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Abstract. Knowledge distillation has been applied on generative models,
such as Variational Autoencoder (VAE) and Generative Adversarial Net-
works (GANs). To distill the knowledge, the synthetic outputs of a teacher
generator are used to train a student model. While the dark knowledge,
i.e., the probabilistic output, is well explored in distilling classifiers, little
is known about the existence of an equivalent dark knowledge for genera-
tive models and its extractability. In this paper, we derive the first kind
of empirical risk bound for distilling generative models from a Bayesian
perspective. Through our analysis, we show the existence of the dark
knowledge for generative models, i.e., Bayes probability distribution of
a synthetic output from a given input, which achieves lower empirical
risk bound than merely using the synthetic output of the generators.
Furthermore, we propose a Dark Knowledge based Distillation , DKtill,
which trains the student generator based on the (approximate) dark
knowledge. Our extensive evaluation on distilling VAE, conditional GANs,
and translation GANs on Facades and CelebA datasets show that the FID
of student generators trained by DKtill combining dark knowledge are
lower than student generators trained only by the synthetic outputs by
up to 42.66%, and 78.99%, respectively.

Keywords: Knowledge distillation · Generators · Risk bounds.

1 Introduction

Generative models, such as Variational autoencoders (VAE) and generative ad-
versarial networks (GANs), are increasingly applied to synthesize images. To
practically deploy those models on edge devices, namely the generators, it is
critical to distill/compress the models first due to the memory and computation
constraints. Knowledge distillation via teacher and student models can effectively
compress the machine learning models, especially for classification models [5,
2, 7]. The student model tries to imitate the (non-compressed) teacher model
through the input and output pairs from the teacher model such that the same
learning efficacy can be achieved via a smaller model. Dark knowledge [22] is
shown particularly critical for the distillation quality of classifiers. Recently, some
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related studies [1, 20, 3, 20] focus on distilling the generator of GANs. This prior
art empirically distills the teacher generator by directly leveraging the synthetic
outputs. While the studies in [14, 21, 17] provide theoretical analysis for distill-
ing classifiers, e.g., distillation bound, little is on the theoretical understanding
of distilling generative models, for instance, the empirical risk bound and the
existence of dark knowledge of the generators.

In this paper, we rethink the generator distillation from a theoretical Bayesian
perspective. We hypothesize the existence the “dark knowledge”, which is embed-
ded in the synthetic output, e.g., image, but not directly observable. To such
an end, we model the synthetic outputs of a generator as a conditional Bayes
probability distribution, P(y|x), where y is the synthetic output and x is the
input of the generator. We derive two types of empirical risks for distillation:
regular empirical risk using only synthetic inputs, and Bayes empirical risk using
the proposed conditional probability distribution. We show that the variance
of the Bayes empirical risk is lower than the variance of regular empirical risk,
demonstrating better generalization capability. We thus refer to the knowledge
of P(y|x) as dark knowledge. Our analysis can be applied on both probabilistic
generative models, e.g., VAE, and non-probabilistic models, e.g., GANs. To derive
such Bayes empirical risk bound for GANs, we approximate the conditional
probability distribution and quantify its impact in the distillation bound.

Motivated by the effectiveness of such dark knowledge, we further propose
the Dark Knowledge Distillation, DKtill, algorithm to train a student gener-
ator model through the (approximate) dark knowledge. Specifically, we try to
minimizing the difference between teacher and student outputs by controlling
the tensor of the second last layer of their networks, which is an approximated
conditional Bayes probability. We extensively evaluate DKtill on distilling VAE,
conditional GANs and translational GANs for Facades, and CelebA datasets. Our
results show that the student generators from DKtill achieve lower FID than
the ones trained on only synthetic images by up to 78.99% and a slightly higher
FID than the ones from the teacher model by 17.77%.

