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Abstract

The computing capacity needed to process the data generated in modern scientific
experiments is approaching ExaFLOPs. Currently, achieving such performances
is only feasible through GPU-accelerated supercomputers. Different languages
were developed to program GPUs at different levels of abstraction. Typically, the
more abstract the languages, the more portable they are across different GPUs.
However, the less abstract and co-designed with the hardware, the more room for
code optimization and, eventually, the more performance. In the HPC context,
portability and performance are a fairly traditional dichotomy. The current C++
Parallel Standard Template Library (PSTL) has the potential to go beyond this
dichotomy. In this work, we analyze the main performance benefits and limita-
tions of PSTL using as a use-case the Gaia Astrometric Verification Unit-Global
Sphere Reconstruction (AVU-GSR) parallel solver developed by the European
Space Agency Gaia mission. The code aims to find the astrometric parameters of
∼108 stars in the Milky Way by iteratively solving a linear system of equations
with the LSQR algorithm, originally GPU-ported with the CUDA language. We
show that the performance obtained with the PSTL version, which is
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intrinsically more portable than CUDA, is comparable to the CUDA
one on NVIDIA GPU architecture.

Keywords: High-Performance Computing, Standard parallelism, GPU programming,
Astrometry

1 Introduction

Following technological capabilities, scientific computing data rapidly increase in size
in a broad range of applications, quickly approaching ∼10-100 PB of input data. To
analyze such large datasets, Peta- and ExaFLOPs performance is needed. Effectively
exploiting this performance on large scientific applications (beyond deeply optimized
small benchmarks) requires re-engineering and co-design of hardware and software.
Calculations should be performed on growing numbers of nodes, and the architec-
ture of each node is becoming increasingly heterogeneous [1]. While the research
on alternative computing architectures is ongoing, today, the mainstream Exascale
architecture can be sketched as a large cluster of nodes interconnected with a fast
Mellanox/Cray network, where each node is an Intel/AMD/ARM multicore accel-
erated with multiple NVIDIA/AMD GPUs. Despite this blatant simplicity, each
configuration of networking/multicore/GPUs may require re-coding the applications
to reach an acceptable performance and efficiency, whereas moving from multicore to
multicore+GPUs clusters also requires a significant code redesign.

A fast way to port to GPU existing code bases designed to run on CPU is pro-
vided by adopting high-level and directive-based languages, such as OpenMP [2] and
OpenACC [3], which can allow GPU offload with minimal application redesigns [4].
This approach reduces code porting time but might result in poor performance
since, without a code rearrangement thought for running on GPU, significant bottle-
necks stemming from poor management of host-to-device (H2D) and device-to-host
(D2H) data transfers, as well as inefficient memory access patterns, might occur.
Typically, the application should be redesigned to massively exploit data paral-
lelism and this might require a significant effort. Once redesigned, the coding of
the application can also be made using a portable programming frame-
work, such as OpenMP and OpenACC, providing a portable solution
on different architectures. However, these portable frameworks typically
underperform against low-level and architecture-specific languages, such as
CUDA, leaving much room for optimization and fine-tuning architecture-
dependent parameters, which can entail significant performance boosts.
The performance vs portability dichotomy traditionally affected and still affects the
high-performance computing realm [5, 6].

A potently new trade-off between performance and portability for coding GPU-
accelerated applications can be provided by the class of programming frameworks
where parallel algorithms are first-class programming constructs. Among them, it is
worthwhile to mention C++ PSTL [7] (Parallel Standard Template Library), SYCL [8]
(Standard Parallel Programming for C++), Kokkos [9], Fastflow [10], and HIP [11]
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(Heterogeneous-Compute Interface for Portability). Differently from programming
frameworks designed to support the transition from sequential to parallel code, such
as OpenMP and OpenACC, typically based on parallelization of loops [4], they allow
programmers to reason about the properties of (data) parallel algorithms and their
memory access patterns, and eventually to design and optimize abstract enough (thus
portable) efficient code. In this work, we specifically focus on C++ PSTL. This parallel
programming model is fascinating for portability because it does not require explicitly
inserting any external directive not included in the standard of the language, which
should be supported by any compiler vendor for supported architectures.

Starting from C++11, the first set of parallel constructs and concurrency topics
have been introduced to the C++ standard. Further iterations of the C++ stan-
dards have progressively introduced new concepts and refined the specifications. In
particular, from C++17 onwards, the algorithms of the STL were extended by intro-
ducing execution policies to express and exploit parallel computations [12, 13]1. A
compiler that generates C++17 executable code is nvc++ [14]. This compiler, part of
the NVIDIA HPC SDK toolbox, can generate assembly code for GPUs or CPUs with
multithreading by adding the compiler flag -stdpar=gpu or -stdpar=multicore. In
recent studies (e.g., [14]), NVIDIA has demonstrated that clean and portable codes
can be written without significant performance losses compared to CUDA codes.

We apply the C++ PSTL approach to a use-case: the Astrometric Verification
Unit-Global Sphere Reconstruction (AVU-GSR) parallel solver [15]. This solver finds
the astrometric parameters for ∼108 stars in the Milky Way by solving a system
of linear equations with the iterative LSQR algorithm [16, 17], which performs two
matrix-by-vector products per iteration. The original code is written in CUDA for
optimal performance on NVIDIA GPUs. In this code, we did not employ an imple-
mentation of the LSQR algorithm from an external library (e.g., BLAS2, LAPACK3,
Intel oneMKL4, cuSPARSE5, or MAGMA6), to have full control of all control knobs
to optimize the execution of LSQR according to the specific structure of the coeffi-
cient matrix of the system of equations (see also [18]). This custom implementation
also allowed further optimization of the communications between the MPI processes
and a better use of the memory and, thus, the possibility of solving larger systems.

Our work aims to demonstrate that the C++ PSTL code version does not signifi-
cantly degrade performance concerning the CUDA version of the code by testing the
two versions on three different HPC infrastructures. We chose this code as a use-case
due to its compute-bound rather than MPI communications-bound nature.

