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Abstract

Motivation: Mutational signatures are a critical component in deciphering the genetic alterations that underlie cancer
development and have become a valuable resource to understand the genomic changes during tumorigenesis. Therefore, it
is essential to employ precise and accurate methods for their extraction to ensure that the underlying patterns are reliably
identified and can be effectively utilized in new strategies for diagnosis, prognosis and treatment of cancer patients.
Results: We present MUSE-XAE, a novel method for mutational signature extraction from cancer genomes using an
explainable autoencoder. Our approach employs a hybrid architecture consisting of a nonlinear encoder that can capture
nonlinear interactions among features, and a linear decoder which ensures the interpretability of the active signatures.
We evaluated and compared MUSE-XAE with other available tools on both synthetic and real cancer datasets and
demonstrated that it achieves superior performance in terms of precision and sensitivity in recovering mutational signature
profiles. MUSE-XAE extracts highly discriminative mutational signature profiles by enhancing the classification of primary
tumour types and subtypes in real world settings. This approach could facilitate further research in this area, with neural
networks playing a critical role in advancing our understanding of cancer genomics.
Availability: MUSE-XAE software is freely available at https://github.com/compbiomed-unito/MUSE-XAE
Supplementary Information: Supplementary data are available at Bioinformatics online.

Key words: Autoencoder, Mutational Signatures, Explainability, Cancer, Genomics

Introduction

Mutational signatures are patterns of somatic mutations that

reflect the underlying biological processes that drive cancer

development (Alexandrov et al., 2013a,b; Helleday et al., 2014).

Mutational signatures have become a valuable resource for

deciphering the genetic alterations underpinning cancer and for

developing targeted therapies (Ma et al., 2018; Secrier et al.,

2016; Schulze et al., 2015). In recent years, many methods have

been developed for the extraction of mutational signatures,

most of which are based on matrix factorization techniques,

such as non-negative matrix factorization (NMF) (Islam et al.,

2022; Blokzijl et al., 2018; Bayati et al., 2020; Vöhringer

et al., 2021; Ardin et al., 2016; Degasperi et al., 2020) and

its probabilistic versions (Gori and Baez-Ortega, 2018; Fischer

et al., 2013; Rosales et al., 2017). These approaches have been

applied to several types of cancer, identifying more than 60

distinct signatures associated with specific mutational processes

(Alexandrov et al., 2020; Tate et al., 2019).

Although these techniques have proven to be highly effective

for the extraction of mutational signatures, some studies have

highlighted possible issues that may arise during extraction

and should deserve attention and further investigation (Maura

et al., 2019; Koh et al., 2021). Many of the mutational

signatures found in the COSMIC catalogue currently have

no known aetiology. Some are merely statistically linked

to a specific process, whereas others lack any statistical

association. In addition, the high degree of similarity between

certain signatures may suggest the existence of non-biological,

overfitted signals (Pancotti et al., 2023; Schumann et al., 2019;

Lal et al., 2021).

Future extraction techniques should consider these issues,

implementing constraints in the decomposition to reduce

the detection of overly similar profiles. Furthermore, NMF

identifies only linear interactions, which could be a limitation

as it might not capture potential nonlinear dependencies

within the genome that can contribute to cancer development

(Wojtowicz et al., 2021; Kičiatovas et al., 2022).
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Fig. 1. MUSE-XAE schematic architecture. MUSE-XAE features a nonlinear encoder, made up of three layers that leverage a softplus activation

function with batch normalization. The decoder is designed to be linear in order to enhance the interpretability.

To overcome these challenges, we present MUSE-

XAE, MUtational Signature Extraction with eXplainable

AutoEncoder. This model includes a nonlinear encoder

and a linear decoder with a non-negative constraint and

a minimum volume regularization (Miao and Qi, 2007)

to detect potential nonlinear dependencies while preserving

signature interpretability. Autoencoders have been successfully

implemented in various domains, including genomics, to obtain

compact and informative data representations. Autoencoders

employing a hybrid architecture with a nonlinear encoder

and a linear decoder have been applied in the context of

single-cell RNA-seq and transcriptomic data (Svensson et al.,

2020; Seninge et al., 2021), achieving great success due to

their explainability while preserving powerful performance

capabilities. However, to the best of our knowledge, no

applications of this architecture have been developed so far in

the context of mutational signature analysis.

