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N E U R O S C I E N C E

Dissecting abstract, modality-specific and 
experience-dependent coding of affect in the 
human brain
Giada Lettieri1,2*, Giacomo Handjaras2, Elisa M. Cappello2, Francesca Setti3, Davide Bottari3,4, 
Valentina Bruno5, Matteo Diano5, Andrea Leo6, Carla Tinti5, Francesca Garbarini5, Pietro Pietrini7, 
Emiliano Ricciardi3,4, Luca Cecchetti2*

Emotion and perception are tightly intertwined, as affective experiences often arise from the appraisal of sensory 
information. Nonetheless, whether the brain encodes emotional instances using a sensory-specific code or in a 
more abstract manner is unclear. Here, we answer this question by measuring the association between emotion 
ratings collected during a unisensory or multisensory presentation of a full-length movie and brain activity re-
corded in typically developed, congenitally blind and congenitally deaf participants. Emotional instances are en-
coded in a vast network encompassing sensory, prefrontal, and temporal cortices. Within this network, the 
ventromedial prefrontal cortex stores a categorical representation of emotion independent of modality and pre-
vious sensory experience, and the posterior superior temporal cortex maps the valence dimension using an ab-
stract code. Sensory experience more than modality affects how the brain organizes emotional information 
outside supramodal regions, suggesting the existence of a scaffold for the representation of emotional states 
where sensory inputs during development shape its functioning.

INTRODUCTION
The ability to comprehend and respond to affectively laden stimuli is 
vital: Observing the behavior of others enables us to predict their 
reactions and tailor appropriate responses (1, 2). Vision is our pri-
mary modality to get knowledge and function in the external world, 
as it allows to efficiently process a wealth of information from our 
surroundings [e.g., (3)]. For our social lives, we heavily rely on this 
sense to interpret nonverbal visual cues coming from other indi-
viduals, such as facial expressions and body postures, which convey 
crucial information about an individual’s affective state and inten-
tions (4, 5). Also, recent research in artificial intelligence and neuro-
science has highlighted the pivotal role of visual features in emotions, 
with convolutional neural networks predicting the emotional con-
tent of images and the activity of early visual cortex classifying per-
ceived emotions (6). In line with this, the same mechanism responsible 
for the coding of stimulus properties in primary sensory areas (i.e., 
topographic mapping) supports the organization of affect in the right 
temporoparietal cortex (7).

While vision plays a dominant role in affective perception, the en-
vironment constantly engages multiple senses. Spoken communica-
tion, for instance, not only conveys semantic information but also 
provides cues about the speaker’s emotional state or intentions (8, 9), 
as in the case of vocal bursts (10–12). Similarly, humans retain a ca-
pacity for olfactory (13) and tactile (14) communication of emotion.

Understanding the interplay between different sensory modali-
ties in the representation and expression of emotions has been a 
subject of interest in behavioral and brain studies [for a review, see 
(15)]. For instance, studies have shown that the multimodal presen-
tation of emotional stimuli enhances recognition accuracy and 
speed (16, 17). This advantage may also reflect the brain organiza-
tion, as regions like the superior temporal sulcus and the medial 
prefrontal cortex (mPFC) successfully categorize emotions across 
different modalities (18–20).

Despite substantial advances in the study of the interplay be-
tween perception and emotion, the majority of research has focused 
on unimodal emotional stimuli in typically developed individuals 
only [e.g., (21, 22)] making it challenging to discern whether and 
where in the brain emotional instances are represented using an ab-
stract, rather than a sensory-dependent, code. In people with typical 
development, a fearful scream is likely to give rise to the mental im-
agery of someone in the act of screaming, and they are able to depict 
in their mind a specific facial expression and body posture, perhaps 
even a certain context, with a rich and dynamic representation close 
to what is commonly experienced in daily life (23, 24). Also, this 
process of mental imagery is associated with a specific pattern of 
brain activity in relation to the different sensory channels [see, for 
instance, (25, 26)]. Congenital sensory deprivation constitutes a 
unique model to dissect the differential contribution of specific sen-
sory modalities to the brain representation of the external world ac-
counting for mental imagery (27). In this regard, previous studies 
comparing typically developed and sensory-deprived individuals 
have consistently shown that the brain code for animacy (28, 29), 
spatial layout (30), and shape (31), among others, is primarily driven 
by specific computations rather than by modality or previous sen-
sory experience (32–34).

This body of evidence prompts the inquiry of whether this 
sensory-independent principle, also known as supramodal organi-
zation, extends to the representation of affective states in the brain. 
Here, we answer this question by collecting moment-by-moment 
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categorical and dimensional ratings of emotion during an auditory-
only, visual-only, or multisensory version of a full-length movie 
(the “101 Dalmatians” live action movie) and by recording brain 
activity using functional magnetic resonance imaging (fMRI) in 
participants with typical development and in those who were 
blind or deaf since birth. Our results reveal an abstract and cat-
egorical representation of emotional states in the ventromedial 
prefrontal cortex (vmPFC) and of the valence dimension in the 
posterior portion of the superior temporal gyrus. In addition, we 
demonstrate that sensory experience more than modality affects 
how the brain organizes emotional information outside supra-
modal regions, suggesting the existence of a scaffold for the rep-
resentation of emotional states where sensory inputs during 
development shape its functioning.

RESULTS
In this work, using real-time ratings of emotion and fMRI, we 
sought to answer six research questions aimed at dissecting the ab-
stract, the modality-specific, and the experience-dependent coding 
of affect in the human brain. After having ensured that emotion re-
ports were consistent between individuals, we asked (i) which brain 
regions encode the affective experience. For this purpose, we fit a 
categorical model of emotion into the activity of typically developed 
and sensory-deprived participants presented with the multisensory 
or unisensory versions of a naturalistic stimulus. Then, (ii) we tested 
through conjunction analyses whether specific brain areas represent 
emotion in an abstract manner, regardless of the stimulus modality 
and past sensory experience. Within the regions encoding the emo-
tion model, we (iii) assessed the impact of sensory deprivation and 
modality by attempting to classify participants based on their brain 
activity. In regions representing the emotional experience through 
an abstract code, we tried to cross-decode emotion categories. For 
instance, we trained an algorithm on brain activity of people with 
typical sensory experience aiming to predict the emotional instanc-
es of congenitally blind or deaf individuals. This was (iv) to verify 
that these brain areas stored a specific, rather than an undifferenti-
ated, experience of emotion. We then compared two alternative de-
scriptions of the emotional experience (v) to reveal in which regions 
activity was better explained either by emotion categories (e.g., 
amusement and sadness) or affective dimensions (e.g., valence and 
arousal). Last, as in the case of emotion categories, we tried to pre-
dict the valence of the experience with the same cross-decoding ap-
proach, (vi) to test whether a coding of pleasantness independent of 
modality and previous sensory experience exists in the brain.

Behavioral experiments—Reliability of real-time valence 
ratings and categorical annotations of emotion
First, we explore the distribution of group-level moment-by-
moment categorical reports of a collection of 15 emotions elicited by 
the naturalistic stimulation. Amusement, love, and joy are the posi-
tive emotions more frequently used by typically developed individu-
als (E+) to describe the affective experience across the multisensory 
(M), the auditory-only (A), and the visual-only (V) modalities. 
Negative states, instead, are more often labeled as fear or contempt 
(Fig. 1, A, B, E, F, I, and J). Single-participant annotations of the af-
fective experience are reported in figs.  S1 to S3. Using principal 
components (PC) analysis, we show that the first component, which 
contrasts positive and negative states, explains most of the variance 

in categorical ratings: 36.0% in the M condition, 41.2% in the A con-
dition, and 43.5% in the V condition (Fig. 1, C, G, and K).

Also, in each modality, average dimensional ratings of valence 
obtained from independent participants correlate very strongly 
with the scores of the first PC extracted from categorical reports 
(M valence ~ M PC 1: τ = 0.755, M valence ~ M PC 2: τ = 0.138, 
and M valence ~ M PC 3: τ = 0.012; A valence ~ A PC 1: τ = 0.772, A 
valence ~ A PC 2: τ = 0.046, and A valence ~ A PC 3: τ = 0.038; V 
valence ~ V PC 1: τ = 0.794, V valence ~ V PC 2: τ = 0.018, and V 
valence ~ V PC 3: τ = 0.034; Fig. 1, D, H, and L).

The analysis of the between-participant agreement in categorical 
ratings reveals that the median Jaccard similarity index is J = 0.245 
for sadness, J  =  0.225 for amusement, J  =  0.181 for love, and 
J = 0.158 for joy in the M condition. In the A condition, the highest 
median between-participant correspondence in categorical ratings 
is observed for amusement (J  =  0.183), followed by contempt 
(J = 0.177), love (J = 0.176), and sadness (J = 0.167). Last, in the V 
condition, amusement (J  =  0.229), sadness (J  =  0.172), joy 
(J = 0.152), and love (J = 0.147) are the categories used more simi-
larly by participants. For all emotion categories and modalities, the 
average Jaccard index is significantly higher than one might expect 
by chance (P valueBonferroni < 0.050). This finding confirms that our 
method can be used to reliably record the affective experience in 
real-time and that naturalistic stimulation significantly synchroniz-
es people’s feelings. Nevertheless, the comparatively low value of the 
Jaccard index suggests that factors specific to each individual, such 
as personal experiences, cultural backgrounds, and linguistic nu-
ances, may contribute to the variability in emotional reports. As far 
as the valence ratings are concerned, median between-participant 
Spearman’s correlation is moderate for all conditions (M: ρ = 0.483, 
A: ρ = 0.572, V: ρ = 0.456).

When exploring the similarity structure of behavioral ratings 
through representational similarity analysis (RSA), results show that 
group-level emotion ratings collected under the three experimental 
conditions relate to the arrangement of emotion labels within the 
space of affective norms (Fig. 2A). Specifically, the pairwise distance 
between emotions in the valence-arousal-dominance space corre-
lates moderately with the representational dissimilarity matrix 
(RDM) built from categorical ratings collected in the M condition 
(τ = 0.419) and strongly with those relative to the A (τ = 0.556) and 
the V (τ = 0.485) modalities. Moreover, there is a very strong cor-
relation between RDMs obtained from the three modalities, partic-
ularly between the two unimodal conditions (M  ~  A: τ = 0.734, 
M ~ V: τ = 0.777, A ~ V: τ = 0.812).

Further exploring the specificity of categorical ratings of emotion 
across sensory modalities, we demonstrate that, in the vast majority 
of cases, the correlation between the time course of a specific emo-
tion acquired under two distinct conditions is higher than its cor-
relation with all other emotions (Fig.  2, B to D). When pairs of 
emotions are confounded between modalities, they are also similar 
in valence (e.g., joy and love) and semantically related (e.g., con-
tempt, hate, and disgust).