Our key contributions for this work can be summarized as follows. i) Having
Theorem 1 and Proposition 1 as the distillation empirical risk analysis to show
the effectiveness of dark knowledge in distilling generative models. ii) Deriving
Proposition 2 as the approximate distillation empirical risk analysis to capture
the impact of approximating dark knowledge in distilling the GANs. i) Proposing
DKtill which is a dark knowledge based distillation algorithm for training student
generative models. iv) Achieving higher distillation quality of DKtill on three
different generative models and 3 different datasets, compared to distillation
algorithms which do not use the proposed (approximated) dark knowledge.

2 Preliminary

We consider general generative models for synthesizing images, including non-
probabilistic generators and probabilistic generators. In existing generator distil-
lation works [1, 20, 3] the basic idea is as follows. First, they provide the same
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inputs x into a trained teacher model T and a student model f where x is
the generator input. x has different formats in different generative models. For
vanilla GANs or VAE, x is a noise vector. For conditional GANs, x is a noise and
a conditional label. x can also be a picture in image translation GANs. Second,
the distance between the two model outputs T (x) and f(x) is minimized. In this
way, the student f can mimic the input-output mapping of T and extract the
knowledge from the teacher’s synthetic image outputs {T (x)}.

In classifier distillation [5], the final predicted labels of a teacher are not
sufficient to train a student. The logits or the softmax outputs of the teacher
model are needed to train the student so as to capture the underlying “dark
knowledge”, which is the probability the teacher assigns to “wrong” labels. Some
basic settings and terms of generator distillation used in this paper are introduced
in the following.

Synthetic images. In generator distillation, we input x into a trained
teacher5 T and obtain the corresponding synthetic output y = T (x). After N

inferences, a training dataset D = {(xn, yn)}Nn=1 ∼ PN is obtained to train the
student model f , where xn is an input sample and yn = T (xn) is the corresponding
synthetic image. To simplify the notation, without loss of generality, yn is a single
channel image and yijn ∈ {0, ..., C} is a pixel of the image, where C indicates the
number of possible colors6. Let i ∈ [1, ..., I] and j ∈ [1, ..., J ] be the pixel indexes
of an image of width I and height J .

Distillation optimization. To distill the knowledge from the teacher model
T , a student generator which can be defined as f : X → RI×J×C is trained to
minimize the following risk:

R(f) = E
(x,y)∼P

[ℓ(y, f(x))]. (1)

According to the definition of f , the mapping result f(x) is an I × J × C tensor,
and f ij(x) ∈ RC corresponds to a pixel. The vector f ij(x) represents the weights
of taking different colors in the pixel. For each training pair (x, y) collected
from T , the loss of f(x) takes the form ℓ(y, f(x)) =

∑
i

∑
j ℓ

ij(yij , f ij(x)). The
term ℓij(yij , f ij(x)) is the loss value of predicting f ij(x) when the true pixel
color is yij . To do distillation, the student needs to mimic the teacher’s outputs.
Therefore ℓij(yij , f ij(x)) should be a loss that minimizes the distance between
y = T (x) and f(x), e.g., the softmax cross-entropy loss.

Distillation using only synthetic images. Having different definitions of
ℓ(y, f(x)) in R(f) leads to different distillation methods. A common way in most
existing works is to define ℓ(y, f(x)) directly using the synthetic output images
{y} from the teacher. Given y = T (x), the basic idea for training the student
f is to maximize the element f ij,yij

(x) in the output probabilities f ij(x) of the
student for each pixel i, j.

5 We interchangeably use teacher or target model/generator.
6 The analysis of this paper can be straightforwardly extended to three channel images.
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3 Theoretical analysis of dark knowledge in distilling the
generator

This section introduces the novel concept of dark knowledge in distilling generators
and demonstrates that harvesting this dark knowledge can train a student
generator f which generalizes better. In generator distillation, the goal is to
transfer the knowledge of the teacher T as much as possible to a student f . We
use the risk (generalization error) of the student f shown in Eq. 1 to evaluate the
quality of the distilled student model. The risk describes the generalization ability
of f on unseen new data sampled from P other than the observed training dataset
D = {(xn, yn)}Nn=1 ∼ PN . A lower risk value means having a better distilled f .
In the following, we first introduce the concept of dark knowledge in generative
models and then derive the distillation empirical risks.