The outline of this paper is as follows. After a description of the usages of the
C++ PSTL to offload HPC applications to the GPU from literature (Section 2), we
briefly present the structure of the Gaia AVU-GSR code (Section 3) and of its previ-
ous parallel versions: on CPUs with MPI + OpenMP (Section 3.1) and on GPUs with
MPI + OpenACC (Section 3.2). In Section 4, we describe the two versions of the code
that are compared in this work: a new optimized version of the MPI + CUDA code

1https://en.cppreference.com/w/cpp/17
2https://www.netlib.org/blas/
3https://www.netlib.org/lapack/
4https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
5https://docs.NVIDIA.com/cuda/cusparse/
6https://icl.utk.edu/magma/
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(Section 4.1), and the new implementation of the code in C++ PSTL (Section 4.2).
Then, we present some performance tests to compare the efficiency of the CUDA and
C++ codes on different infrastructures and the weak scaling properties of the two
codes on Leonardo CINECA supercomputer (Section 5). To execute these performance
tests, we do not run systems that take as input real data but only simulated data.
This is an obliged choice since an amount of real data to test the weak scalability up
to a sufficiently large number of nodes (256 on Leonardo) has not been produced yet.
However, real and simulated data are distributed in the same way in the system of
equations and, thus, simulated data are as representative to study the weak scalabil-
ity of the code as the real data. Section 6 concludes the paper and presents future
directions for this work.

2 Related Works

Developing applications in C++ using the PSTL compiled to offload computations to
GPUs is a new approach in the HPC scenario. To the authors’ knowledge, there are
very few preceding examples of this approach.

Lin et al. [14] ported many representative HPC mini-applications employing
standard C++17 to the GPU. These mini-applications are both compute- and
memory-bound to span all possible cases. With proper benchmarks, they compared
the performance of these mini-applications with other porting of the same codes
performed in OpenMP, CUDA, and SYCL. The C++17 applications resulted in com-
parable performances with their previous porting versions on different platforms with
diverse architectures, which indicates the high portability of this method besides its
good performance.

Malenza et al. [19] ported to GPU with C++11 a mini-application built from the
open source software OpenFOAM7 which computes the Gauss-Green gradient. The
performance of this mini-application was tested on an ARM-multicore architec-
ture with NVIDIA GPUs, obtaining a speedup from 1.66x to 5.11x compared to the
same application running on the CPU. Given this promising result, the authors
aim to port other sections of the OpenFOAM software to GPU with the
same approach.

Asahi et al. [20] built a mini-application of a kinetic plasma simulation code based
on the Vlasov equation. The mini-application is written in standard C++ and runs
on multi-CPU and multi-GPU systems. They demonstrate that this method does
not impair the readability and productivity of the mini-application and provides a
performant portable solution with a certain speedup over a previous version written
in Kokkos on Intel Icelake, NVIDIA V100, and A100 GPU architectures.

Among other works which exploit standard C++ to offload their codes to GPU,
notice:

1. the work of Latt, et al. [12], who ported to GPU with C++ the Palabos software
library for complex fluid flow simulations;

2. the work of Bhattacharya, et al. [21], which investigated different portable parallel
solutions (Kokkos, SYCL, OpenMP, C++ standard) for high energy physics use

7https://www.openfoam.com
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cases on accelerators (such as GPUs) architectures and compared them according
to a set of metrics, concluding that the C++ standard could provide the best
solution. A follow-up is the work of Atif, et al. [22], that also considered the Alpaka
language as a possible portable parallel solution;

3. the work of Gomez et al. [13], who described the C++ porting of the ExaHyPE
code, a solver engine for hyperbolic partial differential equations for complex wave
phenomena;

4. the work of Kang, et al. [23], who wrote cuGraph primitives in standard C++ and
tested algorithms using these primitives over 1000 GPUs.

Unlike the related works that adopt this method in mini-applications, we apply it
to a complete and real-world scientific application.

3 The Gaia AVU-GSR code

The Astrometric Verification Unit-Global Sphere Reconstruction (AVU-GSR) paral-
lel solver [15] is a code developed by the European Space Agency (ESA) mission
Gaia [24]8, launched in late 2013 and expected to end in mid-2025, whose aim is to
map the positions and proper motions of ∼1% (∼109) stars in our Galaxy. The AVU-
GSR code finds these astrometric parameters for ∼108 of these stars, the so-called
“primary” stars [25], besides the attitude and the instrumental settings of the Gaia
satellite and the Parametrized Post Newtonian (PPN) γ global parameter, by solving
an overdetermined system of linear equations [15]:

A× x⃗ = b⃗. (1)

In Eq. (1), the coefficient matrix A is large and sparse and contains ∼(1011)× (5×
108) elements. This matrix has high sparsity: of the 5 × 108 elements per row, only
24 at most are different from zero, and to fit it in the (distributed) main memory, it
is encoded as a dense matrix Ad, which only contains the nonzero coefficients of A.
The dense matrix Ad has at most ∼(1011) × (24) elements (∼19 TB), reducing the

problem by 7 orders of magnitude. The known terms array b⃗ is as long as the number
of rows of the matrix A (∼1011 elements, ∼800 GB) and the solution array x⃗ is as
long as the number of columns of the original sparse matrix A (∼5 × 108 elements,
∼4 GB). These numbers refer to a case for a system at the end of the Gaia mission,
that is, with a complete dataset.

The solution x⃗ has to be iteratively found in the least-squares sense with the
LSQR algorithm [16, 17], which represents ∼95% of the computation time of the entire
AVU-GSR code.

Before the LSQR iterations start, the data are either imported in binary format,
if we consider real data, or generated within the code, if we consider simulated data.
Then, the system is preconditioned to improve the convergence speed of the LSQR.
The system is de-preconditioned after the LSQR convergence (for more details see [15,
18, 26]. Since the system is overdetermined, several constraint equations are set at the
bottom of the system.