Last, measuring the correlation between valence ratings collect-
ed under different sensory modalities (Fig.  2E, bottom triangular 
part), we observe strong associations for the M versus A (τ = 0.742) 
and the M versus V (τ = 0.728) conditions, as well as a moderate 
correlation between the two unimodal conditions (A ~ V: τ = 0.679). 
When this analysis is repeated on PC scores from categorical ratings 
(Fig.  2E, top triangular part), we confirm the strength of the M 
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versus A (τ = 0.766) and the M versus V (τ = 0.721) relationships 
and reveal a strong correlation between the two unimodal condi-
tions as well (A ~ V: τ = 0.723).

fMRI experiment—Fitting the emotion model in 
brain activity
Brain activity evoked by 101 Dalmatians was measured in 50 volun-
teers. Participants were categorized into five groups based on their 
sensory experience and on the stimulus presentation modality. A 
group of congenitally blind individuals listened to the auditory-only 
stimulus (E−A), a sample of congenitally deaf watched the silent film 
(E−V), and three groups of typically developed individuals were pre-
sented with either the auditory-only (E+A), the visual-only (E+V), 
or the multisensory (E+M) versions of the stimulus. We used a 
voxel-wise encoding approach to identify brain regions that are in-
volved in the representation of affect across different sensory mo-
dalities and in individuals with varying sensory experiences. Results 

in typically developed individuals presented with the multisensory 
version of the movie (i.e., E+M) show that the emotion category 
model is encoded bilaterally in the lateral orbitofrontal cortex 
(lOFC), the vmPFC, the mPFC, and the anterior portion of the bi-
lateral superior temporal gyrus (aSTG). Also, the affective experi-
ence is mapped in the central and posterior segments of the right 
superior temporal gyrus and sulcus (STG/STS), the right superior 
parietal lobule (SPL), and the right inferior occipital gyrus (IOG; 
P valueFWC < 0.05, Fig. 3A).

When typically developed individuals listen to the audio version 
of the movie (i.e., E+A), emotion categories are represented bilater-
ally in the lOFC, the mPFC, the vmPFC, the STG/STS, the IOG, the 
SPL, the fusiform gyrus (FG), and in the left supramarginal gyrus 
(P valueFWC  <  0.05, Fig.  3B). Similarly, the brain of congenitally 
blind individuals (i.e., E−A) represents emotions in the bilateral 
mPFC, the vmPFC, the lOFC, the STG/STS, the IOG, and the FG. In 
addition to these regions, the activity of the right lingual gyrus (LG), 

Fig. 1. Emotion ratings across sensory modalities. (A) shows the group-level emotion ratings collected from typically developed participants in the multisensory con-
dition (E+M). Darker colors indicate that a higher proportion of volunteers have reported the same emotion at a given point in time. (B) depicts the distribution of movie 
time points (i.e., density) as a function of the between-participant overlap in categorical ratings for the first seven emotions. In (C), we show the loadings and the explained 
variance of the first three PCs obtained from the emotion–by–time point group-level matrix. In (D), we report the correlation between the first PC and valence ratings 
collected in independent participants. (E) to (H) and (I) to (L) summarize the same information for the auditory (E+A) and the visual (E+V) conditions, respectively.
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Fig. 2. Similarity in emotion ratings between modalities and their relation with affective norms. (A) shows that group-level emotion ratings collected under the 
three experimental conditions correlate with each other and relate to the arrangement of emotions in the space of affective norms. In (B) to (D), we show that, in most of 
the cases, ratings of a specific emotion acquired under one condition correlate maximally with ratings of the same emotion acquired under a different condition. The 
bottom triangular part of the matrix in (E) depicts the correlation in valence between modalities, while the top triangular part shows the correlation in terms of PC1 scores 
derived from categorical reports.

Fig. 3. Group-level voxel-wise encoding of the emotion model. (A) to (E) show the results of the group-level voxel-wise encoding analysis after correction for multiple 
comparisons (cluster-based correction, cluster forming threshold: P valueCDT < 0.001; family-wise threshold: P valueFWC < 0.05). Ratings of 15 distinct emotion categories 
provided by 62 E+ (M: n = 22; A: n = 20; V: n = 20) watching and/or listening to the 101 Dalmatians live action movie were used to explain fMRI activity recorded in E+ [(A) 
M: n = 10; (B) A: n = 10; (D) V: n = 10] and E− [(C) A: n = 11; (E) V: n = 9] people presented with the same movie. (F) shows the overlap of the group-level encoding results 
(P valueFWC < 0.05) between all groups and conditions. OFC, orbitofrontal cortex; pSTS, posterior superior temporal sulcus; rMFG, rostral middle frontal gyrus; TP, temporal 
pole; L, left hemisphere; R, right hemisphere.
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the right occipital pole (OP), the right ventral diencephalon, and the 
bilateral rostral middle frontal gyrus encodes the affective experience 
in congenitally blind people listening to the movie (P valueFWC < 0.05, 
Fig. 3C).

In the video-only condition, emotional instances are mapped 
mainly in the bilateral lOFC, the mPFC, the vmPFC, the right STG/
STS, the right LG, and the right OP of the typically developed brain 
(E+V; P valueFWC < 0.05, Fig. 3D). Concerning the results obtained 
from congenitally deaf individuals (i.e., E−V), the affective experi-
ence is represented in the bilateral lOFC, the mPFC, the vmPFC, 
and the left STG/STS (P valueFWC  <  0.05, Fig.  3E). Overall, the 
mPFC, the vmPFC, the OFC, and the STS represent emotion cate-
gories across the majority of conditions and in people with varying 
sensory experience (Fig. 3F).

fMRI experiment—Univariate contrasts and 
conjunction analyses
Univariate comparisons between people with and without sen-
sory deprivation—i.e., E−A ≠ E+A; E−V ≠ E+V; (E−A + E−V) ≠ 
(E+A + E+V)—show no significant differences in the extent to 
which individual voxels encode the emotion model (all clusters 
P valueFWC > 0.05). Instead, we observe that, regardless of sen-
sory experience, emotion categories are encoded in the bilateral 
auditory cortex with larger fitting values when people are pre-
sented with the audio-only version of the movie—i.e., (E−V + 
E+V) < (E−A + E+A)—(Fig. 4A and Table 1). At the same time, 
the emotion model fits more the bilateral early visual cortex 

when typically developed and congenitally deaf people watch 
the silent movie—i.e., (E−V + E+V) >  (E−A + E+A)—(Fig. 4A 
and Table 1).

The conjunction analysis between groups and conditions dem-
onstrates that the vmPFC, the frontal pole, and the lOFC all map 
emotions regardless of the sensory experience and stimulus modal-
ity (equation e; Fig. 4B and Table 1). In addition, we show that the 
overlap between regions encoding affect in blind and sighted indi-
viduals listening to the audio-only movie extends to the bilateral 
temporal and occipital cortex, such as the STG/STS and the FG 
(equation f; Fig. 4C and Table 1). Instead, the conjunction between 
normally hearing and congenitally deaf volunteers watching the si-
lent movie reveals that only medial prefrontal areas are involved in 
the mapping of emotion categories (equation g; Fig. 4D and Table 1). 
Last, when considering voxels encoding affect across modalities in 
typically developed people, we observe convergence in frontal and 
temporal regions (equation h; Fig. 4E and Table 1).

To further show that the activity of the vmPFC is associated with 
emotion ratings at the single-participant level and avoid double-
dipping (35), we obtain a mask of this region from the website ver-
sion of Neurosynth (36) https://neurosynth.org/; term: “vmpfc,” 
association test) and extract the average vmPFC signal across voxels 
in each participant. The resulting time series is used as a dependent 
variable in a general linear model having the emotion ratings as pre-
dictors. The strength of the association between the categorical 
model of emotion and the vmPFC average activity is measured us-
ing the coefficient of determination R2, and statistical significance is 

Fig. 4. Univariate and multivariate analyses of the emotion network and its association with sensory modality and experience. (A) depicts regions encoding the 
emotion model as a function of sensory modality. In red, voxels showing higher fitting values in the visual modality, and in blue those specific for the auditory one. (B to 
E) summarize the results of conjunction analyses. Areas in red in (B) map the emotion model regardless of sensory experience and modality. In (C) and (D), we show the 
overlap between typically developed and sensory-deprived individuals presented with the auditory and the visual stimulus, respectively. (E) represents the convergence 
between voxels encoding affect in unisensory modalities in typically developed participants. (F) shows single-participant results of the association between emotion 
ratings and the average activity of vmPFC. Squares represent the fitting of the emotion model in each participant (typically developed multisensory, E+M: red; typically 
developed auditory, E+A: cyan; congenitally blind auditory, E−A: blue; typically developed visual, E+V: green; congenitally deaf visual, E−V: brown). Shaded areas refer to 
single-participant null distributions, solid black lines represent P value < 0.05. In (G), we show the results of multivoxel pattern classification analysis. Voxel-wise encoding 
R2 maps are used to predict sensory experience and stimulus modality. The central part of the panel shows the confusion matrix and the performance of the multiclass 
(n = 5; chance ~20%) cross-validated (k = 5) classifier. Classification performance is significantly different from chance (P value = 0.011) and driven by the successful iden-
tification of sensory-deprived individuals. Feature importance analysis (H) shows that voxels of vmPFC were rarely (or never) selected to predict sensory experience and 
modality. aSTS, anterior superior temporal sulcus; EVC, early visual cortex; EAC, early auditory cortex.
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assessed by permuting the time points of the predictor matrix 
2000 times.

Results show that the emotion model significantly relates to the 
average vmPFC activity (P value < 0.05) in 28 of 50 participants 
(Fig. 4F): 8 E+M, 5 E+A, 4 E−A, 4 E+V, and 7 E−V. We also tested 
whether the significance of this relationship could be explained by 
gender, age, or the level of understanding of the movie plot [for fur-
ther details, please see (37)]. Participants were split into two groups 
based on the significance of the association (i.e., 28 versus 22), and 
this variable was entered together with the participants’ gender into 
a χ2 test for independence. For age and accuracy at the postscan 
questionnaire, we used unpaired t tests instead. Results show that 
none of these variables relates to the significance of the associa-
tion between the vmPFC average activity and the emotion rat-
ings [gender: χ2

(1) = 0.034, P value  =  0.854; age: t-stat(48) = 
−1.017, P value  =  0.314; level of understanding: t-stat(48) = 
−1.320, P value = 0.193).

fMRI experiment—Classification of participants’ sensory 
experience and stimulus modality from brain regions 
encoding the emotion model
As an alternative to the univariate approach, we test in a multivariate 
fashion whether the pattern obtained from the fitting of the emotion 
model provides sufficient information to identify the participants’ 
previous sensory experience and the stimulus modality they are pre-
sented with. Findings show above-chance classification (F1 score: 
30.4%, precision: 31.2%, recall: 30.0%; P value = 0.011; Fig. 4G), par-
ticularly when it comes to identifying sensory-deprived individuals. 
The five-class classifier correctly recognizes 45.5% of E−A individu-
als (P value = 0.015) and 44.4% of E−V volunteers (P value = 0.011). 
Instead, we fail to predict the sensory modality to which typically 
developed individuals are exposed to (E+A: 10.0%, P value = 0.586; 
E+V: 20.0%, P value = 0.447; E+M: 30.0%, P value = 0.166). Also, the 
feature importance analysis reveals that, while voxels of bilateral dor-
somedial prefrontal cortex and left anterior STS contribute the most 

Table 1. Results of univariate contrasts and conjunction analyses. mOFC, medial orbitofrontal cortex; aSFG, anterior superior frontal gyrus; FP, frontal pole; 
aSTS, anterior superior temporal sulcus; pSTS, posterior superior temporal sulcus; TP, temporal pole; pOrbIFG, pars orbitalis of the inferior frontal gyrus; dmPFC, 
dorsomedial prefrontal cortex; LOC, lateral occipital cortex; ITG, inferior temporal gyrus; MTG, middle temporal gyrus; aMFG, anterior middle frontal gyrus.

