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ABSTRACT

Cosmological parameter estimation in the post-reionization era via neutral hydrogen radio emission (HT) is among the key science
goals of the forthcoming SKA Observatory (SKAO). This paper explores detection capability for baryon acoustic oscillations
(BAO) with a suite of 100 simulations introducing the main limitations from foreground contamination and poor angular
resolution caused by the radio telescope beam. Such broad single-dish beam representing a serious challenge for BAO detection
with HT intensity mapping, we investigate a multipole expansion approach as a means for mitigating such limitations. We also
showcase the gains made from cross-correlating the H1 intensity mapping data with an overlapping spectroscopic galaxy survey,
aiming to test potential synergies between the SKA project and other future cosmological experiments at optical/near-infrared
wavelengths. For our ~4000deg® data set at z=0.9, replicating the essential features of an SKAO HT intensity mapping
survey, we were able to achieve a ~4.50 detection of BAO features in auto-correlation despite the dominant beam effect.
Cross-correlation with an overlapping galaxy survey can increase this to a ~ 6o detection. Furthermore, including the power
spectrum quadrupole besides the monopole in a joint fit can approximately double the BAO detection significance. Despite not
implementing a radial-only P(k| ) analysis in favour of the three-dimensional P (k) and its multipoles, we were still able to obtain
robust constraints on the radial Alcock—Paczynski parameter, whereas the perpendicular parameter remains unconstrained and
prior dominated due to beam effects.

Key words: methods: data analysis — methods: statistical —large-scale structure of Universe —cosmology: observations —radio

lines: general.

1 INTRODUCTION

The 2020s and 2030s will witness a golden age for cosmological
experiments surveying the large-scale cosmic structure, picking up
the legacy of the various missions of the past decades dedicated
to the study of the cosmic microwave background radiation, which
provided us with the most precise measurements of cosmological
fundamental quantities so far (e.g. Fixsen et al. 1996; Hinshaw
et al. 2013; Planck collaboration I 2020). Among them, we can
quote the European space agency’s Euclid satellite (Laureijs et al.
2011; Amendola et al. 2013, 2018), the Nancy Grace Roman Space
Telescope (Spergel et al. 2015), the Spectro-Photometer for the
History of the Universe, Epoch of Reionisation, and Ices Explorer
(SPHEREX, Doré et al. 2014, 2018), the Dark Energy Spectroscopic
Instrument (DESI) (DESI Collaboration et al. 2016a,b), the Vera C.
Rubin Observatory (LSST Science Collaboration et al. 2009; The
LSST Dark Energy Science Collaboration 2018; Ivezic¢ et al. 2019),
and the SKA Observatory (SKAO) (Maartens et al. 2015; Bacon et al.
2020).

* E-mail: andrea.rubiola97 @gmail.com

Due to the emission of highly energetic light coming from
population-III stars, the neutral hydrogen (HI) in the intergalactic
medium sees a massive depletion during the epoch of reionization,
reducing its contribution from being a dominant component to a
present-day abundance of Qy; ~ 107*. One of the most pressing
science cases for the SKAO’s radio-telescope is then looking for
the HT that survived into the subsequent post-reionization epoch
(z < 5). This can be achieved by measuring its characteristic 21-cm
transition, resorting to a long-known astrophysical observable, whose
applications date back to the 1950s (Oort, Kerr & Westerhout 1958;
Furlanetto, Zaldarriaga & Hernquist 2004; Furlanetto, Peng Oh &
Briggs 2006). Since H1 overwhelmingly resides inside galaxies in
the post-reionization epoch, it acts as a tracer of galaxy clustering and
hence of the underlying large-scale cosmic structure. The weakness
of the signal, demanding high-technological standards, has hitherto
limited the use of this observable in cosmology: the SKAO will be
able to observe such spectral line via so-called ‘intensity mapping’
(Bharadwaj et al. 2001; Battye, Davies & Weller 2004; Chang et al.
2008; Wyithe, Loeb & Geil 2008), a technique devised to collect
large amounts of signal faster than galaxy surveys. The technique
has seen a growing number of cosmological signal detections (Masui
et al. 2013; Anderson et al. 2018; Wolz et al. 2022; Cunnington
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et al. 2022), and the recent successful demonstration of single-dish
intensity mapping calibration with an array of dishes (Wang et al.
2021) lays the foundation for advancing the maturity of this technique
with the SKAO and its pathfinder surveys such as MeerKAT, a 64
dish precursor to the SKAO (Santos et al. 2017; Pourtsidou 2018).

On the much shorter wavelengths of the near-infrared and optical
bands, one of the main probes of Euclid and Roman will consist of
spectroscopy to detect the He emission line between galaxies, in
particular between z = 0.9 and 2.0. The resulting galaxy catalogues,
amounting to some tens of million objects with spectroscopic redshift
estimates, will allow us to track the growth and clustering of cosmic
structures following the path carved by previous collaborations (e.g.
Gil-Marin et al. 2016; Zhao et al. 2016; Pellejero-Ibanez et al. 2016;
Chuang et al. 2017; Wang, Guo & Cai 2017).

Both optical and radio surveys are expected to collect a large
amount of data, in order of the yearly internet traffic (Farnes et al.
2018). The forecasting effort need to optimize their performance
is, therefore, clearly of utter importance. More specifically, our
work revolves around the detection forecast of baryon acoustic
oscillations (BAO), considered one of the primary goals of any
future cosmological survey, to be attempted with both conventional
methods, e.g. Euclid (Blanchard et al. 2020), DESI, and more novel
techniques, like HT intensity mapping with the SKAO (Bull et al.
2014). Furthermore, pathfinder surveys like MeerKAT will also aim
to provide the first measurements of BAO using the intensity mapping
technique (Santos et al. 2017).

BAO originate from the past interaction of radiation and baryonic
matter, which ended at decoupling (z ~ 1000). Until that time,
radiation pressure sustained the baryon gravity, preventing their
collapse and inducing acoustic oscillations with a sound horizon
s = cst, the sound speed being

o~ 1.15¢, | — P (1
4prad + 3,Ob

where p.,q and py, respectively denote the radiation and baryon energy
densities. Evaluating this at the decoupling redshift, we recover
a sound horizon scale of r, ~ 105Mpc h~', which is retained in
the matter clustering as a preferential scale of separation between
galaxies, even after baryons realign with dark matter. As a result,
we find in the 2-point correlation function, a secondary probability
excess (a ‘bump’) at the aforementioned scale (see Fig. A1), which
has been observed in galaxy surveys for over two decades (Percival
et al. 2001; Eisenstein et al. 2005).

Taking the Fourier transform of the correlation function provides
the power spectrum in which the BAO bump translates into a
series of characteristic ‘wiggles’ in the k = [0.02,0.3]4Mpc™'
interval, whose detection will be investigated throughout this paper.
BAO represent an interesting cosmological observable: having well
defined radial and transverse dimensions, they can be used as a
standard ruler analogous to standard candles, allowing estimations of
the Hubble parameter and of other cosmological parameters involved
in the radial and angular distance functions. Furthermore, they are
a relatively large-scale phenomenon, difficult to be mimicked or
deformed by other physical processes — apart from the well-known
smoothing out of the wiggles due to the transition to non-linear scales
(Crocce & Scoccimarro 2008; Sugiyama & Spergel 2014). Hence,
BAO are robust and can be consistently modelled with linear theory.

However, detecting BAO with H1 intensity mapping introduces a
set of unique challenges (see e.g. Battye et al. 2013). Since HI maps
the diffuse unresolved H 1 emission observations will also accumulate
any other radiation in the same frequency range as the redshifted H 1.
Perhaps most contaminating is from 21-cm foregrounds, which can
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dominate the HI signal by several orders of magnitude (Alonso,
Ferreira & Santos 2014; Wolz et al. 2014; Cunnington et al. 2021).
Furthermore, the angular resolution of the maps can be limited by
the beam size of the instrument, which for the case of a single-
dish intensity mapping experiment such as SKAO’s, can be quite
broad of the order of 1deg in size at z = 0.4 (Bacon et al. 2020).
These observational effects are expected to impact the statistical
recovery of the BAO in intensity mapping (Villaescusa-Navarro,
Alonso & Viel 2017; Avila et al. 2021; Kennedy & Bull 2021).
On the other hand, cross-correlations of the H1 intensity mapping
signal with galaxy clustering appear as a viable alternative: a typical
galaxy survey will not be limited by angular resolution, nor is
it affected by foreground removal (though see e.g. Monaco, Di
Dio & Sefusatti 2019). Thus these limitations to the HI inten-
sity mapping method could be mitigated in cross-correlation (see
studies in e.g. Wolz et al. 2016; Pourtsidou, Bacon & Crittenden
2017).