8https://sci.esa.int/web/gaia
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The majority of the computation time of the LSQR algorithm and of the entire
AVU-GSR code basically consists in the call of the aprod function in the modes 1 and
2 (see Algorithm 1), where aprod 1 provides the iterative estimate of the known terms

array b⃗:
b⃗i+ = A× x⃗i−1, (2)

and aprod 2 provides the iterative estimate of the solution array x⃗:

x⃗i+ = AT × b⃗i, (3)

computing two matrix-by-vector products.

Algorithm 1 LSQR algorithm implemented for the Gaia mission

Require: A, b⃗
Each MPI process executes the aprod 2 function to compute x⃗0+ = AT × b⃗
MPI Allreduce(x⃗0, MPI SUM)

while convergence || maximum iteration reached do

Each MPI process executes the aprod 1 function to compute b⃗i+ = A× x⃗i−1

MPI Allreduce(⃗bi, MPI SUM)

Each MPI process executes the aprod 2 function to compute x⃗i+ = AT × b⃗i

MPI Allreduce(x⃗i, MPI SUM)

end while

The solution is iterated in a while loop up to the algorithm’s convergence, in
the least-squares sense, or when a maximum number of iterations, set at runtime, is
reached.

The AVU-GSR code was firstly parallelized on CPUs with a hybrid MPI +
OpenMP approach [15] (Section 3.1), and then the LSQR part was ported to GPUs
by replacing OpenMP firstly with OpenACC [18, 27, 28] (Section 3.2) and then with
CUDA [26, 29] (Section 4.1). The MPI part is common to all versions of the code.

Algorithm 1 summarizes the main steps of the LSQR part of the AVU-GSR code
common to all code implementations. After setting the initial condition with the aprod
2 function, the solution x⃗ is reduced with an MPI SUM operation among the MPI
processes with the MPI Allreduce() collective and blocking communication opera-
tion. Then, the LSQR while loop starts and, after the end of each aprod region, a
MPI Allreduce() operation is performed. This function sums the partial results of
the known terms array b⃗ found by each MPI process with aprod 1 and of the solution
array x⃗ found by each MPI process with aprod 2.

The left part of Figure 1 schematically represents how the coefficients are dis-
tributed in the original sparse matrix A. The rows of A (∼ 1011 in the final Gaia
dataset) are the system equations, and they represent the observations of the primary
stars. Each star is observed ∼ 103 times on average. After these rows, an additional
number of constraint equations is set. The columns of A (∼ 5× 108 in the final Gaia
dataset) represent the number of unknowns to solve.
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Fig. 1: Parallelization scheme of the system of equations (Eq. 1) on four MPI processes
in a single node of a computer cluster. Left panel : coefficient matrix A. Middle panel :
unknowns array x⃗. Right panel : known terms array b⃗. Different colors (yellow, orange,
red, and brown) refer to different MPI processes or processing elements (PE). The
block-diagonal part on the left side of the coefficient matrix illustrates its nonzero
astrometric section. In the middle panel, the four square blocks diagonally placed
and labeled as “Astrometric” represent the astrometric part of the solution array
distributed among the MPI processes. All the light blue parts are replicated on all
the MPI processes. These are the constraints equations (the narrow light blue bands
at the end of each process in the coefficient matrix and the known terms array) and
the attitude, instrumental, and global portions of the solution array (the four light
blue aligned blocks, labeled as “Att+Instr+Glob”). At each iteration i, the replicated

portions of b⃗ and x⃗ are reduced.

The matrix is vertically structured in four sections: astrometric, attitude, instru-
mental, and global. The astrometric section represents ∼90% of the entire matrix. The
nonzero astrometric coefficients are organized in a block-diagonal structure, where
each block represents a single star (gray blocks in the left part of Figure 1). Each row
has a limited number of nonzero astrometric parameters NAstro between 0 and 5. We
always set NAstro to 5 for our simulations.

In the considered modelization, the attitude part counts NAtt = 12 nonzero param-
eters per row, structured in NAxes = 3 blocks (representing the attitude axes) of
NParAxis = 4 coefficients. Between two consecutive blocks, NDFA elements are equal to
zero, where NDFA is the number of degrees of freedom carried by each attitude axis.

The instrumental part has a number of nonzero coefficients, NInstr, between 0 and
6, which do not follow a regular pattern. The global part only contains NGlob = 1
global coefficient, the γ parameter of the PPN formalism. In our simulations, we
always set NInstr = 6 and we do not consider the global section of the system,
i.e., having 23 nonzero elements per row of Ad.
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Figure 1 represents a system of equations parallelized over four MPI processes in
one compute node. The computation assigned to each MPI process is highlighted in
yellow, orange, red, and brown. The computation replicated on each MPI process is
marked in light blue. The computation referred to a horizontal section of the coefficient
matrix, i.e., a portion of the total number of observations, is related to a single MPI
process. Instead, the computation of the constraint equations is replicated in each
process. This replication does not carry a significant overhead since the constraint
equations represent a negligible fraction of the total number of equations. This solution
avoids a complicated reorganization of the code. Given this schema, after aprod 1,
only the fraction of the b⃗ array related to the constraints equations has to be reduced.

Given the regular block-diagonal organization of the astrometric section, this part
is distributed among the MPI processes. This operation was less intuitive for the
other three sections, which show a less regular structure and are, thus, replicated in
each process. This replication does not entail a substantial loss of performance given
that the attitude + instrumental + global sections only represent ∼10% of the entire
matrix. Given this schema, after aprod 2, only the fraction of the x⃗ array related to
the attitude + instrumental + global sections has to be reduced.

In this work, we only compare the performances of the CUDA and C++ PSTL
codes. However, a brief description of the other two code versions (OpenMP and
OpenACC) is provided below to give a more profound background and show the code
versions from which the currently employed versions were derived.

