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Abstract

A major result of the Effective String Theory (EST) description of confinement is the so
called ”low energy universality,” which states that the first few terms of the large distance
expansion of any EST are universal and coincide with those of the Nambu-Goto action. Go-
ing beyond this approximation is one of the most interesting open problems in the EST. In
the higher order terms beyond Nambu-Goto several important pieces of physical information
are encoded, which could improve our understanding of the physical mechanisms behind con-
finement and of the physical degrees of freedoms which originate the EST. In this paper we
evaluate numerically the first two of these corrections in the case of the three dimensional
gauge Ising model. The first of them turns out to be negative: γ3 = −0.00048(4), similar (but
not equal) to the one recently measured in the SU(2) Yang Mills theory in three dimensions
and compatible with the bootstrap bound γ3 ≥ − 1
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1 Introduction

One of the most promising approaches to understand and model the non-perturbative behaviour
of confining Yang-Mills theories is the ”Effective String Theory” (EST) description in which
the confining flux tube joining together a quark-antiquark pair is modeled as a thin vibrating
string [1, 2, 3, 4, 5] .

Recently, there has been a lot of progress in this context. In particular it has been realized
that the EST enjoys the so called ”low energy universality” [6, 7, 8, 9, 10, 11, 12, 13] which states
that, due to the peculiar features of the string action and to the symmetry constraints imposed
by the Poincaré invariance in the target space, the first few terms of its large distance expansion
are fixed and are thus universal. This implies that the EST is much more predictive than typical
effective models and in fact its predictions have been be successfully compared in the past few
years with lot of results on the interquark potential from Monte Carlo simulations in Lattice
Gauge Theories (LGTs) (for recent reviews see for instance [13, 14, 15]).

At the same time it was recently realized that the simplest, Lorentz invariant, EST which
is the well known Nambu-Goto model [1, 2] is an exactly integrable, irrelevant, perturbation
of the bidimensional free Gaussian model [10], driven by the T T̄ operator of the D − 2 free
bosons1 [16] which represent the transverse degree of freedom of the string. This observation
stimulated lot of interesting results even beyond the original application to Yang-Mills theories
[17, 18, 19, 20, 21, 22, 23, 24]. In particular they are at the basis of a S-matrix bootstrap approach
which can be used to constrain the EST action even beyond the Nambu-Goto approximation
[25, 26].

Indeed, it is by now clear that the Nambu-Goto action should be considered only as a first
order approximation of the actual EST describing the non-perturbative behavior of the Yang-
Mills theories. Going beyond this approximation is one of the most interesting open problems in
this context. In the higher order terms beyond Nambu-Goto several important pieces of physical
information are encoded. Their study could be of great importance to understand the physical
mechanisms behind confinement or the physical degrees of freedoms which originate the EST.

In particular, it is only by looking at these higher order terms that one may hope to find
signatures, in the confining string, of the gauge group of the underlying LGT. For this reason
there is an increasing interest in exploring these corrections in different LGTs [27]. In this respect
the three dimensional gauge Ising model that we shall study in this paper is a perfect laboratory
to address this issue because, thanks to the duality transformation with the the 3d Ising model,
one can use innovative, powerful, algorithms to estimate these corrections. Moreover, its gauge
symmetry is very different from standard SU(N) gauge groups and allows to test, for instance,
which is the effect of the discrete vs continuous gauge symmetries on the confining string. A final
important reason is that the scaling function of the string tension, which will play a central role
in the following, is known (thanks again to duality) with very high precision.

Due to the low energy universality these corrections appear at a very high order in the large
distance expansion and their evaluation is a delicate task. One must reach very precise estimates

1We shall denote in the following with D the number of spacetime dimensions of the target LGT and with
d ≡ D − 1 the number of spacelike directions.
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of the ground state energy of the string for a wide range of distances and, possibly, for a few
different values of β to test the correct scaling behaviour. For these reasons we decided to evaluate
them with two different approaches, using different algorithms (hierarchical Metropolis in one case
and Swendsen-Wang in the other) choosing different observables (the ground state energy of the
string in one case and its width in the other) and looking for an overall agreement of the final
results between the two methods.

We were able to detect the first two corrections beyond Nambu-Goto which are described,
as we shall see below, by the two parameters γ3 and γ5 [25]. The value of γ3 = −0.00048(4)
agrees with the S-matrix bound found in [25] and is similar, but slightly more negative than the
value γ3|SU(2) = −0.00037(6) found in [27] for the SU(2) LGT in (2+1) dimensions. The second
correction is very small γ5 = 3.0(4) × 10−7 but not compatible with zero and its inclusion in
the fit turned out to be mandatory to reach reasonable values of the reduced χ2. These values
represent the first step toward a systematic study of γ3 in LGTs

This paper is organized as follows. In the second section we shall define the problem and set
the notations, then in the third section we shall recall a few basic results of the Effective String
Theory of confinement. In the fourth section we shall present the 3d gauge Ising model and
discuss its properties. Then, in sections five and six, we shall discuss the two approaches that
we used to evaluate γ3 and γ5 and present the main steps of the data analysis. Finally the last
section is devoted to a summary of the results and a few concluding remarks.

2 General setting and notations

In the following we shall be mainly interested in finite temperature LGTs, which can be realized by
imposing periodic boundary conditions in the time direction for the bosonic field (and antiperiodic
for fermionic ones). In a finite temperature setting the compactified ”time” direction does not
have any longer the meaning of time (recall that we are describing a system at equilibrium in the
canonical ensemble) but its size Nt is instead a measure of the inverse temperature of the system.
Thus a lattice of size Nsa in the spatial directions and Nta in the timelike direction represents the
regularized version of a system of finite volume V = (Nsa)

d at a finite temperature T = 1/(Nta).
In the following we shall set the lattice spacing to a = 1, and systematically neglect it.