In this work, we look to extend previous investigations of BAO
detection with HI intensity mapping (Villaescusa-Navarro et al.
2017) by including a galaxy survey cross-correlation in comparison
with the H1 auto-correlation. We use simulation-based data sets
inclusive of the relevant intensity mapping observational effects,
namely foreground contamination, a broad single-dish telescope
beam, and thermal noise; we then evaluate the BAO detection sig-
nificance along with performing cosmological parameter estimation
to evaluate the merit of each approach. Unlike the previous work of
Villaescusa-Navarro et al. (2017), which employed a radial power
spectrum P(k|), we use the conventional three-dimensional power
spectrum P (k). This allows us to utilize a multipole expansion of the
power spectrum, which leads to the improvements in BAO detection,
compared to a single-fit to the monopole. This inclusion of higher-
order multipoles was investigated in recent works (Avila et al. 2021;
Kennedy & Bull 2021) in configuration space. Avila et al. (2021)
also extended their investigation into using clustering p-wedges in
chosen regions to filter out the unwanted systematic effects from
21-cm foregrounds and the beam. Our approach differs by using
the power spectrum in Fourier space in a simulations-based test to
demonstrate the importance of including the quadrupole in a joint
fit with the monopole. Previous studies have investigated a Fourier
space analysis (Soares et al. 2021), but looked at fitting the full-
shape power spectrum. In this work, we exclusively constrain the
BAO features to see whether this is feasible with a low-resolution
H1 intensity mapping experiment. Detection of cosmological fea-
tures will generally benefit the maiden demonstration of H1 IM
in auto-correlation, as yet to be achieved. A confident detection
is difficult when fitting for a featureless power spectrum where
contribution to the amplitude comes from both HI signal and
additive biases from non-cosmological residuals and systematics, as
discussed in Cunnington (2022). Furthermore, we also forecast the
added benefit from a cross-correlation with an overlapping galaxy
survey.

The paper is structured as follows: in Section 2, we describe the
criteria of our simulation set-ups based on and the most important
features of our fitting models. Our data analysis results are collected
in Section 3; finally, we wrap up our results and their discussion
in Section 4. For the sake of better readability, most of the stan-
dard mathematical formalism adopted in our work is collected in
Appendx A and B1, together with the study of the signal-to-noise
ratio (SNR), and uncertainties in Appendix B2. Conversely, less
frequent concepts or formulas whose exposition is necessary for a
better understanding of the topic will be discussed in their proper
context.
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Table 1. Percentage variation of fitting and simulation parameters with
respect to nominal values in each redshift bin. The fixed bin width of
~600 /1~ Mpc assigned to every simulation corresponds to Az = 0.115,
0.148, and 0.205.

Parameter A [%]

7=0.9 z=1235 7=20
R [h~! Mpc] 37.2 28.8 28.6
o, [h~" Mpc] —15 -32 —5.1
nga [(h~" Mpe)~] —6.1 —355 —67.4
Panot [(h ™! Mpe)®] 6.5 54.9 207.1
b 6.5 8.0 12.0
by T [mK] 27.3 26.2 32.3
P [mK? (h~! Mpc)?] 11.1 8.9 88

2 METHODOLOGY

In this section, we describe the methodological approach we followed
to generate our mock data sets, inclusive of observational effects such
as foreground contamination beam smoothing and instrumental noise
as well as the statistical analysis to analyse it.

2.1 Cosmological simulations

We begin by producing lognormal simulations on to a Cartesian
grid, based on a methodology first introduced by Coles & Jones
(1991), following the prescription outlined in Beutler et al. (2011).
In this process, we utilize the publicly available codes of Nbodykit!
(Hand et al. 2018) and hmf? (Murray 2014), which both integrate
the Boltzmann solvers CLASS (Blas, Lesgourgues & Tram 2011;
Lesgourgues 2011) and CAMB (Lewis, Challinor & Lasenby 2000),
respectively. We set-up our lognormal simulations at the three
redshift values of z = [0.9, 1.35, 2.0]. This choice is motivated
by forthcoming intensity mapping and optical galaxy surveys with
z=0.9 and z = 2.0, bracketing the redshift coverage of a Euclid-like
spectroscopic survey, and z = 1.35 being an intermediate value based
on a MeerKAT (SKAO’s precursor) UHF band survey, which ends
atz = 1.45.

The simulated data are designed not to have excessive depth along
the z-axis.? The percentage variation of the relevant quantities (fitting
parameters, galaxy densities and noise PS intensities) in the mock
redshift depth compared to the value at the nominal redshift are
presented in Table 1. This is to ensure our assumption that parameters
will not vary within a particular redshift bin is reasonably valid.
At the same time, the simulation box cannot be arbitrarily small
due to physical reasons: we must properly sample the BAO scales
around k ~ 0.02 Mpc~'. A good compromise for all redshifts is a
depth along the z-axis of I, = 600 Mpc h~!, which we use in each
redshift case. To ensure a good level of SNR given the limited depth,
we set our angular dimensions along the x- and y-axis to a length
of I, = I, = 2400 Mpc h~'. We use the same physical size in each
redshift bin to ensure a like-for-like comparison. These angular sizes,
respectively, correspond to 4180, 2352, and 1460 deg? of observed
sky or, equivalently, to sky fractions fu, = 0.12, 0.07, 0.05. All

!'nbodykit.readthedocs.io

2github.com/halomod/hmf

3Note that we orientate our Cartesian grid so that the z-axis points along the
line-of-sight direction. Moreover, to avoid confusion between the Cartesian
z-axis and redshift z, we adopt roman letters to denote Cartesian coordinates,
namely (x, y, z).
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these values are within the targeted sky sizes of e.g. MeerKLASS
(Santos et al. 2017), Euclid and Roman. We find this field of view
sufficient to ensure a detection.

Our simulations are then outlined according to the following steps:

(i) We divide each field into a uniform grid of Ngig =
{400, 400, 400} voxels, which allows all scales of interest to be
sufficiently sampled.

(i1) The power spectrum underlying the simulation is chosen to be
non-linear for the sake of greater realism and to encapsulate some
of the limitations to the BAO features caused by non-linear effects,
without resorting to expensive N-body simulations. To achieve this,
we use Nbodykit to calculate two linear power spectra, one with
BAO and the other with a ‘no-wiggles’ (also, broad-band) power
spectrum based on the transfer functions in Eisenstein & Hu (1998).
The power spectrum with BAO is then used for the simulation. The
role of the broad-band counterpart will be described later in the
paper. We then use hmf to convert both power spectra to the non-
linear version with the standard prescription halofit (Smith et al.
2003; Takahashi et al. 2012).

(iii) We introduce additional features to the input power spectra,
such as redshift-space distortions (RSD), modelled according to
Kaiser (1987, see Appendix A for more explicit details and discussion
on this formalism). We then use the input power spectra to produce
lognormal density fields with our mock generator. Specifically, we
employ 100 mocks at all three redshifts, following the method
suggested by (Villaescusa-Navarro et al. 2017) and subsequently
checked to provide statistically sound results.

(iv) For the H1 intensity maps, we add a H1 linear bias to the field
and add astrophysical foregrounds (see Section A2). The field is then
smoothed in the transverse direction to imitate SKAO beam effects,
then we apply a thermal noise to the map. Lastly, the oy, field is
foreground cleaned via principal components analysis (PCA). This
should emulate some residual foreground contamination and signal-
loss from the foreground clean expected in a real survey experiment.