To fill this gap, this paper introduces MUSE-XAE and shows

its effectiveness on different cancer datasets by comparing it to

existing state-of-the-art approaches in both synthetic scenarios

and real-world applications. In a comprehensive comparison

with 10 other de novo extraction tools considering realistic

synthetic scenarios, MUSE-XAE resulted the best performing

model with high sensitivity and precision in recovering the

true signature profiles. We then evaluated our approach in two

real world settings: 2,780 cancer samples from the Pan-Cancer

Analysis of Whole Genomes (PCAWG) study (icg, 2020), and

1,865 samples from another whole-genome sequencing (WGS)

cohort (Islam et al., 2022). MUSE-XAE was able to extract

highly discriminative signature profiles that can significantly

improve the classification of tumour types and subtypes.

Materials and methods

MUSE-XAE architecture

An autoencoder is a type of neural network capable of learning

a lower-dimensional representation of the data. Given an input

space X, it consists of an encoder network f , represented by one

or more layers, that maps the input data to a lower-dimensional

latent space Z, and a decoder network g that reconstructs

the input space from the latent representation. The goal of

an autoencoder is to minimize the reconstruction error L(x, x̂)

between the original input x and the reconstructed output x̂.

The general equations that define an autoencoder are:

z = f(x) = Encoder (1)

x̂ = g(z) = g(f(x)) = Decoder (2)

usually, both f and g represent nonlinear activation functions.

MUSE-XAE implements a hybrid architecture with a

nonlinear encoder to learn a latent representation z of cancer

samples, and a linear decoder with a non-negative constraint

and minimum volume regularization to reconstruct the original

input, such as x̂ = zWT . Specifically, MUSE-XAE encoder

f includes three hidden layers with batch normalization and

a softplus activation function. The latter function offers

continuous differentiability and a smoother transition from

negative to positive values compared to ReLU, reducing the risk

of neuron inactivation, with improved stability (Zheng et al.,

2015). The decoder g is characterized by a weight matrix W

with non-negativity constraint, a linear activation function that

ensures interpretability, and a minimum volume regularization

that helps the model find a more disentangled representation.

In addition, MUSE-XAE exploits a non-negative Poisson

likelihood function to take into consideration the count nature

of the input data, and an early stopping criterion to avoid

overfitting. Considering all the contributions, the total loss

function L(x, x̂) can be written as:

L(x, x̂) = −x log(x̂) + x̂ + β log
(
det

(
WW

T
+ I

))
(3)

subjected to W ≥ 0

where the first two terms refer to the Poisson likelihood

function, while the third term represents the logarithm of the

minimum volume constraint. The β coefficient regulates the

strength of the regularization. Referring to the mutational

signature terminology, the latent representation z represents

the cancer genome’s exposures, while the decoder weight

matrix W represents the mutational signatures. MUSE-XAE

architecture is displayed in Fig.1.
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MUSE-XAE 3

Signatures Extraction

MUSE-XAE de novo extraction procedure is summarized in

Algorithm 1. Training a neural network requires a substantial

amount of data to exploit its capacity and fit the parameters

effectively. In MUSE-XAE implementation, we used a data

augmentation strategy to overcome this challenge.

Algorithm 1. MUSE-XAE De Novo Extraction procedure

Given C ∈ Rm×96 ▷ tumour catalogue matrix

Step 1: Data Bootstrapping

Obtain the augmented count matrix Caug

bootstrapping each genome t times from M(N, p)

Step 2: Training

for k in 1..K signatures do

for i in 1..n iterations do

MUSE-XAE.train(Caug)

Cpred=MUSE-XAE.predict(C)

Collects Erec = ∥C − Cpred∥F

Collects Wik

Step 3: Clustering

for each k in 1..K do

K-Means clustering with matching on {W1k, ...,Wnk}
Obtain consensus Signatures matrix Sk

