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ABSTRACT Training Deep Learning (DL) models require large, high-quality datasets, often assembled
with data from different institutions. Federated Learning (FL) has been emerging as a method for privacy-
preserving pooling of datasets employing collaborative training from different institutions by iteratively
globally aggregating locally trained models. One critical performance challenge of FL is operating on
datasets not independently and identically distributed (non-IID) among the federation participants. Even
though this fragility cannot be eliminated, it can be debunked by a suitable optimization of two hyper-
parameters: layer normalization methods and collaboration frequency selection. In this work, we benchmark
five different normalization layers for training Neural Networks (NNs), two families of non-IID data skew,
and two datasets. Results show that Batch Normalization, widely employed for centralized DL, is not the
best choice for FL, whereas Group and Layer Normalization consistently outperform Batch Normalization,
with a performance gain of up to about 15 % in the most challenging non-IID scenario. Similarly, frequent
model aggregation decreases convergence speed and mode quality.

INDEX TERMS Batch Normalization, Epochs per round, Federated Averaging, Federated Learning, Neural
Networks, Non-IID data, Normalization Layers

I. INTRODUCTION

THE constant development of Information andCommuni-
cation Technologies has boosted the availability of com-

putational resources and data, leading us to the Big Data era,
where data-driven approaches have become a fundamental
aspect of everyday decisions. Both computational resources
and data are ubiquitous and inherently distributed. All public
and private sectors, from scientific research to companies,
take benefit from a vast amount of diverse data to support
the growth of their business and to develop more accurate
Artificial Intelligence (AI) systems.

Data is often spread and segregated in silos across different
institutions and even different business units of the same orga-
nization. It is essential to make data accessible to all the part-
ners to train high-quality models and exploit the entire data’s
value [1]. Many recent open science works have encouraged
data sharing between institutions in order to improve research
possibilities, create collaborations, and publish reproducible
results. For example, data sharing across countries has been a
crucial information tool during the COVID-19 pandemic [2].

However, data is often not shareable due to issues like
privacy, security, ownership, trust, and economic reasons. For
instance, the European regulation GDPR [3] places stringent
constraints on the possibility of sharing sensitive data be-
tween parties; industrial companies do not share their data
because leveraging it is seen as a competitive advantage. Also,
exposing data to other institutions can raise concerns like lack
of ownership and lack of trust.
To address these problems,model-sharing strategies (MSS)

have emerged as an alternative to data sharing. In MSS,
the idea is to share AI models between the involved parties
in order to achieve collaboration without sharing raw data.
In these approaches, the AI model can range from simpler
Machine Learning (ML) algorithms like linear regression
to more complex models such as those learned by Deep
Learning techniques using Neural Networks (NNs). Recent
years have seen the growth of different model-sharing ap-
proaches ranging from the "model-to-data remote access" ap-
proaches to Federated Learning [4]. In "model-to-data remote
access" approaches, AI models are run remotely directly on
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the machines that hold the data, and security is enforced by
leveraging secure remote connections and Trusted Execution
Environments (TEEs) enclaves. Federated Learning has also
emerged as a popular approach. In FL, the involved parties
collaborate by aggregating locally trained models into a glob-
ally shared one. The process is usually iterative and based
on NNs (FedAvg) [4], even if recently methods based on
non-NN distributed boosting algorithms have been proposed
[24]. These algorithms allow parties to aggregate any kind of
model without making assumptions about the kind of model
being aggregated or assuming a training procedure based on
gradient descent [29].

FL is a distributed ML technique originally proposed by
Google in 2016 to deal with sensitive data of mobile de-
vices [4]. FL is an iterative version of model-sharing: clients
(the data owners) create a federation (hence the name) to-
gether with the server and build a shared model based on
the following steps: 1) clients send their metadata, like the
number of classes, training set size, test set size and shape of
the input features, to the server, that initializes a model based
on the received metadata characteristics; 2) the server sends
the initialized model to all the participants of the federation;
3) after performing one or more steps of gradient descent,
clients send the trained model back to the server; 4) server
acts as an aggregator performing a combination (a function
like average, sum, maximum, minimum and so on) of the
received models. The aggregated model is now sent to the
clients, and steps 3) and 4) are repeated until a specified
number of rounds are performed or a convergence criterion
is met. The first proposed FL algorithm is the FedAvg [4]
algorithm, where the aggregation function used to combine
models is the average. In this way, all datasets are kept within
the proprietary organizations, and the only information that
gets exchanged is the model parameters, which, in the case of
NN, are matrices of floating point numbers representing the
weights and the biases associated with the neurons.

Federated Learning performs well when the data is in-
dependently and identically distributed (IID) among the in-
volved institutions. Unfortunately, real-world data is often
non-IID, and it is well known that this scenario poses critical
issues to FL [1]. In a non-IID setting, the data statistics of a
single client may be unrepresentative of the global statistics
and make the model diverge from the intended solution.
Interestingly, Huang et al. show that if the loss surface of the
optimization problem is both smooth and convex (which is
hardly true in a real scenario), then FedAvg will also converge
when the data is non-IID [5].

