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1. Introduction

The calculation of high-order Feynman integrals is crucial for the current and future precision

physics programs at particle accelerators [1]: to this end, modern methods have evolved that go

much beyond a direct evaluation. These developments began with the discovery of Integration-

by-Parts (IBP) identities in dimensional regularization [2, 3], and the introduction of the method

of differential equations [4–6]: calculations are now typically tackled with automatic algorithms

combining these ideas [7]. Further developments have involved an enhanced understanding of the

role of generalised unitarity, and of the linear functional spaces where classes of Feynman integrals

reside [8–11], and an optimised use of dimensional regularization [12]. A vast amount of work

along these lines has significantly expanded the range of processes for which high-order calculations

are possible, and has much deepened our mathematical understanding of Feynman integrals [1, 13].

Interestingly, the historical exploration of Feynman integrals via IBPs and differential equations

predates these recent developments. Indeed, the projective nature of Feynman parameter integrands

and the monodromy properties of Feynman integrals attracted early attention from mathematicians

and physicists already in the late 1960’s [14–17]. Around that time, in particular, Tullio Regge and

his collaborators explored the monodromy properties of various classes of Feynman integrals [17–

20], offering several insights that align with (and predate) contemporary findings. For example

Regge argued, already at the time [17], that Feynman integrals belong to a class of generalised

hypergeometric functions, and proposed that these functions should satisfy differential equations of

the Picard-Fuchs type.

Although actual computational algorithms didn’t emerge from these studies, Barucchi and

Ponzano [21, 22] constructed an explicit implementation of Regge’s ideas, applicable to one-loop

diagrams. The corresponding Feynman integrals, in parametric form, were organised into sets

connected by difference equations, akin to currently used IBPs; linear systems of homogeneous

differential equations in the Mandelstam invariants were then derived, mirroring the known one-loop

monodromy structure.

This note, summarising the results presented in [24], builds on the work of Regge and collabora-

tors, to propose a projective framework for deriving IBP identities and systems of linear differential

equations for Feynman integrals, directly in parameter space. The framework accommodates di-

mensional regularisation, extends to infrared-divergent integrals, and generalises naturally beyond

on loop. Interestingly, our results also underscore the role of boundary terms in IBP identities

within the projective framework: unlike the momentum-space approach in dimensional regulariza-

tion, these terms do not generally vanish in parameter space, and indeed they play a critical role in

connecting complex integrals to simpler ones.

We begin our note by setting up conventions for Feynman integrals in parameter form, in

Section 2. Next, in Section 3, we introduce projective forms, and we use their properties to

show how one can construct systems of difference equations for generic projective integrals. In

Section 4 we focus on Feynman integrals, and provide a general procedure to construct IBPs in this

context, developing the one-loop case in some detail as an example. Explicit one-loop examples

are presented in Section 5, and two-loop examples in Section 6. Finally, Section 7 briefly discusses

perspectives for future work.
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2. Notations

Scalar Feynman integrals arise in loop-level perturbative calculations in any quantum filed

theory. In a momentum space formulation they take the form

�� (a8, 3) = (`2)a−;3/2
∫ ;∏

A=1

33:A

ic3/2

=∏
8=1

1(
−@2

8
+ <2

8

)a8 , @8 =

;∑
A=1

U8A :A +

<∑
9=1

V8 9 ? 9 , (1)

where @8 are the momenta flowing in each propagator, :A are the independent loop momenta, and

? 9 are the external momenta, while 3 is the space-time dimension, and the integer exponents a8

satisfy
∑

8 a8 = a. The integration over loop momenta in Eq. (1) can be performed in full generality

by means of the Feynman parameter technique. Using the notations from Refs. [13, 25, 26], the

integral becomes

�� (a8, 3) =
Γ(a − ;3/2)∏=

9=1 Γ(a 9)