Contrast: (E−V + E+V) < (E−A + E+A) Cluster ID Region Coordinates

Cluster ID Region Coordinates 11 Left pSTS −62, −26, −2

1 Left TE 1.2 −58, −15, +5 12 Right FG +46, −50, −25

2 Right TE 1.0 +58, −14, +5 13 Right LOC +40, −76, −20

3 Right TE 1.1 +38, −31, +17 14 Right ITG +50, −60, −23

4 Left TE 3.0 −62, −22, +3 15 Left FG −44, −71, −20

Contrast: (E−V + E+V) > (E−A + E+A) 16 Right MTG +68, −34, −13

Cluster ID Region Coordinates 17 Right MTG +61, −27, −20

1 Bilateral Area 17 0, −84, −2 18 Right lOFC +42, +24, −18

2 Right Area 17 +3, −71, +7 19 Right aMFG +40, +58, −12

Conjunction: E+M ∩ E+A ∩ E+V ∩ E−A ∩ E−V 20 Right aMFG +33, +58, −11

Cluster ID Region Coordinates 21 Right aMFG +25, +52, +39

1 Left mOFC −4, +52, −17 Conjunction: E+V ∩ E−V

2 Right lOFC +20, +43, −19 Cluster ID Region Coordinates

3 Left aSFG −18, +70, +11 1 Left mOFC −7, +51, −16

4 Left lOFC −24, +46, −17 2 Left FP −4, +68, −7

5 Bilateral FP 0, +67, +8 3 Right lOFC +20, +43, −19

6 Right aSFG +6, +67, −2 4 Left dmPFC −3, +61, +14

Conjunction: E+A ∩ E−A 5 Left aSFG −18, +70, +11

Cluster ID Region Coordinates 6 Right aSFG +17, +71, +9

1 Left mOFC −1, +60, −5 Conjunction: E+A ∩ E+V

2 Right aSTS +61, −8, −13 Cluster ID Region Coordinates

3 Left aSTS −59, +1, −18 1 Left mOFC −1, +59, −13

4 Left pSTS −69, −38, +2 2 Right aSTG +61, −1, −15

5 Left TP −31, +21, −30 3 Right aSFG +14, +68, +20

6 Right lOFC +35, +24, −26 4 Left dmPFC −2, +63, +21

7 Left aSFG −14, +59, +37 5 Right pSTS +65, −34, 0

8 Right FG +44, −67, −20 6 Left STS −65, −17, −6

9 Right pOrbIFG +36, +47, −20 7 Left lOFC −25, +44, −18

10 Right dmPFC +1, +58, +27 8 Right aMFG +21, +69, −5
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to the classification, those of bilateral vmPFC are never selected by 
the algorithm (Fig. 4H).

fMRI experiment—Classification of emotion categories from 
patterns of brain activity encoding the emotion model
In the voxel-wise encoding analysis, we exclusively considered the 
fitting of the full model. Therefore, it could be argued that brain 
regions showing a significant association with the emotion model 
store the undifferentiated experience of a categorical emotion 
rather than the specific experience of an emotion. As this is a cru-
cial aspect for the interpretation of our findings, particularly for 
what concerns the vmPFC, we tested whether emotional experi-
ences could be classified from the activity pattern of this region. 
The prediction was performed in each group (e.g., test set: E+M) 
by training the classifier on individuals with a different sensory 
experience and exposed to a different stimulus modality (training 
set: E+A, E−A, E+V, and E−V), as in a cross-decoding analysis. Re-
sults show that, overall, it is possible to cross-decode emotion cat-
egories based on the pattern of mPFC (precision: 12.9%, recall: 
12.4%, F1 score: 12.6%; P < 0.001; Fig. 5A). In addition, the analy-
sis of classification performance at the single-class level reveals 
that 7 of 15 emotions can be predicted significantly better than 
chance. Among these, four are positive states: joy (F1 score: 24.7%; 
P < 0.001), love (F1 score: 17.0%; P = 0.004), admiration (F1 score: 
16.7%; P = 0.004), and relief (F1 score: 19.0%; P = 0.001). Instead, 
three are negative emotions: fear (F1 score: 16.4%; P = 0.006), con-
tempt (F1 score: 15.1%; P <  0.016), and anger (F1 score: 15.7%; 
P  =  0.008). Because classification is performed using a cross-
decoding approach, the pattern of mPFC activity for these seven 
emotions is shared between stimulus modalities and does not de-
pend on previous sensory experience. Also, we report in fig. S4 the 
group average normalized maps of regression coefficients for all 
significant emotions.

fMRI experiment—Comparing the fitting of the categorical 
and dimensional encoding models
To answer the question of whether and where in the brain the repre-
sentation of affect is better explained by a categorical rather than a 
dimensional account, we conducted a voxel-wise direct contrast be-
tween the adjusted coefficients of determination (adjR2) obtained 
from two alternative fitting models: a categorical model of emotion 
with 15 predictors and a dimensional one with 4 columns (the first 
being the valence dimension). Results show that, compared to the 
dimensional model, a categorical account of the self-report emo-
tional experience better explains the mPFC activity in all groups and 
conditions (P valueFWC < 0.05; Fig. 5, B to F). The same is true for 
the activity of the superior temporal cortex, with the exception of 
E−V (Fig.  5F). The medial parietal cortex (e.g., precuneus and 
parieto-occipital sulcus) shows a significant preference for the cate-
gorical model as well, although results appear more variable across 
groups and conditions. In addition, we observe regions where the 
dimensional model explains brain activity to a larger extent than the 
categorical one. Among these brain areas, there is the mid-cingulate 
cortex in E+A, E−A, and E−V individuals (Fig. 5, C, D, and F), the 
insula in E+A, E+V, and E−V participants (Fig. 5, C, E, and F), as well 
as the somatomotor cortex (e.g., pre- and postcentral gyrus and 
paracentral lobule) and subcortical regions (e.g., thalamus, hypo-
thalamus, and caudate nucleus) in the E+M, E+A, and E−V groups 
(Fig. 5, B, C, and F).

fMRI experiment—Cross-decoding of valence from the 
activity of brain regions encoding the emotion model
To characterize the information content of brain regions significant-
ly encoding the emotion model (Fig. 5G), we estimate the associa-
tion between hemodynamic activity and valence ratings in each 
condition and group and then test whether the relationship holds in 
all other conditions and groups. Results show that the cross-
decoding of hedonic valence from the whole emotion network is 
possible for all pairings of conditions and groups, with the exception 
of E+A (Fig. 5H). Specifically, using regression weights estimated in 
typically developed individuals listening to the movie, we success-
fully explain the association between brain activity and valence in 
congenitally blind individuals (E−A, P value  =  0.007) but not in 
other groups (E+M, P value = 0.075; E+V, P value = 0.738; E−V, 
P value =  0.820). In line with this, the relationship between the 
hemodynamic activity and valence scores in E+A can be recon-
structed from regression coefficients estimated in blind people 
exclusively (E−A, P value = 0.001; E+M, P value = 0.117; E+V, 
P value = 0.180; E−V, P value = 0.358).

To further improve the spatial specificity of the cross-decoding 
results, we conduct the same analysis on each region of the emotion 
network separately. Similar to what we report for the entire net-
work, apart from E+A, cross-decoding is possible for all pairings of 
conditions and groups in the bilateral mPFC cluster (Fig.  5I). In 
this case, however, we have not been able to reconstruct the rela-
tionship between brain activity and valence in congenitally blind 
people starting from regression weights of typically developed in-
dividuals listening to the movie (P value = 0.131) nor vice versa 
(P value = 0.105). As far as the right STG cluster is concerned, we 
successfully cross-decode valence across all conditions and groups, 
with the exception of E−V (Fig. 5J). In particular, while the coeffi-
cients relating brain activity to valence scores in congenitally deaf 
individuals can be used to cross-decode pleasantness in people 
with typical development (E+A, P value <0.001; E+M, P value 
<0.001; E+V, P value = 0.001) and with congenital loss of sight 
(E−A, P value  =  0.003), the opposite is true in the multisensory 
condition only (E+M, P value = 0.045; E−A, P value = 0.062; E+A, 
P value = 0.053; E+V, P value = 0.054). Last, regarding the left STG 
cluster, the cross-decoding of valence is significant for all conditions 
and groups (Fig. 5K).

DISCUSSION
In the present study, we explored how sensory experience and mo-
dality affect the neural representation of emotional instances, with 
the aim of uncovering to what extent the brain represents affective 
states through an abstract code. To this aim, we used a naturalistic 
stimulation encompassing either unimodal or multimodal condi-
tions and collected moment-by-moment categorical and dimen-
sional emotion ratings. Brain activity was also recorded using fMRI 
from people with and without congenital auditory or visual depriva-
tion while presenting them with the same emotional stimuli.