In a finite temperature setting one can define a new class of topologically non-trivial observ-
ables which are gauge invariant thanks to the periodic boundary conditions in the time direction:
the Polyakov loops. If we define the link dynamical variables of the gauge model as Uµ(x⃗, z)
(where µ denotes the direction of the link and (x⃗, z) its coordinates in the the lattice), we may
define the Polyakov loop P (x⃗) as follows:

P (x⃗) = Tr

Nt∏
z=1

Ut(x⃗, z) . (1)

In a pure LGT the Polyakov loop acquires a non-zero expectation value in the deconfined
phase and is thus an order parameter of the finite temperature deconfinement transition.
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The value βc(Nt) of this deconfinement transition in a lattice of size Nt = 1/T can be used
to define a new physical observable Tc which is obtained by inverting βc(Nt). We obtain in this
way, for each value of β, the lattice size in the time direction (which we shall call in the following
Nt,c(β)) at which the model undergoes the deconfinement transition and from this the critical
temperature Tc(β) ≡ 1/Nt,c(β) as a function of β. We shall use this quantity to set the scale of
our simulations.

In the following we shall be mainly interested in correlators of Polyakov loops:

G(R,Nt) ≡ ⟨P (x)P †(x+R)⟩Nt , (2)

where R is the distance between the two Polyakov loops and the subscript Nt in the expectation
value reminds that the correlator was evaluated on a lattice at temperature T = 1/Nt. G(R,Nt)
can be used to define a finite temperature version of the interquark potential:

V (R, T ) = − 1

Nt
log ⟨P (x)P †(x+R)⟩Nt . (3)

In the confining phase we expect, for large values of R, a linearly rising behaviour for V (R,Nt),
which implies the following behaviour for the correlator:

⟨P (x)P †(x+R)⟩Nt ∼ e−E0(T )NtR . (4)

From eq.(4) we may extract the ground state energy E0(T ) of the confining flux tube joining
the quark-antiquark pair. E0(T ) depends on the temperature of the model and vanishes at the
deconfinement transition. The finite temperature behaviour of E0(T ) will play a major role in the
rest of the paper. It is interesting to notice that the observable (2) has the topology of a cylinder
whose circumference is fixed by the (inverse) temperature Nt and the length by the interquark
distance R.

3 Effective String Theory

3.1 The Nambu-Goto action

The behaviour of the flux tube in a confining LGT is well described by the Effective String Theory
which models the flux tube as a thin vibrating string and allows to evaluate the contribution to
the Polyakov loop correlator of the quantum fluctuations of this flux tube.

The simplest possible EST fulfilling the constraints imposed by the Lorentz invariance in the
target space is the Nambu-Goto action [1, 2] defined as follows:

SNG = σ0

∫
Σ
d2ξ

√
g , (5)

where g ≡ det gαβ and

gαβ = ∂αXµ ∂βX
µ (6)
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is the metric induced on the reference world-sheet surface Σ by the mapping Xµ(ξ) of the
world sheet in the target space, and ξ ≡ (ξ0, ξ1) denote the worldsheet coordinates. This term
has a simple geometric interpretation: it measures the area of the surface spanned by the string
in the target space and has only one free parameter2: the string tension σ0.

In order to perform calculations with the Nambu-Goto action one has first to fix its reparametriza-
tion invariance. The standard choice is the so called “physical gauge”. In this gauge the two world-
sheet coordinates are identified with the longitudinal degrees of freedom of the string: ξ0 = X0,
ξ1 = X1, so that the string action can be expressed as a function only of the (D − 2) degrees
of freedom corresponding to the transverse displacements, Xi, with i = 2, . . . , (D − 1) which are
assumed to be single-valued functions of the worldsheet coordinates. We shall comment below
on the problems of this gauge fixing choice.

With this gauge choice the determinant of the metric can be written as

g = 1 + ∂0Xi∂0X
i + ∂1Xi∂1X

i

+∂0Xi∂0X
i∂1Xj∂1X

j − (∂0Xi∂1X
i)2 (7)

and the Nambu-Goto action can then be written as a low-energy expansion in the number of
derivatives of the transverse degrees of freedom of the string which, by a suitable redefinition of
the fields, can be rephrased as a large distance expansion.

S = Scl +
σ0
2

∫
d2ξ

[
∂αXi · ∂αXi + · · ·

]
. (8)

The first term of this expansion is exactly the gaussian action, i.e. a two dimensional Confor-
mal Field Theory (CFT) of D − 2 free bosons which represent the transverse degrees of freedom
of the string, and the remaining terms combine themselves so as to give an exactly integrable,
irrelevant perturbation of this CFT [10], driven by the T T̄ operator of the D− 2 free bosons [16].

Thanks to this exact integrability, the partition function of the model can be written explicitely
[7, 28]. For the Polyakov loop correlator in which we are interested here 3, the expression in D
space-time dimensions is, using the notations of [7, 28]:

⟨P (x)P †(x+R)⟩Nt = σ
4−D
2

0

Nt

π

∞∑
n=0

wn

(
En

2R

) 1
2
(D−3)

K 1
2
(D−3)(EnR) (9)

where K 1
2
(D−3) is the modified Bessel function of order D−3

2 , R denotes, as above, the distance

between the two Polyakov loops, Nt the size of the lattice in the compactified direction, wn is the
multiplicity of the closed string states which propagate from one Polyakov loop to the other, and
En their energies:

En = σ0Nt

√
1 +

8π

σ0N2
t

[
− 1

24
(D − 2) + n

]
. (10)

2We shall denote in the following the string tension with the index 0 to avoid confusion with the spin variables
of the Ising model.

3Similar expressions can be obtained also for the other relevant geometries: the Wilson loop [29] and the interface
[30]
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At large distances the correlator is dominated by the lowest state

E0 = σ0Nt

√
1− π(D − 2)

3σ0N2
t

(11)

whose multiplicity is w0 = 1 and the Polyakov loop correlator, neglecting irrelevant constants,
reduces to

⟨P (x)P †(x+R)⟩Nt ∼ σ
4−D
2

0 Nt

(
E0

R

) 1
2
(D−3)

K 1
2
(D−3)(E0R) (12)

which, in the D = 3 case in which we are interested simplifies to

⟨P (x)P †(x+R)⟩Nt ∼ Nt
√
σ0K0(E0R) (13)

with

E0 = σ0Nt

√
1− π

3σ0N2
t

(14)

Thanks to the exponential term in the asymptotic expansion of the Bessel function,

K0(z) =

√
π

2z
e−z

[
1− 1

8z
+

9

128z2
+O(z−3)

]
(15)

we find at large distance, as expected, a linearly rising behaviour of the interquark potential
controlled by the ground state energy E0. On top of this we have a set of subleading corrections,
encoded in the asymptotic expansion of K0, which represent a specific, unique, signature of the
Nambu-Goto action and must be taken into account when fitting the results of Monte Carlo
simulations.