Recent works have proposed several FL algorithms to
cope with non-IIDness problems, such as FedProx [6], Fed-
Nova [7], SCAFFOLD [8], and FedCurv [9], which has been
tested in [10], [11]. Notice that all these algorithms are mod-
ified versions of FedAvg, and they preserve the principle
underneath FedAvg: to average the weights in all the layers
of the NN. Most of the common NN architectures employ
Batch Normalization (BN) [12], a technique for improving
the training of NNs to make them converge faster and to a

more stable solution. BN works by standardizing the layers’
input for each mini-batch.
In this work, we investigate two aspects of the training FL

models, which, differently from the centralized case, happen
to be hyper-parameters that can be optimized: the normaliza-
tion layers and the frequency of model aggregation (epochs
per round). We show that the most popular normalization
layer (BN) does not couple well with FL for non-IID data
and that by substituting BN with alternative normalization
FL, a better model can be produced for both the non-IID
and IID cases. We also show that building a global model
aggregating local models at each epoch is not a good strategy,
neither for the quality of the model nor for the execution
time. We experiment with two network architectures and five
different normalization layers on two public image datasets:
MNIST [18] and CIFAR-10 [19].
Results show that the performance of the networks is

strictly related to the type of normalization layer adopted.
The main contributions of this work are:

• We provide benchmarks for five different normalization
layers: BN, GN, LN, IN, BRN;

• We provide results of experiments on FedAvg on two
non-IID settings considering a feature distribution skew
and a label distribution skew (in addition to the IID
case). To the best of our knowledge, this is the first work
providing empirical evidence on the behavior of these
normalization layers in common non-IID cases;

• for the most promising normalization layers, we ran
extensive tests to discuss how performances are affected
by the following factors:
1) Batch size.
2) Number of epochs per round (E).
3) Number of clients.

• We show that choosing the right normalization layer
and a suitable number of local gradient descent steps is
crucial for obtaining good performances.

This work extends the typical search for optimization of
machine learning parameters to federated learning.
The rest of the paper is organized as follows. In Section II,

we introduce and discuss recent related works. In Section III,
the most used normalization layers are reviewed. In Sec-
tion IV, the most typical non-IID scenarios are described.
Section V shows and discusses experimental results. Finally,
Section VI concludes the paper.

II. RELATED WORK
The main challenges in FL are statistical heterogeneity (non-
iidness) and systems heterogeneity (variability of the devices
of the federation). In this work, we address the former. In
[1], the most common non-IID data settings, that are quantity
skew, labels quantity skew (prior shift), feature distribution
skew (covariate shift), same label but different features, and
same features but different labels, are reviewed. To the best
of our knowledge, there are only a few benchmarks for FL
dealing with non-IID data. Li et al. in [10] report the analysis
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of FedAvg [4], FedNova [7], FedProx [6] and SCAFFOLD [8]
on nine public image datasets, including MNIST [18] and
CIFAR10 [19], split according to three of the previous men-
tioned non-IID partition strategies, i.e. quantity skew, labels
quantity skew and three different versions of feature distri-
bution skew: noise-based, synthetic and real-world feature
imbalance. FedAvg [4] is the first proposed FL algorithm.
It performs a weighted average of the local models trained
on the client’s local data. When the batch size is equal to
the full local dataset, and the number of epochs per round is
equal to one, then FedAvg is better known as FederatedSGD
(FedSGD). FedNova adopts the paradigm of FedAvg, but it
also normalizes and scales the model’s local updates based
on the number of local steps. It aims to overcome the prob-
lem of objective inconsistency while preserving fast error
convergence. FedProx is a re-parametrization of FedAvg in
which the size of local updates is restricted by adding an
L2 regularization term in the cost function, compelling the
local model to stay close to the global model. SCAFFOLD
(Stochastic Controlled Averaging for FL) introduces an addi-
tional term to the local updates to eliminate the drift caused
by local data differences, and it randomly samples a subset
of clients to reduce communication overhead. Li et al. [10]
show that none of those algorithms outperforms others in all
the cases and that non-iidness degrades the performance of FL
systems in terms of accuracy, especially in the case of label
quantity skew. Another recent work [11] reports an empirical
assessment of the behavior of FedAvg and FedCurv [9] on
MNIST, CIFAR10 and MedMNIST [20]. Datasets are split
according to the same non-IID settings of [10]. FedCurv is
an algorithm built on the idea of Continual Learning. It adds
the Elastic Weight Consolidation [35] penalty term to the loss
function, to minimize the model disparity across the clients of
a federation. Authors show that aggregating models at each
epoch is not necessarily a good strategy: performing local
training for multiple epochs before the aggregation phase
can significantly improve performance while also reducing
communication costs. FedAvg produced better models in
most non-IID settings despite competing with an algorithm
explicitly developed to deal with these scenarios (FedCurv).