Our results reveal that the vmPFC represents emotion categories 
regardless of sensory experience and modality. In addition, we suc-
cessfully decode the time course of emotional valence from the ac-
tivity of the posterior portion of the superior temporal cortex 
(pSTS), even when participants lack visual or auditory inputs since 
birth. Through multivariate pattern classification, we show that sen-
sory experience, but not stimulus modality, can be decoded from 
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regions of the emotion network, except for vmPFC, which does not 
provide any discernible information for decoding. At the same time, 
this region stores a specific, rather than an undifferentiated, experi-
ence of emotion. The activity pattern of vmPFC for specific emo-
tions, such as love or contempt, is shared between people with and 
without sensory deprivation. In addition to brain regions encoding 
the categorical description of the emotional experience, we report 

that the activity of the mid-cingulate, the insular, the somatomotor 
cortex and of the thalamus, the hypothalamus, and the caudate nu-
cleus is better explained by affective dimensions, such as valence and 
arousal. Also, early sensory areas preferentially represent the emo-
tion model based on the modality. Specifically, in blind and typically 
developed individuals exposed to the auditory movie, higher fitting 
values are observed in the early auditory cortex, whereas in the 

Fig. 5. Direct comparison between the categorical and dimensional encoding models and cross-decoding of emotion categories and valence ratings from brain 
activity. In (A), results for the decoding of emotion categories from mPFC activity. Standardized fitting coefficients of the emotion model are used to train a classifier and 
predict left-out observations from one group and condition. Performance of the classifier is significantly different from chance (P value < 0.001; black stars indicate single-
class significance). In (B to F), red indicates that brain activity is better explained by the categorical model while green by the dimensional one. The black outline identifies 
regions in which the comparison is significant (P valueFWC < 0.05). (G) depicts areas included in all cross-decoding procedures. In (H) to (K), we show the results of the 
cross-validated ridge regression aimed at predicting valence ratings from brain activity. We trained the algorithm on each group and condition and tested the association 
between brain activity and valence in all other groups and conditions. Results are summarized by the 5-by-5 matrices showing the significance of the prediction for each 
pairing (dark gray dots denote P value < 0.05). Cun, cuneus; Thal, thalamus; preCG, precentral gyrus; MOG, middle occipital gyrus; preCun, precuneus; dACC, dorsal ante-
rior cingulate cortex; mCing, mid-cingulate cortex; POS, parieto-occipital sulcus; CalcS, calcarine sulcus; Caud, caudate nucleus; Hypot, hypothalamus; postCG, postcentral 
gyrus; MFG, middle frontal gyrus; INS, insula; LinG, lingual gyrus; pMTG, posterior middle temporal gyrus; paraCL, paracentral lobule; PCC, posterior cingulate cortex.
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visual-only experiment, emotions are better fitted to the early visual 
areas of deaf and typically developed participants. Last, higher-
order occipital regions, like the FG, encode the emotion model sim-
ilarly in both sighted and blind individuals when listening to the 
narrative.

Understanding to what extent mental faculties and their corre-
sponding neural representation can form and refine without senso-
ry experience is of paramount importance. Previous research has 
shown that function-specific cortical modules can develop also in 
the case of congenital lack of sight or hearing (38). Although the 
study of the sensory-deprived brain has provided crucial insights 
into the architecture of human cognition, to what extent emotions 
are represented in a supramodal manner remains unknown.

Our voxel-wise encoding shows that vmPFC stores an abstract 
representation of emotion categories, as it is involved regardless of 
previous sensory experience and modality. To delve deeper into the 
role of this region, we examine with multivariate classification 
whether the pattern obtained from fitting the emotion model could 
effectively distinguish participants’ sensory experiences and the 
stimulus modality they are presented with. Multivariate results rein-
force the notion of the supramodal nature of vmPFC, as information 
encoded in this area is not contaminated by sensory input. Also, 
within this region, the activity pattern for the experience of joy, love, 
admiration, relief, contempt, fear, and anger does not depend on 
sensory deprivation. Previous research on typically developed indi-
viduals only already pointed to the recruitment of this region in pro-
cessing emotional stimuli conveyed through the visual, auditory, 
tactile, nociceptive, and olfactory modalities (18–20, 39). In this 
context, examining congenitally sensory-deprived individuals be-
comes essential as it ensures that the recruitment of the same brain 
area across various modalities does not depend on modality-specific 
mental imagery (27, 34, 38, 40). The vmPFC has been linked to the 
encoding of affective polarity and the regulation of emotional states 
(41–43). Also, lesions in this area alter emotional responses regard-
less of whether stimuli are presented through visual (44) or auditory 
modalities (45, 46). Together with these findings, our data support 
the idea that vmPFC is crucial for generating affective meaning (47, 
48) and that such a meaning is represented in an experience- and 
modality-independent manner, as it is present in both the sensory-
deprived and the typically developed brain.

Of note, according to the constructionist view, emotions can be 
conceptualized as abstract categories strongly dependent on lan-
guage and culture (49, 50). In this regard, the fact that language 
helps in the construction of an emotional experience is supported 
by the evidence that brain regions processing semantics overlap 
with those involved in the representation of emotion. This is the 
case, for instance, of the mPFC and the temporoparietal regions 
(51). In line with this, we also observe the existence of an abstract 
code for the representation of emotion categories in vmPFC, which 
is independent of the sensory experience. It is interesting to note 
that, in our study, language was a communicative channel common 
across all stimulus modalities, either conveyed through speech in 
blind and normally hearing people or via subtitles in deaf and sight-
ed participants. Although others reported convergence between 
modalities in vmPFC using emotionally laden low-level sensory 
stimuli (e.g., taste) (20), based on our findings, it could be hypothe-
sized that the abstract code supporting the mapping of emotion in 
vmPFC relies on semantics. This idea aligns with a wealth of litera-
ture [e.g., (52)] suggesting that other regions of the brain, such as the 

anterior temporal lobe, store perceptual knowledge inaccessible to 
people with congenital sensory deprivation (e.g., blind people 
knowing the color of a banana) using a code based on language. The 
same mechanism also supports the development of complex social 
abilities as theory of mind (53).

By obtaining categorical and valence ratings, we were also able to 
ascertain whether the abstract coding used by vmPFC could be ac-
counted by the dimension of pleasantness. Our findings indicate 
that the supramodal code of emotion in vmPFC is categorical rather 
than dimensional, as valence is mapped differently in typically de-
veloped individuals listening to the movie as compared to all other 
groups and conditions. Consistent with prior findings highlighting 
the influence of imagery on the perceptual processing of emotion-
ally charged stimuli (54), we posit that visual imagery may underlie 
the distinctive mapping of pleasantness in vmPFC of sighted. That 
activity of this brain area cannot be merely explained with changes 
in valence dovetails with two other main findings in our study. First, 
we have been able to decode the experience of seven emotion cate-
gories from the pattern of vmPFC, suggesting that this area stores a 
specific, rather than an undifferentiated, experience of emotion. 
Second, a direct test comparing the categorical model and an alter-
native dimensional account of the experience reveals that activity of 
the mPFC is better explained by emotion categories in both sensory-
deprived and typically developed people presented with different 
versions of the stimulus.

Notably, a recent study investigating perceived voice emotions 
has revealed the coexistence of both categorical and dimensional ac-
counts of affective experiences in the brain, where the activity of 
frontal regions represents emotional instances in categories, where-
as temporal areas through dimensions (55). Our findings not only 
reinforce but also expand the notion that the same emotional expe-
rience can be represented by distinct brain regions following either 
categorical or dimensional frameworks. We show that the activity of 
pSTS tracks changes in valence regardless of the stimulus modality 
and in people with and without congenital sensory deprivation. This 
area is known for its involvement in processing emotions (56, 57), 
with its connectivity being predictive of affective recognition per-
formance (58). Moreover, pSTS is crucial for the multisensory inte-
gration of emotional information from faces and voices (59, 60), as 
well as from body postures (61, 62). The activity of the superior tem-
poral cortex is also modulated by the valence of vocal expressions 
(63) and facial movements (64, 65). A prior study conducted on 
typically developed individuals showed that the left pSTS maps 
emotion categories, irrespective of the sensory modality involved 
(19). Our study confirms this finding, as we observe a convergence 
in left pSTS (x = −68, y = −14, z = −5) when examining the encod-
ing results of the categorical model obtained from the multisensory, 
visual-only, and auditory-only experiments conducted in people 
with typical development. However, we also find that the encoding 
of emotional instances in pSTS is influenced by sensory experience, 
as congenitally deaf participants do not show a mapping of emotion 
categories in the same region. In this regard, it is well known that the 
superior temporal cortex of deaf people undergoes a sizable reorga-
nization so that deafferented auditory areas are recruited during the 
processing of visual stimuli (66). The repurposing is more evident in 
the right hemisphere (67–69), and this might also account for our 
cross-decoding of valence from the left, but not the right, pSTS in 
congenitally deaf participants. These results collectively indicate 
that emotion category mapping in pSTS is contingent on sensory 
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experience, so as the representation of valence in the right pSTS, 
whereas the left pSTS encodes pleasantness in a supramodal man-
ner. Other brain areas, such as the mid-cingulate cortex, the insula, 
the somatomotor area, the thalamus, and the hypothalamus, show a 
preferential encoding of affective dimensions. Because valence ex-
plains the majority of variance in categorical ratings, it is unlikely 
that brain regions preferentially encoding affective dimensions are 
merely mapping the pleasantness of the experience. Other compo-
nents, less associated with the distinction between positive and neg-
ative emotions, may be responsible for such a preference. In 
particular, among the first four affective dimensions, the one corre-
sponding to the second component in the auditory modality and the 
third in the visual and multisensory experiments could reflect 
arousal. This intuition comes from two observations: (i) This com-
ponent contrasts states generally characterized by lower physiologi-
cal activation, such as sadness, compassion, or disappointment, with 
others inducing much stronger bodily reactions, such as fear, con-
tempt, love, or joy; (ii) when plotted against each other (fig. S5), the 
valence ratings and the scores of the arousal component describe the 
typical V-shape observed across a number of datasets (70). Last, this 
hypothesis fits with the pattern of brain regions preferentially en-
coding the dimensional model, as previous studies reported the spe-
cific mapping of arousal in the thalamus and the hypothalamus (71), 
the mid-cingulate area (72), as well as in the insular cortex (73).

Together, our data indicate that the abstract coding of emotional 
instances is based on a categorical framework in vmPFC and a di-
mensional one in left pSTS. How does the brain represent emotional 
experiences beyond vmPFC and pSTS?

Our multivariate classification results reveal that sensory experi-
ence more than modality of emotion conveyance plays a role in how 
the brain organizes emotional information. Behavioral studies dem-
onstrated that blind individuals have distinct experiences related to 
affective touch (74) and sounds [(10) but see also (75)] as compared 
to sighted. Similarly, congenitally deaf people exhibit specific abili-
ties in identifying musical happiness (76). Notwithstanding these 
differences in the processing of affective stimuli, the precise mecha-
nisms through which sensory deprivation shapes how emotional 
experiences are encoded in the brain remain to be fully elucidated. 
In our data, we show a significant mapping of emotion categories in 
higher-order occipital regions, such as the FG, in both congenitally 
blind and typically developed individuals while listening to the 
movie. It is well known that the deafferented occipital cortex of 
blind people is recruited for perceptual [e.g., (77)] as well as more 
complex tasks [e.g., (53, 78)]. Most of these studies discuss this evi-
dence in the context of crossmodal reorganization (79). In contrast, 
here, we show that the network of brain regions encoding emotion 
categories is similar between sensory-deprived and typically devel-
oped individuals, even beyond areas representing affect in a supra-
modal manner. In line with this, we observe null results in the 
within-modality comparisons of people with and without sensory 
deprivation. Hence, our data suggest that, as in the case of percep-
tual processes (80), the brain constructs a framework for the repre-
sentation of emotional states, independently of sensory experience. 
Sensory inputs during development, however, shape the functioning 
of this scaffold.