3.1 Dark Knowledge of Generators

From a Bayesian viewpoint, each synthetic image y from the teacher is generated
by a conditional distribution P(y|x) where the distribution P is potentially
determined by the trained teacher generator T . Obviously, the knowledge of
P(y|x) cannot be fully extracted from the teacher’s synthetic image output. A
synthetic image y is only a sample drawn from the distribution P(y|x). Thus,
in generator distillation we call the underlying distribution P(y|x) the “dark
knowledge” of the teacher T . The next section demonstrates that using the dark
knowledge P(y|x) to define ℓ(y, f(x)) so as to have a precise empirical estimation
of R(f) can facilitate the training of a student in generator distillation.

We consider two ways of distilling teacher generator: i) by solely the synthetic
image outputs of T , and ii) by using the underlying dark knowledge P(y|x) of T .
We analyze the generalization error of the student f under both distillation ways
by comparing their (empirical) risks. According to the introduction in Section 2,
in generator distillation, R(f) should be minimized by the algorithm where Eq. 1
shows the general definition of R(f). However, calculating the exact value of
R(f) is intractable because P is unknown or it has no explicit expression. Hence
empirical risk definitions are required to approximate R(f). The aforementioned
two distillation ways leverage two different corresponding empirical risk definitions.
These will be illustrated in detail in the following.

3.2 Distillation Empirical Risk

Distillation with sole synthetic images. First, we introduce the distillation
empirical risk of using T ’s synthetic image outputs. In this way of distillation,
the dataset D = {(xn, yn)}Nn=1 collected from the teacher T is used to train
the student f . We have the following distillation empirical risk definition to
approximate R(f):

R̂(f ;D) =
1

N

∑
n∈[N ]

∑
i

∑
j

ℓij(yij
n , f ij(xn)) =

1

N

∑
n∈[N ]

∑
i

∑
j

e⊤
y
ij
n
ℓij(f ij (xn)), (2)

where eyij
n

is the one-hot vector encoding of the color value of yijn , and ℓij(f ij (x)) =

[ℓij(1, f ij(x)), ..., ℓij(C, f ij(x))] ∈ RC is a vector of loss values for each possible
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color of the pixel with index i, j. As shown in Eq. 2, this empirical risk definition
only needs the synthetic image yn from T to decide the value of eyij

n
. Then we

can calculate R̂(f ;D) with no additional information from T .
Distillation with dark knowledge. Here we assume that besides the final
synthetic image output y we also get the conditional probability P(y|x) (the
dark knowledge) of a given input x from T . Consequently, we can define another
distillation empirical risk R̂α(f,D) to approximate R(f):

R̂α(f,D) =
1

N

∑
n∈[N ]

∑
i

∑
j

pij (xn)
⊤
ℓij((f ij (xn)) (3)

where the conditional probability of pixel yij color is denoted by

pij(x) = [P(yij |x)]yij∈[C] (4)

Connection to the empirical risk. R̂(f ;D) (Eq. 2) can be seen as an ap-
proximation of R̂α(f,D) (Eq. 3). Considering that: R(f) = E

(x,y)∼P
[ℓ(y, f(x))] =

E
x
[ E
y|x

[ℓ(y, f(x))]], we know that R̂α(f,D) is an empirical estimate of E
x
[ E
y|x

[ℓ(y, f(x))]]

over the random variable x. If we further use the one-hot encoding e⊤
yij
n

to approx-
imate pij(xn) in Eq. 3, we have Eq. 2. To distinguish these two empirical risks,
we call R̂(f ;D) (Eq. 2) as the distillation empirical risk with synthetic images
and R̂α(f,D) (Eq. 3) as the distillation empirical risk with dark knowledge.