3.1 The OpenMP parallelization

The MPI + OpenMP version ran in production on CINECA infrastructure Marconi100
from 2014 to 2022. The computation related to each MPI process (colored portions in
Figure 1) is further parallelized on the CPU over the OpenMP threads. Listing 1 shows
the astrometric part of aprod 1. Aprod 1 performs the matrix-by-vector productAd[i×
Npar+j]×x[offsetMi[i]+j] and saves the result in the scalar variable sum. The index i
iterates along the observations within a single MPI process with rank pid, N [pid], and
the index j iterates along the number of nonzero astrometric coefficients per row, where
NAstro = 5. The for loop that iterates on i is parallelized with the #pragma omp for

OpenMP directive, enclosed within a #pragma omp parallel region. Then, the result
sum is cumulated in the known terms array, b[i], as the index i advances. The variable

offsetMi[i] depends on the array M⃗i, called “matrix index array”, whose elements
at even positions are the indexes of the first nonzero astrometric coefficients of each
row of the original matrix A. The odd indexes of M⃗i contain the same information for
the attitude indexes. The variable offset is an offset local to the MPI process pid.

The elements of Ad at line 10 are not read contiguously in memory when each j-
loop concludes. At the beginning of every j-loop, the element ofAd “jumps” Npar = 23
elements, since this code section only refers to the astrometric vertical portion of the
coefficient matrix (see Figure 1), and the attitude + instrumental + global sections
have to be jumped. The attitude, instrumental, and global sections of aprod 1 and
the four sections of aprod 2 follow an analogous logic (see Algorithms 2 and 3 of [26]
to see the complete pseudocodes of aprod 1 and 2 in the MPI + OpenMP, MPI +
OpenACC, and MPI + CUDA versions of Gaia AVU-GSR code).
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1 i n t main ( i n t argc , char ∗∗ argv )
2 {
3 #pragma omp p a r a l l e l p r i va t e ( pid , sum) shared (N, x ,Ad,Mi , b)
4 {
5 #pragma omp f o r
6 f o r ( long i = 0 ; i < N[ pid ] ; i++) {
7 sum = 0 . 0 ;
8 o f f s e tM i = Mi [2∗ i ] − o f f s e t ;
9 f o r ( long j = 0 ; j < NAstro ; j++){

10 sum = sum + Ad[ i ∗Npar + j ]∗ x [ o f f s e tMi + j ] ;
11 }
12 b [ i ] += sum ;
13 }
14 }
15 e x i t (EXIT SUCCESS) ;
16 }

Listing 1: OpenMP aprod 1 astrometric section.

1 i n t main ( i n t argc , char ∗∗ argv )
2 {
3 #pragma acc p a r a l l e l p r i va t e ( pid , sum) pre sent (N, x ,Ad,Mi , b )
4 {
5 #pragma acc loop
6 f o r ( long i = 0 ; i < N[ pid ] ; i++) {
7 sum = 0 . 0 ;
8 o f f s e tM i = Mi [2∗ i ] − o f f s e t ;
9 f o r ( long j = 0 ; j < NAstro ; j++){

10 sum = sum + Ad[ i ∗Npar + j ]∗ x [ o f f s e tMi + j ] ;
11 }
12 b [ i ] += sum ;
13 }
14 }
15 e x i t (EXIT SUCCESS) ;
16 }

Listing 2: OpenACC aprod 1 astrometric section.

1 g l o b a l void aprod1 Kerne l a s t ro ( double ∗ b dev , const double ∗
Ad dev , const double ∗ x dev , const u i n t 3 2 t ∗ MiAstro dev ,
const u i n t 6 4 t Npar , const u i n t 3 2 t Nobs , const u i n t 3 2 t
o f f s e t , const u i n t 1 6 t NAstro )

2 {
3 double sum = 0 . 0 ;
4 u i n t 3 2 t o f f s e tMi = 0 ;
5 u i n t 3 2 t i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
6
7 // Check i f cur rent CUDA thread i s i n s i d e matrix borders
8 whi l e ( i < Nobs ) {
9 sum = 0 . 0 ;
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10 o f f s e tM i = MiAstro dev [ i ] − o f f s e t ;
11 f o r ( u i n t 3 2 t j = 0 ; j < NAstro ; j++) {
12 sum = sum + Ad dev [ i ∗Npar + j ] ∗ x dev [ o f f s e tMi + j ] ;
13 }
14 b dev [ i ] = b dev [ i ] + sum ;
15
16 i += gridDim . x∗blockDim . x ;
17 }
18 }
19
20 i n t main ( i n t argc , char ∗∗ argv )
21 {
22 aprod1 Kerne l as t ro<<<gridDim , blockDim>>>(b dev , Ad dev , x dev

, MiAstro dev , Npar , N[ pid ] , o f f s e t , NAstro ) ;
23 e x i t (EXIT SUCCESS) ;
24 }

Listing 3: CUDA aprod 1 astrometric section.

1 void aprod1 Kerne l a s t ro ( double ∗ b , const double ∗ Ad, const double ∗
x , const i i n t ∗ MiAstro , const l i n t& Npar , const i i n t& Nobs ,
const i i n t& o f f s e t , const s i n t& NAstro )

2 {
3 const auto& s t a r t=std : : views : : i o t a (0 , nobs ) . begin ( ) ;
4 const auto& end=std : : views : : i o t a (0 , nobs ) . end ( ) ;
5
6 std : : f o r e a ch (POL, s ta r t , end , [= ] ( const auto i ) {
7 double sum{ZERO} ;
8 const i i n t o f f s e tM i = MiAstro [ i ] − o f f s e t ;
9 f o r ( i i n t j = 0 ; j < NAstro ; ++j ) {

10 sum += Ad[ i ∗Npar + j ] ∗ x [ o f f s e tMi + j ] ;
11 }
12
13 b [ i ] = b [ i ] + sum ;
14 }) ;
15 }
16
17 i n t main ( i n t argc , char ∗∗ argv )
18 {
19 aprod1 Kerne l a s t ro (b , Ad, x , MiAstro , Npar , Nobs , o f f s e t ,

NAstro ) ;
20 e x i t (EXIT SUCCESS) ;
21 }

Listing 4: C++ PSTL aprod 1 astrometric section.