Step 4: Filtering

Given threshold thavg and thmin

Filter solutions with

silhouetteavg > thavg and silhouettemin > thmin

Step 5: Optimal Solution Selection

Sort filtered solutions based on Erec,

The optimal solution is the one with the lowest Erec

Specifically, given a tumour catalogue matrix C ∈ Rm×96,

where m is the number of samples and 96 is the number of

mutational channels, for each cancer genome with N total

number of mutations, we determined the relative mutation

frequency p for each of the 96 mutational classes. Then, we

generated new data points by bootstrapping cancer genomes t

times through a multinomial distribution M(N, p), obtaining

the augmented count matrix Caug. This approach has already

been used by other tools to ensure the stability of a consensus

signature (Alexandrov et al., 2013a; Islam et al., 2022;

Alexandrov et al., 2020). Here, we repeated the process t times

to increase the dataset size. Then, in order to select the optimal

number of active signatures K∗, we used a revised version of

the NMFk approach, originally described by (Nebgen et al.,

2021) and also adopted by SigProfilerExtractor. Specifically,

for each number k = 1, ..., K of candidate signatures, MUSE-

XAE was trained n times with different weights’ initialization to

guarantee a better stability. Subsequently, a custom K-Means

clustering with matching and based on the cosine similarity

distance was performed on the set of the decoder weight

matrices {W1k...Wnk} to find the consensus signature matrices

{Sk}. This custom clustering approach exploits the Jonker-

Volgenant algorithm (Jonker and Volgenant, 1987) to solve the

linear assignment problem (i.e. the matching) and to find k

clusters of equal size n. Once obtained the set of clusters, whose

centroids represent the signature matrices {Sk, k = 1...K}, we

considered only the solutions with an average and a minimum

silhouette scores above a fixed threshold, choosing as the best

solution K∗, that allows the minimum reconstruction error of

the original matrix of cancer samples.

A detailed description is available in Supplementary (section

MUSE-XAE De Novo Extraction procedure and Fig. S1). The

size factor t for data augmentation, the number of repetitions

n for each candidate signature k and the thresholds for the

average and minimum silhouette scores, i.e. thavg and thmin,

can be specified by the user. The open-source code is available

at https://github.com/compbiomed-unito/MUSE-XAE.

Signatures Assignment

Once the profiles of active signatures within a set of genomes

have been identified, it is necessary to understand which

signatures cause mutations in a genome and in what amount,

that is, we need to assign the contribution of each extracted

signature to each genome. Therefore, we used a slightly

modified version of MUSE-XAE for the signature extraction.

Specifically, we normalized the computed consensus matrix

Sk into Sknorm
, which is used to initialize the weights of the

decoder, and then freeze them, so that the decoder is no longer

trainable and only the weights of the encoder are trained.

In order to obtain a sparse representation and to avoid over-

assignments of the mutational signatures, we used an L1

penalty both for the weights of the last layer of the encoder and

for the output of the encoder after a ReLU activation, training

the network until convergence. Our new latent representation z

represents the exposure of the signatures within the genomes,

i.e., the number of mutations of a certain mutational class

that a signature causes within a genome. We summarized the

signature assignment procedure in the Algorithm 2.

Algorithm 2. Signature Assignment Procedure

Given C ∈ Rm×96 ▷ SBS catalogue matrix

Step 1: Signature Profiles Normalization

Normalize the consensus matrix Sk from Algorithm 1.

Get Sknorm

Step 2: Initialization and Freezing of Weights

Initialize and freeze decoder weights with Sknorm

Step 3: Improve Sparsity

Add an L1 penalty on the weights of the last encoder layer

Add an L1 penalty on the output after activation

Step 4: Train the network and obtain Exposures

MUSE-XAE.train(C)

Exposures=MUSE-XAE.z

De Novo Extraction Scenarios

To evaluate the performance of MUSE-XAE in the context

of mutational signature extraction, we considered 5 realistic

synthetic scenarios (ftp://alexandrovlab-ftp.ucsd.edu/pub/

publications/Islam_et_al_SigProfilerExtractor/), available

from SigProfilerExtractor (Islam et al., 2022). Specifically:

• Scenario 1: 1,000 synthetic samples, modelling a subset of

the pancreatic adenocarcinoma dataset from PCAWG. The

11 ground-truth signatures are based on COSMIC.

• Scenario 2: 1,000 synthetic tumours from flat, relatively

featureless mutational signatures, including a mix of

500 synthetic renal cell carcinomas (high prevalence and
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mutation load from SBS5 and SBS40) and 500 synthetic

ovarian adenocarcinomas (high prevalence and mutation

load from SBS3), with 11 COSMIC-based signatures.