Results in [11] also confirmed literature sentiment: labels
quantity skew and its pathological variant are the most detri-
mental ones for the algorithms. The same non-IID partitions
have already been tested in [24], which proposes a novel
technique of non-gradient-descent FL on tabular datasets.
Our paper extends [11], deepening the experiments about the
number of epochs per round, a hyper-parameter that, if tuned
appropriately, can lead to large performance gains. Moreover,
we aim to investigate which type of normalization layer better
fits FL on non-IID data. Indeed, when data are non-IID,
batch statistics do not represent the global statistics, leading
NNs equipped with BN to poor results. The most common
alternatives to BN are: GroupNormalization (GN) [14], Layer
Normalization (LN) [15], Instance Normalization (IN) [16]
andBatch Renormalization (BRN) [17].While BN is themost
employed normalization method in SOTA algorithms, LN is

a fundamental part of the recently proposed Transformer ar-
chitectures [31] that are becoming widely adopted for solving
several learning tasks, such as remote sensing [32], [33] and
computer vision [34]. To the best of our knowledge, there are
no works benchmarking normalization layers for FL on non-
IID data. A previous work [21], proposing a novel form of
Transfer Learning through test-time parameters’ aggregation,
shows that a NNwith BatchNormalization [12] does not learn
at all, while performance improves only when using Group
Normalization [14]. Andreaux et al. propose a novel FL ap-
proach by introducing local-statistic BN layers [22]. Their
method, called SiloBN, consists in only sharing the learned
BN parameters γ and β across clients, while BN statistics µ
and σ2 remain local, allowing the training of a model robust
to the heterogeneity of the different centers. SiloBN showed
better intra-center generalization capabilities than existing FL
methods. FedBN [23] is an FL algorithm that excludes BN
layers from the averaging step, outperforming both FedAvg
and FedProx in a feature distribution skew setting.

III. NORMALIZATION LAYERS
The majority of the FL algorithms simply apply an aggre-
gation function (like averaging) to all the components of
a NN, including weights and biases of the normalization
layers. Most of the common NN architectures, like residual
networks [13], adopt BN [12] as the normalization layer.
However, in contexts like Federated or Transfer Learning,
BN may not be the optimal choice, especially when dealing
with non-IID data. In this chapter will be reviewed the main
characteristics of Batch Normalization and several possible
alternatives like Group Normalization (GN) [14], Layer Nor-
malization (LN) [15], Instance Normalization (IN) [16] and
Batch Renormalization (BRN) [17].

A. BATCH NORMALIZATION
Batch normalization has recently been extensively adopted
by neural networks for their training. The key issue that BN
tackles is Internal Covariate Shift (ICS), which is the change
in the distribution of the data (or network activations), i.e.
the input variables of training and test sets. Informally, at
each epoch of training, weights are updated, input data are
different, and the algorithm faces difficulties. This results in
a slower and more difficult training process because lower
learning rates and careful parameter initialization are then re-
quired. BN attempts to reduce ICS by normalizing activations
to stabilize the mean and variance of the layer’s inputs. This
accelerates training by allowing the use of higher learning
rates and reduces the impact of the initialization. During
training, BN normalizes the output of the previous layers
along the batch size, height, and width axes to have zero mean
and unit variance:

x̂i =
xi − µm√
σ2
m + ϵ

where x, µm and σ2
m are respectively the input, the mean, and

the variance of a minibatch m, and ϵ is arbitrarily constant
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greater than zero used for stability in case the denominator is
zero. BN also adds two learnable parameters, γ and β that
are a scaling and a shifting step, to fix the representation
in case the normalization alters what the layer represents:
yi = γx̂i+β. Normalized activations will depend on the other
samples contained in the minibatch. In the test phase, BN can
not calculate statistics; otherwise, it will learn from the test
dataset, so it uses the moving averages of minibatch means
and variances of the training set. In the case of IID mini-
batches, statistical estimations will be accurate if the batch
size is large; otherwise, inaccuracies will be compounded
with depth, reducing the quality of the models. Non-IID data
can have a more detrimental effect on models equipped with
BN because batch statistics do not represent global statistics,
leading to even worse results. Therefore there is a need to
investigate alternatives to BN that can work well with non-
IID data and small batch sizes.

B. GROUP NORMALIZATION
Group Normalization is a simple alternative to BN. It divides
the channels into different groups and computes within each
group the mean µi and the variance σi along the height and
width axes. GN overcomes the constraint on the batch size be-
cause it is completely independent of the other input features
in the batch, and its accuracy is stable in a wide range of batch
size. Indeed, GN has a 10.6% lower error than BN on ResNet-
50 [13] trained on ImageNet [14]. The number of groups G is
a pre-defined hyperparameter that needs to divide the number
of channels C. When G=C, it means that each group contains
one channel, and GN becomes Instance Normalization, while
when G=1, it means that one group contains all the channels,
and GN becomes Layer Normalization. Both Instance and
Layer Normalizations are described below.