∫
I 9≥0

3=I X
©­«
1 −

=∑
9=1

I 9
ª®¬

©­«
=∏
9=1

I
a 9−1

9

ª®¬
U a−(;+1)3/2

F a−;3/2
, (2)

where the Symanzik polynomials U and F ,

U =

∑
T�

∏
8∈T�

I8 , F =

∑
C�

B̂ (C�)

`2

∏
8∈C�

I8 − U
∑
8∈I�

<2
8

`2
I8 , (3)

can be defined purely from the graph properties. To this end, let us denote by I� the set of the

internal lines of �, each endowed with a Feynman parameter I8 . A co-tree T� ⊂ I� is a set of

internal lines of � such that that the lines in its complement T� ⊂ I� form a spanning tree.

Similarly, consider subsets C� ⊂ I� with the property that, upon omitting the lines of C� from

�, the graph becomes a disjoint union of two connected subgraphs. Each subset C� defines a cut

of graph �, and contains ; + 1 lines; an invariant mass B̂ (C�) can be associated with each cut, by

squaring the sum of the momenta flowing in (or out) of one of the two subgraphs. The Symanzik

polynomial U is homogeneous of degree ;, while the Symanzik polynomial F is homogeneous of

degree ; + 1, so that the integrand (measure included) is homogeneous of degree 0.

3. A projective framework

A crucial mathematical property of Feynman integrals is that their integrands are projective

forms in the space of Feynman parameters, which can be identified with PC=−1. This property is

crucial for the characterisation of the function spaces to which the integrals belong, and to many

techniques for their explicit evaluation. The relevance of projective invariance was understood since

the earliest systematic studies of Feynman diagrams [17]. In this Section, we provide an extremely

concise summary of the relevant ideas.

In order to introduce projective forms, begin by considering a generic subset �, |�| = 0, of the

set � = {1, . . . , #}, and define the 0-form

l� = 3I81 ∧ ... ∧ 3I80 , (4)
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with 81 < . . . < 80. One can show that l� integrates to the projective (0 − 1)-form

[� =

∑
8∈�

n8,�−8 I8 l�−8 , 3[� = 0l� , (5)

where we introduced the signature factor

n:,� = (−1) |�: | , �: = {8 ∈ �, 8 < :} . (6)

As an example, for � = {1, 2, 3} one finds

[{1,2,3} = I1 3I2 ∧ 3I3 − I2 3I1 ∧ 3I3 + I3 3I1 ∧ 3I2 . (7)

Projective forms such as [� are homogeneous of degree 1 in each coordinate I8 , and they can serve

as measures of integration for projective integrals. Indeed, parametric Feynman integrands can be

represented in the general form

U=−1 = [=−1

&
(
{I8}

)
�%

(
{I8}

) , (8)

where �
(
{I8}

)
and &

(
{I8}

)
are polynomials of degrees such that the form (measure included) is

homogeneous of degree 0. A well-known example is the integrand for the massless one-loop box

integral, which reads

k3 (_, A) =
(I1 + I2 + I3 + I4)

_

(A I1I3 + I2I4)
2+_/2

[{1,2,3,4} . (9)

For finite integrals both % in Eq. (8) and a in Eq. (2) are integers. In the presence of divergences,

as is the case for the massless box, we can incorporate dimensional regularisation by allowing for

general values of 3, and thus of _ in Eq. (9).

Two theorems naturally emerge within this projective framework. First of all, an essential

property of projective forms is the following [17].

Theorem 1. The boundary of a projective form is itself projective.

This theorem arises from the properties of the operator

? :
∑
|�|=@

'�(I8) l� →
∑
|�|=@

'�(I8) [� , (10)

mapping affine @-forms into projective (@ − 1)-forms. It can be shown to satisfy

?2
= 0 , 3 ◦ ? + ? ◦ 3 = 0 . (11)

Based on these properties, a proof of the theorem can be found in [24].