An important side consequence of this result is that we can extract from the tachyonic singu-
larity of E0 an estimate for the critical temperature Tc,NG measured in units of the square root
of the string tension

√
σ0 [31, 32] which is, for generic values of D,

Tc,NG√
σ0

=

√
3

π(D − 2)
(16)

and corresponds to the value of the ratio
Tc,NG√

σ0
for which the ground state energy E0 vanishes.

Using this result we can rewrite the ground state energy as

E0(T )|NG =
σ0
T

√
1− T 2

T 2
c,NG

(17)

where we use the notation |NG to stress the fact that this is only the Nambu-Goto estimate for
the ground state energy of the string, which we may expect to be modified by other terms in the
EST action.
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The estimate quoted above for the critical temperature turns out to be in remarkable (but not
exact!) agreement with the results obtained from Monte Carlo simulations, both for non-abelian
LGTs and for the three dimensional gauge Ising model. However, the remaining small deviations
of Tc,NG from the Monte Carlo results, together with the fact that the Nambu-Goto EST predicts
(as can be seen looking at eq.(17)) a deconfinement transition of the second order, with a mean
field value for the critical index (which is in disagreement with the Monte Carlo results for all
known LGTs) suggest that the Nambu-Goto action cannot be the end of the story and that some
correcting terms beyond Nambu-Goto should be present in the EST.

3.2 Beyond Nambu-Goto

It is by now clear that in the actual EST of the confining string the Nambu-Goto action is only
the first term of an infinite series of contributions. Indeed, there are several reasons why the
Nambu-Goto action is unsatisfactory and must be completed with some higher order correction.
Besides the above mentioned disagreement at the deconfinement transition, a major problem of
the Nambu Goto action is that it is, so to speak, too universal. It predicts the same behaviour for
all LGTs, with no dependence on the gauge group. Moreover, it is well known that the physical
gauge fixing discussed above is anomalous and it is widely expected that this anomaly could be
cured by higher order terms in the EST action.

The requirement of Poincarè invariance in the target space strongly constrains the terms
which can be included in the EST beyond Nambu Goto [6, 7, 8, 9, 10, 11, 12, 13]. In D = 3 the
first few allowed terms can be written as follows:

SEST =

∫
Σ
d2ξ

√
g

[
σ0 + γ1R+ γ2K

2 + γ3K
4 . . .

]
(18)

where the γi are new coupling constants, R denotes the Ricci scalar constructed from the induced
metric, and K is the extrinsic curvature, defined as K = ∆(g)X, with

∆(g) =
1√
(g)

∂a[
√

(g)gab∂b] (19)

the Laplacian in the space with metric gαβ. In principle the new coupling constants γi, should be
fixed, as we do for σ0, by comparing with experiments (or more likely, with computer simulations).

However this process is simplified by the observation that K2 vanishes on shell and that the
term proportional to R is a topological invariant in two dimensions. Since in the long-string
limit in which we are interested one does not expect topology-changing fluctuations, both these
terms can be neglected and the first non-trivial contribution appears only at higher orders [13].
This result is known as ”low energy universality” [10] and strongly constrains the form of the
EST. It implies that the first correction beyond the Nambu-Goto action can only appear at the
order 1/R7 (or 1/N7

t in the finite temperature setting in which we are interested in this paper).
This explains why the Nambu-Goto model has been so successfull over these last forty years to
describe the infrared behaviour of confining gauge theories despite its simplicity and why the
deconfinement temperature predicted by Nambu-Goto is so close to the one obtained in Monte
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Carlo simulations. At the same time this explains why identifying these corrections is so difficult
and only in the last few years it was possible to unambiguously detect them in Monte Carlo
simulations [27, 33, 19, 34, 35]

The first non vanishing term γ3K
4 is only the first of an infinite sequence of terms, obtained

combining higher order curvature invariants. It turns out that the best way to organize these
terms is to study the 2 → 2 scattering amplitude of the string excitations [10]. It can be shown
that in D = 3 this S-matrix S = e2iδ can be written in a particularly simple and elegant form:

2δ(s) =
s

4
+ γ3s

3 + γ5s
5 + γ7s

7 + iγ8s
8 +O(s9) , (20)

where the the first term s/4 leads to the energy spectrum of the Nambu-Goto action, the fact that
the term proportional to s2 is missing is the way in which the low energy universality is realized
in this S-matrix approach and the next non trivial term is exactly the S-matrix description of the
K4 correction mentioned above.

By using the analiticity properties of this S-matrix and requiring the UV completion of the
underlying theory it is possible to obtain a set of important results on the ground state energy
of the string[10, 25].

• γ8 is not a new independent parameter but it is proportional to γ23

• both the 1/N7
t and the 1/N9

t terms are controlled only by γ3 and the next independent
parameter γ5 only appears at the order 1/N11

t

• It is possible to set bounds on these parameters. In particular, defining

γ̃n=γn + (−1)(n+1)/2 1

n23n−1

one finds [25]

γ̃3 ≥ 0

γ̃5 ≥ 4γ̃23 −
1

64
γ̃3 (21)

γ̃7 ≥ γ̃25
γ̃3

+
1

4096
γ̃3 +

1

64
γ̃5 −

1

16
γ̃23

which implies in particular

γ3 ≥ − 1

768
. (22)

From the S-matrix, by using the so called Thermodynamic Bethe Ansatz one can obtain [25]
the following expression for the non universal corrections up to the order 1/N11

t

E0(Nt) = σ0Nt

√
1− π

3σ0N2
t

− 32π6γ3
225σ3

0N
7
t

− 64π7γ3
675σ4

0N
9
t

−
2π8γ3
45 + 32768π10γ5

3969

σ5
0N

11
t

(23)

This is the expression which we shall compare with the results of our simulations.
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3.3 The boundary corrections problem and how to deal with it.