If the influence of sensory experience is evident, that of sensory 
modality is less conspicuous upon first examination. As a matter of 
fact, when considering how distinct brain regions represent our 
emotion model, it is not possible to discern the specific stimulus that 

is presented to typically developed individuals. Nonetheless, we ob-
serve higher fitting values of the emotion model in the auditory cor-
tices when participants are exposed to the audio version of the 
movie. Conversely, the video stimulus prompts higher fitting values 
in visual areas. This finding aligns with previous research, which has 
proposed the existence of emotion schemas within the visual cortex 
(6). The concept of emotion schema suggests that perceptual fea-
tures consistently associate with distinct emotions and contribute to 
our comprehensive emotional experience. Our finding provides fur-
ther support for the idea that emotions are not only processed in 
centralized supramodal emotional areas but also distributed across 
different sensory regions of the brain (81). The specificity of the re-
lationship between sensory modality and elicited emotions is also 
testified by the differences we observe in the affective experience 
reported by participants of our behavioral studies. While amuse-
ment, love, joy, fear, and contempt are the predominant emotions 
across our stimuli, fear is more challenging to experience solely 
through the auditory modality, while contempt is more easily elic-
ited in the audio version of the movie. These results are consistent 
with previous studies demonstrating distinct emotion taxonomies 
associated with different sensory modalities to convey affective 
states (82).

Last, we wish to acknowledge potential limitations of our study. 
First, we did not gather affective ratings from congenitally blind and 
deaf participants. This limitation arises from how we collect real-
time reports of the affective experience in the context of naturalistic 
stimulation, which represents a real challenge (83). The precision of 
our method in estimating the onset and duration of a self-reported 
emotional instance, as well as the possibility to simultaneously 
collect information from multiple emotion categories, comes—
unfortunately—at the cost of providing the participants with com-
plex feedback (e.g., how many emotions—if any—are “on” at any 
given time during the movie) that, to the best of our knowledge and 
technical abilities, require vision. Thus, while gathering real-time 
emotion reports in typically developed and deaf individuals is fea-
sible with our method, doing the same in blind individuals is not. Of 
course, as far as reporting one’s own feelings is concerned, there 
could be alternatives for people lacking sight, such as verbal reports 
[e.g., pausing the movie at random times and asking participants 
how they feel, as in (48)]. However, we believe that having different 
methods for the collection of behavioral data between groups might 
have represented a bias in our work. Because of this, when conceiv-
ing the study, we opted to collect “normative” emotional reports 
from typically developed individuals only. Although the concept of 
normative in affective science may be controversial, the reliability of 
behavioral reports supports the rationale behind our choice. Future 
investigations could overcome this limitation by designing and im-
plementing an innovative methodology to capture real-time emo-
tion reports in lack of sight. Second, although the between-subject 
similarity in emotion reports is significantly higher than one might 
expect by chance, we also note a degree of variability in the occur-
rence and duration of emotional instances (figs. S1 to S3). In this 
regard, a more evocative movie might synchronize more affective 
reports, resulting in better generalizability across individuals. In ad-
dition, our encoding models are based on the group-level emotion 
annotations provided by an independent group, thus limiting the 
possibility to explain single participant idiosyncrasies in the fMRI 
response. By collecting emotional reports and brain activity in the 
same individuals, instead, one might expect higher performance 
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because of the fitting of such idiosyncrasies. However, this approach 
is also not free from some limitations, as performing our task in the 
scanner recruits motor and attentional resources, which might rep-
resent a source of confound. Also, in case the task is performed out-
side the scanner, being exposed to the same stimuli twice might alter 
the affective response. Third, we are aware that the sample size of 
each group could be considered as small for classical fMRI studies, 
in which the acquisition time is typically limited to dozens of min-
utes. However, it is important to emphasize that across two experi-
ments we acquired approximately 50 hours of fMRI data and 120 hours 
of behavioral reports. Also, we have not been able to collect person-
ality characteristics of our participants, which might have a role in 
the brain representation of emotional experience. Future studies 
might address this by including a personality evaluation (e.g., Big 
Five Inventory) in the experimental protocol.

In conclusion, we have shown that emotional experiences are 
represented in an extensive network encompassing sensory, pre-
frontal, and temporal regions. Within this network, emotion catego-
ries are encoded using an abstract code in the vmPFC, and perceived 
valence is mapped in the left posterior superior temporal region in-
dependently of the stimulus modality and experience. Thus, abstract 
and sensory-specific representations of emotion coexist in the brain, 
so as categorical and dimensional accounts. Sensory experience, 
more than modality, affects how the brain organizes emotional in-
formation outside supramodal regions, suggesting the existence of a 
scaffold for the representation of emotional states where sensory 
inputs during development shape its functioning.

MATERIALS AND METHODS
Behavioral experiments—Participants
After obtaining their written informed consent, a sample of 124 Ital-
ian native speakers with typical visual and auditory experience (E+) 
participated in a set of behavioral experiments. All participants re-
tained the right to withdraw from the study at any time and received 
a small monetary compensation for their participation. They had no 
history of neurological or psychiatric conditions, normal hearing, 
normal or corrected vision, and no reported history of drug or al-
cohol abuse.

A first group of 62 participants provided categorical ratings of 
the affective experience associated with the movie 101 Dalmatians 
under three experimental conditions: listening to the auditory-only 
version of the movie (auditory-only condition, A; n = 20, 8 females, 
mean age ±  SD =  36 ±  16), watching the silent film (visual-only 
condition, V; n = 20, 10 females, age = 29 ± 8), or watching and 
listening to the original version of the movie (multisensory condi-
tion, M; n = 22, 11 females, age = 30 ± 3). A second independent 
sample of 62 individuals provided valence ratings of the emotional 
experience evoked by the same movie under the same experimental 
conditions. Specifically, 21 individuals reported the (un)pleasant-
ness of the experience during the M condition (13 females, 
age  =  30  ±  5), 20 annotated the emotional valence during the A 
condition (9 females, age = 37 ± 11), and 21 participated in the V 
experiment (10 females, age = 29 ± 7). The mean age and the pro-
portion of male and female individuals in each group did not differ 
from those of typically developed and sensory-deprived participants 
enrolled in the fMRI experiment (all P values > 0.05). All partici-
pants had never watched the movie or had not watched it in the year 
before the experiment. The study was approved by the local Ethical 

Review Board (Comitato Etico Area Vasta Nord Ovest; protocol no. 
1485/2017) and conducted in accordance with the Declaration of 
Helsinki.

Behavioral experiments—Stimuli and 
experimental paradigm
To study whether and to what extent sensory experience and stimu-
lus modality affect the representation of emotions in the brain, we 
measured fMRI activity and real-time reports of emotion elicited by 
the 101 Dalmatians live-action movie (Walt Disney, 1996). We spe-
cifically selected 101 Dalmatians as it is characterized by a relatively 
simple plot that can be comprehended even by children or when it is 
narrated as in radio plays, a crucial requirement for our experimen-
tal goals. At the same time, the movie is rich in moments eliciting 
both positive (e.g., the wedding of the two lovers) and negative (e.g., 
the kidnapping of puppies) emotional states, as confirmed by the 
real-time affective reports we collected in the behavioral experi-
ments (see below). A shortened version of 101 Dalmatians was cre-
ated for M, A, and V stimulation (37). Scenes irrelevant to the main 
plot were removed to limit the overall duration of the experimental 
session to one hour, and the movie was split into six runs for fMRI 
protocol compliance. Six-second fade-in and fade-out periods were 
added at the beginning and the end of each run (iMovie software 
v10.1.10). A professional actor provided a voiceover of the story 
with a uniform pitch and no inflections in the voice, recorded in a 
studio insulated from environmental noise with professional hard-
ware (Neumann U87ai microphone, Universal Audio LA 610 mk2 
preamplifier, Apogee Rosetta converter, Apple MacOS) and software 
(Logic Pro). The voice track was then adequately combined with the 
original soundtracks and dialogues. Further, we added to each video 
frame subtitles of movie dialogues, text embedded in the video 
stream (e.g., newspaper), onomatopoeic sounds, and audio descrip-
tions. Last, A and V versions of the movie were generated by dis-
carding the video and audio streams, respectively.

Participants sat comfortably in a quiet room facing a 24″ Dell 
screen, they wore headphones (Marshall Major III; 20 to 20,000 Hz; 
Maximum SPL 97 dB) and were presented with either the multi-
modal or unimodal edited versions of the movie 101 Dalmatians. 
Volunteers were asked to report their moment-to-moment emo-
tional experience (10-Hz sampling rate) using a collection of 15 
emotion labels that were balanced between positive (amusement, 
joy, pleasure, contentment, love, admiration, relief, and compassion) 
and negative affective states (sadness, disappointment, fear, disgust, 
contempt, hate, and anger). As in our previous studies (7, 84), the 
emotion labels were displayed on the bottom of the screen, evenly 
spaced along the horizontal axis, with positive emotion categories 
on the left and negative ones on the right side. Participants could 
navigate through the emotions using the arrow keys on a QWERTY 
keyboard, and once selected, the label changed its color from white 
to red. The onset or end of an emotional instance was marked by 
pressing the keys “Q” or “A,” respectively. Subjects were able to select 
multiple emotions at a time and could constantly monitor their af-
fective reports based on the changing color of the corresponding 
label. For each individual, we obtained a 32,280 (i.e., time points) by 
15 (i.e., emotion labels) matrix of affective ratings, in which a value 
of 1 (or 0) indicated the presence (or absence) of a specific emotion 
at a given time. Before the experiment, participants received train-
ing on the task, in which a label appeared on the screen (e.g., joy), 
and they were asked to reach the corresponding emotion category 
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and mark the onset as fast as they could. They were instructed to 
proceed to the actual experiment only if they felt comfortable per-
forming the task.

We followed a similar procedure to collect real-time ratings of 
valence (i.e., dimensional ratings). This time, however, participants 
were provided with a single “valence” label and were asked to evalu-
ate how pleasant or unpleasant their experience was at each moment 
by increasing (Q keypress) or decreasing (A keypress) the valence 
score. The valence scale ranged from −100 (extremely unpleasant) 
to +100 (extremely pleasant), the minimum step was set to 5 points, 
and a value of 0 indicated a neutral state. Participants were able to 
monitor their affective state in real-time and adjust the valence score 
at any moment (10-Hz sampling frequency). We collected a time 
series of 32,280 time points for each individual, with positive or 
negative values indicating the pleasantness or unpleasantness of 
their emotional experience at any given time. Both behavioral ex-
periments were conducted using MATLAB (R2019b; MathWorks 
Inc., Natick, MA, USA) and Psychtoolbox v3.0.16 (85).