3.3 Generalization of the student generator

Given a teacher T , a student model f can be trained by optimizing the distillation
empirical risk with synthetic images (Eq. 2) or the distillation empirical risk with
dark knowledge (Eq. 3). In this section, we analyze the generalization ability of
the student f under the two different distillation empirical risk bounds. In the
following, we show that a student generator trained with Eq. 3 is expected to
generalise better than trained under Eq. 2, which means using the dark knowledge
can facilitate generator distillation. Although both Eq. 2 and Eq. 3 are unbiased
estimates of R(f), the variances of Eq. 2 and Eq. 3 over the observed training
dataset D are different. This is formally demonstrated by Theorem 1 (proof in
the supplementary).

Theorem 1. Let D be a training dataset sampled from PN . V represents the
variance of a random variable. For any fixed hypothesis f : X → RI×J×C ,
VD∼PN

[
R̂α(f ;D)

]
≤ VD∼PN [R̂(f ;D)]

The two variances in Theorem 1 equal to each other when pij(x) is concentrated
on one single color and the probability on all other colors is zero. However, this
case rarely happens. The benefit of having lower variance is that the student f
generalises better as shown in the following. Applying Theorem 6 of [15], we have
the following bound for the distillation empirical risk with dark knowledge.
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Proposition 1. Let D ∼ PN and F be a class of hypotheses f : X → RI×J×C

with induced class H ⊂ [0, 1]X of h(x) =
∑

i

∑
j p

ij (x)
⊤
ℓij((f ij (x)). Sup-

pose H has uniform covering number N∞. For any δ ∈ (0, 1) and set MN =
N∞(1/N,H, 2N). Then with probability at least 1− δ over D we have:

R(f) ≤ R̂α(f ;D) +O
(√

VN (f)/N ·
√
log (MN/δ)+ log (MN/δ) /N)

where VN (f) is the empirical variance of {h(xn)}Nn=1.

Note that using the same procedure we can derive a similar bound for the
distillation empirical risk with synthetic images (Eq. 2). Considering Theorem 1
and the two bounds, we know that the bound for Eq. 3 has lower variance penalty.
Increasing the training dataset size N (number of queries on T ), Eq. 3 has a
risk bound with a better rate of convergence. Thus, a student model trained by
minimizing the distillation empirical risk with dark knowledge generalises better
compared to one using the distillation empirical risk with synthetic images. We
conclude that a student generator f trained by the dark knowledge P(y|x) is
better than using sole synthetic image outputs {y} from T .

3.4 Impact of probability approximation

In the aforementioned analysis, we showed that having the dark knowledge
P(y|x) from the teacher T allows for a more precise empirical approximation
of R(f). Thus it benefits the training of the student f in generator distillation.
However, as mentioned before, doing distillation with dark knowledge requires
the conditional probability P(y|x) for any given input x. In ideal cases, the
intermediate layer output of T , e.g., the second last layer output in VAE, can
provide P(y|x). Then, it can be used to train the student model. Unfortunately,
for some teacher models T , e.g., GANs, the intermediate layer output cannot
directly show P(y|x). We refer to the generators that can provide P(y|x) in the
intermediate layer output as probabilistic generators and the generators that
cannot show the probability as non-probabilistic generators. To distill the dark
knowledge from non-probabilistic generators, it is required to approximate P(y|x).
Let P̃(y|x) be an approximated probability of P(y|x). In this section, we study
the impact on the student generalization error using such an approximated
distribution to do distillation. Using the approximated probability to train the
student f , referring to Eq. 3 we have the following distillation empirical risk:

R̃α(f,D) =
1

N

∑
n∈[N ]

∑
i

∑
j

p̃ij (xn)
⊤
ℓij((f ij (xn)), (5)

where p̃ij (xn) is the approximation of pij (xn). According to Eq. 1 and Eq. 4 we
can rewrite the population risk R(f) as:

R(f) = E
x
[ E
y|x

[ℓ(y, f(x))]] = E
x
[
∑
i

∑
j

pij(x)
⊤
ℓij(f ij(x))]. (6)
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The following Proposition 2 (proof in the supplementary) reveals the connection
between the approximation of P(y|x) and the generalization error of f .
Proposition 2. If the loss ℓ is bounded, we train the student model by minimizing
the empirical risk shown in Eq. 5. For any hypothesis f : X → RI×J×C ,

E
[
(R̃α(f ;D)−R(f))2

]
≤ 1

N
· V[

∑
i

∑
j

p̃ij (x)⊤ ℓij((f ij (x))]+

O(E[
∑
i

∑
j

∥∥∥p̃ij(x)− pij(x)
∥∥∥
2
])2.

