵ

1 + 2ϵ
[
I(1, 1, 3, 1, 1;−2 + 3ϵ) + I(1, 1, 2, 2, 1;−2 + 3ϵ)

+ I(1, 2, 2, 1, 1;−2 + 3ϵ) + I(1, 2, 1, 2, 1;−2 + 3ϵ)
]

− p2
[
I(2, 2, 1, 2, 1;−1 + 3ϵ) + I(1, 1, 3, 2, 1;−1 + 3ϵ)

+ I(1, 2, 3, 1, 1;−1 + 3ϵ) + I(1, 2, 2, 2, 1;−1 + 3ϵ)
]
, (6.21)

0 = 1
1 + 2ϵ

[
I(1, 1, 1, 1, 1;−1 + 3ϵ)− (1− 3ϵ)

(
I(1, 2, 2, 1, 1;−2 + 3ϵ)

+ I(1, 2, 1, 2, 1;−2 + 3ϵ) + I(1, 1, 2, 1, 2;−2 + 3ϵ)
)]

− p2
[
2I(1, 2, 2, 2, 1;−1 + 3ϵ) + I(2, 2, 1, 2, 1;−1 + 3ϵ)

+ I(1, 2, 2, 1, 2;−1 + 3ϵ) + I(1, 1, 2, 2, 2;−1 + 3ϵ)
]
, (6.22)

0 = 1
1 + 2ϵ

[
I(1, 1, 1, 1, 1;−1 + 3ϵ)− 4(1− 3ϵ)I(1, 1, 2, 1, 2;−2 + 3ϵ)

]
− p2

[
2I(1, 1, 2, 2, 2;−1 + 3ϵ) + 2I(1, 2, 2, 1, 2;−1 + 3ϵ)

]
. (6.23)

In this case, the boundary term in eq. (6.21) is given by

Ω2 = (1 + 2ϵ)
∫

S5
dω2 = (1 + 2ϵ)

∫
∂S5

ω2 =
∫

S4
η{1,2,3,4}

z2 U−1+3ϵ

F1+2ϵ
, (6.24)
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corresponding to the diagram with the edge 5 shrunk to a point. Solving the system given by
eqs. (6.21)–(6.23), together with eq. (6.18) and eq. (6.19) leads to the result

ϵ I(1, 1, 1, 1, 1;−1 + 3ϵ) = −Ω1 +Ω2 , (6.25)

which coincides with the well-known result of [3]. As is the case with the momentum-space
calculation, we note that in this case one is actually not employing differential equations,
since integration by parts identities directly yield elementary integrals.

7 Assessment and perspectives

In this paper, we have developed a projective framework to derive IBP identities and differential
equations for Feynman integrals in parameter space, updating and extending ideas and results
that first emerged half a century ago, prior to modern developments. We have emphasised the
significance of the early mathematical results reported in [16–19], which resonate strikingly
with contemporary research. These ideas from algebraic topology were turned into a concrete
application to one-loop diagrams by Barucchi and Ponzano [30, 31]. In order to apply
these results in the modern context, we have shown how the analysis extends naturally to
dimensional regularisation, we have generalised the results to the two-loop level (indeed we
expect the technique to be applicable to all orders), and we have emphasised the role played
by boundary terms in the IBP identities, noting that they do not vanish in general, and in fact
they provide a useful tool to link complicated integrals to simple ones. All these developments
have explicitly been tested on relatively simple one- and two-loop diagrams, recovering known
results, including the elliptic differential equation for the equal-mass sunrise diagram.

It is a natural question to ask how this method compares to the usual momentum-
space approach. Clearly, this question cannot be answered in detail and in quantitative
computational terms at this stage, since this is just an exploratory study, while momentum-
space techniques have been honed through decades of optimisation. We can however make
a few observations already at this stage.

First of all, it is clear that the parameter-space method offers, to say the least, a rather
different organisation of the calculation of an integral family, as compared to momentum-
space algorithms. This should be evident from the concrete cases examined in the text:
for example, the integral basis arising naturally from the Barucchi-Ponzano theorem for
the massless box is not the same as the conventional one, and the differential equations
that emerge are different too [57].