3.2 The OpenACC parallelization

The first GPU porting of the AVU-GSR code was performed with OpenACC [18, 27,
28]. It consisted in a preliminary study, to explore the feasibility of a GPU porting
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of the application, which required a minimal code rearrangement. The code runs on
multiple GPUs per node, where the MPI processes are assigned to the GPUs of the
node in a round-robin fashion. The optimal way to run the OpenACC code is to set
the number of MPI processes per node equal to the number of GPUs of the node. This
feature is also shared with the CUDA and C++ PSTL codes.

Listing 2 shows the astrometric part of aprod 1 ported with OpenACC. We can
see that the structure of the code is the same as for OpenMP, with the difference
that the #pragma omp parallel and #pragma omp for directives are now replaced
by #pragma acc parallel and #pragma acc loop directives, respectively. The H2D
and D2H data transfers were explicitly managed through specific directives.

With this first-order parallelization approach, the speedup over the OpenMP
version was of ∼1.5 [18, 28].

4 The CUDA and C++ implementations

4.1 The CUDA parallelization

The OpenACC porting paved the way to a more extensive optimization, where Ope-
nACC was replaced by CUDA [26, 29]. This new porting required a substantial
redesign. The grid of blocks of GPU threads where the different GPU regions are run-
ning has been customized to match the topology of the matrix-by-vector operations
to solve. In this work, we compare the performance of our novel C++ PSTL version
of the code (Section 4) with a version of the CUDA code that was further optimized
compared to the original [26, 29]. Below, we describe this new optimized version, which
preserves the general structure of the original CUDA code.

Listing 3 shows the astrometric part of aprod 1 ported with CUDA, composed
by the definition of a CUDA kernel later called from the program’s main func-
tion. We define the global index of the GPU thread within the grid of blocks of
threads, i =blockIdx.x × blockDim.x + threadIdx.x, where blockIdx.x is the
block index inside the grid, blockDim.x is the block size in threads unit, and
threadIdx.x is the thread index local to each block. The GPU thread index i is
directly mapped to the index of the observation local to the MPI process pid.

The “dev” suffix to the arrays name indicates that the arrays are allocated on the
GPU device. The for loop-statement for (i = 0; i < N [pid]); i++ is replaced by
the while loop while (i < N [pid]). The thread index i cannot be larger than N [pid],
since it would cause a memory overflow. The kernel runs on a grid of threads having
size gridDim × blockDim, where gridDim is the number of blocks in the grid, and
gridDim and blockDim are passed as parameters within the angle brackets “<<<>>>”
in the kernel call inside the main of the code. This grid is generally smaller than
the maximum size of the problem, N [pid], and, thus, the problem is divided in tiles
of size gridDim × blockDim which are covered by all the GPU threads until the
thread index i < N [pid]. The quantities gridDim and blockDim were empirically found
kernel by kernel to customize each of them. This approach provides better performance
compared to a single tile case, as adopted in the original CUDA code of [26, 29], where
the number of blocks of threads was set such that the thread index i can cover the
entire for (i = 0; i < N [pid]); i++ for loop, and the number of threads in a block
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was always set to 1024 (the maximum value allowed on a NVIDIA V100 GPU present
on Marconi100).

In Listing 3, the quantity MiAstro dev represents only the astrometric part of the
M⃗i array, that is, its even indexes. This provides a slight optimization in GPU pro-
gramming since, with MiAstro dev, the indexes can be contiguously read in memory,
whereas in M⃗i a jump of one element must be performed for every memory access.
An analogous MiAtt dev array was defined in the code to contain the attitude (odd)
indexes of Mi.

The unsigned int types u int16 t, u int32 t, and u int64 t were used to
guarantee greater portability compared to correspondent signed int types.

Besides porting the code with CUDA, we also dealt better with the H2D and D2H
data transfers, and more code regions were GPU-ported compared to the OpenACC
version. With these optimizations, the percentages of time fraction in one
LSQR iteration due to GPU computation, data transfers, and CPU com-
putation are ≳90%, ∼3 %, and ∼3% [26, 29]. Moreover, the speedup over the
CPU OpenMP code increases from ∼1.5 [18], as obtained for the OpenACC code, to
∼14, [26, 29] for the original CUDA code [26, 29] and even further for this current
optimized CUDA version. These speedups are calculated for the same problem, which
maps differently depending on whether the code runs on the CPU and the GPU. The
speedup of ∼14 presents an increasing trend with the memory occupied by the system
and with the number of employed GPU resources [26, 29].

4.2 The C++ parallelization

The main issue with the CUDA code is its reduced portability since CUDA is limited
to run on GPUs with NVIDIA architecture. Moreover, some optimization parameters
need to be tuned even to run on different NVIDIA GPUs. On the one hand, this is
not particularly problematic for the Gaia code, which is close to its mission end and
likely needs to migrate only once from Marconi100 to Leonardo. On the other hand,
the class of applications based on the LSQR algorithm will definitely benefit from
more portable and comparably performant solutions in the perspective of running on
different (pre-)Exascale platforms. For this purpose, the code was rewritten in C++20
PSTL and compiled with the nvc++ compiler.

Originally, the STL mainly consisted of three components: iterators, containers,
and algorithms. Algorithms can be subdivided in different classes. There are algorithms
to iterate and transform container elements (std::for each and std::transform),
algorithms useful to perform summary operations (std::reduce), algorithms to select
containers elements (std::search and std::find), algorithms to copy and fill con-
tainers (std::copy and std::fill), algorithms to sort containers (std::sort), and
so on. The main CUDA functions of LSQR were rewritten using these algorithms.