It is clear from the previous section that measuring the γi coeffcients on the lattice is a highly
non-trivial task. In particular it is essentially impossible in the standard ”zero temperature”
scenario, in which the contribution of the effective string to the interquark potential manifests
itself as an expansion in powers of 1/R and the corrections in which we are interested, which
appear in this expansion at the order 1/R7, are shadowed by the boundary corrections which are
proportional to 1/R4 [36, 11, 37, 38, 39].

There are in principle two ways to avoid this problem.

• The first is to study observables without boundaries. This can be done for abelian gauge
models using duality and looking at the finite size effects of the interface free energy (choos-
ing interfaces with periodic boundary conditions) [40, 41] . In the case of the Ising model this
approach was recently discussed in [42] where it was shown that corrections beyond Nambu-
Goto certainly exist in the gauge Ising model and are rather large. However it turned out
to be difficult to quantify these corrections, most probably due to the interactions between
nearby interfaces4.

• The second is to study the model in the finite temperature regime (just below the deconfine-
ment transition) in the limit of very large separation of the two Polyakov loops (R >> Nt).
It can be shown that in this regime the boundary corrections become subleading and can be
neglected [43, 15]. Moreover, this is exactly the limit discussed in the previous section, in
which the results obtained with the S-matrix approach and TBA hold. Thus, by choosing
this geometry in our simulations we shall be able to make immediate contact with eq. (23),
with no interference from the boundary terms and extract from the data reliable estimates
for the γi coefficents. This was the approach recently used to study these corrections in the
SU(2) gauge model in three dimensions in [27].

Once the geometry of the observables in which we are intersted is fixed, the remaining task is
to obtain estimates for these observables precise enough to detect and quantify the tiny corrections
in which we are interested. In this geometry this requires studying the system at large interquark
distances and standard algorithms are affected by an exponentially decreasing signal to noise
ratio in this limit. The main advantage of studying abelian models is that, thanks to duality, it
is possible to avoid this limitation and to study (using for instance non-local cluster algorithms
as in [44] or the so called ”snake algorithm” [45]) Polyakov loops correlators at any interquark
distance R with the same signal to noise ratio. This is the main reason behind the choice of the
Ising model as a laboratory to study the EST.

There is indeed a long track record of applications of this kind of methods to the 3d gauge Ising
model to study subtle features of EST. In particular, in [44, 46, 47, 48] which may be considered

4The way in which these interfaces are generated in the (dual) gauge Ising model is by fixing antiperiodic
boundary conditions in the transverse direction. This procedure generates an odd number of interfaces. This
ensamble is usually studied assuming that they are far apart and do not interact, but when looking at very
asymmetric geometries (which are needed in order to detect higher order corrections) the width of these interfaces
grows linearly and negelecting interactions is most likely a too strong approximation.
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as precursors of the present work, the 1/R3 correction to the interquark potential was precisely
measured for the first time and shown to be exactly the one predicted by the Nambu-Goto action
(in agreemeent with the low energy universality). Later the same approach was adopted for the 3d
U(1) model in [49] and allowed to unambiguously detect corrections to the Nambu-Goto actions
as the continuum limit was approached.

We shall discuss in sect.5 below the result of a study performed with the same snake algorithm
used in [46, 47]. This algorithm allowed us to obtain a first estimate of γ3 which however turned
out to be affected by a rather large statistical uncertainty. In order to improve this uncertainty
and to test the robustness of the result we decided to evaluate the same quantity with a completely
different method, which was proposed a few years ago in [50] and that we describe in detail in
sect.6.

This second estimate agrees within the errors with the previous one, is more precise and allows
to quantify with rather good precision even the next to leading correction γ5.

The agreement between the two estimates strongly supports the reliability of our analysis.
In the following sections we shall first describe the main fetaures of the 3d gauge Ising model

and then discuss the two approaches that we used to evaluate the γi coefficients.

4 The 3d Gauge Ising Model

The three dimensional Gauge Ising Model (also known as ZZ2 gauge model) was proposed over
fifty years ago by Wegner [51] as a tool for understanding the properties of lattice models with
gauge symmetries. This model exhibits a local ZZ2 symmetry, which is realized by the choice of
σl ∈ {1,−1} as the dynamical ZZ2 link variables. The plaquette action, derived from the familiar
Wilson action, is tailored specifically for the case of ZZ2 link variables and can be defined as
follows:

Zgauge(β) =
∑

{σl=±1}

exp (−βSZ2) . (24)

The action SZ2 is a sum over all the plaquettes of a cubic lattice,

SZ2 = −
∑
2

σ2 , σ2 = σl1σl2σl3σl4 . (25)

Despite its apparent simplicity the 3d Gauge Ising Model shares with more complex LGTs
several important properties. It is charaterized by a confining string with a non-trivial spectrum
of string excitations [52, 53] and has a glueball spectrum very similar to the one of more complex
3d LGTs [54] . For these reasons it is a perfect laboratory to test, with high precision, non trivial
properties of the confining strings in LGTs.

This model is known to have a bulk (i.e. at zero temperature) deconfinement transition at
βc = 0.76141330(6) (this value is obtained via duality from the critical temperature of the 3d
Ising model quoted in [55], see below). For values of the coupling β < βc the model is in the
confining phase, while for β > βc it is deconfined. The transition at β = βc is of second order and,
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due to the duality relation (see below), it belongs to the same universality class of the standard
magnetization transition of the 3d Ising model. This model also possesses an (infinite-order)
“roughening transition” at βr = 0.47542(1) [56] (in the confined phase), which separates the
strong coupling regime (for β < βr) from the so-called “rough phase” (for βr < β < βc).

In the following we shall be interested in the behaviour of the model in the confining phase, in
the scaling region near the critical point. In particular we shall study the model at three different
values of the coupling constant β (see tab.1), for which the (finite) deconfinement temperature
is known with high precision [57] so as to be able to precisely set the scale for the distances
between Polyakov loops and for the lattice size in the time direction (i.e. the inverse of the finite
temperature of the model). These values are all located in the rough phase and close enough to
βc so as to be within the scaling region.