(7)

On the right side of Eq. (7), when N is big, the second term dominates the upper
bound of the gap R̃(f ;D)−R(f). That means minimizing the distance between
the approximated probability P̃(y|x) and the ground truth probability P(y|x)
yields a tighter upper bound of the risk gap R̃(f ;D) − R(f). Hence, a tighter
approximation leads to a better student model.

4 DKtill: Extracting Dark Knowledge for Training
Student Generator

In the previous section, we theoretically demonstrate that using the underlying
dark knowledge of a teacher T can improve the generator distillation and train
a student f that generalizes better. However, to make use of the underlying
dark knowledge in distillation, we first need to know how to extract and use
the dark knowledge from a teacher generator T . In this section, we propose two
methods to extract the dark knowledge based on the class of the generator: one for
probabilistic generators and one for non-probabilistic generators. For verifying the
effectiveness of the extracted dark knowledge, we propose a generator distillation
algorithm DKtill. When distilling T , DKtill makes the student f to mimic the
extracted (approximated) P(y|x) besides the synthetic images y = T (x) (see the
supplementary for more implementation details).

4.1 Extracting from probabilistic generators

Probabilistic generators, e.g., variational auto-encoder (VAE) [10], commonly
assume the existence of latent variables. More in detail, they assume that a
synthetic image y is generated by some random process involving some latent
random variables. In such generators, to do distillation with dark knowledge, the
conditional probability P(y|x) can be calculated by some middle layer outputs
of the teacher generator. In the following, we take VAE as an example for dark
knowledge extraction in probabilistic generators. The training method of VAE is a
kind of variational inference that uses q(x|y) to approximate the intractable true
posterior p(x|y) and maximize the evidence lower bound. For VAE distillation, we
focus on its trained decoder. In the decoder, the synthetic image is produced
by the conditional distribution P(y|x) = N (y;µ, σ2I), where the distribution
parameters µ and σ are the middle layer outputs of the decoder neural network.
Thus, given any input x, we can obtain P(y|x) by getting the output value of µ
and σ from the middle layers.
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4.2 Extracting from non-probabilistic generators

Non-probabilistic generators, e.g., GANs, do not assume any probability relation-
ship between output image y and latent random variables. y is directly produced
by a neural network mapping T (x), where T is the teacher generator. Different
from probabilistic generators, in non-probabilistic generators we cannot derive
the knowledge of P(y|x) by some middle layer outputs of T . In the following,
we take GANs as an example to show extracting dark knowledge P(y|x) from
non-probabilistic generators. Given a GANs teacher generator T , we let gα be
the second last layer and gβ be the last layer of T . Given an input x into the
teacher generator, the intermediate output of gα is represented by α. Then the
corresponding synthetic image can be represented as y = gβ(α). To get the dark
knowledge, we can apply a differentiable probabilistic network (e.g., MLP) gγ to
replace the original last layer gβ . The input of gγ is gα’s output, α and the output
of gγ is a tensor that takes the shape corresponding to the underlying Bayes
probabilities. The shape of gγ(α) is decided by I, J and C where I and J are
decided by the synthetic image size and C depends on the color range. The final
synthetic image is now sampled from the tensor gγ(α). If T is untrained, we can
train it from scratch using this new architecture. Thus, after the training, we can
easily get P(y|x) from gγ(α). If the given T is pre-trained, we can just fine-tune
the parameters of gγ using the optimization objective, argmingγ ||gβ(α)− ŷ||1,
where ŷ ∼ Discrete(gγ(α)) is the synthetic image sampled from gγ(α).