• Scenario 3: 1,000 synthetic tumours from signatures with

overlapping and potentially interfering profiles, mostly

SBS2, SBS7a and SBS7b. The mutational load distributions

were drawn from bladder transitional cell carcinoma (SBS2)

and skin melanoma (SBS7a, SBS7b), with 11 COSMIC-

based signatures.

• Scenario 4: 1,000 synthetic tumours emulating a mix of

500 synthetic renal cell carcinomas (high prevalence and

mutation load from SBS5 and SBS40) and 500 synthetic

ovarian adenocarcinomas (high prevalence and mutation

load from SBS3). In this scenario, only 3 COSMIC-based

signatures (SBS3, SBS5, SBS40) are present.

• Scenario 5: 2,700 synthetic samples with mutational

spectra matching those in PCAWG, including 300 spectra

from each of 9 different cancer types: bladder transitional

cell carcinoma, oesophageal adenocarcinoma, breast

adenocarcinoma, lung squamous cell carcinoma, renal cell

carcinoma, ovarian adenocarcinoma, osteosarcoma, cervical

and stomach adenocarcinoma. The ground-truth signatures

are 21 signatures based on COSMIC.

We extracted the mutational signatures from each of these

scenarios using MUSE-XAE and applied the same performance

metrics as in (Islam et al., 2022). We used the Hungarian

algorithm (Jonker and Volgenant, 1987) to match predicted and

known signatures according to the cosine-similarity. Since the

signatures in each scenario are known, an extracted signature

was considered correctly identified, or a True Positive (TP), if

the cosine similarity between extracted and real signatures was

≥ threshold. If the profile of a signature is missing or the cosine

similarity was < threshold, it was considered a False Negative

(FN) or Positive (FP), respectively.

For each scenario, precision, sensitivity, and F1 score were

calculated from the corresponding confusion matrices at

different cosine similarity thresholds, ranging between 0.8 and

1. A description of the evaluation metrics was reported in

Supplementary (section Evaluation metrics).

Real World datasets

In order to evaluate the performance of MUSE-XAE also in

real world scenarios, we applied our method to both the

Pancancer Analysis of Whole Genomes (PCAWG) dataset,

including 2,780 tumour samples, and a WGS cohort of 1,865

genomes collected from various studies and including the

International Cancer Genome Consortium (ICGC), as compiled

in (Islam et al., 2022). For both datasets, we performed: 1) a

de Novo extraction of mutational signatures and comparison

of the profiles with those of SigProfilerExtractor and with

the known signatures from COSMIC (Tate et al., 2019) and

Signal (Degasperi et al., 2022) databases; 2) an evaluation

of how the signatures and consequently the exposures are

discriminative, performing a multi-class classification of the

cancer types. Specifically, we used the exposures as new features

which were fed into a Random Forest to classify both the

primary sites and the cancer subtypes. Finally, we evaluated

the performance in terms of balanced accuracy, Matthews

Correlation Coefficient (MCC) and Kohen Kappa score in a

5-fold cross-validation setting. A description of the metrics is

available in Supplementary (section Evaluation metrics).

Results

Data augmentation improves robustness and accuracy

We first investigated the influence of data augmentation on the

extraction of mutational signatures in each of the five synthetic

scenarios. Specifically, we performed de novo extraction with

MUSE-XAE for each of the five datasets, varying the data

augmentation level from 1 to 100 times the original dataset size.

We repeated the extraction five times at each augmentation

level to evaluate stability and accuracy. As depicted in Fig. 2,

for the five datasets there is a trend where an increase in data

augmentation not only enhances run-to-run stability, but also

improves the correct estimation of the real number of profiles.

To further assess the effects of data augmentation, we computed

the average precision, sensitivity and F1 scores across the five

scenarios at different thresholds of the cosine similarity between

the extracted and the real profiles, ranging between 0.8 and 1.

Fig. 3 shows the overall performance. Notably, the sensitivity in

the signature profile detection improves with the size of the data

augmentation. This confirms that the use of data augmentation

is a strategy that improves the detection of signature profiles,

and it can be used as an effective technique to further enhance

the extraction performance.