The major reason of interest of this model is that it is related to the ordinary three dimensional
Ising spin model by an exact duality mapping à la Kramers and Wannier (see [58] for a general
review on duality transformations):

Zgauge(β) ∝ Zspin(β̃) , with: β̃ = −1
2 log [tanh(β)] (26)

where the Ising spin model is defined by the usual action:

Zspin =
∑
{si}

exp

β̃
∑
⟨i,j⟩

sisj

 (27)

where, as usual, the si ∈ {1,−1} are ZZ2 spin variables, the i and j indices denote the sites of the
dual lattice, the notation

∑
⟨i,j⟩ means that spin variables interact with their nearest-neighbours

only and
∑

{si} denotes the sum over spin configurations.
The critical temperature of the model is known with remarkable precision βc = 0.22165462(2)

[55], moreover thanks to the recent advances in the bootstrap approach [59, 60] also the critical
indices of the two relevant operators, the magnetization M and the energy ϵ, are known with
high precision: ∆M = 0.5181489(10) and ∆ϵ = 1.412625(10) respectively [59, 60]. From ∆ϵ we
can extract the critical index ν = 1

3−∆ϵ
= 0.6299708.... Thanks to duality this is the same critical

index which drives the critical behaviour of the string tension in the 3d gauge Ising model. More
precisely σ(β) ∼ σc(βc−β)2ν . We shall further discuss the scaling behaviour of the string tension
in the appendix.

The main reason of interest of this mapping is that a similar construction can be performed
also in presence of external source terms for the gauge model (for instance, a pair of Polyakov
loops). This can be easily realized by introducing sets of topological defects in the spin system.
As a result, it is possible to show [46] that, for instance, the Polyakov loop correlator in which we
are interested is mapped into the partition function of the spin system with anti-ferromagnetic
coupling on a well defined set of links:

G(r) ≡ ⟨P (x)P †(x+R)⟩Nt =
Zspin,QQ̄(R,Nt)

Zspin

(28)
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with:

Zspin,QQ̄(R,Nt) =
∑
{si}

exp

β̃
∑
⟨i,j⟩

J⟨i,j⟩sisj

 (29)

where the value of the J⟨i,j⟩ coupling is +1 everywhere, except on a set of bonds, which pierce
a surface (in the direct lattice) having the source worldlines as its boundary: for such a set of
bonds, J⟨i,j⟩ = −1.

Similar mappings can be constructed essentially for any observable of interest in the gauge
model, from Wilson loops to glueball correlators5.

Both the numerical algorithms that we shall use in the following exploit this duality of the
model, simulating the Ising spin system, and measuring (the first algorithm) ratios of partition
functions associated with different stacks of defects (which we shall use to express the expectation
values of Polyakov loops pairs in the original gauge model) or expectation values of spins in
presence of the defect surface (the second algorithm).

A particularly useful advantage of numerical simulations in the dual setting is the fact that
this method overcomes the problem of exponential signal-to-noise ratio decay, which is usually
found when studying the interquark potential V (r) at larger and larger distances.

Another important feature is that, thanks to duality, the valus of the Polyakov loop correlators
that we obtain in this way are not affected by corrections due to the periodic boundary conditions
in the spacelike directions. This greatly simplifies the study of these correlators (no additional
terms must be included in the fits to keep into account these corrections) and allow to study the
system for (relatively) small lattice size in the spacelike directions.

We perfomed simulations for the three values of β quoted in tab.1: β = 0.751800, 0.756427, 0.758266
which were chosen because for these values the deconfinement temperature is known with very
high precision and coincides with 1/Tc = Lc = 8, 12, 16 respectively [57].

β β̃ Nt,c σ α

0.751800 0.226104 8 0.0105255(11) 0.4576(4)

0.756427 0.223951 12 0.0046384(26) 0.3887(3)

0.758266 0.223101 16 0.0026043(53) 0.3464(2)

Table 1: Some information on the three values of β, listed in the first column, which we chose
for the simulations. In the second column we report the corresponding values of β̃ for the (dual)
3d Ising model. In the last three colums columns we report respectively the (inverse of) the
deconfinement temperature, the string tension (taken from ref.[41]) and the value of α (see below
for the definition of α(β) and its evaluation from the scaling function of the model).

5For instance it can be shown in this way that the glueballs of the Ising gauge model are mapped into bound
states of the fundamental scalar in the spin model [61].
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5 Analysis with the snake algorithm

The first method that we used to estimate γ3 is the Ising implementation of the snake algorithm
[45] discussed in detail in [46]. The main feature of the algorithm is the hierarchical organiza-
tion of the updates. In our particular implementation we chose five sublattice levels with size
{6, 13, 17, 21, 24} lattice spacings respectively.

We studied the first two values of β reported in tab.1 corresponding to a deconfinement
temperature of Nt,c = 8 and Nt,c = 12 respectively. Details on the simulations are reported in
tab.2. For each β we studied seven values of Nt just above the critical value Nt,c (i.e. just below
the deconfinement temperature). Then for each value of Nt we simulated 8 different values of
R as reported in the table. The value of the lattice size in the space direction was chosen to be
ten times the value of Nt,c to avoid finite size effects (which in any case are strongly suppressed
thanks to the duality transformation). The values of R were chosen so as to make higher order
energy levels in eq.(9) negligible within the errors. Thus we could fit the R dependence of our
Polyakov loop correlators using eq.(13). From the snake algorithm we directly obtain the ratio of
two nearby correlators F (R,Nt) = G(R+1, Nt)/G(R,Nt) which we thus fitted with the following
expression:

F (R,Nt) =
K0(E0(Nt)(R+ 1))

K0(E0(Nt)R)
(30)

with E0(Nt) as the only free parameter of the fit. For all values of Nt we found good values
of the reduced χ2. We report in tab. 3, as an example of the results obtained with the snake
algorithm, the values obtained for the largest Polyakov loops correlators that we studied i.e. those
for β = 0.756427 and Nt = 24. As anticipated there is no increase in the signal to noise ratio as
R increases and we could estimate the ratio of the two Polyakov loop correlators with less than
1% error for areas as large as 24× 84 lattice spacings.

β Nt,c Nt R Ns

0.751800 8 9,10,11,12,14,16,18 8, 12, 16, 20, 24, 32, 40, 48 80

0.756427 12 13,14,15,16,18,20,24 18, 24, 30, 36, 48, 60, 72, 84 120

Table 2: Some information on the simulations.