(v) For the galaxy maps, we Poisson sample each generated matter
field with a galaxy number density calculated according to the model
outlined in Blanchard et al. (2020), finding for the three chosen red-
shifts, the following 7igy = {7.2, 4.6, 1.1} x 107* 13 Mpc’3 values.

(vi) The simulations should take into account the noise contri-
butions. The sampling shot noise is not relevant for the HI auto-
correlation, whilst the galaxy count shot noise should be almost
entirely suppressed in the cross-correlation. (See Table 1, deriving
from the galaxy density model necessary to initialize the simulations
and presented in Appendix A2.1.) Similarly, the thermal noise levels
(also quoted in Table 1 and discussed in Appendix A2.4) follow from
standard models (Bacon et al. 2020). We work under the hypothesis
of 10000 single-dish observation hours and prove to be well below
the power spectrum signal at the scales of interest. It is also highly
unlikely thermal noise levels will be an issue with the SKAO, and it
will instead be the large beam which is the dominant challenge for
BAO detection.

(vii) Finally, we apply a power spectrum estimator pipeline (see
Appendix A) to all the generated data sets, both for HI auto-
correlation and Higalaxy cross-correlation. Since we intend to
explore the benefit from a multipole expansion formalism in this
work, we also measure the quadrupole of each data set. Definitions
for these can be found in equations (A19) and (A20).

During this latter stage, we also extract from the 100 samples, the
data variances, and covariances that allow us to estimate the empirical
uncertainties. They are compared with the theoretical values in
Appendix B1: the excellent agreement we find ensures we can assign
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the theoretical values as error bars to our data. Notice that, although
the signal is automatically free from the noise in our set-up, we need a
proper model for Py, and Py,or, because they appear in the uncertainty
calculation.

2.2 Fitting template and parameter space

We will make use of three different fitting strategies in every case
resorting to the the Markov chain Monte Carlo (MCMC) sampler
emcee (Foreman-Mackey et al. 2013). Specifically, we shall fit the
monopole alone (Py), the quadrupole alone (P,), and the monopole
and quadrupole jointly, ([P, P,] or ‘joint fit’) — the three cases can
all be formally written as

—2InL = (Pgaa = Piode) € (Paaia — Prnodel)s 2)

C~! being the inverse of the data covariance matrix. What changes
between the first two cases and the joint fit is that in the former the
posterior probabilities are calculated by considering the sole variance
of the multipole with respect to itself, whereas the latter case exploits
the combination of the monopole and quadrupole variance terms plus
their covariance. Such a simultaneous fit should tighten and improve
the posterior distributions.

‘We make our fitting template dependent upon the pair of variables
(u, k) with p, the cosine of the angle between the line-of-sight
direction and the wave-vector k and k* = ki 4 k7, the modulus of
each mode in the Fourier space. We use the Alcock—Paczynski (AP)
formalism (Alcock & Paczynski 1979) based on the relations

_ Hﬁd(Z)
0= 3
Da(z)
= — 4
L= PG (C))

where the fid superscript denotes the fiducial values calculated with
the reference cosmology for the underlying power spectrum, in our
case a vanilla ACDM model (Planck Collaboration XIII 2016). Here,
H(z) and DA(z) denote the Hubble rate and the angular distance at
redshift z.

Both AP parameters are expected to be ~1 when the cosmology
underlying the fitting template and data agree. Thus, we can redefine
the transverse and the radial fiducial modes, kid and de, as k| =
Kk /ay and ky = k{/a;. Recalling that 1 = ky/k, the independent
variables of the power spectrum can be combined in order to write

fid
k=0 (R — 1)) ®)
oy

which depends on k% on the ratio Fap = a/ery, and on p9; the
cosine y can then be made dependent on 19 according to

fid

1 ; _ —-1/2
= Ly (R - )] ©)
AP
Hence, the final fitting template for the power spectrum reads
1
Pk, 1, 2) = Pa(k. 1, 2) + ——{Pylk(erj @), 11, 2]
o)
— Puwlk(oyy, o1 ), i, 21}, @)

where, depending on whether we are looking at auto- or cross-
correlations, the input models are provided in equations (A19)
and (A20). The non-linear matter power spectrum either contains
BAO for Py, or is the broad-band (‘no-wiggles’) power spectrum
version for P,,. We look for the first three wiggles of the BAO
signal (the most visible ones in the power spectrum) in the interval
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k = [0.02,0.2] h Mpc~". We also fit a pure ‘no-wiggles’ counterpart,
in order to establish BAO detection significance.
The parameter sets associated to equation (7) are

Ouuo = {0, @1, b T, R,y ny}, ®)

Ocross = @), &1, by, bu Ty, R, oy, ny, 1} )

They correspond to the AP factors, the (effective) bias of the various
tracers, the radio-telescope transverse resolutions (and radial resolu-
tion for spectroscopic measurements), and the foreground-cleaning
compensation factors. Their meaning and underlying models are
again described in greater detail in Appendix A, whilst the fiducial
values at each mock nominal redshift are tabulated in Table 1.
Finally, note that the pure ‘no-wiggles’ model contemplates the same
parameter space, except for o and o .

As a final remark, whilst the MCMC alone permits an evaluation
of the goodness-of-fit, based on the comparison between priors and
posteriors, we also calculate x> = —2In £ and its value normalized
to the number of degrees of freedom, x >/dof, assuming as best-fitting
values the samples at the 50th percentile of the posterior distributions.
This provides a useful framework to assess the level of significance
for the BAO detection.

3 RESULTS

In this section, we will show some best-fit plots and explore the
data analysis results. As a general convention, the power spectrum
fits displayed in Figs 1 and 5 (cross-correlation on the left, auto-
correlation on the right) are normalized for each tracer by subtracting
the fit for the no-wiggles Py, (k) and by dividing the result by the
no-beam (hence the nb superscript), no-wiggles power spectrum
PI™(k). This way, we can demonstrate how much the BAO exceed
the broad-band power spectrum at every redshift, taking into account
the smoothing effects. Concerning the error bars, the discussion on
their evaluation is presented in Appendix B1, where we show the
posterior distribution and marginalized contours for both cross- and
auto-correlation. We only show the common parameters, that is b,
and o, are not displayed. In such plots, the dashed vertical line
corresponds to the fiducial values of the parameters.

3.1 Monopole

Some qualitative observations can already be made from Fig. 1,
where we observe the progressively reducing amplitude of the
wiggles. The first ‘bump’, however small remains recognizable by
eye, whilst the following ones are progressively less distinguishable
from the broad-band counterpart, consistently with the k-dependence
of the beam. At the same time, it seems that the cross-correlation
allows for a slightly better resolution of the secondary oscillations
with respect to the auto-correlation due to the absence of transverse
smoothing in the galaxy sample, which mitigates the impact from
the beam.

We show the monopole posteriors for both auto- and cross-
correlation in Fig. 2. We observe a good level of independence
between o and the rest of the parameter space, which we can
interpret as the possibility of retrieving robust cosmological infor-
mation decoupled from nuisance and astrophysical variables. Due
to its direct link with the goal of testing the cosmological model in
Fig. 3, we include the distribution of best-fit oz parameters from
our suite of simulations for both methods and at all redshifts. We
see good o constraints in both auto- and cross-correlation with a
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Figure 1. A single chosen realization at each redshift of the cross-correlation (left-column) and auto-correlation (right-column) monopole power spectra at
each redshift. Overlaid are the models including BAO wiggles, (blue-line) and without (red-line), along with their corresponding x 2/dof fit to the data, displayed

in each legend.
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Figure 2. Example of monopole posteriors for the shared parameters for a
single chosen realization in auto- and cross-correlation at z = 1.35.

quoted +68 per cent confidence intervals from the mean in the top-

right of each panel. Most likely due to the beam limited transverse
resolution, no significant information on the «; parameter can be

retrieved, other than a uniform distribution corresponding to the
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chosen prior interval. The use of the 50th percentile value as a best-
fit parameter does not imply in this case any strong constraining
of the measurement. This is also why we have omitted the o
posterior in Fig. 2, which showed highly prior dominated results,
indicating that the perpendicular scales are severely hampered by the
radio telescope beam. This unfortunately shows little improvement
in cross-correlation.