Behavioral experiments—Reliability of real-time valence 
ratings and categorical annotations of emotion
To evaluate the between-participant similarity in categorical rat-
ings of emotion, for each volunteer and condition, we obtained the 
emotion–by–time point matrix expressing the onset and duration of 
emotional instances throughout the movie. We then computed the 
Jaccard similarity between all pairings of individuals. This index 
quantified the proportion of time points in which two volunteers 
reported the experience of the same state, over the number of time 
points in which either individuals felt the emotion (0 = completely 
disjoint reports, 1 = perfect correspondence). The overlap between 
emotional reports was then summarized by computing the median 
across all possible pairings of participants in each condition and 
emotion category. Further, we tested the reliability of real-time re-
ports of the affective experience by comparing the average Jaccard 
index measured between participants with a null distribution of Jac-
card coefficients built from surrogate time series. Briefly, we used 
the amplitude adjusted Fourier transform method (86) to generate 
2000 emotion reports for each participant and emotion while keep-
ing fixed the overall number of time points in which an emotional 
instance was reported. As Jaccard is computed for nonzero time 
points, this ensured the appropriateness of the null distribution (i.e., 
the union of time points was the same between the surrogate and 
the nonsurrogate time series). Then, for each emotion and modality, 
we obtained the 2000 average Jaccard indices under the null hypoth-
esis of observing no overlap between emotional reports and esti-
mated statistical significance by retrieving the position of the actual 
average Jaccard within the null distribution. We also adjusted the 
statistical significance threshold by the number of emotion catego-
ries (i.e., P valueBonferroni = 0.050; P valueUncorrected = 0.003). To com-
plement the results obtained from this analysis, we computed a 
1-idiosyncrasy index (depicted in figs. S1 to S3), which we believe 
could be informative in the context of measuring the agreement in 
emotional reports. Because Jaccard is computed for all time points 
in which at least one of two participants experienced a specific emo-
tion (i.e., union), this index does not reflect the concordance in re-
porting the absence of an emotion. Our 1-idiosyncrasy index, 
instead, reaches its maximum (i.e., 1) whenever all participants ei-
ther report the presence or the absence of a specific emotion at the 
same time and its minimum (i.e., 1 per number of participants) 

when an emotion is reported by a single individual but not by all 
other participants (i.e., the maximum idiosyncrasy in the expe-
rience of an emotion). Thus, as compared to the Jaccard index, 
the 1-idiosyncrasy coefficient takes into account the between-
participant concordance in reporting both the presence and the ab-
sence of emotion. For valence ratings, instead, the between-participant 
similarity was evaluated using Spearman’s ρ and summarized by 
computing the median of correlation values obtained from all pair-
ings of participants in each condition. RSA (87) was used to mea-
sure whether group-level emotion ratings collected during movie 
watching recapitulated the arrangement of emotion categories with-
in the space of affective dimensions. An advantage offered by this 
technique is that it allows comparing the information content ob-
tained from different sources. Specifically, for each source of infor-
mation (e.g., behavioral ratings during movie watching), an RDM is 
built by computing the distance between all possible pairings of ele-
ments (e.g., emotions). Different distance metrics can be adopted 
depending on the nature of the information (e.g., Spearman’s ρ, Eu-
clidean). Then, dissimilarity matrices are compared (second-order 
isomorphism), typically using rank-correlation distance. Here, we 
first obtained from a large database of affective norms (88) the 
scores of valence, arousal, and dominance dimensions (1 to 9 Likert 
scale) (89) of each emotion label. An RDM was obtained by comput-
ing the between-emotion pairwise Euclidean distance in the space 
of affective dimensions. We then used Kendall’s τ to correlate the 
affective norms (RDM) with behavioral RDMs obtained from emo-
tion ratings of each experimental condition (i.e., M RDM, A RDM, 
and V RDM). Behavioral RDMs were derived by estimating the 
Spearman’s correlation ρ between all possible pairings of group-level 
emotion time series. In addition to evaluating the association be-
tween the affective norms RDM and each behavioral RDM, we also 
measured Kendall’s τ correlation between all pairings of behavioral 
RDMs, hence testing the correspondence between affective ratings 
collected under diverse sensory modalities. To further prove the 
specificity of categorical ratings across conditions, we tested wheth-
er the distance (Spearman’s ρ on group-level ratings) of a specific 
emotion acquired under two different experimental conditions (e.g., 
amusement M versus amusement A) was smaller than its distance to 
all other emotions (e.g., amusement M versus any other emotion A). 
This produced a nonsymmetric emotion-by-emotion RDM summa-
rizing the distance between emotion ratings acquired under two 
modalities and was repeated for all condition pairings (i.e., M versus 
A, M versus V, and A versus V). For each emotion and RDM, we 
then identified the category with the minimum distance, thus allow-
ing a direct inspection of the consistency of emotion ratings be-
tween sensory modalities. Last, to reveal the structure of categorical 
ratings and test their correspondence with valence scores collected 
in behavioral experiments, we performed PC analysis on the group-
level emotion–by–time point matrix. The number of components 
was set to three to comply with the affective norms by Warriner and 
colleagues (88), and the procedure was repeated on data obtained 
from the M, A, and V experiments. Of each component, we inspect-
ed the variance explained and the coefficients of emotion categories. 
The time course of each component (i.e., PC scores) was also ex-
tracted and correlated (Kendall’s τ) with the behavioral valence 
scores collected under the same experimental condition (e.g., PC1 
M versus valence M). In addition, we also reported Kendall’s τ cor-
relation between all possible condition pairings in terms of valence 
ratings and scores of the PCs. The strength of Spearman’s and 
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Kendall’s correlations was interpreted following the recommenda-
tion from Schober and colleagues (90).

Behavioral experiments—The development of an emotion 
model for fitting brain activity
Single-participant matrices of categorical affective ratings were downs-
ampled to the fMRI temporal resolution (i.e., 2 s) and then aggregated 
across individuals by summing the number of occurrences of each 
emotion at each time point. The resulting 1614 (i.e., downsampled 
time points) by 15 (i.e., emotions) matrix stored values ranging from 0 
to the maximum number of participants experiencing the same emo-
tion at the same time. To account for idiosyncrasies in group-level af-
fective ratings, time points in which only one participant reported 
experiencing a specific emotion were set to 0. The group-level matrix 
of categorical ratings was then normalized by dividing values stored at 
each time point by the overall maximum agreement in the matrix. Be-
cause these ratings were used to explain the brain activity of indepen-
dent participants in a voxel-wise encoding analysis, we convolved the 
15 group-level emotion time series with a canonical hemodynamic 
response function (spm_hrf function; HRF) and added the intercept to 
the model. The entire procedure was repeated for ratings collected in 
the M, the A, and the V conditions. Similarly, single-participant va-
lence ratings were downsampled to the fMRI temporal resolution and 
aggregated at the group level by computing the average valence score 
across individuals at each time point and convolved with a canonical 
HRF. These processing steps were applied to valence ratings obtained 
from the M, the A, and the V experiments.

fMRI experiment—Participants
Brain activity evoked by the same movie used in the behavioral ex-
periments was measured in a group of 50 Italian volunteers (Ta-
ble 2). Participants were categorized into five groups based on their 
sensory experience and on the stimulus presentation modality: a 
group of congenitally blind individuals listening to the auditory-
only version of 101 Dalmatians (E−A; n  =  11, 3 females, age = 
46 ± 14), a sample of congenitally deaf without cochlear implants 
watching the silent film (E−V; n = 9, 5 females, age = 24 ± 4), and 
three groups of typically developed individuals, who were presented 
with either the auditory-only (E+A; n = 10, 7 females, age = 39 ± 17), 
the visual-only (E+V; n = 10, 5 females, age = 37 ± 15), or the mul-
tisensory (E+M; n = 10, 8 females, age = 35 ± 13) versions of the 
stimulus. During the fMRI acquisition, participants were instructed 
to remain still and enjoy the movie. The scanning session lasted ap-
proximately 1 hour and was divided into six functional runs (3T 
Philips Ingenia scanner, Neuroimaging Center of NIT–Molinette 
Hospital, Turin; 32 channels head coil; gradient recall echo-echo 
planar imaging; 2000-ms repetition time, 30-ms echo time, 75° flip 
angle, 3-mm isotropic voxel, 240-mm field of view, 38 sequential 
ascending axial slices, 1614 volumes). Audio and visual stimula-
tions were delivered using MR-compatible Liquid Crystal Display 
goggles and headphones (VisualStim Resonance Technology; vid-
eo resolution, 800 × 600 at 60 Hz; visual field, 30° × 22°; 5″; audio, 
30-dB noise attenuation; 40-Hz to 40-kHz frequency response). 
High-resolution anatomical images were also acquired (3D T1w; 
magnetization-prepared rapid gradient echo; 7-ms repetition time, 
3.2-ms echo time, 9° flip angle, 1-mm isotropic voxel, 224-mm field 
of view). The fMRI study was approved by the Ethical Committee of 
the University of Turin (protocol no. 195874/2019), and all partici-
pants provided their written consent for participation.

fMRI experiment—Preprocessing
For each participant, the high-resolution T1w image was brain ex-
tracted (OASIS template, antsBrainExtraction.sh) and corrected for 
inhomogeneity bias (N4 bias correction) with Advanced Normal-
ization Tools v2.1.0 (91). The anatomical image was then nonlin-
early transformed to match the MNI152 ICBM 2009c nonlinear 
symmetric template using AFNI v17.1.12 (3dQwarp) (92). Also, bi-
nary masks of white matter (WM), gray matter, and cerebrospinal 
fluid (CSF) were obtained from Atropos (93). We used these masks 
to extract the average time series of WM and CSF voxels from fMRI 
sequences, which were included in the functional preprocessing 
pipeline as regressors of no interest (94). Masks were transformed 
into the MNI152 space by applying the already computed deforma-
tion field (3dNwarpApply; interpolation: nearest neighbor). To en-
sure that after normalization to the standard space the WM mask 
included WM voxels only, we skeletonized the mask (erosion: 3 vox-
els; 3dmask_tool) and excluded (3dcalc) the Harvard-Oxford 
subcortical structures (i.e., thalamus, caudate nucleus, pallidum, pu-
tamen, accumbens, amygdala, and hippocampus). Similarly, the CSF 
mask was eroded by 1 voxel and multiplied by a ventricle mask 
(MNI152_T1_2mm_VentricleMask.nii.gz) distributed with the FSL 
suite (95). Last, both masks were downsampled to match the fMRI 
spatial resolution.