De Novo extraction comparison in synthetic scenarios

We compared MUSE-XAE (using 100 data augmentation)

with 10 state-of-the-art de novo signature extraction

tools, considering the results reported in ftp:

//alexandrovlab-ftp.ucsd.edu/pub/publications/Islam_et_

al_SigProfilerExtractor/. Precision, sensitivity and F1 score

were computed in each scenario at different thresholds of the

cosine similarity between the extracted and the real profiles,

ranging between 0.8 and 1 for each method. Supplementary

Fig. S2 shows precision, sensitivity and F1 score of the top 10

performing methods averaged across the five scenarios, while

Fig. 4 and Supplementary Table S1 show the distribution of the

normalized Area Under the Curve (AUC) for the performance

scores. In addition, Supplementary Fig. S3 reports, for each

scenario, the F1 scores at different thresholds of the cosine

similarity. Observed results reveal that MUSE-XAE is, on

average, the best performing method in all metrics, followed

by SigProfilerExtractor and SigProfilerPCAWG.

De Novo Extraction in real world datasets

We applied MUSE-XAE for de novo extraction of mutational

signatures in 2,780 samples from PCAWG (18 cancer primary

sites and 37 cancer subtypes), and in 1,865 samples from

an additional extended WGS cohort (15 cancer primary sites

and 23 cancer subtypes). We used MUSE-XAE with the data

augmentation strategy (i.e. 100 times the original dataset size

for 100 iterations) to find stable consensus signatures. MUSE-

XAE found 22 and 23 mutational signature profiles in the

PCAWG and the extended WGS cohort, respectively. Their

profiles are presented in Supplementary Fig. S4 and Fig. S5.

By matching the 22 profiles identified by MUSE-XAE with the

21 found by SigProfilerExtractor in the PCAWG cohort, the

two methods extracted 21 highly similar profiles, showing a

mean cosine similarity of 0.98, with a minimum of 0.92. (Fig.

5, left panel). On the other hand, in the extended WGS cohort,

MUSE-XAE found 23 signatures, while SigProfilerExtractor

21, with a mean cosine similarity of 0.90 but a minimum

of 0.36 between the 21 most similar signatures. In Fig. 5

it is possible to observe that, in the extended WGS cohort

(right panel), although there are 19 out of 21 profiles with
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a cosine similarity greater than 0.8, the distribution along

the diagonal is lower than that one observed in PCAWG

(left panel). Moreover, there are two pairs of signatures with

a notably low cosine similarity, specifically 0.69 and 0.36,

meaning that the two methodologies extract different signature

profiles. Therefore, in general, although the two methods are

fairly in agreement, MUSE-XAE seems to identify more and

different profiles compared to SigProfilerExtractor.

Given that two random 96-component vectors have a cosine

similarity of 0.75, and that 0.80 is commonly used as a threshold

to determine if two signatures represent the same profile, we

can observe from the Supplementary Table S2 that almost all

MUSE-XAE profiles from the PCAWG cohort are in agreement

with the known signatures from COSMIC and Signal databases.

An exception is MUSE-SBSV, which shows a cosine similarity

of 0.78 in both COSMIC and Signal databases, potentially

indicating an incomplete extraction of the original signature.

On the other hand, in the WGS-extended cohort, despite most

extracted profiles align well with those in COSMIC and Signal

databases (Table S3), there are three signatures (MUSE-SBSP,

MUSE-SBSS, and MUSE-SBSW) showing a cosine similarity

below 0.75 with the matched signatures in both databases.

Therefore, we further investigated the exposures of these three

signatures in the WGS-extended cohort. Notably, as shown in

the Supplementary Figure S6, MUSE-SBSW is predominantly

observed in Eye-Melanoma samples (32 out of 46), indicating

that it could be a tumour-specific signature. To validate this

hypothesis, we performed a de novo extraction exclusively

for Eye-Melanoma samples, which revealed a strikingly similar

profile, showing a pairwise cosine similarity of 0.94 with the

one extracted from the pancancer analysis. Given the limited

number of samples, this finding reinforces the need for a
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Fig. 2. Sensitivity analysis of data augmentation for each of the five synthetic scenario. Each bar represents the average number of extracted signatures

over 5 repetitions. The dashed line represents the ground-truth, while the error bar represents the range between minimum and maximum.
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Table 1. Matthews correlation coefficient, Kappa score, and Balanced accuracy metrics calculated by 5-fold cross-validation in PCAWG and

Extended WGS cohorts for primary tumour type classification. Metrics are reported as mean and standard deviation.