Concerning the inability to constrain the perpendicular «; pa-
rameter, it is interesting to compare this with the conclusions from
Soares et al. (2021). Their work also looked at constraining the AP
parameters with HI intensity mapping, but instead used a model
fit to the full-shape power spectrum. Unlike this work, they found
reasonable constraints could be achieved on « | , despite the presence
of a broad intensity mapping beam, albeit a smaller size than what
we consider in this work. Alongside the difference in beam size,
the main reason for our work not achieving any constraints on o |
will be down to our method of modelling the wiggles, relative to
the no-wiggles power spectrum. As we have seen from Fig. 1, the
beam drastically damps the BAO features, and if opting to fit a
wiggles/no-wiggles model, which is entirely reliant on the presence
of these features, then the perpendicular smoothing from the beam
would render constraints on perpendicular parameters impossible.
However, in the full-shape case as in Soares et al. (2021), whilst
the beam still introduces limitations, it will nevertheless leave some
amplitude in the perpendicular power signal to fit to, thus providing
potential for constraints.

Concerning the nuisance parameters, Fig. 2 shows how the auto-
correlation exhibits strong degeneracies among some parameters, for
example between the resolution R and the overall amplitude bu T,
which we consider as a single parameter. Such degeneracies are
wholly or partly lifted in the cross-correlation, although others are
introduced in the cross-correlation specific parameters, not shown in
the figure. We found the reconstruction of nj and n; (as introduced
in Appendix A2 and equation (A10)) does not provide single, well-
defined values, nor does it seem that the best-fitting values coincide
for both of them, as posited when setting the fiduciary values.

3.1.1 /Ax? comparison and BAO detection

To assess the significance of BAO detection, we follow the method
presented in Villaescusa-Navarro et al. (2017), which employs the
x? for each best-fit posterior set. We introduce the quantity

Ax? =/ Xaw — Xar 10)

defining the BAO detection significance in terms of number of
standard deviations, 0. We show the significance of BAO detection
with the monopole for each redshift in both auto- and cross-
correlation in Fig. 4. Cases for which a P, (k) template is a better
fit than a P, (k) cannot be shown in the histograms of Fig. 4, but we
mark them as failed cases in Table 2.

We find that in the lowest redshift bin (z = 0.9), both auto- and
cross-correlation allow for a highly significant detection of the BAO,
with the cross-correlation out-performing the auto-correlation. On
the other hand, at higher redshift detections tend to move closer to
the 3o threshold.

This method to assess the significance only evaluates the relative
difference between the wiggles and no-wiggles fitting template, and
does not consider the intrinsic goodness of the fit. Therefore, we
also count how many of the x? in the subset of positively detected
realizations are smaller or equal to the equivalent 95th percentile
value of the variable (representing a 2o confidence interval) and
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Figure 4. BAO detection significance in terms of /A x2 for both auto- and
cross-correlation monopole at different redshifts.

Table 2. Comprehensive table of BAO detection in the monopole, distin-
guished by redshift and method. With failed, we classify those simulations
for which x2, is smaller than x2.

Method Redshift % of realizations — monopole
>30 (ng_gs) <30 failed

auto 0.90 78 (76) 19 3
Cross 0.90 99 (92) 1 0
auto 1.35 50 (43) 46 4
Cross 1.35 59 (31) 38 3
auto 2.00 25 (14) 71 4
Cross 2.00 50 (43) 46 4

we quote the result in parentheses of Table 2. We see from this
that results for the cross-correlation achieve a better overall fit than
the auto-correlation: occasional deviations from the trend could
be a consequence of the loose assumptions on the compensation
parameters priors, that could be avoided by stronger constrains. As
expected, the number of null or below 3¢ detections increases with
redshift: this is due to a decreasing SNR, as discussed in the related
Appendix B2 and shown in Fig. B3 (left-hand panel).

3.2 Improving BAO detection with higher-order multipoles

Previous works (e.g. Soares et al. 2021) showed how higher-
order multipoles can improve parameter constraints in HT intensity
mapping experiments. In particular, recent results (Avila et al.
2021; Kennedy & Bull 2021) have demonstrated the benefit from
including the quadrupole into HT intensity mapping BAO detection
attempts, albeit in the context of the configuration-space two-point
correlation function. With this in mind, we investigate what benefits
the quadrupole could provide to our Fourier-space BAO analysis. The
formalism for the quadrupole calculation is outlined in Appendix A.

Fig. 5 shows how the BAO features in the quadrupole (right-hand
panel) appear more robust with respect to the damping effects from
the beam if compared with the monopole H 1 auto-correlation (left-
hand panel). The different response of the higher-order multipoles to
intensity mapping observational effects has been previously studied
(Blake 2019; Cunnington et al. 2020a) and this behaviour could mean
that higher-order multipoles are of crucial importance to parameter
constraints: more details about these features are included in the
Appendix C.
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Figure 5. Example of auto-correlation monopole (left) and quadrupole (right) power spectra for a single realization at z = 1.35.

Table 3. Comprehensive table of BAO detection in the quadrupole, distin-
guished by redshift and method. With failed, we classify those simulations
for which x2, is smaller than x2.

Method Redshift % of realizations — quadrupole
>30 (<x34s) <30 failed

auto 0.90 77 (74) 21 2
Cross 0.90 89 (80) 10 1
auto 1.35 54 (49) 44 2
Cross 1.35 72 (57) 27 1
auto 2.00 17 (14) 74 9
Cross 2.00 17 (11) 75 8

Since the quadrupole appears more robust to damping effects from
the beam by eye, we explored using the quadrupole alone in our BAO
analysis. The number of positive detections is comparable to the
monopole, except in the highest redshift bin, where quadrupole de-
tections are noticeably lower (see Table 3 in comparison to Table 2).
Nevertheless, we found the quadrupole significance distributions
always peaked at a lower number of o compared to the monopole.
This is perhaps unsurprisingly given that the SNR is expected to
decrease for higher-order multipoles. However, relatively good signal
from the quadrupole makes it a tantalising addition to a H1 intensity
mapping BAO study, and we therefore investigate a joint analysis
including both monopole and quadrupole.

3.2.1 Monopole-quadrupole joint fit

We now move to the case of the joint fit. Fig. 6 shows a posterior
distributions from one of the performed simulations for this joint fit
approach for the auto-correlation (left-hand panel, red contours) and
the cross-correlation (right-hand panel, red contours). To allow for
an informed comparison with the individual monopole results, we
include both the P, and P, separate fit posteriors (in blue and yellow
respectively). For the joint fit, we see a noticeable improvement
in constraints for all parameters. Focusing on the cosmological AP
parameters, Fig. 7 shows the distribution of best-fit o obtained from
our suite of simulations. We still see good «|| constraints in both auto-
and cross-correlation, again with a slight broadening/biasing of the
distribution for higher redshifts. The « constraints still proved to
be poor and remained prior dominated, even in a cross-correlation
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joint fit: having observed such a result in three different methods, we
would conclude that single-dish intensity mapping will struggle to be
a competitive probe of « | for instruments with SKA-like beam sizes.
Fig. 8 demonstrates the boost in successful detections from the joint
fit approach (in comparison with the Py-only results of Fig. 4), and
that the detection significance achieved in cross-correlation is even
higher compared to auto-correlation analyses. We also summarize the
number of detections for the joint fit in Table 4, which highlights an
interesting contrast between the high number of positive detections —
meaning that the increase of information plugged into the likelihood
contributes to a better model discrimination — and the number of
detections below the 95th percentile threshold of the x2, quoted in
parentheses — indicating a quite poor intrinsic agreement between
data and model.

There could be a number of reasons for this. We recall that
the analysis exploits two different goodness-of-fit indicators: the
posteriors behaviour, more nuanced, and the X2, summarizing the
result in a single quantity, necessary to establish the BAO detection
significance as defined in equation (10). Part of the explanation could
rely on intrinsic limitations of using x >/dof as a measure of goodness-
of-fit, in particular concerning the correct evaluation of the number of
degrees of freedom (in our case, the sum of the Py and P, data vector
lenghts minus the number of fitting parameters in either models),
becoming increasingly non-trivial for complex models with priors
(Andrae, Schulze-Hartung & Melchior 2010). From this point of
view, by performing a joint fit, we have complicated this calculation:
a proper analysis for the dof is beyond the scope of this paper, and
we instead focus more on the results from the detections significance
and the parameter constraints from the MCMC analysis.