We report in tab.4 and 5 the results of these fits.
These are the values that we compared with the expectation of eq.(23). We performed two

types of fit. In the first we kept as free parameters only σ0 and γ3. Accordingly we truncated the
square root of the Nambu-Goto action to the same order O(N9

t ) at which the γ3 terms appears.
Results of these fits are reported in tab.6 In the second we included also γ5 and, accordingly,
truncated the square root to the order O(N11

t ). Results of these fits are reported in tab.7.
A few observations on this result:

• In the first type of fits the values of σ0 that we obtain are definitely larger (more than three
standard deviations) than the expected ones. Accordingly, if we try to fit the data keeping
σ0 to the expected value we also found very large values of χ2. Moreover, the fact that the
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R G(R+1)
G(R)

18 0.8914(29)

24 0.8969(31)

30 0.9003(32)

36 0.9030(33)

48 0.9036(33)

60 0.9035(33)

72 0.9070(35)

84 0.9085(35)

Table 3: Results of the snake algorithm for β = 0.756427 and Nt = 24.

Nt E0 χ2
r

9 0.0226(11) 0.90

10 0.0419(10) 0.13

11 0.0587(9) 0.33

12 0.0776(9) 0.34

14 0.1058(9) 0.16

16 0.1337(10) 0.08

18 0.1596(10) 0.05

Table 4: Results of the fit with eq.(30) for β = 0.751800. In the last column the reduced χ2 of
the fits.

Nt E0 χ2
r

13 0.0099(10) 0.55

14 0.0200(10) 0.44

15 0.0263(10) 0.26

16 0.0370(11) 0.31

18 0.0494(10) 0.29

20 0.0641(12) 0.21

24 0.0906(12) 0.14

Table 5: Results of the fit with eq.(30) for β = 0.756427. In the last column the reduced χ2 of
the fits.

reduced χ2 is larger than 1 suggests that the inclusion of the next order term in the fits
could lead to non negligible corrections and in fact the values of γ5 in the fits truncated at
O(N11

t ) are different from zero within the errors. We also tried to fit the data truncating
the expansion at the order O(N7

t ) and keeping only the first correction proportional to γ3,
but we found values of σ0 even further away from the expected values.
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β σ0 γ3 χ2
r

0.751800 0.010671(30) -0.000357(13) 1.81

0.756427 0.004771(27) -0.000329(13) 1.62

Table 6: Results of the fits of E0(Nt) according to eq.(23) truncated at the order O(N9
t ) .

β σ0 γ3 γ5 χ2
r

0.751800 0.010629(35) -0.00061(11) 0.00000042(11) 1.00

0.756427 0.004740(34) -0.00051(13) 0.00000032(12) 1.53

Table 7: Results of the fits of E0(Nt) according to eq.(23) truncated at the order O(N11
t ) .

• Including the O(N11
t ) term in the fit the values of σ0 that we obtain move toward the

expected values and for both values of β are within two standard deviations from the values
reported in tab.16.

• Accordingly, in all these fits, if we force σ to the known values we always find unacceptably
high values of the χ2 which were associated to large deviations in the best fit values of γ3
and γ5.

• The values of γ3 and γ5 that we find for the two values of β are compatible with each other
within the errors.

Looking at the results we see that the estimates of γ3 and γ5 are affected by rather large
errors and are strongly influenced by the value of σ. This is due to the fact that the fit is
dominated by the Nambu-Goto part of the fitting function and in particular by the σNt term
and by the Lüscher correction. It seems difficult to improve the overall precision of the result
in the framework discussed in this section since the simulations (due to the peculiar structure of
the snake algorithm and the need to increase the size of the lattice in the inverse temperature
direction) become more and more expensive as β moves toward the continuum limit. For this
reasons we decided to approach the task following a different strategy which could partially
overcome these problems.

6 Using the mean flux density in presence of the Polyakov loops
to estimate the EST ground state energy.

To avoid the above problems we tried a completely different approach. Following [50] instead of
looking at the interquark potential, we studied the changes induced in the flux configuration by
the presence of the Polyakov loops. We shall show below that as a consequence of this choice the

6This trend suggests that including even the γ7 correction we could reach the correct values of σ0. We tried
to include also this correction in the fits, but the value of γ7 turned always to be compatible with zero within the
errors.
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explicit dependence on σ0 and on the Lüscher term vanish. This makes this observable an unique
tool to explore higher order corrections.

Another reason of interest of this approach is that it is deeply related to another important
issue of the effective string description of LGTs, i.e. the study of the flux tube thickness. It can
be shown that in the high temperature regime in which we are presently interested the width of
the flux tube increases linearly with the interquark distance and not logarithmicaly as one would
naively expect [62, 63, 64]. This linear increase is related to the linear increase in the flux energy
that we observe here. In both cases the slope is temperature dependent and contains information
on the higher order effective string corrections in which we are interested.

The lattice operator which measures the flux through a plaquette p in presence of two Polyakov
loops P , P ′ for a generic LGT is:

〈
ϕ(p;P, P ′)

〉
=

〈
PP ′† Up

〉
⟨PP ′†⟩

− ⟨Up⟩ (31)

where Up is the trace of the ordered product of the link variables along the plaquette and in our
case coincides with the product σ2 introduced above. This is the quantity which is typically used
to study the profile of the flux tube. In our analysis we are actually interested in a much simpler
observable, the mean flux density, i.e. the sum of ϕ(p;P, P ′) over all the positions and orientations
of the plaquettes, normalized to the number of plaquettes of the lattice. Due to translational
invariance this quantity will depend only on the distance R between the two Polyakov loops and
on the inverse temperature Nt. Let us define

⟨Φ(R,Nt)⟩ =
1

Np

∑
p

〈
PP ′† σ2

〉
⟨PP ′†⟩

− ⟨σ2⟩ (32)

where Np = 3N2
sL denotes the number of plaquettes of the lattice.