5 Empirical illustration

5.1 Setting

Datasets: we consider the datasets, Facades [6] and CelebA [13]. In the case of
conditional generation, we focus on the gender class, i.e., male and female, in the
CelebA dataset. We downsampled the CelebA images from originally 178 × 218
to 64 × 64 pixels. The input images size of Facades is 256 × 256.
Networks: the network structures of all generators are based on convolutional
neural networks [10, 18]. For VAE, we compress a 27.2MB teacher into a 2.4MB
student. As for conditional GANs, a 2.8MB student is distilled from a 14.4MB
teacher. In the image translation experiment, Pix2pix is compressed from 217.8MB
into 14.0MB.
Distillation process and baseline: for both DKtill and the baseline (abbreviated
as “image” [4]), we train the student generators, by minimizing the distance of
the generated images to the teacher from the same random inputs (details in
Appendix). However, instead of only using generated images (baseline), DKtill
also uses in parallel the information of dark knowledge (underlying distribution)
for loss minimization. Note that although the baseline distillation is originally
designed for Image Translation, we adopt it for VAE and conditional GANs.

Evaluation metrics: we use Fréchet Inception Distance (FID) to evaluate the
quality of the images produced by the distilled student model. Lower values of
FID indicate higher quality of generated data.
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5.2 Distilling probabilistic generators

200 400 600 800 1000 1200
Number of samples (x 1k)

10.0
12.5
15.0
17.5
20.0
22.5
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27.5
30.0

FI
D

images
DKtill
teacher

(a) VAE

200 400 600 800 1000 1200
Number of samples (x 1k)

0
20
40
60
80

100
120
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D

images
DKtill
teacher

(b) conditional GANs

Fig. 1: FID of distilling VAE and condi-
tional GANs on CelebA.

Here, we distill VAE (the teacher gen-
erator) using the baseline and DKtill.
Fig. 1 shows the comparison results
based on FID for VAE and conditional
GANs (Fig. 1a). We also illustrate the
FID of images generated by the teacher
VAE, i.e., the horizontal line in Fig. 1a.
The FID value decreases during the
training, from 30.61 to 28.76, and 22.61
to 16.49, for baseline and DKtill respectively, demonstrating lower distance to
ground truth images. When looking at the final FID (after 128K examples),
DKtill is 42.66% lower than the baseline image and 62.14% higher than the
teacher generator. Here FID for the teacher VAE is 10.17, which is much better
than both students. This is within our expectation as the teacher model is 10X the
size of the students. In general, we can see that DKtill, using the dark knowledge
provided by the intermediate output of teacher VAE, can significantly improve the
quality of distillation. As the number of examples increases, the student learns
the teacher’s mapping and distribution better. Using dark knowledge can achieve
lower FID and thus it can distill better.

5.3 Distilling non-probabilistic generators
Ground truth Input Teacher (217.8MB) Images (14.0MB) DKtill (14.0MB)

Fig. 2: Pix2pix image translation GANs on Facades.

Here we implement two tasks
for non-probabilistic gener-
ators: the conditional GANs
and image translation as the
baseline [4]. Fig. 1b evalu-
ates the distillation on condi-
tional GANs.We can see that
FID shares the same trend
as distilling the probabilistic
generator VAE. Thus, our proposed method DKtill is able to effectively extract
knowledge from non-probabilistic teacher generators too, given the approximate
nature of dark knowledge. The reason why FID of DKtill gets much closer to
the teacher than Fig. 1a is that the teacher model is only 5X bigger in parameter
size than the students. When looking at the final FID (after 128K examples),
DKtill is 78.99% lower than the baseline image and only 17.77% higher than
the teacher generator.

Let us zoom into the distillation results of the image translation task in Fig. 2.
The goal is to train the translation GANs so that given input (as the “input” in
visualization), the Pix2pix network approximately maps it into the ground truth
image. From the results, we observe that even with 6% size of the teacher model
(FID: 35), DKtill is able to distill the image translation generator at high quality
(FID: 35) with dark knowledge, especially compared with the baseline (FID:
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37.88). By distillation, the floating point operations per second (FLOPs) on one
input image is reduced from 6.06G (Teacher) to 0.83G (Student).