Another possible cause, more tightly related to the present model
and data could be due to the role of the covariance term being
introduced in the joint fit case (equation 2, see also Fig. B1). Firstly,
the joint fit has intrinsically more degrees of freedom: the higher
this value, the narrower the x> probability density function, thus
less forgiving with high x? values. In addition, if the covariance
term is non-negligible, the resulting x? is larger than the sum of
sz’o and X12’2’ resulting in an additional penalty. It follows that the
joint fit allows a better wiggles versus no-wiggles discrimination
because of a higher SNR resulting from the terms in the likelihood
all positively contributing to the result (see equation (B8) and the
bottom-most panel of Fig. B3). However, for the same reason, it
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Figure 7. Distribution of the best-fitting o values for all realizations in the
joint fit case at different redshifts.

gives rise to a lower goodness-of-fit, its effect being analogous to an
underestimation of the uncertainties.

4 DISCUSSION AND CONCLUSIONS

We collect here our conclusions on the study of the HI auto- and
H1galaxy cross-correlation power spectra Legendre multipoles as a
tool for the detection of the baryon acoustic oscillations (BAO) in
future state-of-the-art radio and optical/near-infrared cosmological
experiments.

Our data sets are based on lognormal simulations in the redshift
interval z € [0.9, 2.0], which are generated from an input power
spectrum based on a vanilla ACDM cosmology. To make the input
signal as realistic as possible the input power spectrum includes
a boost from linear RSD and non-linear effects produced using
halofit. Furthermore, we include observational effects from the
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20 1 B
[ i
: 1
i 20 i
1 1
15 1 i
H !
i 15
1 1
##:10 : = i
| 10 !
: |
- 1 1
) 1
L o &
1
o i '
| 1

0 5 10 15 O 5 10 15

Ax? Ax?
--—= VA2 =3 z=0.9 z2=1.35 z=2.0

Figure 8. BAO detection significance in terms of 1/ A x 2 for monopole and
quadrupole joint fit in auto- and cross-correlation at different redshifts.

Table 4. Comprehensive table of BAO detection in the monopole—
quadrupole joint fit, distinguished by redshift and method. With failed, we
classify those simulations for which x2, is smaller than x2.

Method Redshift % of realizations — joint
>30 (ng_gs) <30 failed

auto 0.90 98 (62) 0 2
Cross 0.90 99 (49) 1 0
auto 1.35 91 (40) 8 1
Cross 1.35 95 (38) 4 1
auto 2.00 79 (26) 15 6
Cross 2.00 69 (14) 11 20
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radio telescope beam, thermal noise, and astrophysical foregrounds
— the latter then cleaned using a blind PCA approach. We summarize
our main conclusions below:

(1) BAO detection appears most likely feasible for both auto-
and cross-correlation at the lowest redshift we tested (z = 0.9),
where Py and P, have a large majority of realizations above the 3o
threshold, e.g. 78 per cent for the HI auto-correlation monopole,
increasing to 99 per cent in H1galaxy cross-correlation. At higher
redshift, we find that the cross-correlation remains to have a generally
higher significance than the auto-correlation. However, the number
of realizations exceeding the 3o threshold decreases with redshift,
likely caused by the increasing beam size, higher noise contributions,
and a reduction in galaxy density affecting the cross-correlation
benefit. Such clear-cut redshift-dependent ‘hierarchy’ is consistent
with previous works (Villaescusa-Navarro et al. 2017), where tighter
constraints were found from the intensity mapping radial power
spectrum at low redshift, except in the lowest redshift bin at z ~0.5.
(Note that this is outside our adopted redshift range.) We made the
choice of a maintaining a survey size with consistent physical di-
mensions at every redshift, Iy, Iy, [, = {2400, 2400, 600} Mpc hl
However, in reality a fixed angular size e.g. ~4000deg? would
be surveyed, giving larger physical dimensions at higher redshifts,
perhaps providing the possibility of more optimistic higher redshift
constraints. Approximately speaking, we expect the uncertainty on
a power spectrum measurement to decrease as 1/+/Viy, where Vi,
is the volume of the survey. The estimated sky fractions for each
of our redshifts were fg, = 0.12, 0.07, 0.05. Since Vy is directly
proportional to fyy, this suggests that uncertainties on our highest
redshift data could decrease by a factor of 1/ V2 if assuming the
same fyy as the lowest redshift data. This is because the fyy at the
lowest redshift is approximately twice that of the highest redshift.
This overly basic calculation offers some encouragement for the
higher redshift case, but we leave a more detailed investigation into
this for future work.

(i1) Under certain conditions, the quadrupole alone could effi-
ciently detect the BAO (see Table 3) and seems to display more
prominent BAO-like features (Fig. 5), demonstrating more robust-
ness to the damping caused by the dominant beam effects. Similar
results were found in Kennedy & Bull (2021) and Avila et al. (2021)
for the intensity mapping correlation function, the reasons for which
were investigated in Cunnington et al. (2020a), a discussion we
also outline in Appendix C. Essentially, this is caused by the down-
weighting of beam-dominated modes in the quadrupole. Despite the
apparent increased robustness to the beam, we found the quadrupole
detection significance distribution peaks at lower values than the
corresponding monopole. The reason for this is the decreased SNR
in the quadrupole and is demonstrated in Fig. B3.

(iii) We find an excellent increase in detection significance when
we perform a joint fit for the monopole and quadrupole. Fig. 8
shows the majority of realizations achieved a o ~ 10 detection,
much higher when compared to the monopole-only results in Fig. 4.
However, paradoxically we found only a minority of their x2 is
below the 95th percentile threshold. The good levels of SNR for
the joint fit (see Fig. B3) could be interpreted as an underestimation
of the uncertainties, which could justify the result, together with an
important role of the covariance that, as an additional term, biases the
x 2 towards higher values. At the same time, we observe an important
reduction of the marginalized contour sizes of the posteriors for
the join-fit (Fig. 6), suggesting an improved capability to constrain
parameters.
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(iv) The ability to resolve the ‘wiggled’ power spectrum with
respect to the broad-band counterpart depends on the contribution
of two main factors: the telescope smoothing and the error bar
size, which, in turn, depends on both the telescope smoothing
and the noise sources that appear in equations (B6) and (BS). On
the signal side, the stronger the damping, the flatter the power
spectrum: it follows that distinguishing between the BAO and no-
wiggles power spectra becomes increasingly difficult. Regarding
measurement uncertainties, the damping growing with the redshift
may partially contribute to reducing the size of the error bars, but not
as efficiently as the suppression of the power spectrum amplitude.
Not only is the denominator of the SNR ratio conditioned by the
damping factor, but we also have to consider it is given by a sum
of different terms. As a result, the SNR decreases with z and it
is not necessarily constant in the k-interval corresponding to the
BAO scale. Since larger error bars translate into smaller x? values,
lower SNR also contribute to make broad-band and ‘wiggled” power
spectra less distinguishable. We can conclude that, even though
complicated the concurrence of factors mitigating the transverse
beam is a primary necessity, as shown by the better performance
of the cross-correlation: the contribution of the radial smoothing,
whose typical size is almost constant for every redshift, is limited
and acts only in the highest-k modes of our region of interest.

(v) Parameter prediction provides mixed outputs. Focusing on the
cosmological o parameters, we find o, connected to the measure-
ment of H(z) along the line of sight, can be well constrained with
the cross-correlation offering a slight improvement in the best-fitting
value distributions. We found some small biasing begins to appear
at our highest redshift, as shown by the o constraints displayed in
Figs 3 and 7, although this is still comfortably within the 1o bounds
in all cases. On the other hand, probably due to the heavy transverse
smoothing effect, we have an almost complete loss of information on
o, whose posteriors for the most part were found to be uniformly
distributed throughout the prior interval. Significantly, the AP factors
are robust against correlations with the other quantities in the
explored parameter space. Cross-correlation breaks or relieves some
of the stronger degeneracies between astrophysical and instrumental
parameters we observe in the auto-correlation, but tends to introduce
other analogous correlation among its own nuisance parameters.