Next, it is possible to show that U=−1 is a closed form, while [=−1 is null on any surface defined

by I8 = 0. A second theorem then follows

Theorem 2. Given two integration domains, $,$′ ∈ C=, if their image in PC=−1 is the same

simplex, then
∫
$
U=−1 =

∫
$′ U=−1.

This theorem, also known as Cheng-Wu theorem [23], allows, in practice, to set to zero any subset

of the = parameters I8 in the argument of the X function in Eq. (2), providing a useful tool for

concrete calculations.
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4. Integration by parts in projective space

The correspondence between projective forms and parametric integrals is obtained from the

usual choice of chart in projective space identifying a coordinate symplex in R= with the choice∑=
8=1 I8 = 1. With this choice one finds simply

∫
(=−1

[=−1

& (I)

�% (I)
=

∫
I8≥0

3I1 . . . 3I= X

(
1 −

=∑
8=1

I8

)
& (I)

�% (I)
. (12)

We now show how the projective structure just introduced allows to easily construct sets of difference

equations connecting families of Feynman integrals, which play the role of the conventional IBP

identities usually derived in momentum space. To this end, consider the projective (= − 2)-forms

l=−2 ≡

=∑
8=1

(−1)8 [{I}−I8
�8 (I)

(% − 1)
(
� (I)

)%−1
, (13)

where [{I}−I8 denotes the projective volume form in PC=−2, obtained by omitting the coordinate

I8 , and �8 (I) are polynomials with a degree chosen (together with %) to ensure projectivity.

Differentiating these forms generates (at the integrand level) a set of identities among parametric

integrals, which correspond to those obtained via integration by parts. One finds

3l=−2 =
1

(% − 1)
(
� (I)

)%−1
[{I}

=∑
8=1

m�8 (I)

mI8
−

[{I}(
� (I)

)%
=∑
8=1

�8

m� (I)

mI8
. (14)

Eq. (14) plays a central role in our method. By suitably choosing the polynomials �8 (I), it allows

to close systems of linear differential equations for Feynman integrals that can be used to compute

them, just as usually done in the momentum space approach. We emphasise that these identities

apply for any number of loops or external legs. In the remainder of this section, we will discuss a

concrete implementation at the one-loop level developing the ideas of Ref. [21].

At one loop, parametric integrals have the general form

�� (a8, 3) =
Γ(a − 3/2)∏=

9=1 Γ(a 9)

∫
I 9≥0

3=I X

(
1 − I=+1

) ∏=+1
9=1 I

a 9−1

9[ ∑=+1
8=1

∑8−1
9=1 B8 9 I8I 9

]a−3/2 , (15)

where we introduced the notations

I=+1 ≡

=∑
8=1

I8 , a=+1 ≡ a − 3 + 1 , (16)

and for the Mandelstam invariants we use

B8 9 =
(@ 9 − @8)

2

`2
(8, 9 = 1, . . . , =) , B8,=+1 = B=+1,8 ≡ −

<2
8

`2
. (17)

We now make the simplest and natural choice in Eq. (14), picking the polynomials �8 (I) to coincide

with the numerator of the relevant integral, for each value of 8. Thus we pick

�8 = X8ℎ
©­«

=∏
9=1

I
a 9−1

9

ª®¬
(

=∑
:=1

I:

)a−3
= X8ℎ

=+1∏
9=1

I
a 9−1

9
, (18)
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for ℎ = 1, . . . , =. Applying this choice produces a one-loop ‘integration-by-parts’ identity that can

be written as follows [21]:

3l=−2 +

=+1∑
:=1

(B:ℎ + B:,=+1) 5
(
{R − :}0 , {:}1

)
=

aℎ − 1

a − (3 + 1)/2
5
(
{ℎ}−1 , {R − ℎ}0

)
(19)

+
a − 3

a − (3 + 1)/2
5
(
{= + 1}−1 , {R − {= + 1}}0

)
,

where, following Ref. [21], we introduced an index notation such that, for the function