As stated in Section 3, the system comprises four parts: the astrometric, the atti-
tude, the instrumental, and the global ones. The CUDA version of the code treats the
aprod 1 and 2 computation of each of these four parts in a different function. List-
ings 3 and 4 show how the astrometric section of aprod 1 transform from CUDA to
C++ PSTL.
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To provide another example, we show how the dscal function, employed in several
points of the code to scale an array to a specific factor “sign ∗ val”, was transformed
from CUDA to C++. The original CUDA code is:

1 g l o b a l void d s ca l ( double ∗ array dev , const double val , const
u i n t 3 2 t N, const i n t s i gn )

2 {
3 u i n t 3 2 t i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
4
5 whi l e ( i < N) {
6 array dev [ i ] = s i gn ∗( array dev [ i ]∗ va l ) ;
7 i += gridDim . x∗blockDim . x ;
8 }
9 }

Listing 5: CUDA dscal routine

where “array dev” can be either bdev or xdev.
This function was rewritten in standard C++ code in the following way:

1 i n l i n e void d s ca l ( double ∗ array , const double val , const i n t 3 2 t& N
, const i n t s i gn ) {

2 std : : t rans form (POL,
3 array ,
4 array+N,
5 array ,
6 [= ] ( auto a r r ay i ) {
7 return s i gn ∗( a r r ay i ∗ va l ) ;
8 }) ;
9 }

Listing 6: C++ dscal routine

In Listings 4 and 6, POL is a macro specifying the execution policy, defined in the
header <execution>, which can be:

• std::execution::seq → The sequenced policy (since C++17). This policy forces
the execution of an algorithm to run sequentially on the CPU.

• std::execution::unseq → The unsequenced policy (since C++20). This policy
executes the calling algorithm using vectorization on the calling thread.

• std::execution::par → The parallel policy (since C++17). This policy tells the
compiler that the algorithm could be run in parallel.

• std::execution::par unseq → The parallel unsequenced policy (since C++20).
This policy allows the algorithm to be run in parallel on multiple threads each able
to vectorize the calculation.

In the C++ version, H2D and D2H data transfers cannot be dealt
with explicit directives, as in OpenACC and CUDA. These are handled
indirectly via the Unified Memory mechanism. Limiting data transfers is
fundamental to saving performance. On the Gaia AVU-GSR code, the sys-
tem matrix, which represents most of the data, is transferred to GPUs
before the start of the iteration phase. During iterations, only a couple of
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Table 1: Hardware features and software specifications of the infrastructures
employed for our analyses.

Name Hardware Software

Leonardo 1 x CPU Intel Xeon 8358 32 cores, 2.6 GHz gcc-12.2.0
4 x GPU NVIDIA A200, 256 GB HBM2 NVHPC 23.5
512 (8 x 64) GB RAM DDR4 3200 MHz HPCX (OMPI 4.1.5rc2)
4x 200 Gb/s IB port CUDA 11.8
4x PCIe Gen 4.0 CPU-GPU, 32GB/s
NVLink GPU-GPU, 600 GB/s

Karolina 2x AMD EPYCTM 7763, 64 cores, 2.45 GHz gcc-12.2.0
8 NVIDIA A100 GPUs, 320 GB HBM2 NVHPC 23.5
1024 GB DDR4 3200MT/s RAM HPCX (OMPI 4.1.5)
4x 200 Gb/s IB port CUDA 12.0
NVLink GPU-GPU, 600 GB/s
8x PCIe Gen 4.0 CPU-GPU

EPITO
@HPC4AI 1 ARM Ampere Altra CPU (80 cores) gcc-12.2.0

2 NVIDIA A100 GPUs, 80GB HBM2 NVHPC 23.5
2x 100Gb/s IB port HPCX (OMPI 4.1.5rc2)
2x PCIe Gen 4.0 CPU-GPU CUDA 11.7

vectors are updated between GPUs. For this reason, we do not expect a
significant overhead deriving from H2D and D2H data movements.

5 Results

To compare the performance of the CUDA and C++ codes, we perform two classes of
tests: (1) we compare their efficiency on a single node of three different infrastructures,
Leonardo, Karolina (IT4I), and EPITO@HPC4AI [30], whose hardware and software
features are detailed in Table 1; (2) we investigate their weak scalability up to 256
nodes (1024 GPUs) on the Leonardo CINECA supercomputer.

To evaluate the efficiency, we measure the average time (that includes every code
section, e.g., MPI communications, GPU kernels execution, H2D and D2H data trans-
fers, and CPU execution per iteration) of 100 iterations of the LSQR for a system that
occupies 95% of the total GPU memory of the node (244 GB on Leonardo, 304 GB
on Karolina, and 76 GB on EPITO). We take the maximum value among all the MPI
processes to estimate the average iteration time. To increase the statistical significance
of the measurement, we execute three runs per code and infrastructure and estimate
the average iteration time as the mean of the mean values resulting from the three
simulations. The maximum average iteration time error is the standard deviation of
the values obtained from the three simulations.
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The histogram in Figure 2 shows the efficiency of the C++ PSTL code on Leonardo,
Karolina, and EPITO clusters, calculated as the ratio of the maximum average itera-
tion time of the CUDA and C++ codes to compare the performance of the C++ code
concerning the CUDA code. The efficiency of the C++ code is of 0.808± 0.003,
0.6417±0.0008, and 0.691±0.003 on EPITO, Karolina, and Leonardo, where the
error bars on the efficiencies are calculated by propagating the errors on the average
iteration time of the CUDA and C++ codes, appearing at numerator and denomina-
tor, respectively. The larger efficiency on EPITO could be because there are only 2
GPUs per node on this infrastructure; the unified memory mechanism works better
than on a Leonardo and Karolina node, where there are 4 and 8 GPUs, respectively.

Fig. 2: Efficiency of the C++ code on EPITO, Karolina, and Leonardo infrastructures.
The efficiencies are calculated as the ratio of the maximum average iteration time of
the CUDA and C++ codes to compare the performance of the C++ code concerning
the CUDA code.

To investigate the weak scalability of the codes, we measure the total time of a
complete simulation, run for 100 LSQR iterations, also considering the time before
and after LSQR of the CUDA and C++ codes from 1 to 256 nodes (from 4 to 1024
GPUs) on Leonardo. The systems occupy 95% of the total GPU memory of one node
multiplied by the number of nodes (244 GB on one node, 488 GB on two nodes, up to
62464 GB = 62.464 TB on 256 nodes). As already mentioned in the introduction, we
do not have such an amount of real data, and thus, we employed simulated data. Yet,
simulated data are as representative as real data to investigate the weak scalability of
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the code since both real and simulated data are distributed in the same way in the
system of equations, following the schema of Figure 1.