(vi) Foreground removal can be successfully realized via the
PCA algorithm, provided that the undesired excessive subtraction
of cosmological power at scales below k < 0.1 2 Mpc™' can be
corrected by a compensation window. For our scopes, the adopted
compensation model relies on purely phenomenological considera-
tions (see Cunnington et al. (2020a) and Soares et al. (2021) for a
detailed discussion of the HI auto-correlation fit with and without
compensation models).

(vii) We observe an excellent agreement between the variance of
our data set and the assumption of Gaussian analytic uncertainties;
we confirm the existence of correlation among multipoles when the
beam and foreground cleaning is included (see Appendix B1) as
shown in Soares et al. (2021).

(viii) Given SKA and Euclid future fields of view surveys with
wider transverse size than in our mocks could no doubt be considered.
In this work, our simulations were mainly aimed at a nearer future
experiment such as that done by SKA’s precursor MeerKAT. Larger
volumes would inevitably reduce error bar size and lead to an
improved detection of BAO with both methods and multipole expres-
sions. We have been particularly careful to keep our mock data depth
along the grid’s z-direction minimal to avoid the issue of evolving
parameters with redshift. However, a sufficient implementation of a
redshift weighting could be considered (see e.g. Ruggeri et al. 2018;
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Mueller, Percival & Ruggeri 2019), thus allowing for further increase
survey size leading to an additional improvement in constraints.

Generally our results should be interpreted as optimistic for using
H1 intensity mapping BAO for constraining cosmology. The results
can be seen as an extension of Villaescusa-Navarro et al. (2017),
finding similar conclusions in that the large beam from an SKA
or MeerKAT survey erodes most transverse information. Where
Villaescusa-Navarro et al. (2017) exclusively uses the radial 1D
power spectrum to avoid this issue, we stick to the 3D spheri-
cally averaged power spectrum, which we find can still recover
good radial information, and also significantly benefits from the
inclusion of the quadrupole, which naturally down-weights beam
dominated modes. One thing to explore in future work would be
using clustering p-wedges (as investigated in Avila et al. 2021), as
a more tailored approach to avoid regions particularly affected by
systematics.

One potential benefit from the multipole approach is that it
provides an alternative method for treating non-linear effects. For the
three-dimensional P(k), non-linear effects can be largely avoided
by ignoring large k values. Doing this in the radial P(kj) does
not guarantee an avoidance of non-linear effects, since even small
k) can still be affected by the non-linearities of physical small
scales. Furthermore, isolating or modelling observational effects
could potentially be more troublesome for the radial P(k|) method,
as shown in Matshawule et al. (2020) and Spinelli et al. (2021).
In any case, it is important for alternative approaches to be avail-
able for pursuing precision cosmology. Hence our results, which
show a successful implementation of the three-dimensional P (k)
for measuring BAO, boosted by cross-correlations and quadrupole
inclusion are encouraging, since this could prove to be a regime
where non-linear and observational effects can be more optimally
treated.
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APPENDIX A: POWER SPECTRUM
FORMALISM

A1 Signal

We estimate the HT auto- and cross-power spectra for our simulated
data by first taking the Fourier transform of the HI intensity
map temperature fluctuations 8§ Ty ((x) = Ty ;(x) — T, and the galaxy
number fluctuations 8q(x) = (ng4(x) —ng) /g

Fu (k) = 8Ty (x) exp(ik-x), (Al)
Fylk) = Z 8(x) exp(ik-x). (A2)
The powerx spectra can then be estimated with

P (k) = Vean| F (0, (A3)
Pyt 1g(k) = Vean Re { Fyy (k) - F (k) }. (A4)
where Vo =Liyl,/ Ngrid. These power spectra are then spherically

averaged and in the case of the quadrupole simultaneously weighted
by the Legendre multipole (see Appendix A3). The power spectra
are modelled as

2
Pk, 1, 2) = b ()T 2(2) Pulk, Z){l 4 J@ Mz] , (A5)
bui(2)
Py o(k, 1, 2) = b (2)Th(2)by(2) Pk, 2)
f(Z) 2:| |: f(Z) 2:|
1 1 , A6
X[+m@“ T " (A0

where by and b, are, respectively, the HI and galaxy linear biases,
Ty(z) is the mean H1 brightness temperature, f(z) &~ Qu(z)" is the
growth rate with y =~ 0.545, the growth index and Py, is the (linear)
matter power spectrum. In equation (A6), we have assumed that
any cross-correlation coefficient between the H1 and galaxies is
unity. In reality this is unlikely to be the case and a coefficient
may exhibit some more complex scale dependence (Wolz et al.
2016; Anderson et al. 2018). Strictly speaking, there should also be
some normalization by the amplitude of cosmological fluctuations
og in the above formalism. Whilst for some probes, the degeneracy
between og and the mean brightness temperature 7', could cause
issues (Castorina & White 2019), BAO probes are less affected by this
degeneracy, since they are not overly sensitive to the normalization.
Therefore, we do not to consider its inclusion.

From the expressions above, the units of the auto-correlation
power spectrum [2 3 Mpc® mK?] and of the cross-correlation power
spectrum [/ ~3 Mpc® mK] can be easily inferred; furthermore, the
reader will understand why, while by (z) alone can be used as a fitting
parameter, the quantity we look for in HI measurements is the com-
bined pair by ()T (2), introducing by as a fixed number in the RSD
factor. The adopted models for the HT bias and the T, (z) factor are
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by = 0.904 4 0.135(1 + z)'-0%, (A7)

Ty = 19002 9y (2) h mK, (A8)

with  Qui(z) =4 x 107*(1 +2)*°.  These models are from
Villaescusa-Navarro et al. (2017, eqs. 2 and A3), whilst the by(z)
factor is recovered from the interpolation of the data shown in
Blanchard et al. (2020, Table 3).

A2 Observational effects

A2.1 Shot noise

There are expected sources of contamination to the cosmological
signal, both for HI intensity mapping and galaxy surveys. For the
latter, shot-noise is the standard form of measurement noise, which
we emulate by Poisson-sampling a finite number of galaxies. For the
former, shot-noise is expected to be low due to the broad integration
of signal (Spinelli et al. 2020), which in our simulation we avoid by
using a biased form of the raw output density field from the lognormal
generator.

A2.2 21-cm foregrounds

Since foregrounds dominate the H1 signal, they require cleaning a
process we emulate by adding realistic radio foreground simulations
into our data, then applying the PCA cleaning algorithm to the con-
taminated data. The method assumes that the first Ny, principal com-
ponents from the intensity mapping data frequency covariance matrix
will contain the highly correlated and dominant foregrounds (Liu &
Tegmark 2012; Masui et al. 2013). By removing this small number
of dominant components we should largely remove the foreground
contamination but simultaneously exhibit some signal loss to the H1
modes most degenerate with the foregrounds — typically large radial
modes (Switzer et al. 2015). This should sufficiently emulate any
signal loss to the H 1, which is an important limitation for H I intensity
mapping experiments. Many other foreground removal algorithms
are available, the most successful of which are blind techniques, e.g.
FastICA (Wolz et al. 2014), GMCA (Carucci, Irfan & Bobin 2020),
GPR (Soares et al. 2022), KPCA (Irfan & Bull 2021) to name a few.

To simulate radio foregrounds, we resort to the Global Sky Model
provided by PyGSM (De Oliveira-Costa et al. 2008; Zheng et al.
2016), a software relying on the healpy and HEALPix packages*
(Gérski et al. 2005; Zonca et al. 2019), which produces full-sky maps
covering the emission from 0.01 to 100 GHz based on many real
data sets, corresponding to a number of physical sources particularly
in the cosmic microwave background, the synchrotron, warm, and
cool dust emissions, and free—free processes. We convert the full
sky maps from spherical coordinates to a data box suitable for our
lognormal simulations and add these into our simulation. The sky
region identified for the foreground simulation bares little impact
on the success of the foreground removal (assuming no polarization
leakage or other complex systematics) as identified in Cunnington
et al. (2021). We chose a region centred on the galactic plane and
assuming the high-amplitude spectra remain smooth from this region,
which is guaranteed from our simulation, foreground removal was
still possible.