C. INSTANCE NORMALIZATION
Instance Normalization is another alternative to BN, firstly
proposed for improving NN performances in image genera-
tion. It can be seen as a Group Normalization with G=C or as
a BN with a batch size of one, so applying the BN formula
to each input feature individually. Indeed, IN computes the
mean µi and the variance σi along the height and width axes.
As stated before, BN suffers from small batch sizes, so we
expect that experiments made with IN will produce worse
results than the ones with BN or GN, which can exploit the
dependence across the channels.

D. LAYER NORMALIZATION
Layer Normalization was first proposed to stabilize hidden
state dynamics on Recurrent Neural Networks (RNNs) [15].
It computes the mean and the variance along the channel,
height, and width axes. LN overcomes the constraint on the
batch size because it is completely independent of the other
input features in the batch. LN performs the same computa-
tion both at training and inference times. It can be seen as
a GN with G=1, so with only one group controlling all the
channels. As a result, when there are several distributions to

be learned among the group of channels, it can perform worse
than GN.

E. BATCH RENORMALIZATION
Batch Renormalization [17] is an extension of BN that en-
sures training and inferencemodels generate the same outputs
that depend on individual examples rather than the entire
minibatch. BRN is an augmentation of a network that contains
batch normalization layers with a per-dimension affine trans-
formation applied to the normalized activations to ensure the
match between training and inference models. Reducing the
dependence of activation of each sample with other samples
in the minibatch can result in a performance increase when
data are non-IID.

IV. NON-IID DATA
The most common non-IID data settings are reviewed in
[1] that lists five different partitioning strategies: 1) quantity
skew, 2) labels quantity skew (prior shift), 3) feature dis-
tribution skew (covariate shift), 4) same labels but different
features and 5) same features but different labels. In this
paper, we consider the same distributions tested in [10], [11]
apart from quantity skew, which is not treated. Indeed, [10],
[11] showed that quantity skew does not hurt the performance
of FL models, probably because it results in a different quan-
tity of samples per client, but the distribution of samples is
uniform, which is easy to deal with. In this paper, label quan-
tity skew, which is the most detrimental to the FL models’
performance, has been extensively tested in a lot of scenarios
to show how it is possible to overcome its difficulties. The
cases adopted (both IID and non-IID) are briefly described.

• Uniform Distribution (IID): each client of the federa-
tion holds the same amount of data, and the distribution
is uniform among parties. This is the simplest case for
FL algorithms because the distribution is IID.

• Labels Quantity Skew: the marginal distributions of
labels P(yi) vary across parties, even if P(xi|yi) is the
same. This especially happens when dealing with real
FL applications where clients of the federation are dis-
tributed among different world regions. Certain data are
present only in some countries, leading to the label
quantity skew. In this work, we adopted the simplest
version of label quantity skew, where each client holds
samples belonging to only a fixed amount of classes. In
our experiments, we used two as the number of classes
per client. Other versions of labels quantity skew can be
the Dirichlet labels skew (each client holds samples such
that classes are distributed according to the Dirichlet
function) and the Pathological labels skew (data are
firstly sorted by label and then divided in shards). Some
recent works [10], [11] show that the label quantity
skew decreases the FL performance by about 15% with
respect to the uniform distribution (results on CIFAR10).

• Feature Distribution Skew: the marginal distributions
P(xi) vary across parties, even if P(y|x) is shared. This
can happen in a lot of ML scenarios; for example, in
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TABLE 1. Statistics of the datasets.

Dataset Train samples Test samples # labels

MNIST 60.000 10.000 10

CIFAR10 50.000 10.000 10

handwriting recognition, the same words can be writ-
ten with different styles, stroke widths, and slants. The
covariate shift was obtained according to the proce-
dure described in [24]: samples are distributed among
clients according to the results of a Principal Component
Analysis (PCA) performed on the data. Some recent
works [10], [11] show that the covariate shift decreases
the FL performance by about 5% with respect to the
uniform distribution (results on CIFAR10).

V. EXPERIMENTS
Our experiments have been realized using OpenFL [25],
the new framework for FL developed by Intel Internet of
Things Group and Intel Labs. OpenFL is a Python 3 library
for FL that enables organizations to collaboratively train a
model without sharing sensitive information. OpenFL is DL
framework-agnostic. Training of statistical models may be
done with any deep learning framework, such as TensorFlow
or PyTorch, via a plugin mechanism. OpenFL is based on
a Director-Envoy workflow which uses long-lived compo-
nents in a federation to distribute more experiments in the
federation. The Director is the central node of the federation.
It starts an Aggregator for each experiment, sends data to
connected collaborator nodes, and provides updates on the
status. The Envoy runs on Collaborator nodes connected to
the Director. When the Director starts an experiment, the
Envoy starts the Collaborator to train the global model. All
the experiments were computed in a distributed environment
with ten collaborators. Each collaborator is run on an Intel
Xeon CPU (8 cores per CPU), and 1 Tesla T4 GPU. The
code used for experimental evaluation is publicly available
at https://doi.org/10.5281/zenodo.10380819.
Dataset: We tested FedAvg on MNIST [18] and CI-
FAR10 [19], that are default benchmarks in ML literature.
The details of the datasets are summarized in Table 1. MNIST
(Mixed National Institute of Standards and Technology) is a
well-known dataset of hand-written digits, including 70.000
grayscale images. Digits, spanning from 0 to 9, have a res-
olution of 28x28 pixels. CIFAR10 (Canadian Institute For
Advanced Research) is a widely known dataset in the field
of image recognition, encompassing 60.000 RGB images
categorized into ten different classes representing real-world
objects (like trucks, cars, and aeroplanes). The mage resolu-
tion is 32x32 pixels. These datasets have been chosen for their
popularity in the fields of pattern recognition and computer
vision so that the collected results can be compared with the
findings of other researchers.
Preprocessing: both datasets were not rescaled: MNIST im-