5
(
{a1, . . . , a=+1}

)
≡ 5

(
{R}

)
= [{I}

∏=+1
9=1 I

a 9−1

9(∑=+1
8=1

∑8−1
9=1 B8 9 I8I 9

)a−3/2 , (20)

we can raise or lower the exponents a8 by adding {−1, 0, 1} in the subsets I, J and K of set R

respectively, and we denote the resulting function by

5
(
{I}−1 , {J}0 , {K}1

)
. (21)

Note that the exponent of the denominator in Eq. (20) is adjusted accordingly, to maintain projective

properties. Note also that the action of raising and lowering exponents according to the convention

in Eq. (21) is subject to a constraint, arising from the definition of U in Eq. (3). Specifically, the

following sum rule holds

=∑
8=1

5
(
{R − 8}0 , {8}1

)
= 5

(
{R − {= + 1}}0 , {= + 1}1

)
. (22)

As we will see in the next section, Eq. (19) and Eq. (22) can be used to close systems of differential

equations, leading to the determination of the one-loop Feynman integrals under study. Two-loop

examples will be discussed in Section 6.

5. One-loop examples

In this section, we present two explicit examples of the use of Eq. (19). Consider first the

massless one-loop box integral, setting C/B ≡ A and with all momenta incoming. Using dimensional

regularisation, we define

�box ≡ Γ(2 + n)

∫
(=−1

[{I}
(I1 + I2 + I3 + I4)

2n

(AI1I3 + I2I4)
2+n

≡ Γ(2 + n) � (1, 1, 1, 1; 2n) , (23)

where for the box family of integrals we use the notation � (a1, a2, a3, a4; a5). Differentiating with

respect to A raises two indices by one unit, as in

mA � (1, 1, 1, 1; 2n) = −(2 + n) � (2, 1, 2, 1; 2n) (24)

mA � (2, 1, 2, 1; 2n) = −(3 + n) � (3, 1, 3, 1; 2n) . (25)

According to a theorem by Barucchi and Ponzano [21], for any one-loop diagram a system of

differential equation can be set up, involving the desired integral, plus the ones obtained by lifting

6
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an even number of propagators by 1. For the massless box, following this construction we find that

a closed system of differential equations can be obtained for the integrals1{
� (1, 1, 1, 1; 2n), � (2, 1, 2, 1; 2n), � (1, 2, 1, 2; 2n), � (2, 2, 2, 2; 2n)

}
. (26)

The system is obtained by using identities generated by Eq. (19), such as, for example,

A � (3, 1, 3, 1; 2n) +

∫
3l=−2 =

2

3 + n
� (2, 1, 2, 1; 2n) +

2n

3 + n
� (3, 1, 3, 1;−1 + 2n) . (27)

where the integral of 3l=−2 gives a vanishing boundary term, since

I2
1
I3 (I1 + I2 + I3 + I4)

2n

(3 + n) (AI1I3 + I2I4)3+n

(
I23I3 ∧ 3I4 − I33I2 ∧ 3I4 + I43I2 ∧ 3I3

) �����
m(=−1

= 0 . (28)

The system of differential equations obtained in this way can be written as

mAb ≡ mA

©­­­­«

� (1, 1, 1, 1; 2n)

� (2, 1, 2, 1; 2n)

� (1, 2, 1, 2; 2n)

� (2, 2, 2, 2; 2n)

ª®®®®¬
=

©­­­­«

0 −(2 + n) 0 0

0 − 3+n
A

0 − 3+n
A

0 0 0 −(3 + n)

0 − 1
(3+n )A (1+A )

1
(3+n )A (1+A )

− 1+n +3A
(3+n )A (1+A )

ª®®®®¬
b . (29)

This system can be brought to canonical form by using (for example) the technique of Magnus

exponentiation [31]. It can then be solved by iteration, and the solution, consistently with the

literature [27], is given by

�box =
: (n)

A

[
1

n2
−

log A

2n
−
c2

4
+ n

(
1

2
Li3(−A) −

1

2
Li2 (−A) log A +

1

12
log3 A

−
1

4
log(1 + A)

(
log2 A + c2

)
+

1

4
c2 log A +

1

2
Z (3)

)
+ O(n2)

]
, (30)

with : (n) = 4 − c2

3
n2 −

40Z (3)
3

n3.