Model Dataset Matthews correlation Cohen kappa score Balance Accuracy

MUSE-XAE PCAWG cohort 0.75(0.02) 0.75(0.02) 0.65(0.02)

SigProfilerExtractor PCAWG cohort 0.71(0.01) 0.71(0.01) 0.61(0.02)

MUSE-XAE Extended cohort 0.73(0.01) 0.72(0.01) 0.65(0.01)

SigProfilerExtractor Extended cohort 0.70(0.02) 0.69(0.02) 0.61(0.02)

Table 2. Matthews correlation coefficient, Kappa score, and Balanced accuracy metrics calculated by 5-fold cross-validation in PCAWG and

WGS-extended cohorts for tumour subtype classification. Metrics are reported as mean and standard deviation.

Model Dataset Matthews correlation Cohen kappa score Balance Accuracy

MUSE-XAE PCAWG cohort 0.73(0.01) 0.73(0.01) 0.58(0.01)

SigProfilerExtractor PCAWG cohort 0.67(0.02) 0.67(0.02) 0.52(0.02)

MUSE-XAE Extended cohort 0.68(0.03) 0.67(0.03) 0.50(0.03)

SigProfilerExtractor Extended cohort 0.66(0.02) 0.66(0.02) 0.50(0.03)

comprehensive examination of this profile, focusing on its

origin and validation in an external cohort. Such an in-depth

investigation, however, exceeds the objectives of our study, and

it will be a focus of our future research.

MUSE-XAE enhances tumor classification

Considering de novo extraction of mutational signatures on real

cancer datasets, although COSMIC and Signal databases can be

used as reference for the extracted profiles, there is no actual

ground truth to calculate the evaluation metrics. Therefore,

to thoroughly evaluate the performance of MUSE-XAE, we

examined the exposures of mutational signatures, i.e. the latent

representation z of tumour samples, both qualitatively and

quantitatively. While acknowledging that tumours of the same

type may demonstrate a degree of heterogeneity, we assumed

that these exposures, representing the mutations caused by

a signature within a particular sample, could serve as a key

discriminant between different tumour types and subtypes. Fig.

6 shows the t-distributed stochastic neighbour embedding (t-

SNE) of the latent representations (exposures), coloured by

the primary tumour types for both PCAWG and the extended

WGS cohorts. The t-SNE of exposures displays a clear grouping

pattern in both datasets, which provides compelling evidence in

support of this hypothesis and indicates a coherent relationship

between signatures exposures and tumour types.

To quantitatively assess this hypothesis, we implemented

a Random Forest Classifier which considers the signature

exposures as input features to classify both primary types and

tumour subtypes. This classifier was applied to both MUSE-

XAE and SigProfilerExtractor exposures using a balanced 5-

fold cross-validation approach. To properly train the Random

Forest in both datasets, we removed tumour types with

less than 10 counts, i.e. the tumour subtypes Myeloid-MDS

(n=4), Breast-DCIS (n=4) and Cervix-AdenoCA (n=2) in

the PCAWG dataset, while in the extended WGS dataset

we excluded Blood-CMDI (n=9), Sarcoma (n=3), and Bone-

cancer (n=2). A complete description of the Random Forest

implementation is reported in Section 3 of the Supplementary

Materials. Classification performance metrics for primary

tumour types and subtypes in PCAWG and the extended WGS

cohorts are reported in Tables 1 and 2, respectively.

In both classification tasks, MUSE-XAE outperformed

SigProfilerExtractor across all metrics, suggesting that the

exposures and the corresponding signature profiles generated

by MUSE-XAE are more discriminative and capable of

accurately identifying tumour types. MUSE-XAE particularly

outperformed SigProfilerExtractor in the classification of

primary tumour types (Table 1), and it discriminates tumour

subtypes much better, notably in the PCAWG cohort (Table 2).