We note further that the way in which the lattice of different (integer) values of the
indices νi is explored in parameter space appears different from standard IBPs. In the absence
of boundary terms, parameter-space IBPs connect integrals with a fixed number of external
legs, but different space-time dimensions. This is not necessarily a positive feature, since
the goal of reduction algorithms is to a large extent to connect complicated integrals to
simpler ones. It must however be noted that, in standard algorithms [7], the goal of achieving
this simplification is reached in a rather roundabout way, through the ordering imposed in
the recursive exploration of the index lattice. In parameter space, this simplifying step is
specifically associated with the novel feature of non-vanishing boundary terms, which give
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lower-point integrals. These terms can in principle be reached in a simple way by suitably
picking the initial values of the indices, as was done for the massless pentagon in section 5.2.

Continuing with the comparison, we observe that both the momentum-space algorithms
and the projective one have a large degree of arbitrariness in their initialisation, which
leaves room for optimisation. In the present case, there is clearly the possibility of many
different choices for the functions Hi(z) introduced in eq. (4.5). It is quite natural to choose
the numerators of the original integral, as we did, but it would be interesting to explore
variations on this theme with an eye to optimisation. On the other hand, in contrast to
momentum-space algorithms, we observe that the parameter-space approach bypasses the
ambiguity due to the choice of loop-momentum routing, which can be non-negligible for
complicated diagrams; similarly, the issue of irreducible numerators is implicitly dealt with at
the momentum integration stage. These two aspects are among the consequences of the fact
that parameter space offers a minimal representation of Feynman integrals, transparently
related to the symmetries of the original Feynman graph.

An especially promising aspect of the projective framework is its close connection to
the most significant algebraic structures associated with Feynman integrals. The Barucchi-
Ponzano analysis can indeed be seen as an application of the results of ref. [18], and it is
notable that it succeeds not only in constructing a system of differential equations for n-point
one-loop integrals, but also in setting a bound on the size of the system, guaranteeing its
closure, and providing an algorithmic construction. This is to be contrasted with the very
large size of the systems of IBP identities that emerge in the intermediate stages of calculations
in standard algorithms. It is clearly a goal of future research to extend these techniques and
the analysis of Regge and collaborators to more complicated two- and higher-point integrals.
In particular, studies on three-loop two-point functions and on two-loop three-point functions
are currently ongoing, and steps towards the automation of the generation of IBPs in the
projective framework are under way, with the goal of reaching state-of-the-art topologies
such as two-loop penta- and hexa-boxes and three-loop four-point functions. When complex
multi-scale examples of this kind become available, a more thorough comparison of the two
approaches, including computational aspects, will become possible.
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A IBPs for the one-loop massless box

Here we briefly present the collections of linear identities that can be used to close the system
of differential equations in eq. (5.12) for the one-loop massless box diagram.

In a direct implementation of the algorithm proposed in [30, 31], the chosen basis integrals
are I(1, 1, 1, 1; 2ϵ), I(2, 1, 2, 1; 2ϵ), I(1, 2, 1, 2; 2ϵ) and I(2, 2, 2, 2; 2ϵ): all the other relevant
integrals are determined by the linear system presented below. We find

r I(3, 1, 3, 1; 2ϵ) = 1
3 + ϵ

[
2I(2, 1, 2, 1; 2ϵ) + 2ϵI(3, 1, 2, 1;−1 + 2ϵ)

]
,

I(2, 2, 2, 2; 2ϵ) = 1
3 + ϵ

[
I(2, 1, 2, 1; 2ϵ) + 2ϵI(2, 2, 2, 1;−1 + 2ϵ)

]
,

I(2, 1, 2, 1; 2ϵ) = 2I(2, 2, 2, 1;−1 + 2ϵ) + 2I(3, 1, 2, 1;−1 + 2ϵ) ,

r I(3, 2, 3, 2; 2ϵ) = 1
4 + ϵ

[
2I(2, 2, 2, 2; 2ϵ) + 2ϵI(3, 2, 2, 2;−1 + 2ϵ)

]
,

I(2, 2, 2, 2; 2ϵ) = 2I(2, 3, 2, 2;−1 + 2ϵ) + 2I(3, 2, 2, 2;−1 + 2ϵ) ,

I(2, 3, 2, 3; 2ϵ) =
( 1
2 + ϵ

)
I(2, 2, 2, 2; 2ϵ) + 2ϵI(2, 3, 2, 2;−1 + 2ϵ)