We again run three simulations per selected number of GPUs to increase the statis-
tical significance of the measurement. We also measure the total time of the simulations
due to the MPI communications alone. We take the maximum value from all the MPI
processes for the total time and communication time. As before, each time measure-
ment is the mean of the times (either total or of MPI communications alone) resulting
from the three simulations for each number of GPUs, and its uncertainty is estimated
as the standard deviation of the same three values.

Figure 3 shows the weak scaling of the CUDA (blue curves) and C++ (red curves)
codes on Leonardo, where Figure 3a and 3b represent the maximum MPI communi-
cation and maximum total times, respectively, as a function of the number of nodes
(bottom axis) and of GPUs (top axis). Figure 3c represents instead the computation-
over-communication ratio, given by the ratio between the maximum computation time
and the maximum MPI communication time. We estimate the maximum computation
time as the difference between the maximum total and maximum communication time.
The uncertainty on the computation-over-communication ratio is calculated by prop-
agating the errors on the numerator and the denominator. The dashed lines in each
panel represent the ideal cases: the values of the represented quantities measured on
one node. The code is compute-bound; computation dominates communication even
on 256 nodes (1024 MPI processes) when the number of MPI communications sub-
stantially increases. The computation-over-communication ratio passes from 32± 3 to
12.5744± 0.0008, for the C++ code, and from 89± 23 to 17.02± 0.13, for the CUDA
code, from 1 to 256 nodes. The MPI communication time grows as the number of
nodes increases, but it seems to follow a logarithmic trend, as expected. In this way,
the code remains compute-bound even on 256 nodes, which is sufficient to solve a
system with a size produced at the end of the Gaia mission.

Figure 4a represents the maximum average iteration time for the C++ (red) and
CUDA (blue) codes as a function of the number of nodes (bottom axis) and of GPUs
(top axis). Figure 4b reflects what is shown in Figure 4a but in terms of the efficiency.
As in Figure 2, the efficiency of the C++ code is calculated as the ratio between
the maximum average iteration time of the CUDA and C++ codes. The bars of the
histogram related to 1 node correspond to the Leonardo bar of histogram 2. The
efficiency of the C++ code is nearly constant along the entire range of nodes (GPUs),
with a maximum of 0.717± 0.002, on 4 nodes (16 GPUs), and a minimum of 0.6142±
0.0005, on 256 nodes (1024 GPUs).

In summary, computation is mainly given by three matrix-by-vector products (two
within the LSQR cycle and one before it), and communication is mainly given by
three MPI Allreduce operations (two within the LSQR cycle and one before it). The
MPI communications are subdominant concerning the total, also for a large number
of MPI processes, because, despite the global synchronization operations, the reduced
data is much smaller than the problem assigned per node, which guarantees good weak
scalability of both CUDA and C++ codes up to 256 nodes (1024 GPUs) on Leonardo.

17



●
●

●

●
●

●
●

●

●

●
●
●●

●
● ●

●

●

0 50 100 150 200 250
0

1

2

3

4

5

6

4 128 256 512 1024

Number of Nodes

M
ax
.C
om
m
un
ic
at
io
n
Ti
m
e
[s
]

Number of GPUs

●●●●●

● ● ●

●

●●
●●●

● ● ●

●

0 50 100 150 200 250

40

50

60

70

80

4 128 256 512 1024

Number of Nodes

M
ax
.T
ot
al
Ti
m
e
[s
]

Number of GPUs

C++
CUDA
Ideal C++
Ideal CUDA

(a) (b)C++
CUDA
Ideal C++
Ideal CUDA

●
●

●
●●

● ● ● ●

●

●

●
●

●

● ●
●

●

0 50 100 150 200 250

20

40

60

80

100

4 128 256 512 1024

Number of Nodes

M
ax
.C
om
p.
O
ve
rM
ax
.C
om
m
R
at
io

Number of GPUs

C++
CUDA
Ideal C++
Ideal CUDA

(c)

(a) Maximum MPI communica-
tion time.

●
●

●

●
●

●
●

●

●

●
●
●●

●
● ●

●

●

0 50 100 150 200 250
0

1

2

3

4

5

6

4 128 256 512 1024

Number of Nodes

M
ax
.C
om
m
un
ic
at
io
n
Ti
m
e
[s
]

Number of GPUs

●●●●●

● ● ●

●

●●
●●●

● ● ●

●

0 50 100 150 200 250

40

50

60

70

80

4 128 256 512 1024

Number of Nodes

M
ax
.T
ot
al
Ti
m
e
[s
]

Number of GPUs

C++
CUDA
Ideal C++
Ideal CUDA

(a) (b)C++
CUDA
Ideal C++
Ideal CUDA

●
●

●
●●

● ● ● ●

●

●

●
●

●

● ●
●

●

0 50 100 150 200 250

20

40

60

80

100

4 128 256 512 1024

Number of Nodes

M
ax
.C
om
p.
O
ve
rM
ax
.C
om
m
R
at
io

Number of GPUs

C++
CUDA
Ideal C++
Ideal CUDA

(c)

(b) Maximum total time.

●
●

●

●
●

●
●

●

●

●
●
●●

●
● ●

●

●

0 50 100 150 200 250
0

1

2

3

4

5

6

4 128 256 512 1024

Number of Nodes

M
ax
.C
om
m
un
ic
at
io
n
Ti
m
e
[s
]

Number of GPUs

●●●●●

● ● ●

●

●●
●●●

● ● ●

●

0 50 100 150 200 250

40

50

60

70

80

4 128 256 512 1024

Number of Nodes

M
ax
.T
ot
al
Ti
m
e
[s
]

Number of GPUs

C++
CUDA
Ideal C++
Ideal CUDA

(a) (b)C++
CUDA
Ideal C++
Ideal CUDA

●
●

●
●●

● ● ● ●

●

●

●
●

●

● ●
●

●

0 50 100 150 200 250

20

40

60

80

100

4 128 256 512 1024

Number of Nodes

M
ax
.C
om
p.
O
ve
rM
ax
.C
om
m
R
at
io

Number of GPUs

C++
CUDA
Ideal C++
Ideal CUDA

(c)

(c) Computation-over-
communication ratio.