ages are 28x28 while CIFAR10 images are 32x32. As for
data augmentation, we performed random horizontal flips and
random crops with a probability of 50%. All the datasets were
normalized according to their mean and standard deviation.
Model: We employed ResNet-18 [13] and EfficientNet-
B0 [26] as classification models, trained by minimizing the
cross-entropy loss with mini-batch gradient descent using the
Adam optimizer with learning rate 10−3. The local batch
size was 128. Both ResNet-18 and EfficientNet-B0 were
downloaded from the torchvision.models module. They were
originally equipped with BatchNorm. The other different nor-
malization techniques have been hard coded by employing
the PyTorch version present in the torch.nn module, adapting
them to the number of classes and input channels and substi-
tuting them to the original BN layer. We used two networks to
show that the results are not model-dependent (See VI for the
EfficientNet-B0’s results). The scores of baseline models and
federated experiments on the uniform and non-IID settings
(section. V-A, Tables 2, 4 and 5) are the average (± standard
deviation) over five runs. For the extensive experiments on
batch size, number of local training steps, and number of
clients, we tested only ResNet-18 for only one run.
Normalization Layers: All the normalization layers de-
scribed before, i.e. BatchNorm, GroupNorm, InstanceNorm,
Layer Norm, and Batch Renormalization, have been applied
to the classification model in each experiment. For the most
promising normalization, layers have been run to study the
impact of the batch size, the number of epochs per round,
and the number of clients. For BN, we set the momentum,
i.e. the importance given to the previous moving average,
to 0.9, according to the SOTA [27] for ResNet-18. For GN,
the number of channels must be divisible by the number of
groups, so we set the number of groups to 32 for ResNet-18
(one of the possible divisors) and 8 for EfficientNet-B0 (the
only possible divisor). All the other normalization layers have
been used with their standard PyTorch configuration.
Top-1 accuracy has been employed as a classification

metric to compare the performance. Results show the best
aggregated model’s accuracy. The learning curve of all the
experiments can be studied from Figure 1 to Figure 5. Table
2 reports about a non-federated baseline, i.e., the typical AI
scenario where the data are centralized. The remaining tables
show the performance of FedAvg in different data partitioning
scenarios and for different values of some hyperparameters
such as batch size, number of epochs per round and number
of clients.

A. NORMALIZATION LAYERS AND NON-IID DATA
This subsection presents the results of the three data parti-
tioning scenarios presented: uniform, label quantity skew, and
covariate shift. Table 3 shows that normalization levels have
a huge impact on the performance of a NN, ranging from
very poor levels to almost reaching the level of accuracy in
the centralized case. ResNet-18-LN performs slightly better
than BN and GN while outperforming IN and BRN in the
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TABLE 2. Accuracy in the non-federated setting.

Dataset BN GN IN LN BRN

MNIST 99.22%± 0.07% 99.29%± 0.06% 11.36%± 0.00% 99.32%± 0.07% 99.00%± 0.20%

CIFAR10 82.60%± 0.24% 81.61%± 0.24% 9.89%± 0.00% 82.06%± 0.40% 81.77%± 0.23%

TABLE 3. Accuracy in the uniform setting.

Dataset BN GN IN LN BRN

MNIST 97.12%± 0.24% 98.26%± 0.19% 11.28%± 0.04% 98.51%± 0.06% 86.54%± 4.24%

CIFAR10 47.12%± 0.82% 53.99%± 0.23% 10.04%± 0.07% 59.06%± 0.25% 32.36%± 1.07%

TABLE 4. Accuracy in the labels quantity skew setting.

Dataset BN GN IN LN BRN

MNIST 82.25%± 7.70% 97.32%± 0.46% 18.53%± 4.18% 97.68%± 0.22% 74.66%± 3.20%

CIFAR10 38.02%± 1.64% 58.91%± 3.10% 19.00%± 5.47% 57.98%± 3.88% 27.34%± 5.56%

TABLE 5. Accuracy in the covariate shift setting.