For each participant and functional run, we corrected slice-
dependent delays (3dTshift) and removed nonbrain tissue (FSL bet 
-F) from the images. Head motion was compensated by aligning 
each volume of the functional run to a central time point (i.e., vol-
ume number 134) with rigid-body transformations (i.e., 6 degrees of 
freedom; 3dvolreg). The motion parameters, the aggregated time 
series of absolute and relative displacement, and the transformation 
matrices were generated and inspected. Also, we created a brain-
extracted motion-corrected version of the functional images by esti-
mating the average intensity of each voxel in time (3dTstat). This 
image was coregistered to the brain-extracted anatomical sequence 
(align_epi_anat.py, “giant move” option, lpc + ZZ cost function). To 
transform the functional data into the MNI152 space using a single 
interpolation step, we concatenated the deformation field, the coreg-
istration matrix, and the 3dvolreg transformation matrices and ap-
plied the resulting warp (3dNwarpApply) to the brain-extracted 
functional images corrected for slice-dependent delays. Standard-
space functional images were generated using sinc interpolation 
(5-voxel window), having the same spatial resolution as the original 
fMRI data (i.e., 3-mm isotropic voxel). Brain masks obtained from 
functional data were transformed into the standard space as well 
(3dNwarpApply, nearest-neighbor interpolation). Functional imag-
es were then iteratively smoothed (3dBlurToFWH) until a 6-mm 
full width at half maximum level was reached. As in Ciric and col-
leagues (94), we used 3dDespike to replace outlier time points in 
each voxel’s time series with interpolated values and then normal-
ized the signal so that changes in blood oxygen level–dependent 
(BOLD) activity were expressed as a percentage (3dcalc). In addi-
tion, WM, CSF, and brain conjunction masks were created by iden-
tifying voxels common to all functional sequences (3dmask_tool 
-frac 1). We selected 36 predictors of no interest (36p) to be re-
gressed out from brain activity, which included six head motion 
parameters (6p) obtained from 3dvolreg, average time series 
(3dmaskave) of WM (7p), average CSF signal (8p), and the average 
global signal (9p). For each of these nine regressors, we computed 
their quadratic expansions (18p; 1deval), the temporal derivatives 
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Table 2. Demographics of the fMRI groups. On average, the head displacement of congenitally blind individuals (E−A) was 1.564 ± 0.985 mm, while the head 
motion of typically developed individuals exposed to the same stimulus modality (E+A) was 0.864 ± 0.681 mm [t-stat(17.81) = 1.909; P value = 0.073]. For what 
concerns fMRI data collected during the visual experiment, head motion measured in congenitally deaf individuals (E−V) was, on average, 0.715 ± 0.401 mm, 
whereas in typically developed individuals (E+V) was 0.709 ± 0.471 mm [t-stat(16.96) = 0.030; P value = 0.977]. In addition, no significant differences were found 
when we compared head motion values of people with sensory deprivation to those of typically developed individuals presented with the multisensory 
stimulus [E+M head motion: 0.889 ± 0.742 mm; E−A versus E+M: t-stat(18.41) = 1.784; P value = 0.091; E−V versus E+M: t-stat(14.11) = −0.645; P value = 0.529].

Sex Age Group Cause of sensory 
deprivation

Average absolute 
head movement 

between runs (mm)

Sub-012 F 30 E+M NA 0.4817

Sub-013 F 41 E+M NA 0. 9765

Sub-014 M 28 E+M NA 0.9133

Sub-015 F 24 E+M NA 0.3645

Sub-016 M 25 E+M NA 2.8519

Sub-017 F 62 E+M NA 0.5057

Sub-018 F 28 E+M NA 0.4484

Sub-019 M 30 E+M NA 1.1704

Sub-022 F 51 E+M NA 0.7486

Sub-032 F 29 E+M NA 0.4322

Sub-003 F 25 E+A NA 0.3679

Sub-004 F 23 E+A NA 0.6111

Sub-005 F 25 E+A NA 0.2670

Sub-006 M 54 E+A NA 1.2102

Sub-007 F 69 E+A NA 1.5587

Sub-008 F 28 E+A NA 0.8935

Sub-009 M 55 E+A NA 0.2066

Sub-010 F 24 E+A NA 0.5369

Sub-011 F 30 E+A NA 0.6053

Sub-027 F 52 E+A NA 2.3813

Sub-020 F 25 E+V NA 0.3853

Sub-021 F 26 E+V NA 0.3799

Sub-023 F 38 E+V NA 0.3930

Sub-024 F 53 E+V NA 0.4596

Sub-025 M 53 E+V NA 0.7694

Sub-026 M 57 E+V NA 1.4911

Sub-028 M 24 E+V NA 0.3934

Sub-029 M 50 E+V NA 0.3920

Sub-030 F 23 E+V NA 1.5959

Sub-031 M 23 E+V NA 0.8340

Sub-033 F 68 E−A Optic nerve atrophy 0.9561

Sub-034 M 64 E−A Retinitis pigmentosa 3.6607

Sub-035 F 37 E−A Leber congenital 
amaurosis

2.0198

Sub-036 M 48 E−A Retinopathy of prema-
turity

0.7649

Sub-037 M 49 E−A Optic nerve atrophy 1.7411

Sub-038 M 32 E−A Retinal detachment 0.7483

Sub-039 M 42 E−A Retinitis pigmentosa 0.5037

Sub-041 M 49 E−A Retinopathy of prema-
turity

2.4106

Sub-042 M 19 E−A Retinal detachment 1.1961

Sub-043 F 41 E−A Bilateral retinoblastoma 0.7613

Sub-053 M 57 E−A Retinopathy of prema-
turity

2.4453

(Continued)
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(27p; 1d_tool.py), and the squares of derivatives (36p). Also, regres-
sors of no interest were detrended using polynomial fitting (up to 
the fifth degree). Confounds were regressed out using a generalized 
least squares time series fit with restricted maximum likelihood es-
timation of the temporal autocorrelation structure (3dREMLfit). 
Regression residuals represented single-participant preprocessed 
time series, which were then used in voxel-wise encoding, univari-
ate comparisons, multivariate classification, and cross-decoding 
analyses.

fMRI experiment—Fitting the emotion model in 
brain activity
We used a voxel-wise encoding approach to identify brain regions 
that are involved in the representation of affect across different sen-
sory modalities and in individuals with varying sensory experienc-
es. In this regard, categorical emotion ratings from the A, V, and M 
versions of 101 Dalmatians served as predictors of brain activity re-
corded in independent participants watching and/or listening to the 
same stimulus. Specifically, A ratings were used as the encoding 
model of fMRI data collected in congenitally blind (i.e., E−A) and 
typically developed individuals (i.e., E+A) listening to the stimulus; 
emotion time series obtained from the V experiment were fitted to 
the brain activity of congenitally deaf (i.e., E−V) and typically devel-
oped participants (i.e., E+V) watching the silent version of the mov-
ie; last, affective ratings coming from the M behavioral experiment 
served to explain changes in the BOLD activity of E+M volunteers 
attending the multisensory version of the stimulus. The encoding 
analysis was performed at the single-participant level, thus produc-
ing a voxel-wise R2 map for each typically developed and sensory-
deprived individual. The statistical significance of the full-model 
fit was established using a nonparametric permutation approach. 
Briefly, the rows of the encoding matrix were shuffled 2000 times 
before the HRF convolution. Therefore, the resulting null encoding 
matrices preserved the co-occurrence of emotion categories found 
in actual ratings, whereas the onset and duration of emotional in-
stances were randomized. The null encoding matrices were then 
convolved with a canonical HRF and fitted to brain activity to pro-
duce 2000 null R2 maps for each participant. The same permutation 
scheme was used for all participants and voxels. In each voxel, the 

position of the unpermuted R2 value in the null distribution deter-
mined the voxel-wise uncorrected statistical significance level (i.e., 
P value). Because we were interested in group-level encoding maps 
of affect, we then used a nonparametric combination (96) (Fisher 
method) to aggregate P values across participants of the same group. 
We opted for this approach because, in the case of a one-sample test 
and unsigned statistics (e.g., R2, F-stat), the traditional sign-flip 
method produces unreliable estimates of statistical significance. 
Instead, the nonparametric combination measures convergence of 
significance across participants, thus revealing brain regions en-
coding changes in affect in each group and modality. The group-
level significance was then adjusted for the number of comparisons 
using the cluster-based method (cluster-determining threshold: 
P valueCDT  <  0.001 uncorrected) and the family-wise correction 
(FWC) suggested by Nichols and Holmes (97) (P valueFWC < 0.05).

fMRI experiment—Univariate contrasts and 
conjunction analyses
To study whether sensory experience and stimulus modality exert 
an effect on the mapping of affective states in the brain, we have 
conducted four univariate unpaired t tests on voxel-wise encoding 
R2 values and four conjunction analyses on binary maps of signifi-
cance. Two univariate tests compared the congenitally blind and 
deaf participants with their matching groups of typically developed 
individuals listening to or watching the movie (i.e., equation a: 
E−A ≠ E+A; equation b: E−V ≠ E+V). A third test (i.e., equation c) 
was aimed at unveiling brain areas involved in the mapping of affect 
in both sensory-deprived groups but not in typically developed 
people, as a consequence of shared crossmodal reorganizations: 
(E−A + E−V) ≠ (E+A + E+V). Last, a fourth test (i.e., equation d) 
revealed the regions in which the representation of affect did not 
depend on the sensory experience but was specific to the sensory 
modality: (E−V + E+V) ≠ (E−A + E+A).