We find that to clean the signal Ny, = 3 is sufficient for all
redshift bins and for both cross- and auto-correlation, consistent with
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previous simulation-based studies (Alonso et al. 2015; Cunnington
et al. 2021). More aggressive cleans are expected to be required
when in the presence of systematic issues from e.g. polarization
leakage or beam effects, which we do not investigate in this work
(see e.g. Carucci et al. 2020; Spinelli et al. 2021). It is expected that
these issues should be avoidable either by modelling the systematics
using information from the scanning strategy (McCallum et al.
2021) or exquisite instrument calibration, which should hopefully
be achievable with a full SKAO survey. As already mentioned and
as expected from former literature (Cunnington et al. 2019, 2020a),
the foreground removal procedure affects the cosmological signal
on the largest scales, therefore, we introduce a phenomenological
compensation term By, (k, (). This is based upon a function aimed at
modelling signal suppression due to the finite volume surveyed and
can be given by (Bernal et al. 2019)

Buatk. ) = <1 —exp {_ (kiin)z“z})
(ool () 0})

Incorporating a modified version of this into the power spectrum
model has been shown to mitigate the effects from foreground
cleaning (Cunnington, Camera & Pourtsidou 2020b; Soares et al.
2021) and can also be applicable in higher-order statistics for the case
of the H1 intensity mapping bispectrum (Cunnington, Watkinson &
Pourtsidou 2021). Following Soares et al. (2021), we define the
foreground compensation term as

k 2 q/2

patir= (e (o))
k 2 2 q/2
(e - (o) 0o f)

(A10)

In both equations (A9) and (A10), we define k| min = 27/l, and
ki min =27/ /17 + 1}, based on the box size. We will henceforth

denote the product of the terms as By, o (k, 1) for the sake of brevity.
None the less, the foreground window additionally depends on the
pair of free parameters |, n; and applies to the sole &y, field, so that
the exponent ¢ is either equal to 1 in the cross-correlation or 2 in the
auto-correlation case.

In this work, we have no strong theoretical motivations to justify
the values of | and n,, whose optimal value shall be found by the
MCMC, their fiduciary values having been determined ‘by eye’. The
only remarks we have are that both parameters are in the order of
unity and that the radial direction seems to influence the correction
much more than the transverse direction. This latter consideration is
particularly true for the monopole, the quadrupole appears slightly
more sensitive to the perpendicular correction. We found the average
best-fitting values from visual inspection for n) and n, at each
of our three redshifts z = 0.9, 1.35, 2.0 to be: for the cross-
correlation, {1.9, 1.9}, {1.85, 1.85}, and {1.9, 1.9}; for the auto-
correlation, {1.45, 1.45}, {1.45, 1.45}, and {1.6, 1.6}. Interestingly,
we find that in cross-correlation they tend to be larger than for
auto.
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Figure A1. Correlation functions for the monopole and the quadrupole in both auto-correlation and cross-correlation. The displayed functions take into account
all the instrumental, physical, and phenomenological contributions to the power spectrum.

A2.3 Smoothing from beam and redshift uncertainty

We model the SKAO observation using the most elementary tele-
scope model, a Gaussian beam with transverse (redshift-dependent)
smoothing scale, given by

R = 7(2) Oewnm (A1)

2422’
where r(z) is the radial comoving distance to redshift z and Opwum
is the beam angular resolution, which given SKA features, can
be approximated as 0.8 (1 4 z)deg. More sophisticated analyses,
including beam sidelobes, can be found in Matshawule et al. (2020)
and Spinelli et al. (2021).

Similarly, to simulate future observations in the optical/near-
infrared with Euclid or Roman, we introduce a redshift uncertainty
factor o, again modelled by Gaussian smoothing but this time in the
radial direction. Following e.g. Blanchard et al. (2020, equations 74
and 75), we write 0, = ¢ (1 4+ z)/H(z) 0y, with o, = 0.001.

Hence, the beam induces a smoothing in the transverse direction
for the H1 field, i.e.

Stuons(k L, ky, 2) = e LR 280, 1 Ky, 2), (A12)

MNRAS 516, 5454-5470 (2022)

and the redshift uncertainty induces a smoothing in the radial
direction for the galaxies field, namely

Sgrobs(k . ky,2) = e 1728,k Ky 2), (A13)

where the presence or absence of the subscript ‘obs’ denotes either the
observed field or the underlying cosmological field. Therefore, the
observed power spectra, comprehensive of volume and foreground-
subtraction compensation windows (defined in equation A10), and
with the RSD included in the © dependence, respectively read

Pity 1ok s 2) = e RO Py (K, 1, 2) Brgaar(ks 1)
(Al4)

and

Pargons(k, pt, 2) = e PRt

X Py 1g(k, 1, 2) Bigyol(k, ).

As shown in the paper, the role of the smoothing term is fundamental
for the BAO with the magnitude of the term depending on the value
of the beam size R and on the considered scale. The benefits coming
from the cross-correlation are the reduction of the transverse damping
to the square root of the analogous auto-correlation term.

(A15)
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A2.4 Thermal noise

A potentially large source of contamination for H1intensity mapping
comes from random thermal noise fluctuations caused by the instru-
ment itself. This is well approximated with a flat (scale-invariant)
power spectrum defined by (Santos et al. 2015)

dr ¢ fsky[(1 + Z) r]Z

Pu(z) = T (2). Al16
() 2 tio V21 Naish H(2) (@) (A16)
In this work we use Ngis, = 200, foc = 10000 hours, and
. —25
Tay(z) = Tinst + 60(m) (A17)

with Tjpg = 25K. This noise therefore, has some redshift dependence
through the redshifted frequency, v(z). These chosen values are
approximately consistent with a planned SKAO intensity mapping
experiment (Bacon et al. 2020).

With such values and for the scales of our interest, the thermal noise
is expected to contaminate only the highest £ bins of cosmological
signal at intermediate and high redshift. Given the thermal noise
power spectrum, we can easily produce a Gaussian random field
describing this instrumental noise to be added to the H I maps.

A3 Legendre multipole expansion

We can now decompose the power spectrum in multipoles, i.e.
projecting it on the basis of the Legendre polynomials £, thus having

Pk, 2) = ) Pulk. Le(). (A18)
L

Then, the ¢th multipole Px, ¢(k, z) of the power spectrum with X =
{H1 H1, H1 g} can be obtained by integrating over p such that
for the auto-correlation we have

2041 !
Puru ek, 2) = - dit Py irobs(k, b, 2)Le(10), (A19)
—1
and for the cross-correlation we have
2041 (!
Py, g,f(ks Z) = T dl'L PHl‘g,()bs(ka s Z)E'/(/’L) (AZO)

-1
For £ = 0 and Ly, = 1 we have the monopole, for £ = 2 and £, =
(3 u? — 1) /2 we have the quadrupole; we also remind the reader that
when the AP-test is applied, neither the £, terms nor the du term
are rescaled with o and « |, whereas all other p terms are redefined
accordingly.

It is common for BAO experiments to be analysed in configuration
space (e.g. Bautista et al. 2020), where the two-point correlation
function can be found with the following relation:

k? sin(kr)
Ex.obs(r, 2) = /dk ﬁT

We plot the different behaviours of the function for the auto- and
cross-correlation cases in Fig. Al, showing the smearing of the
excess probability peak at r &~ 105Mpch~! as a function of the
instrumental effects of the redshift methods and Legendre multipole.’
For work dedicated to BAO detection from the H1 intensity mapping
correlation function we refer the reader to (Avila et al. 2021;
Kennedy & Bull 2021).