The difference equations generated in parameter space by Eq. (19) effectively include also

dimensional-shift identities, and they connect the desired integrals to lower-point integrals through

non-vanishing boundary terms. As an example, consider the following identity for five-point

integrals:∫
({1,2,3,4,5}

3l3 + B13 � (1, 1, 2, 1, 1; 2n) + B14 � (1, 1, 1, 2, 1; 2n) =
2n

2 + n
� (1, 1, 1, 1, 1;−1 + 2n) , (31)

with

3l3 = 3

[
− [{2,3,4,5}

(I1 + I2 + I3 + I4 + I5)
2n

(2 + n) (B13I1I3 + B14I1I4 + B24I2I4 + B25I2I5 + B35I3I5)
2+n

]
. (32)

1It is well-known that a basis of master integrals for the massless box requires only three integrals. Here we are

simply illustrating the Barucchi-Ponzano construction, which in this case yields an over-complete basis, and we have

not attempted optimisations. On the other hand, the method correctly predicts the size of the basis for the most general

one-loop diagram, as recently confirmed by Refs. [28–30].
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The integration of this form using Stokes theorem produces a non-vanishing boundary term, corre-

sponding to the one-loop box integral with one external leg off-shell. Specifically, one finds∫
({2,3,4,5}

[{2,3,4,5}
(I2 + I3 + I4 + I5)

2n

(B24I2I4 + B25I2I5 + B35I3I5)
2+n

= �
(1)

box
(B25) , (33)

where in this case B25 is the mass of the off-shell leg. Using similar identities, dimensional-shift

relations for the one-loop pentagon [32] can easily be reproduced. One finds

2(2 + n) � (1, 1, 1, 1, 1; 1 + 2n) =

{
B13B24 − B13B25 − B14B25 + B14B35 − B24B35

B13B14B25

�
(1)

box
(B25)

−
B13B24 + B13B25 − B14B25 + B14B35 − B24B35

B13B24B25

�
(2)

box
(B13)

−
B13B24 − B13B25 + B14B25 − B14B35 + B24B35

B13B24B35

�
(3)

box
(B24)

+
B13B24 − B13B25 + B14B25 − B14B35 − B24B35

B14B24B35

�
(4)

box
(B35)

−
B13B24 − B13B25 + B14B25 + B14B35 − B24B35)

B14B25B35

�
(5)

box
(B14)

}

+ 2n � (1, 1, 1, 1, 1;−1 + 2n) . (34)

Since the integral in the last line is finite in 3 = 4, this gives the well-known result stating that

the massless pentagon integral is given by a liner combination of box integrals, up to corrections

vanishing in four dimensions.

6. Two-loop examples

We now very briefly discuss the application of the method beyond one loop. A first interesting

case is given by the family of ;-loop sunrise diagrams, i.e. diagrams contributing to a two-point

function, with two vertices connected by ; + 1 propagators, illustrated in Fig. 1. These integrals

have been extensively studied in recent years, since they provide a natural laboratory for multi-loop

calculation, and in particular, with massive legs, provide the simplest example of integrals involving

elliptic curves, and thus yielding functions beyond polylogarithms (see, for example, [33–43] and

references therein).

The first Symanzik polynomial for ;-loop sunrise integrals is given by

U; =

;+1∑
8=1

I1 . . . Î8 . . . I;+1 , (35)

where Î8 denotes the omission of I8. Eq. (35) displays the high degree of symmetry of the graph,

while the second Symanzik polynomial F depends on the configuration of masses on the internal

legs. In the specific case of ; = 2 and equal internal masses, the Feynman parametric integral is

�
(
a1, a2, a3;_4

)
=

∫
({1,2,3}

[3 I
a1−1

1
I
a2−1

2
I
a3−1

3

(
I1I2 + I2I3 + I3I1)

_4

[
A I1I2I3 − (I1 + I2 + I3)

(
I1I2 + I2I3 + I3I1

) ] 2_4+a

3

. (36)

8
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I1

I2

..