It is easy to see from the definition of G(R,Nt):

G(R,Nt) = ⟨P †(R)P (0)⟩Nt =
1

Z

∑
conf

P †(R)P (0) eβ
∑

p σ2 (33)

that the mean flux density ⟨Φ(R,Nt)⟩ can be written as:

⟨Φ(R,Nt)⟩ =
1

Np

d

dβ
logG(R,Nt) . (34)

Since β appears in the observable only through the scale σ0(β) the above equation can be rewritten
as

⟨Φ(R,Nt)⟩ =
1

Np

dσ0
dβ

d

dσ0
logG(R,Nt) . (35)

This choice has two important consequences:
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• In the term proportional to R the string tension, which was the major source of systematic
uncertainty in the previous calculation, is substituted by its derivative with respect to β,
which can be evaluated with high confidence thanks to the very precise knowledge we have
of the scaling behaviour of σ0(β) (see below).

• The first string correction (the ”Lüscher term”) which is universal and does not depend on
σ0 disappears.

This makes the above observable a perfect tool to explore higher order corrections of the
effective string.

From eq.(13) we have

N2
s ⟨Φ(R,Nt)⟩ = α(β)

(
1

2Ntσ0
+

K ′
0(E0R)

K0(E0R)

R

Nt

dE0

dσ0

)
. (36)

where K ′
0 denotes the derivative of the K0 Bessel function, and α is defined as

α(β) = −1

3

dσ0
dβ

. (37)

Using the identity K ′
0(z) = −K1(z) the logarithmic derivative K ′

0(z)/K0(z) can be expanded in
powers of 1/z as follows:

K ′(z)

K(z)
= −(1 +

1

2z
− 1

z2
+ · · · ) (38)

which gives:

N2
s ⟨Φ(R,Nt)⟩ = α(β) (RA(Nt) +B(Nt) + C(Nt)/R) , (39)

where the three functions A,B and C are defined as follows

A(Nt) =
1

Nt

dE0

dσ0
(40)

B(Nt) =
1

2NtE0

dE0

dσ0
− 1

2Ntσ0
(41)

C(Nt) = − 1

8NtE2
0

dE0

dσ0
(42)

A crucial role in the analysis is played by α(β), a precise estimate of this quantity allows to
strongly constrain the results of the fits. α can be extracted from the scaling function of the
model and in its determination we leverage the very precise knowledge we have of this scaling
function, thanks to the bootstrap results for the critical indices of the 3d Ising model. A detailed
derivation can be found in [50]. We report for completeness the main steps of the derivation in
the appendix A. The values we used in the fit are listed in tab. 1. Once the value of α is fixed, we
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can use the values we obtain for A(Nt) to estimate the corrections in which we are interested7.
By setting x = π

3σ0N2
t
we see that we can express the Nambu-Goto expectation for A (see eq.(14))

as

A(Nt)NG =
1− x

2√
1− x

= 1 +
x2

8
+

x3

8
+

15x4

128
+

7x5

64
+

105x6

1024
+ · · · (43)

As anticipated the expansion starts at the order x−2 i.e. N−4
t , this makes this observable partic-

ularly suited to evaluate higher order corrections.
If we introduce the corrections beyond Nambu-Goto (see eq.(23)) we find

A(Nt) = A(Nt)NG +
864π2

25
γ3x

4 +
2304π2

25
γ3x

5 + (162π2γ3 +
1474560π4

49
γ5)x

6 (44)

where the expansion of A(Nt)NG is truncated at the same order at which the additional terms
proportional to γ3 and γ5 appear.

This is the function which we shall use to fit the results of our simulations.

6.1 Numerical simulations

To estimate the function A(Nt) we used again duality and mapped the Polyakov loops correlator
into the partition function of a 3d Ising spin model in which we changed the sign of the coupling
of all the links dual to the surface bordered by the two Polyakov loops. This is the same method
which was used in [65, 63] to estimate the width of the flux tube.

We then estimated ⟨Φ(R,Nt)⟩ by simply evaluating the mean value of the plaquette in presence
of these frustrated links. We chose periodic boundary conditions in the original gauge Ising model.
These b.c. are mapped by duality into a mixture of periodic and antiperiodic b.c. in the dual
spin model. However we always chose Ns large enough to eliminate any contribution from the
antiperiodic sectors (which are depressed by terms proportional to e−σ0NsNt or e−σ0N2

s ).
Since, as discussed above, we are interested in the following only in the term proportional to R

in ⟨Φ(R,Nt)⟩, we may neglect the disconnected component ⟨Up⟩ in the evaluation of ⟨Φ(R,Nt)⟩.
Details on the simulations can be found in tab.8
We perfomed simulations for all the three values of β reported in tab.1. For each value of β

and Nt we simulated several values of the distance R between the two Polyakov loops.
For each simulation we used 105 iterations to thermalize the lattice and then performed 106

measures using a Swendsen-Wang algorithm. The values of R were chosen large enough so as to
make the last term in eq.(39) negligible, thus allowing to perform a simple linear fit to extract
the values of A(Nt). We report in tab.9 an example of the data we obtained from the simulations
(to allow a comparison, we chose the same values of β and Nt reported in tab.3) and in tab.s
10,11 and 12 the values of A(Nt) extracted from these linear fits.

We then fitted these values with eq.(44) keeping as only free parameters γ3 and γ5. Results
are reported in tab.13. Thanks to the high precision in the determination of α, the systematic

7In principle we could use also B(Nt) or C(Nt) to extract this information, but these terms, due to their R
dependence may be affected by boundary corrections, moreover their estimates from the simulations are much less
precise than those of A(Nt), so we neglected them in the following.
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uncertainty on γ3 and γ5 due to the uncertainty on α is negligible and we quote in tab.13 only
the statistical errors of the fits.

β Nt,c Nt R Ns

0.751800 8 9,10,11,12,16,20,24 16, 24, 32, 40, 48, 64 128

0.756427 12 13,14,15,16,18,20,24 36, 48, 60, 72, 84, 96 192

0.758266 16 17,18,19,20,21,22,24,32,48 32, 48, 64, 80, 96, 112 256

Table 8: Some information on the simulations.

R ⟨Φ(R,Nt)⟩
36 0.927589(9)

48 0.927717(9)

60 0.927872(9)

72 0.927978(9)

84 0.928115(9)

96 0.928247(9)

Table 9: Results of the algorithm for β = 0.756427 and Nt = 24.