Dataset BN GN IN LN BRN

MNIST 96.42%± 0.25% 97.96%± 0.19% 11.51%± 0.23% 97.37± 1.63% 91.01%± 1.12%

CIFAR10 44.58%± 1.96% 51.04%± 2.83% 10.08%± 0.23% 55.54± 2.22% 26.20%± 1.48%

uniform setting (fig. 1a). In both the labels quantity skew and
the covariate shift scenarios, both GN and LN outperform all
the other normalization layers; however, they require more
training steps to converge, as shown in fig. 1b and fig. 1c. IN
does not learn in FL; indeed, since bothMNIST and CIFAR10
have ten classes, ResNet-18-IN’s performance is like tossing
a coin. BRN seems to have a very long learning curve; in fact,
it needs a lot of training rounds to reach convergence. How-
ever, its performance is still far from the best performances of
BN, GN, and LN. For this reason, the following subsections
will report results only for the most promising normalization
layers: BN, GN, and LN.

TABLE 6. Accuracy in the labels quantity skew setting as the batch size
varies.

Dataset Batch size BN GN LN

MNIST

8 94.77% 97.85% 98.32%
16 81.02% 97.92% 98.83%
32 98.00% 97.93% 98.36%
64 73.89% 95.91% 98.13%
128 87.07% 96.84% 97.39%
256 90.33% 97.22% 97.39%
512 87.86% 97.97% 96.99%

CIFAR10

8 40.23% 59.95% 66.63%
16 45.41% 61.87% 56.42%
32 42.26% 55.61% 52.70%
64 43.02% 59.43% 55.07%
128 38.02% 60.17% 60.36%
256 46.69% 56.18% 56.92%
512 35.86% 51.92% 59.73%

B. NORMALIZATION LAYERS AND BATCH SIZE

FIGURE 2. Accuracies on CIFAR10 and different batch sizes. Accuracy
degrades when the batch size becomes too large.6 VOLUME 11, 2023
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(a) IID MNIST (b) Non-IID (labels quantity skew) MNIST (c) Non-IID (covariate shift) MNIST

(d) IID CIFAR10 (e) Non-IID (labels quantity skew) CIFAR10 (f) Non-IID (covariate shift) CIFAR10

FIGURE 1. Accuracies of ResNet-18 on the uniform and non-IID cases. BN, GN, and LN require a few rounds to reach convergence in the uniform setting,
while they need more training steps to converge in non-IID scenarios. It is clearly shown that BRN requires a very long learning curve and that IN does not
learn in FL.

We examined the effect of a range of batch sizes on training
NNs with different normalization layers (Tab. 6 and Fig.2).
We trained ResNet-18 on both MNIST and CIFAR10 with a
batch size of 8, 16, 32, 64, 128, 256 and 512.

In Tab.6, we can see that GN and LN variants of ResNet-18
consistently outperformBN (batch sizes 8 and 16). In all three
variants, the accuracy degrades when the batch size becomes
too large (in almost all cases, there is a significant drop in
performance when passing batch size 256 to 512). A possible
explanation for this phenomenon is that, as stated in [28], "the
lack of generalization ability is due to the fact that large-batch
methods tend to converge to sharp minimizers of the training
function". This is especially true in contexts such as FL,
where clients have fewer data than in centralized scenarios,
and therefore, increasing the batch size has a greater effect.

C. NORMALIZATION LAYERS AND NUMBER OF EPOCHS
PER ROUND
The Director-Envoy paradigm provided by OpenFL creates
a workspace that allows data scientists to write their own
training functions. By default, the number of epochs is equal
to 1. Indeed, after every epoch of training, the aggregation
strategy chosen is performed (FedAvg). By adjusting this
hyper-parameter, it is possible to choose the favourite number
of epochs per round before aggregation. We considered two
types of experiments to study how accuracy is affected by the
number of epochs per round:

• Fix the number of rounds and increase the number of
local training steps (Tab.7).

• Fix the number of training epochs to 1000 and vary the
ratio of epochs to rounds (Tab. 8).

It can be noted that models benefit frommore local steps of

gradient descent before doing aggregation. Indeed, accuracy
increases as E increases. A possible explanation is that this
happens because clients of the federation share a similar loss
function shape, and going more and more towards the local
minima can be beneficial to reach global optima.

Interestingly, when E=1, BN converges quickly, while GN
and LN require more training steps to converge. However,
when E increases to 10 or 100, BN also requires more rounds
to reach convergence, while the learning curves of GN and
LN are unaffected by significant changes.

These results can also be analyzed from a communication
point of view: with the same amount of epochs, less commu-
nication achieves better results. For example, on CIFAR10,
ResNet-GN with E=2 and 500 rounds achieves higher accu-
racy than ResNet-GNwith E=1 and 1000 rounds (Fig.4). This
means that perhaps counter-intuitively, training locally before
performing aggregation can boost the model’s accuracy. This
seems to indicate that pursuing local optimizations can lead
to better approximations of the local optima. However, at a
certain point, increasing E and reducing the number of rounds
decreases the performance. This pattern is clearly visible with
all the normalization layers and in both datasets. Table 8
shows that we always need an appropriate ratio of epochs to
round.