Fig. 3: Weak scaling properties of the C++ (red) and CUDA (blue) codes from 1 to
256 nodes (i.e., from 4 to 1024 GPUs) of Leonardo, as a function of the number of
nodes (bottom) and of GPUs (top axis). Error bars are present in each panel, but some
are not visible since they are smaller than the point markers. The dashed lines in each
panel are shown as a reference, and they represent the ideal cases, i.e., the quantities
measured on one node for the C++ (dashed red) and the CUDA (dashed blue) codes.

6 Conclusions

We present a new approach in perspective of the performance portability of HPC
applications suitable for large-scale systems. The approach is based on C++ PSTL,
which provides a good trade-off between performance and portability. We
apply this methodology to a use-case, that is, the Gaia AVU-GSR solver,
previously parallelized on the CPU with MPI+OpenMP and then ported
to the GPU firstly by replacing OpenMP with OpenACC and then directly
by coding with CUDA (that is the version currently used for production).
Since the Gaia AVU-GSR solver implements a LSQR iterative algorithm,
widely employed in HPC codes [31–37], and has a computation-dominated,
instead of communication-dominated, nature, we considered this use case
paradigmatic for showcasing the benefits of PSTL for a broad class of
scientific applications.

The primary objective of this work was to demonstrate that the C++ PSTL
version of the application is not significantly slower than its CUDA counterpart. For
this, we compared the performance of the CUDA and C++ codes on a single node
of three different accelerated architectures, EPITO (AmpéreArm+NVidia), Karolina
(AMD+NVIDIA), and Leonardo (Intel+NVIDIA), and we explored their weak scala-
bility on the Leonardo supercomputer. The two codes present comparable performance
and scaling behaviours (using C++ we achieved about 70% of the CUDA perfor-
mance), which indicates that C++ PSTL is a suitable approach to parallelize the
Gaia AVU-GSR code in perspective of the future Gaia Data Releases. More generally,
it points to C++ PSTL as a more portable and comparably performant solution for
other HPC applications.
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Fig. 4: Figure 4a: maximum average iteration time of the C++ (red) and CUDA
(blue) codes from 1 to 256 nodes (i.e., from 4 to 1024 GPUs) of Leonardo, as a
function of the number of nodes (bottom axis) and of GPUs (top axis). The error
bars on the maximum average iteration time, calculated as the standard deviation
from the three simulations, are smaller than the point markers. The dashed lines are
shown as a reference and represent the ideal cases, i.e., the maximum average iteration
time measured on one node for the C++ (dashed red) and the CUDA (dashed blue)
codes. Figure 4b: efficiency of the C++ PSTL code calculated as the ratio between the
maximum average iteration time of the CUDA and C++ codes, from 1 to 256 nodes
(i.e., from 4 to 1024 GPUs) of Leonardo.

Unlike the CUDA code, where H2D and D2H data transfers are explic-
itly handled by the programmer, in C++ PSTL, they are automatically
managed by the compiler with the Unified Memory mechanism. We struc-
tured the Gaia AVU-GSR code to minimize data transfers during iteration.
The results of [26, 29] show that data transfers only represent the ∼3% of
one iteration. For this reason, using Unified Memory in C++ PSTL did not
produce a relevant overhead, which could be even more reduced by further
developing the C++ PSTL approach on the AVU-GSR code in the future.

We have to point out that rewriting the code in C++ PSTL to make
it more portable while maintaining its performance does not necessarily
come for free. Comparing Listing 4 with Listings 1 and 2, which show
the aprod 1 function in C++ PSTL, OpenMP, and OpenACC, we can see
that the parallelization with C++ PSTL might be less intuitive than the
one of OpenMP and OpenACC, obtained with high-level directives, by a
non-expert programmer. As for CUDA (Listing 3), the time-to-solution
to obtain a version of the code in C++ PSTL might be longer than in
OpenMP and OpenACC since a code rearrangement is required. However,
the advantages of this effort can be seen in the long term. C++ PSTL
porting produces a single version of the code that can run on different
platforms without significantly losing performance, as will be tested in
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future work. Moreover, it is essential to note that, being C++ PSTL a
standard, it guarantees more straightforward code maintainability.

Since with C++ PSTL we do not significantly loose in performance
compared to CUDA, in the near future, we aim to bring this analysis to a
next level, i.e., to test the performance portability of the C++ PSTL Gaia AVU-
GSR code on different GPU architectures such as NVIDIA and AMD. Moreover, we
aim to extend this study to other code versions, which have to be either optimized
or built, parallelized with OpenACC, OpenMP that allows GPU offload, HIP, SYCL,
and Kokkos. We plan to test the scalability properties of these codes compiled with
different compilers (i.e., llvm and clang besides nvc) on several architectures, such
as RISC-V, and accelerators, such as AMD GPUs, running for example on
Setonix, located at the Pawsey Supercomputing Center and ranked in the Top500 list.
A more detailed study can be performed, evaluating the FLOPs of each operation on
the CPU and GPU and how each MPI communication operation would increase in
time as the number of nodes increases. This would provide a theoretical scalability
study to be compared with the experimental results.

Besides scalability, we will also aim to investigate the numerical stability of the
system solution at increasing model sizes executed on an increasing number of com-
pute resources. Moreover, we plan to compare the energy consumption of the diverse
application versions on different platforms to address “Green Computing” (i.e.,
the ability to build infrastructures and applications to execute calculations
that involve large data volumes without excessively increasing the energetic
consumption), another important target of HPC, besides performance portability.
For the latter point, Setonix would be a suitable platform, being classified as the
world’s fourth “greenest” supercomputer as ranked in the Green5009 list.
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