4 + ϵ
,

r I(3, 2, 2, 2;−1 + 2ϵ) = 1
3 + ϵ

[
I(2, 2, 1, 2;−1 + 2ϵ)− (1− 2ϵ)I(2, 2, 2, 2;−2 + 2ϵ)

]
,

I(2, 3, 2, 2;−1 + 2ϵ) = 1
3 + ϵ

[
I(2, 2, 2, 1;−1 + 2ϵ)− (1− 2ϵ)I(2, 2, 2, 2;−2 + 2ϵ)

]
,

r I(2, 2, 2, 2; 2ϵ) = 1
3 + ϵ

[
I(1, 2, 1, 2; 2ϵ) + 2ϵI(2, 2, 1, 2;−1 + 2ϵ)

]
. (A.1)

These are nine equations involving twelve independent integrals, to which one must add
the original integral to be determined, I(1, 1, 1, 1; 2ϵ). The system is of course easily solved
with elementary methods.

As noted in the text, the correct number of master integrals of the one-loop massless box
is 3, rather than 4. This fact emerges from the algorithm by Barucchi and Ponzano, with the
original choice of Hi(z), by generating further identities, which are found to provide a linear
connection between the four chosen integrals. Alternatively, one can choose lower-degree
monomials for Hi(z), which directly allow to remove I (1, 2, 1, 2; 2ϵ) from the earlier ‘basis’, and
reduce the dependence of all integrals to the other three elements. Using this strategy we get

2
(3 + ϵ)I(2, 1, 2, 1, 2ϵ) +

2ϵ
(3 + ϵ)I(3, 1, 2, 1,−1 + 2ϵ)− I(3, 1, 3, 1, 2ϵ)r = 0

1
(3 + ϵ)I(1, 2, 1, 2, 2ϵ) +

2ϵ
(3 + ϵ)I(2, 2, 1, 2,−1 + 2ϵ)− I(2, 2, 2, 2, 2ϵ)r = 0

1
(3 + ϵ)I(2, 1, 2, 1, 2ϵ) +

2ϵ
(3 + ϵ)I(2, 2, 2, 1,−1 + 2ϵ)− I(2, 2, 2, 2, 2ϵ) = 0

2
(4 + ϵ)I(2, 2, 2, 2, 2ϵ) +

2ϵ
(4 + ϵ)I(3, 2, 2, 2,−1 + 2ϵ)− I(3, 2, 3, 2, 2ϵ)r = 0

1
(3 + ϵ)I(2, 2, 1, 2,−1 + 2ϵ)− 1

(3 + ϵ)I(2, 2, 2, 1,−1 + 2ϵ)+

+I(2, 3, 2, 2,−1 + 2ϵ)− I(3, 2, 2, 2,−1 + 2ϵ)r = 0
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2
(2 + ϵ)I(1, 1, 1, 1, 2ϵ) +

2ϵ
(2 + ϵ)I(1, 2, 1, 1,−1 + 2ϵ)+

+ 2ϵ
(2 + ϵ)I(2, 1, 1, 1,−1 + 2ϵ)− I(1, 2, 1, 2, 2ϵ)− I(2, 1, 2, 1, 2ϵ)r = 0

−I(1, 1, 1, 1, 2ϵ) + 2I(1, 2, 1, 1,−1 + 2ϵ) + 2I(2, 1, 1, 1,−1 + 2ϵ) = 0
−I(2, 1, 2, 1, 2ϵ) + 2I(2, 2, 2, 1,−1 + 2ϵ) + 2I(3, 1, 2, 1,−1 + 2ϵ) = 0
−I(2, 2, 2, 2, 2ϵ) + 2I(2, 3, 2, 2,−1 + 2ϵ) + 2I(3, 2, 2, 2,−1 + 2ϵ) = 0 (A.2)

also including relations involving I(1, 1, 1, 1; 2ϵ) like the sixth and the seventh identities in
eq. (A.2). The system of differential equations we get from the identities in eq. (A.2) can
be reduced to the d log form

db = ϵ


 0 −2 0

1
2 −2 0
1
2 −2 0

 d log r +
 0 0 2
0 0 1
0 0 1

 d log(1 + r)

b , (A.3)

by using, for example, the software Canonica [86].