..

I=+1

Figure 1: Sunrise diagram at ; loops.

By choosing a suitable numerator in our master identity, Eq. (14),

� (I) = I
a1−1

1
I
a2−1

2
I
a3−1

3

(
I1I2 + I2I3 + I3I1

)_4 , (37)

one easily derives integration by parts identities, and one can build a linear system of differential

equations that closes (as expected) on the three master integrals, � (1, 1, 1; 3n), � (2, 1, 1; 1 + 3n),

and the one-loop tadpole integral � (2, 2; 1 + 3n). Interestingly, also in this case the non-vanishing

boundary term provides an inhomogeneous contribution to the system. It arises form the basis

integral ∫
3l1 =

1

2(1 + n)

∫
({1,2}

[{1,2}
(I1I2)

n[
− (I1 + I2)

]2+2n
=

(−1)2n

2 + 2n

Γ
2 (1 + n)

Γ(2 + 2n)
, (38)

corresponding to the massive one-loop tadpole. In two space-time dimensions, the sunrise integral

is finite and the linear system can be analysed for n = 0. More precisely, as discussed in more detail

in [24], the first-order differential equations can be combined into a single second-order equation

for the equal-mass sunrise, which has long been known to be of elliptic type [33, 44, 45]. We find

A

3

32

3A2
� (1, 1, 1; 0) +

(
1

3
+

3

A − 9
+

1

3(A − 1)

)
3

3A
� (1, 1, 1; 0)

−

(
1

4(A − 9)
+

1

12(A − 1)

)
� (1, 1, 1; 0) =

2

(A − 1) (A − 9)
. (39)

It is important to note that the procedure we followed is not expected to generalise smoothly to

the two-loop sunrise diagram with unequal masses, since a straightforward application of Stokes’

theorem in that case must take into account the presence of singularities at the simplex boundaries:

the difference between the two cases is discussed in detail in Ref. [46]. We leave the analysis of

the general case to future work. On the other hand, we note that our method readily reproduces

the classic results of Ref. [3] for two-point, five-propagator integrals, which can be systematically

reduced to four-propagator integrals yielding simple combinations of Γ functions. Once again,

boundary terms play a distinctive role in parameter space, as discussed in detail in [24].

7. Perspectives

In this note, we have summarised the results of Ref. [24], where we introduced a projective

framework for deriving IBP identities and differential equations for Feynman integrals directly in

9
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parameter space, building upon very early work by Tullio Regge and collaborators [17–22]. Specif-

ically, we showed how these early techniques can be adapted to include dimensional regularization,

and how they can be generalised beyond one loop.

Comparing the parameter-space method to momentum-space approaches, it’s clear that the

organisation of calculations differs significantly. The integral bases and the resulting differential

equations generated by the projective framework are in general distinct from the conventional ones.

One notable aspect of this framework is the role played by boundary terms, which vanish in the

momentum-space approach. In this case, instead, they play a crucial role, linking complex integrals

to simpler ones. We note also that parameter-space integrands closely mirror the graph symmetries,

and circumvent issues related to loop-momentum routing and irreducible numerators, which can

complicate momentum-space algorithms. Importantly, the projective framework aligns closely with

the algebraic structures underpinning Feynman integrals, which may provide direction for future

progress.

The present work is largely a feasibility study: for the future, the goal is clearly to extend these

techniques to more complex integrals, including higher-loop and multi-scale examples, possibly

developing automated tools. Besides the obvious interest in direct physics applications, this will

allow for a necessary detailed comparison of parameter-space and momentum-space approaches,

including computational aspects.
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