Py (k, 2). (A21)

SThe algorithm used to calculate the two-point correlation function is
available from github.com/JoeMcEwen/LOG_HT, which is in turn based on
FFTLog, originally developed for FORTRAN.
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In this work, we have simulated our mocks on to a Cartesian grid
and can therefore make a perfect plane-parallel (flat-sky) assumption.
However, for future HI intensity mapping surveys with wider sky
coverage, increasing consideration would need to be given to wide-
angle effects (Yoo 2010; Bonvin & Durrer 2011; Challinor & Lewis
2011; Blake, Carter & Koda 2018; Castorina & White 2018; Tansella
et al. 2018a,b). These would not only impact the modelling of RSD
(Castorina & White 2020) but also the anisotropic observational
effects caused by foreground cleaning and the telescope beam. We
thus highlight that future survey analysis may require to implement
some extended modelling, beyond what we present. These large-
scale effects can also be circumvented with other techniques such as
probing BAO with harmonic-space (angular) power spectra (see e.g.
DES Collaboration et al. (2021).

APPENDIX B: GAUSSIAN UNCERTAINTIES
AND SIGNAL-TO-NOISE RATIO

Errors can be assigned to the power spectra based on either the
data themselves, e.g. via jackknifing or bootstrapping methods,
or calculated a priori with analytic formulas. We use this second
approach: the ansatz of normally distributed density contrasts un-
derlying our simulations has as a main consequence, the absence of
correlation among modes out of the diagonal, as shown in Fig. B1.
In addition, this assumption will allow for an explicit calculation
of the magnitude of the error bars, which will be the subject of the
following subsections.
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Figure B1. Covariance matrix at z = 0.9 for the cross- (left) and auto-
correlation (right) monopole and quadrupole power spectra.
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B1 Formalism

Our calculations follow (Soares et al. 2021), in turn mostly deriving
from (Bernal et al. 2019). Although using somewhat different
notations and conventions, we also mention as a general reference
Blake (2019), which makes a thorough examination of general auto-
and cross-correlation power spectra definitions, correction terms, and
associated errors.

We define
Ak, i, 2) = [Pyg(k, . 2) + Papor(k, . 2)] (B1)
X [Py inik, p, 2) + Palk, 1, 2)1, (B2)
Bk, t, 2) = [Pk, pt, 1, (B3)
Clk, p,2) = [Puu ik, 1, 2) + Palk, 1, 2T, (B4)

where the complete power spectra definitions can be found in Ap-
pendix A. Therefore, we can compose our full monopole—quadrupole
covariance matrix under the hypothesis that they are all diagonal in
k—k', as

) 204+ DR+ 1) [
C?.”éf’=—( ])\fk ) / du C(k, 11, 2) Lo(w) Lo(p).  (BS)
-1
woss | QEEDQE+T)
Cz,e’ =

2Ny,
1
></ du [Ak, , z) + Bk, pt, 2)]1 Le(u) Lo(n).  (B6)
—1

Note that, for the sake of readability and brevity, instrumental
smoothing, various prefactors, and additional corrections are left
implicit, summarized under the &, i, and z dependence of the power
spectra terms. The term Pgyo = 1/n44(2) is the shot noise, depending
on galaxy counts and modelled interpolating the data shown in
(Table 3 Blanchard et al. 2020) with the formula exposed in the
equation (113) of the same paper, whereas Py, is the antenna thermal
noise, described by equations (A16) and (A17). Both noise power
spectra are functions of p and k, next to the default dependency on
z, because both fields undergo smoothing. From these definitions,
uncertainties on data in the separate fit case are just the square root
of the terms for which £ = ¢ and the explicit calculation can be
performed by assigning to the free parameters their fiducial values.

Lastly, concerning the denominator Ny, viz. the number of
independent modes available in the observed volume, this can be
expanded as follows: Ny = k% Ak Vi / 272, where Ak is set equal
to kpin = 27/L with L smallest side of the simulation box (as
in Fonseca & Camera 2020), and Vy, is the total volume of the
simulation.

B2 Validation on data

B2.1 Full covariance matrix

The absolute value of the linear correlation coefficient itself reading
Coelki, kj)
VCoo ki, k)Crp(kj ky)

is defined in terms of the covariance C between any pair of modes,
k; and k;, and of multipoles ¢ and ¢'. The heatmap in Fig. Bl is
calculated at the lowest redshift value z = 0.9, where non-linearities
induced by the halofit prescription may most significantly affect
BAO-scale modes. The covariance matrix is subdivided in four
blocks, each one being diagonal: the blocks along the principal
diagonal are the monopole—monopole and quadrupole—quadrupole

B7)

reo(ki k) =
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Figure B2. Data variance and theoretical uncertainties at z = 1.35.

covariances, whereas those on the secondary diagonal represent the
symmetric monopole—quadrupole cross-covariance term. The latter
appears non-negligible: its role was already pointed out and explicitly
calculated in a simplified case in Soares et al. (2021), where it is
shown that the presence of a beam — or of any p-dependent term —
breaks the orthogonality of the multipoles.

B2.2 Gaussian assumption

The agreement of the data variance with the Gaussian analytic
uncertainties can be shown for each component of the covariance
matrix. In particular in Fig. B2, we display the theoretical curve
(connected filled circles) against the square root of the variance of
our 100-strong data set (dashed). Note that, in order to be shown
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Figure B3. SNR levels for the monopole (left), quadrupole (center), and
monopole—quadrupole joint fit (right).

together, auto- and cross-correlation are normalized to the ‘thermal’
prefactors, thus retaining only the Mpc> 273 units.

B2.3 Signal-to-noise ratio

We move now to the monopole and quadrupole SNR, shown in
Fig. B3. This quantity appears a particularly useful tool to interpret
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the behaviours of cross- and auto-correlation described in the
previous sections. The cross-correlation curve lays always above
the corresponding auto-correlation SNR, but, while the latter is

substantially flat for every k, the former exhibits a descending trend
in the highest redshift bins and at the highest k. The increasing weight

of the shot-noise term, absent in the auto-correlation formula, can
explain most part of this trend: increasing z, it reduces the distance
between auto- and cross-correlation SNR, making positive detection
numbers more similar, and bends the latter curve downwards.

Concerning differences between multipoles, the monopole
plateaus are characterized by a higher value and a steeper growth
at low k compared with the quadrupole, which reaches the plateau
at a slower pace. This can explain why, in spite of the BAO being
more visible in the quadrupole, the significance of their detections
proves lower: having larger error bars, the x 2 for the quadrupole null-
model improves, reducing the difference between the two templates.
Finally, we can appreciate the overall higher SNR levels reached in
the joint fit case: in this case, the quantity is defined as

SNR=VOTC-'e, (B3)

® being the full data vector i.e. a stacking of the Py and P,
data vectors, and C the joint monopole—quadrupole covariance
matrix. The three terms of the monopole, quadrupole, and the cross-
covariance all positively contribute to the final result. To conclude,
we observe that the SNR scales down with the redshift, a result
analogous to what found in (Villaescusa-Navarro et al. 2017) on
another power spectrum definition. Also similarly to that paper, we
cannot expect that larger beams would reduce the error bars for the
damping acts more effectively on the power spectrum amplitude,
resulting in a disturbance factor for future observations not only
in terms of resolution, but also regarding the accuracy of the
measurements.

APPENDIX C: DIFFERENCES IN BEHAVIOUR
BETWEEN MONOPOLE AND QUADRUPOLE

Together with the modelling differences between auto- and cross-
correlation, this work also explores and exploits the different proper-
ties of monopole and quadrupole and the influence they have on the
BAO amplitudes.

A useful insight to understand their qualitative and consequently
quantitative dissimilarities can be obtained by plotting all those
p-dependent terms (RSD, beam factors, compensation windows,
L) that appear in the calculation of the power spectrum. To enhance
readability, we choose the z = 2.0 case, displayed in Fig. C1. For most
modes in the BAO region, and for both monopole and quadrupole, n
dependent terms assume small or even negative values. By looking at
the rightmost plot, where we zoom-in the high |x| region, i.e. along
the line of sight, we can better understand how those terms are shaped:
their decay towards zero has a similar steepness in both multipoles,
but the quadrupole starts from higher and above unity values than
the monopole counterpart, thus enhancing the signal. Incidentally,
we observe that the relevant contribution to the signal arriving from
the line of sight can be connected with the interesting applications
of the radial power spectrum outlined in (Villaescusa-Navarro et al.
2017).
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Figure C1. p-dependent terms for the monopole and quadrupole in either auto and cross-correlation cases, calculated at different scales. Right-hand plot shows

the same results zoomed-in on a high-p range.
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