B Magnus exponentiation

In this appendix, we will briefly review the Magnus exponentiation technique for solving
systems of linear differential equations, and its application to the massless box in section 5.1.
In general, one may consider a system of differential equations of the form

∂rb(r) = M(r, ϵ)b(r) , (B.1)

where b(r) is a vector of functions of r, and the matrix M can be written as M(r, ϵ) =
A(r) + ϵB(r).

In order to reduce the system to canonical form, consider a change of basis b(r) =
C(r)b′(r) where the matrix C can depend on r but not on ϵ. The system for the vector
b′(r) is then determined by the matrix

M ′(r, ϵ) = C−1(r)A(r)C(r)− C−1(r)∂rC(r) + ϵC−1(r)B(r)C(r) . (B.2)

If one picks C(r) such that ∂rC(r) = A(r)C(r), the system is reduced to canonical form.
The general solution to this problem was reported in [62], and can be expressed by a formal
expansion in A(r), as

C(r) = exp
[∫ r

r0
A(t)dt+ 1

2

∫ r

r0
dt1

∫ t1

r0
dt2
[
A(t1), A(t2)

]
+ . . .

]
C0(r) . (B.3)

Since the goal is simply to eliminate the ϵ-independent term, there is considerable freedom in
choosing the base point r0 and the matrix C0(r). In particular, the series reduces to a finite
sum if the matrix A(r) is upper triangular. In the specific case of massless box, eq. (5.12),
we can then proceed in steps. With a first change of basis, we make the A matrix upper
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triangular. This is achieved with the rotation

Ctr(r) =


1

ϵ2r
0 0 0

0 1
(2+ϵ)ϵ2r2 0 0

0 1
(2+ϵ)ϵ2r

− 2
(2+ϵ)ϵ2r

0
0 1

(3+ϵ)(2+ϵ)ϵ2r2 − 1
(3+ϵ)(2+ϵ)ϵ2r2

1
(3+ϵ)(2+ϵ)ϵ2r2

 , (B.4)

which reduces the system to

∂rb′(r) =




1
r −

1
r 0 0

0 0 −1
r

1
r

0 0 0 1
r

0 0 0 1−r
r(1+r)

+ ϵ


0 0 0 0
0 −1

r 0 0
0 − 1

2r 0 0
0 − 1−r

2r(1+r)
1

r(1+r) −
1

r(1+r)


b′(r) . (B.5)

The diagonal part D(r) of the ϵ-independent term is removed by the matrix

Cd(r) = exp
[∫ r

0
D(t)dt

]
=


r 0 0 0
0 1 0 0
0 0 1 0
0 0 0 r

(r+1)2

 , (B.6)

which leads to the system

∂rb′′(r) =



0 − 1

r2 0 0
0 0 −1

r
1

(1+r)2

0 0 0 1
(1+r)2

0 0 0 0

+ ϵ


0 0 0 0
0 −1

r 0 0
0 − 1

2r 0 0
0 − (1−r)(1+r)

2r2
1+r
r2 − 1

r(1+r)


b′′(r) . (B.7)

One may now directly apply Magnus’ theorem, with the final change of basis given by

Cred(r) =


1 1

r − 1 r−log r−1
r

r−2 log[(1+r)/2]−1
2r

0 1 − log r r−2(r+1) log[(1+r)/2]−1
2(1+r)

0 0 1 r
1+r

0 0 0 1

 . (B.8)

After this last step, the system is finally reduced to its canonical form, which can be solved
iteratively. We write

∂rb′′′(r) = ϵH(r)b′′′(r) , (B.9)

where the matrix H is presented below, in appendix C.
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C The matrix H for the massless box in canonical form

The procedure discussed in appendix B leads to a matrix containing at most logarithms of
the kinematical variable s/t. The matrix elements are given below.

H11(r) = 0 ,

H12(r) =
1
4
r2 + 3
r2 ,

H13(r) = −
1
4
r2 ln r + 3 ln r − 2r + 2

r2 ,

H14(r) =
1
8

1
r2(r + 1)2

[
r4 ln r − 2r4 ln r + 1

2 + 2r3 ln r − 4r3 ln r + 1
2 + r4 + 4r2 ln r

−8r2 ln r + 1
2 + 2r3 + 6r ln r − 12r ln r + 1

2 − 4r2 + 3 ln r − 6 ln r + 1
2 + 2r − 1

]
,

H21(r) = 0 ,

H22(r) = −
1
4r2

[
2r2 ln r − 2r2 ln r + 1

2 + r2 + 2 ln r + 1
2 + 2r + 1

]
H23(r) =

1
4r2

[
2r2 ln2 r − 2r2 ln r ln r + 1

2 + r2 ln r + 2 ln r ln r + 1
2 − 2r ln r + 4r ln r + 1

2

+ ln r + 4 ln r + 1
2 − 2r + 2

]
,

H24(r) =
1

2(r + 1)