Supplementary Figures S7-S10 display the confusion matrices

of MUSE-XAE for both primary tumour types and subtypes in

PCAWG and the extended WGS cohorts. It is worth noticing

that MUSE-XAE and SigProfilerExtractor both struggle with

the classification of some tumour types. We investigated the

possible reason behind considering Breast Cancer as a case

study in Supplementary (section Case study: Breast cancer).
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Fig. 4. Normalized AUC distribution for F1-score, Sensitivity and Precision across the five scenarios for all the tested methods. The methods are

ordered according to the average (red dots).

Page 6 of 8Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae320/7675469 by guest on 18 M

ay 2024



MUSE-XAE 7

SB
S 

H

SB
S 

D

SB
S 

B

SB
S 

U

SB
S 

C

SB
S 

O

SB
S 

A

SB
S 

J

SB
S 

N

SB
S 

P

SB
S 

R

SB
S 

K

SB
S 

G

SB
S 

E

SB
S 

I

SB
S 

F

SB
S 

S

SB
S 

T

SB
S 

M

SB
S 

Q

SB
S 

L

SigProfilerExtractor

SBSJ

SBSP

SBSF

SBSM

SBSK

SBSO

SBSE

SBSD

SBSV

SBSI

SBSA

SBST

SBSC

SBSR

SBSS

SBSH

SBSL

SBSB

SBSU

SBSQ

SBSG

M
US

E-
XA

E

1.0

1.0

1.0

1.0

0.99

0.99

0.99

0.99

0.99

0.99

0.98

0.98

0.98

0.98

0.97

0.95

0.95

0.95

0.94

0.94

0.92

SB
S 

F

SB
S 

U

SB
S 

T

SB
S 

R

SB
S 

B

SB
S 

O

SB
S 

H

SB
S 

G

SB
S 

A

SB
S 

L

SB
S 

M

SB
S 

D

SB
S 

Q

SB
S 

E

SB
S 

N

SB
S 

J

SB
S 

I

SB
S 

S

SB
S 

K

SB
S 

C

SB
S 

P

SigProfilerExtractor

SBSH

SBSQ

SBST

SBSI

SBSO

SBSU

SBSB

SBSV

SBSK

SBSL

SBSR

SBSM

SBSW

SBSJ

SBSN

SBSD

SBSS

SBSF

SBSP

SBSC

SBSG

M
US

E-
XA

E

1.0

1.0

1.0

0.99

0.98

0.98

0.97

0.97

0.96

0.95

0.95

0.94

0.94

0.92

0.87

0.86

0.85

0.84

0.81

0.69

0.36

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. Cosine similarity heatmap between the most similar signatures extracted by MUSE-XAE and SigProfilerExtractor for PCAWG and WGS-

extended cohort.
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Fig. 6. t-SNE representation of the latent representation in PCAWG and the WGS-extended cohorts, post-hoc coloured by primary tumour sites.

Discussion

This study introduces MUSE-XAE, a novel method for

mutational signature extraction based on an explainable

autoencoder. MUSE-XAE combines a nonlinear encoder with

a linear decoder by adding a non-negative constraint and a

minimum volume regularization. Our method demonstrated

high accuracy in the de novo extraction of mutational

signatures, proven through a sensitivity analysis and a

comprehensive comparison with 10 other available tools. In

particular, MUSE-XAE resulted as the best performing and the

most robust method in different realistic synthetic scenarios,

with an average F1-AUC of 0.92. In addition, MUSE-XAE

identified 22 mutational signature profiles in the PCAWG

cohort and 23 mutational signatures in the extended WGS

cohort, showing a strong agreement with the known signatures

from both COSMIC v3.4 and Signal databases. Notably, in the

extended WGS cohort, we found a novel candidate signature

specific to Eye-Melanoma. This finding will need to be further

investigated and validated in an independent cohort. A detailed

investigation of mutational signature exposures revealed that

MUSE-XAE profiles are capable of enhancing primary tumour

type and subtype classifications. Indeed, the classification

performance based on the signature exposures showed MCCs

around 0.70 in predicting primary types and tumour subtypes

in both PCAWG and the extended WGS cohorts.

MUSE-XAE opens up new possibilities for the development

of interpretable neural network-based models for mutational

signature extraction, which can leverage the increasing amount

of available data and their scalability for larger datasets. Our

architecture, given its extreme flexibility, can be used to build

more sophisticated models which could integrate the profile of

somatic mutations with other clinical and genomic information,

potentially improving the extraction of mutational signatures.
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