Finally, it has been observed [30] that as the communica-
tion frequency diminishes, the ideal settings for local training
tend to mirror those of centralized training. For this reason,
a more frequent aggregation can require differentiating from
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(a) BN (b) GN (c) LN

FIGURE 3. Accuracies on CIFAR10 and different epochs per round. Accuracy increases as BN converges and lates as E increases, while GN and LN follow
an inverse pattern.

(a) BN (b) GN (c) LN

FIGURE 4. Accuracies on CIFAR10 fixing the number of epochs to 1000 and varying the ratio of epochs to rounds.

TABLE 7. Accuracy in the labels quantity skew setting as the number of
epochs per round varies.

Dataset Epochs BN GN LN

MNIST
1 87.07% 96.84% 97.39%
10 79.82% 98.83% 98.95%
100 92.88% 97.83% 99.04%

CIFAR10
1 38.02% 60.17% 60.36%
10 55.53% 54.89% 63.68%
100 54.19% 73.32% 68.40%

TABLE 8. Comparison between different epochs per round in labels
quantity skew setting.

Dataset Epochs Rounds BN GN LN

MNIST

1 1000 91.15% 98.92% 98.77%
2 500 84.68% 98.85% 99.05%
5 200 92.42% 98.33% 99.12%
10 100 79.40% 98.46% 98.69%
20 50 77.86% 97.17% 97.26%
50 20 54.18% 79.77% 74.40%
100 10 60.29% 78.02% 78.86%

CIFAR10

1 1000 43.12% 56.94% 57.03%
2 500 50.09% 65.14% 62.63%
5 200 47.85% 63.68% 64.56%
10 100 51.37% 51.23% 61.22%
20 50 48.16% 54.33% 65.36%
50 20 38.92% 56.53% 52.67%
100 10 33.06% 48.24% 50.56%

the centralized training’s optimal parameters.

TABLE 9. Accuracy in the labels quantity skew setting as the number of
collaborators varies.

Dataset Clients BN GN LN

MNIST

2 99.02% 99.61% 99.85%
4 91.85% 99.47% 98.36%
8 88.38% 96.49% 97.68%
10 87.07% 96.84% 97.39%

CIFAR10

2 44.57% 74.15% 75.63%
4 55.30% 50.50% 67.69%
8 51.27% 60.75% 65.00%
10 38.02% 60.17% 60.36%

D. NORMALIZATION LAYERS AND NUMBER OF CLIENTS
A recent work [30] shows that the number of clients of the
federation directly affects learning rate and batch size com-
pared to centralized training, affecting thus the global model
performance.
We tested the scalability of FL by measuring the effect of

the number of clients of the federation, as shown in Fig. 5,
and considering two types of experiments:

• a labels quantity skew split of the dataset across a differ-
ent number of clients (namely 2, 4, 8, and 10). Results
are reported in Table 9.

• a uniform dataset split across clients, but considering
only some parties. Here the idea is to show how in-
creasing the number of participants, and so the quantity
of data, can be beneficial to the federation. Results are
reported in Table 10.

We can observe (Table 9) that the accuracy significantly
increases when decreasing the number of clients. Indeed,
when the number of parties is small, the amount of local
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TABLE 10. Accuracy in the i.i.d. setting using only some shards of the
dataset.

Dataset Clients BN GN LN

MNIST

2 94.64% 96.26% 97.38%
4 96.18% 97.52% 98.10%
8 96.79% 97.98% 98.34%
10 97.12% 98.26% 98.51%

CIFAR10

2 41.80% 45.37% 51.73%
4 43.47% 48.74% 54.55%
8 45.81% 53.18% 58.36%
10 47.12% 53.99% 59.06%

data increases, leading to better local models, and aggregating
fewer models can result in less information loss. Moreover,
we can note the importance of normalization layers in FL:
GN and LN variants of ResNet-18 in the ten-client scenario
perform better than BN in a two-client scenario on CIFAR10,
while on MNIST, there is only a slight drop.
Table 10 shows the results in an IID scenario considering
only some shards of the dataset. In this case, the amount of
local data remains the same in each configuration; however,
the federation’s total amount of data varies according to the
number of parties. Increasing the quantity of data in the
federation by increasing the number of clients benefits the
aggregated model.

FIGURE 5. Accuracies on CIFAR10 and different number of clients.
Accuracy of ResNet-18-BN on 2 parties is still lower than
ResNet-18-GN/LN on 10 parties.