(
r ln r − 2r ln r + 1

2 + ln r − 2 ln r + 1
2 + r − 1

)[
−1
r
− ln r

2r

−r − 1
4r2

(
2r ln r − 2r ln r + 1

2 − 2 ln r + 1
2 + r − 1

)]
− (r − 1)

4r2(r + 1)

(
2r ln r − 2r ln r + 1

2 − 2 ln r + 1
2 + r − 1

)
+ 1

2r(r + 1)2

(
2r ln r − 2r ln r + 1

2 − 2 ln r + 1
2 + r − 1

)
,

H31(r) = 0 ,

H32(r) = −
r2 + 1
4r2 ,

H33(r) =
r2 ln r + ln r − 2r + 2

4r2 ,

H34(r) = −
1

8r2(r + 1)2

[
r4 ln r − 2r4 ln r + 1

2 + 2r3 ln r − 4r3 ln r + 1
2 + r4 + 2r2 ln r

−4r2 ln r + 1
2 + 2r3 + 2r ln r − 4r ln r + 1

2 − 6r2 + ln r − 2 ln r + 1
2 + 2r + 1

]
H41(r) = 0 ,

H42(r) =
r2 − 1
2r2 ,

H43(r) = −
r2 ln r − ln r − 2r − 2

2r2 ,

H44(r) =
r − 1
4r2

[
r ln r − 2r ln r + 1

2 + ln r − 2 ln r + 1
2 + r + 1

]
− 1
r(r + 1) .
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Once the matrix H is known, the solution of the differential equation for the massless box
can be determined by iteration in ϵ by standard methods.

D IBPs for the two-loop sunrise integral

Here we present the linear system necessary to close the system of differential equations in
eq. (6.10). Our chosen basis integrals are I(1, 1, 1; 3ϵ), I(2, 1, 1; 1 + 3ϵ), and the boundary
contribution B. All other relevant integrals are determined by the following set of IBP
equations.

I(1, 1, 1; 3ϵ)− rI(2, 2, 2; 3ϵ) + 3I(2, 1, 1; 1 + 3ϵ) = 0 ,
I(2, 2, 2; 3ϵ) + 2I(3, 2, 1; 3ϵ)− I(2, 1, 1; 1 + 3ϵ) = 0 ,

1
2 + 2ϵ

[
(1 + 3ϵ)

(
I(2, 2, 2; 3ϵ) + I(3, 2, 1; 3ϵ)

)
+ I(2, 1, 1; 1 + 3ϵ)

]
+(1− r)I(3, 2, 2; 1 + 3ϵ) + I(3, 2, 2; 1 + 3ϵ) + I(4, 2, 1; 1 + 3ϵ) + 2I(2, 2, 1; 2 + 3ϵ) = 0 ,

−2I(3, 2, 2; 1 + 3ϵ)− I(3, 3, 1; 1 + 3ϵ) + I(2, 2, 1; 2 + 3ϵ) = 0 ,
1 + 3ϵ
1 + ϵ

I(3, 2, 1; 3ϵ) + (1− r)I(3, 3, 1; 1 + 3ϵ) + 2I(4, 2, 1; 1 + 3ϵ) + 2I(2, 2, 1; 2 + 3ϵ) = B ,

1
1 + ϵ

[
(1 + 3ϵ)I(3, 2, 1; 3ϵ) + I(2, 1, 1; 1 + 3ϵ)

]
(D.1)

+(1− r)I(3, 2, 2; 1 + 3ϵ) + 2I(3, 3, 1; 1 + 3ϵ) + 2I(3, 1, 1; 2 + 3ϵ) = 0 ,
−I(3, 2, 2; 1 + 3ϵ)− 2I(4, 2, 1; 1 + 3ϵ) + I(3, 1, 1; 2 + 3ϵ) = 0 .

These are seven equations involving nine independent integrals, two of which are the chosen
basis integrals. The system is of course easily solved with elementary methods.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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