For each voxel and comparison, first, the unpermuted average 
group difference in the fitting of the emotion model was estimated 
using a pseudo-​t statistic. Then, we randomly permuted 2000 times 
participants’ identities and computed the pseudo-​t under the null 
hypothesis of no group differences. The uncorrected P values were 
determined by the position of the unpermuted pseudo-​t in the null 

 (Continued)

Sex Age Group Cause of sensory 
deprivation

Average absolute 
head movement 

between runs (mm)

Sub-044 M 24 E−V Hereditary 0.2717

Sub-045 F 21 E−V Hereditary 1.0623

Sub-046 M 24 E−V Hereditary 0.7904

Sub-047 M 26 E−V Hereditary 1.2151

Sub-048 M 22 E−V Hereditary 0.4575

Sub-049 F 18 E−V Hereditary 0.3076

Sub-050 F 28 E−V Sensorineural hearing 
loss

1.0553

Sub-051 F 32 E−V Hereditary 1.0574

Sub-052 F 22 E−V Hereditary 0.2204
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distribution, and a cluster-based correction was applied to account 
for the number of comparisons (P valueCDT < 0.001, P valueFWC < 0.05) 
(96). As far as conjunction analyses are concerned, the first mea-
sured the intersection between the five binary maps of group-level 
significance obtained from the voxel-wise encoding procedure (i.e., 
equation e: E+M ∩ E+A ∩ E+V ∩ E−A ∩ E−V). This conjunction 
revealed brain areas (if any) mapping affect regardless of the sen-
sory modality and experience, namely, a supramodal representa-
tion of emotion. A second and third conjunction analyses assessed 
the overlap between the typically developed and the sensory-
deprived groups within modality (i.e., equation f: E+A ∩ E−A; 
equation g: E+V ∩ E−V). Last, a fourth conjunction determined the 
spatial correspondence between voxels encoding affect across mo-
dalities in typically developed people (i.e., equation h: E+A ∩ E+V).

fMRI experiment—Classification of participants’ sensory 
experience and stimulus modality from brain regions 
encoding the emotion model
We conducted a multivoxel classification analysis to test whether 
brain regions represent emotion with a distinctive pattern that is 
informed by the stimulus modality and/or by the participant’s sen-
sory experience. First, we selected all brain areas significantly en-
coding the emotion model in at least two groups. This brain mask 
was used exclusively to identify task-related regions by filtering out 
voxels that did not carry any information about the emotion model. 
A five-class linear support vector machine (SVM; class labels: E+M, 
E+A, E+V, E−A, and E−V; soft margin parameter C = 1) was used to 
classify sensory experience and stimulus modality from the single-
participant R2 encoding maps. The classification was performed us-
ing a fivefold cross-validation procedure, and the features were 
standardized across participants (i.e., z score transformation). At 
each iteration, participants’ data were split into training (n = 40) and 
test (n = 10) sets, and a minimum redundancy maximum relevance 
(MRMR) algorithm was used to select the most informative 1000 
features (i.e., voxels) in the training set, thus reducing the risk of 
overfitting. Therefore, the feature selection did not depend on the 
strength of the R2 but on the informativeness of voxels. In other 
words, we asked the MRMR algorithm to identify, among task-
related voxels, the most informative 1000 features carrying informa-
tion about the sensory experience and stimulus modality based on 
the training set only. Also, we stratified the train-test splitting based 
on groups (E+M, E+A, E+V, E−A, and E−V). This ensured that—in 
each fold—features were selected in a training sample representative 
of the overall proportion of participants and not biased to favor one 
group. Because, in each fold, we had 40 observations in the training 
set and 10 in the test set, 80% of the data of each group was used to 
select the features and train the SVM algorithm, whereas the re-
maining 20% was used to test the classifier’s performance. The rea-
son for implementing the feature selection step at each iteration of 
the k-fold cross-validation was to measure the contribution of each 
voxel to the classification (i.e., the number of times each voxel was 
considered informative across the folds). The model parameters of 
the multiclass SVM classifier were estimated in the training set and 
then applied to the test set to predict the class identity of the left-out 
observations. The same procedure was repeated for all the folds, and 
a confusion matrix was built to report the matching between actual 
and predicted class labels. The global performance of the multiclass 
SVM was assessed using the weighted F1 score, which takes into ac-
count both precision and recall and is robust to class imbalance. The 

statistical significance of the classification was assessed by repeating 
the entire procedure (i.e., cross-validation, standardization, feature 
selection, estimation of model parameters in the training set, and 
prediction in the test set) on data for which the participants’ sensory 
experience and stimulus modality (i.e., class labels) were random-
ized 2000 times. We obtained P values relative to the global perform
ance of the classifier as well as to every single class.

fMRI experiment—Classification of emotion categories from 
patterns of brain activity encoding the emotion model
Because in the voxel-wise encoding analysis we focused on the fit-
ting of the full model, it could be argued that the brain regions 
significantly associated with the emotion model store the undiffer-
entiated experience of a categorical emotion rather than the specific 
experience of an emotion. To test whether this is the case, one can 
first obtain the coefficients for each column of the encoding model 
and then try to classify the emotional experience based on these ac-
tivity patterns. Thus, we computed the regression coefficients of the 
15 categorical predictors (i.e., emotions) for each participant and 
voxel encoding the emotion model in at least two groups (depend-
ing on the group-level significance of the nonparametric combina-
tion). This initial feature selection does not constitute double-dipping 
as high (and significant) R2 values can be obtained even when the 
fitting of single columns is purely idiosyncratic, both considering 
single-column goodness of fit and the sign of coefficients. The spe-
cific aim of this analysis was to verify whether the experience of dis-
tinct emotions was associated with response patterns reproducible 
across individuals and conditions. For each participant (n = 50) and 
emotion (n = 15), the pattern of activity was normalized through z 
score transformation (i.e., subtracting the pattern mean from each 
voxel and dividing the resulting value by the pattern SD). Each of 
the 750 normalized patterns of brain activity represented an obser-
vation measured across a number of voxels (i.e., features) and were 
fed into a 15-class SVM classifier (soft margin parameter C  =  1; 
classes: amusement, joy, pleasure, contentment, love, admiration, 
relief, compassion, sadness, disappointment, fear, disgust, contempt, 
hate, and anger; ~6.7% chance level). Cross-validation was per-
formed by selecting all observations of one group and condition as 
the test set (e.g., E+M; 150 observations: 10 participants × 15 emo-
tions), and the remaining for training the algorithm (e.g., E+A, E+V, 
E−A, E−V; 600 observations: 40 participants × 15 emotions). As a 
further normalization step, we computed z scores within each fea-
ture (and across observations) in the training set and then applied 
this transformation to the test set. This is to avoid data leakage due 
to premature featurization. The entire procedure was iterated five 
times by leaving out each group and condition, as in a cross-
decoding approach. In every fold, we measured how many times 
each emotion was correctly classified (or cross-decoded) based on 
the encoding pattern in the left-out group and calculated the overall 
and single-class weighted F1 score from the confusion matrix ag-
gregated between folds. The significance of the overall and the 
single-class classification performance metrics was assessed by per-
muting the 15 emotion labels within each participant and replicat-
ing the entire procedure 2000 times.

fMRI experiment—Comparing the fitting of the categorical 
and dimensional encoding models
As described previously, starting from categorical ratings of emo-
tion, one can obtain affective dimensions by PC analysis. If used as 
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predictors of brain activity in a voxel-wise encoding, these dimen-
sions can reveal regions mapping the pleasantness of the experience 
(i.e., valence), the level of physiological activation (i.e., arousal), or 
the sense of having the ability to affect the environment (i.e., domi-
nance). Typically, though, only some of the PCs carry meaningful 
information. Component selection is thus crucial and even more if, 
as in our case, a direct comparison between the overall fitting (i.e., 
coefficient of determination) of two alternative models generated 
from the same data is envisioned. If all components are retained, 
then the R2 is necessarily identical between the two models. Thus, to 
test whether and where in the brain the representation of affect is 
better explained by a categorical rather than a dimensional account, 
we started with determining which PCs should enter the encoding 
analysis. To accomplish this task, we followed what was prescribed 
by Wachter (98). We opted for this method as it is more objective in 
establishing the optimal number of components than other ap-
proaches, such as the scree plot or the variance-explained threshold. 
This is because the Wachter method estimates if a singular value λ is 
sufficiently large for its corresponding PC to be retained. More pre-
cisely, it gauges deviations from the identity line in a QQ plot of the 
observed λ versus the quantiles obtained from the inverse cumula-
tive density function of the Marčenko-Pastur distribution. Substan-
tial deviations, determined by –log[p(observed)/p(expected)] > 0.5, 
signal an excess of variance explained by the component that is not 
expected from random variables alone. In our data, the procedure 
for establishing the optimal number of affective dimensions was 
performed independently in each modality, but it led to the same 
number of components (i.e., 4) in all tested conditions. Next, we 
conducted a voxel-wise direct comparison between the adjusted co-
efficients of determination (adjR2) obtained from the original cate-
gorical model with 15 predictors (i.e., emotions) and those of a 
dimensional model with 4 predictors (i.e., affective dimensions). We 
opted for the adjR2 as it penalizes the variance explained based on the 
number of predictors in the encoding matrix, thus allowing the un-
biased comparison of models having a different number of columns. 
Voxel-wise differences between the adjR2 of the categorical and di-
mensional models were assessed at group level with a paired t test 
(separately for E+M, E+A, E+V, E−A, and E−V). Statistical signifi-
cance was established by permuting 10,000 times the fitting model 
labels within participants (i.e., shuffling the columns within each row 
to maintain participants’ identity) and a cluster-based correction 
was applied to account for the number of tests (P valueCDT < 0.001, 
P valueFWC < 0.05).

fMRI experiment—Cross-decoding of valence from the 
activity of brain regions encoding the emotion model
To characterize the information content of brain regions involved in 
the representation of emotion, we used a cross-decoding approach 
and predicted ratings of hedonic valence from the brain activity of 
sensory-deprived and typically developed participants. Briefly, we 
selected brain areas significantly encoding the emotion model in at 
least two groups (as in the multivoxel pattern analysis) and used 
their activity in a L2 penalized regression (i.e., ridge regression; op-
timization method: stochastic gradient descent) to explain average 
valence ratings obtained from independent participants. The asso-
ciation between brain activity and valence was estimated with fMRI 
and behavioral data acquired under the same condition (i.e., stimu-
lus modality) and in people with a specific sensory experience and 
then tested in all other groups and conditions. Hyperparameters for 

regularization were determined using a leave-one-out cross-
validation procedure. Specifically, we left out the fMRI data of one 
participant (e.g., an E−A observation; validation set) and averaged 
data collected under the same condition and from all other partici-
pants with the same sensory experience (e.g., all other E−A observa-
tions; training set). Ridge regression coefficients were estimated for 
penalization factors in the range 1 × 10−3 < λ < 1 × 102 (1000 loga-
rithmically spaced values) and then applied to the left-out observa-
tion. The mean squared prediction error (MSE) of valence scores 
was obtained for each penalization factor and left-out fMRI partici-
pant, and the optimal λ was established by minimizing the average 
MSE. Ridge regression coefficients relative to the optimal cross-
validated penalization factor were then obtained in the complete 
training group (e.g., all E−A observations) and applied to all other 
groups (i.e., test sets) to cross-decode valence ratings. For instance, 
the optimal ridge coefficients for the prediction of auditory-only va-
lence scores from the brain activity of congenitally blind individuals 
were obtained and then used to predict multisensory valence scores 
from the brain data of typically developed individuals listening to 
and watching the original version of the movie. The prediction was 
tested at the single-participant level, and the statistical significance 
was assessed through time point shuffling of valence ratings 
(n = 2000 iterations), which led to permutation-based estimates of 
the prediction error (i.e., MSE) under the null hypothesis. Single-
participant results were then aggregated at the group level using the 
nonparametric combination approach (86) (Fisher method). The 
entire procedure was repeated for all groups and conditions.

Supplementary Materials
This PDF file includes:
Figs. S1 to S5
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