E. ANALYSIS OF COMPUTATION TIME
Table 14 in the Appendix section summarizes the wall-clock
times (mean of five different runs) required for training the
models for 200 federation rounds on CIFAR10. Results, ex-
pressed in the HH:MM time format, reveal an easily dis-
cernible pattern. All the alternatives to BN decrease the wall-
clock time by about 20%. While the wall-clock times are the
combination of the computation (train and test phases) and
communication (exchanging parameters between the clients
and the central server) times, it is important to note that the
overhead introduced by BN, with respect to the alternative
normalization layers, highly depends on the computation
phase. Indeed, normalization introduces a small number of
learnable parameters for every layer of the model. So, the

increase in magnitude (in MB) of the weights exchanged
between the federation’s participants is negligible. In partic-
ular, compared with its alternatives, the possible overhead
introduced by the saving and communication of BN’s mov-
ing averages is still negligible. Finally, the main slowdown
introduced by BN should be due to the steps of synchroniza-
tion among mini-batches. Indeed, in BN, the local averages
and standard deviations have to be combined into a single
global mean and variance. This synchronization overhead
is not present in other normalization techniques computing
statistics per each sample individually (LN), per group (GN,
IN). Surprisingly, while BRN exploits the same mechanism
of statistics computation but a slightly different normalization
step from BN, its wall-clock times are lower than BN’s. This
behavior will be further investigated for future work.

VI. CONCLUSIONS
This work aims to improve the effectiveness of federated
learning, focusing on hyper-parameter optimization, starting
from understanding which hyper-parameters specifically af-
fect the training of a federated model differently from central-
ized training. We specifically focused on layer normalization,
which is also a hyper-parameter of centralized training, and
frequency of model aggregation, which is not an issue in
centralized training.
We experimented with two network architectures and five

normalization layers on two public image datasets. We tested
Batch, Group, Instance, Layer Normalization, and Batch
Renormalization in the uniform, label quantity skew, and co-
variate shift settings. Although BN is the SOTA for classical
ML techniques, in our experiments, GN and LNoutperformed
the other normalization layers in all the FL partitioning strate-
gies.
This paper provides a benchmark for the most common

normalization layers of NNs, helping researchers to compare
and contrast their findings with those of other scientists. As a
drawback, we can underline that BN is the most employed
solution for SOTA algorithms. This can make it difficult
and unfair to compare newly proposed solutions that adopt
different normalization layers and SOTA methods.
Through extensive experimentation, we analyzed how the

batch size, the number of epochs per round, the number of
rounds, and the number of clients of the federation affect the
aggregated model performance. These additional tests have
been conducted in the labels quantity skew scenario, which is
the most challenging for FL algorithms, considering the best
three normalization layers: BN, GN, and LN.
GN and LN outperform BN in almost all the tests. Results

show that regardless of the batch size, GN and LN consis-
tently outperform BN, although batch size affects the model’s
performance in all cases. Unexpectedly, we observed that
the plot of the quality of the model against the frequency of
model aggregation (epochs per round) consistently exhibits a
maximum at a few epochs per round. For FL, the number of
epochs per round exhibits similar behavior of batch size for
centralized training.
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Eventually, we tested the scalability of FL systems. We
noted that FL is not scalable under a strong scalability as-
sumption, i.e., increasing the number of clients while main-
taining the size of local datasets constant. However, GN and
LN on ten clients still outperform BN on two clients. The
scalability has also been tested in the IID scenario under the
weak scalability assumption, i.e., increasing the number of
clients while maintaining the size of the local dataset per
client constant. In this case, the federation’s data changes with
the number of clients, and the model’s performance increases
with the number of parties.

In future work, considering the close relationship between
the communication frequency, the batch size, and the number
of workers, we aim to understand deeper if a higher learning
rate and a reduced batch size are required when increasing the
number of epochs per round. Indeed, a smaller batch size may
be required in order to have more model updates, together
with a higher learning rate, which can confirm that with more
epochs per round, the global model parameters have to go
away from centralized optimal parameters [30].

Proposing a new normalization scheme specifically de-
vised for FL on non-IID data is another interesting direc-
tion for future work. Taking inspiration from the parallel
tempering method, we plan to implement a mean-exchange
algorithm in which the weights of the normalization layers
are exchanged among the federation’s parties rather than
averaged.
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TABLE 14. Wall-clock execution times [HH:MM] to train models on
CIFAR10 for 200 federated training rounds of 1 epoch.

Distribution BN GN IN LN BRN

UNIFORM 04:43 03:48 03:49 03:49 03:54

LABEL QUANTITY SKEW 04:42 03:53 03:51 03:53 03:56

COVARIATE SHIFT 04:47 03:52 03:54 03:49 03:57
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APPENDIX
Accuracies on the uniform and non-iid data settings using and
EfficientNet-B0 [26].

TABLE 11. Accuracy in the uniform setting with EfficientNet-B0

Dataset BN GN IN LN BRN

MNIST 65.09% 95.07% 11.26% 96.12% 11.02%

CIFAR10 29.88% 29.93% 10.08% 38.98% 10.48%

TABLE 12. Accuracy in the labels quantity skew setting with
EfficientNet-B0

Dataset BN GN IN LN BRN

MNIST 55.83% 91.91% 24.13% 94.35% 45.69%

CIFAR10 29.98% 27.53% 14.92% 37.71% 22.61%

TABLE 13. Accuracy in the covariate shift setting with EfficientNet-B0

Dataset BN GN IN LN BRN

MNIST 65.10% 94.86% 11.19% 95.81% 61.90%

CIFAR10 26.78% 28.01% 10.16% 48.10% 10.01%
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