5.4 Small generators through DKtill

(a) ground truth

(b) teacher (27.2MB)

(c) images (27.2MB)

(d) DKtill (27.2MB)

(e) DKtill (2.4MB)

Fig. 3: VAE on CelebA.

In addition to achieving FID simi-
lar to the teacher model, we show
another advantage of exploring dark
knowledge, i.e., smaller student gen-
erator. We first solicit the synthetic
images generated by the following
model in Fig. 3: the ground truth,
teacher VAE, 27.2MB student VAE
trained by baseline, 27.2MB student
VAE from DKtill, and 2.4MB stu-
dent VAE from DKtill. Without any
surprise, DKtill achieves better dis-
tillation quality when using bigger
networks, comparing Fig. 3d and
Fig. 3e. Another observation is that,
smaller student (2.4MB) VAE trained
by DKtill, achieve better image qual-
ity than baseline with 27.2MB, com-
paring Fig. 3c and Fig. 3e.

The conditional GANs result is also
presented in Fig. 4 (on gender class,
i.e., male and female for the left 3 and
right 3 pictures). Note that here we
do not show the corresponding real
images of the synthetic ones since con-
ditional GANs do not have a latent
code encoder as VAE. Thus, having the latent code of a real image for reproducing
some corresponding synthetic ones is difficult. Given the same small network
with 2.8MB for DKtill and the baseline, DKtill shows better generated image
quality than baseline. These results again prove the existence of dark knowledge
for generators and its benefit for distilling generators.

6 Related work

Knowledge distillation [5, 2, 7, 12, 9], which transfers the knowledge from a big
network to a small one, enables the light-weight deep learning. Generally, knowl-
edge distillation is studied on classifiers for model compression, e.g, [5] compresses
the knowledge of an ensemble into a single model which is much easier to deploy.
Such techniques are used to train surrogate models [19, 11, 23], even without the
necessity of knowing the target model parameters.
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(a) teacher (14.4MB)

(b) images (2.8MB)

(c) DKtill (2.8MB)

Fig. 4: Conditional GANs on CelebA.

Besides, knowledge distillation has
also been applied on GANs [1, 20, 3,
20]. KDGAN [20] simultaneously opti-
mizes the distillation and adversarial
losses between a classifier, a teacher,
and a discriminator, to learn the true
data distribution at the equilibrium.
To further improve the performance,
[3] include a student discriminator to
measure the distances between real
data, and the synthetic data gener-
ated by student and teacher genera-
tors. Recently, there are theoretical
analyses on knowledge distillation for
classifiers [14, 21, 17, 16, 22, 8]. On the
one hand, [16] first provides the theoretical analysis of self-distillation, fitting a
nonlinear function on Hilbert space and L2 regularization. This analysis sheds
light on the relation between self-distillation rounds and (under-)over- fitting.
On the other hand, based on neural tangent kernel, [8] provides a transfer risk
bound for the linearized model of the wide neural networks, revealing the impact
of soft (hard) labels for (im)perfect teachers according to the designed data
inefficiency metric. Furthermore, [22] explores the bias-variance trade-off brought
by distillation with soft labels. According to their analysis, novel weighted soft
labels are inspired to help the network adaptively handle the trade-off. However,
none of the existing work provides a generalization analysis on generators.

7 Conclusion

In this paper, we model the knowledge distillation for generative models from
a Bayesian perspective, identifying dark knowledge and its influence on the
generalization ability of student models, i.e., lower empirical risk. Furthermore, we
propose a dark knowledge based distillation optimization, DKtill, to train student
generators on both non-probability-based and probability-based generative models.
Evaluation results on three datasets across different scenarios show that synthetic
images from DKtill achieve lower FID by up to 78.99%, in contrast to using
images only. DKtill also generates images of similar quality as the teacher model,
using smaller and more compact generator networks.
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