Nt A(Nt)

9 1.088(23)

10 1.071(10)

11 1.053(7)

12 1.044(5)

16 1.019(2)

20 1.008(3)

24 1.003(3)

Table 10: Results of the linear fits of the first two terms of eq.(39) for β = 0.751800.

Looking at these results we see that there is a remarkable agreement between the values of
γ3 and γ5 obtained with this method and those obtained in the previous section with the snake
algorithm. We also see, as anticipated, that with this method there is a significative decrease
of the uncertainty on the determination of γ3. We also see that the values obtained (with both
methods) for β = 0.751800 do not agree within the errors with those obtained with the other two
values of β. This suggests that, within the precision of our analysis, β = 0.751800 is still slightly
outside the scaling window, while the data for β = 0.756427 and β = 0.758266 agree between
them thus showing a good scaling behaviour.

We quote as our final result,

γ3 = −0.00048(4) γ5 = 3.0(4)× 10−7 (45)
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Nt A(Nt)

13 1.168(26)

14 1.127(28)

15 1.096(8)

16 1.039(23)

18 1.034(33)

20 1.019(18)

24 1.034(18)

Table 11: Same as tab.10 but for β = 0.756427.

Nt A(Nt)

17 1.247(35)

18 1.134(9)

19 1.100(26)

20 1.114(23)

21 1.103(26)

22 1.065(12)

24 1.025(20)

32 1.005(14)

48 0.999(37)

Table 12: Same as tab.10 but for β = 0.758266.

obtained combining together the values obtained at β = 0.756427 and β = 0.758266 with the
present approach. These values are compatible within the errors with the value obtained with
the snake algorithm at β = 0.756427.

7 Concluding remarks

We studied, using two different methods and different algorithms the correction beyond Nambu-
Goto for the confining potential in the three dimensional gauge Ising model. We found a good
agreement between the two approaches. The two largest values of β that we studied show a
good scaling behaviour and lead to values for γ3 and γ5 compatible within the errors. Our final
estimate for these parameters is γ3 = −0.00048(4) and γ5 = 3.0(4)× 10−7.

The value that we obtained for γ3 agrees with the bound of eq.(22) , while γ5 is slightly below
the bound of eq.(21) which, inserting the value of γ3 and keeping into account the uncertainty in
the determination of γ3, becomes γ5 > 1.6 × 10−6. This difference is most probably due to the
truncation in the perturbative expansion. Keeping into account higher order terms, and including
also γ7 might fill this gap.

It is interesting to compare our result with the existing estimates for γ3 for other LGTs. In [27]
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β γ3 γ5 χ2
r

0.751800 -0.00057(3) 0.00000038(3) 1.11

0.756427 -0.00046(3) 0.00000028(3) 1.54

0.758266 -0.00049(3) 0.00000031(3) 1.09

Table 13: Results of the fits of A(Nt) according to eq.(44) truncated at the order O(x6) i.e.
O(N12

t ) .

Figure 1: Values of A(Nt) for the three different values of β. The horizontal line corresponds to
the first order approximation in which the EST is truncated to the Lüscher term only, the violet
curve is the Nambu-Goto prediction (truncated at the order x6) and the red one is the prediction
of eq.(44) with the best fit values of γ3 and γ5 for β = 0.758266.

it was shown that also for the SU(2) LGT in three dimension γ3 is negative. The value quoted in
[27] is γ3|SU(2) = −0.00037(6) which is similar, but not compatible within the errors, with the one
we obtained here for the Ising model. On the contrary for SU(6) a positive value γ3 ≈ 3× 10−4

was found [33, 19, 34]. These values represent the first steps toward a classification of EST
models for LGTs. Indeed, in the past years, one of the main problems of the EST description
of Yang-Mills theories was its universality, i.e. the fact that it predicted essentially the same
behavior (with only a mild dependence on the number of spacetime dimensions), for models as
different as the three-dimensional Z2 gauge model and the four-dimensional SU(3) Yang-Mills
theory. This feature is now understood as a universality that manifests itself only at low-energy
(or, equivalently, a side-effect of the high accuracy of the Nambu-Goto approximation of EST),
while the details related to the gauge group (and, possibly, to the confining mechanism into play)
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are instead encoded in the γi corrections, which are not expected to be universal. In particular,
from the values quoted above, it seems that γ3 for ordinary LGTs takes very small values, which
seem to increase with the complexity and size of the gauge group. This should be contrasted
with the case of the 3d U(1) model where sizeable deviations from the Nambu-Goto prediction
were observed in several quantities [49, 66, 67] which most likely point to a much larger, positive,
value of γ3.

Finally, let us add a final comment on the numerical side of our analysis. As we have seen,
duality plays a crucial role in our analysis and for this reason the approach discussed in this paper
is particularly suited for abelian gauge theories, however, apart from the numerical convenience,
there is no obstruction to extend the flux based method discussed in sect.6, given enough com-
putational power, also to non-abelian models. Moreover we have seen that with this approach
the error in the determination of A(Nt) is dominated by the statistical uncertainty while the
systematic error due to σ and α is fully negligible. This means that there would be in principle
no obstruction to improve the estimates of γ3 and γ5 with a larger statistics.
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A Appendix: Evaluation of α(β)

A first approximation for α can be obtained assuming the known scaling behaviour for the string
tension in the 3d gauge Ising model

σ(β) = σc(βc − β)2ν

which leads to a simple and elegant expression for α

α(β) =
2νσ

3N2
s (βc − β)

However this is not enough for our purposes. In order to estimate higher order effective string
corrections we need to evaluate the flux density with an uncertainty smaller than 1% and thus
it is mandatory to include in the expression the next to leading terms of the scaling function.
Following [50] and using the results of [41] we can approximate the scaling function as

σ(β) = σct
2ν × (1 + atθ + bt) ,

where t = β̃ − β̃c is the dual of the reduced temperature, θ = 0.5241(33) is the next to leading
scaling exponent and the constants take the following values: σc = 10.083(8), a = −0.479(26)
and b = −2.12(19).

Inserting this correction in the definition of α and approximating for simplicity 2θ ∼ 1 we
finally obtain

α(β) =
2νσ

3N2
s (βc − β)

[
1 +

aθ

2ν
tθ +

(b− a2)θ

2ν
t

]
.

This is the expression that we used to obtain the values listed in tab.8.
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