
Introducing SWIRL: An Intermediate
Representation Language for Scientific

Workflows

Iacopo Colonnelli1 , Doriana Medić1(B) , Alberto Mulone1 ,
Viviana Bono1 , Luca Padovani2 , and Marco Aldinucci1

1 University of Turin, Turin, Italy
{iacopo.colonnelli,doriana.medic,alberto.mulone,

viviana.bono,marco.aldinucci}@unito.it
2 University of Camerino, Camerino, Italy

luca.padovani@unicam.it

Abstract. In the ever-evolving landscape of scientific computing, prop-
erly supporting the modularity and complexity of modern scientific
applications requires new approaches to workflow execution, like seam-
less interoperability between different workflow systems, distributed-
by-design workflow models, and automatic optimisation of data move-
ments. In order to address this need, this article introduces SWIRL,
an intermediate representation language for scientific workflows. In con-
trast with other product-agnostic workflow languages, SWIRL is not
designed for human interaction but to serve as a low-level compilation
target for distributed workflow execution plans. The main advantages
of SWIRL semantics are low-level primitives based on the send/receive
programming model and a formal framework ensuring the consistency
of the semantics and the specification of translating workflow models
represented by Directed Acyclic Graphs (DAGs) into SWIRL workflow
descriptions. Additionally, SWIRL offers rewriting rules designed to opti-
mise execution traces, accompanied by corresponding equivalence. An
open-source SWIRL compiler toolchain has been developed using the
ANTLR Python3 bindings.

Keywords: Hybrid workflow · Interoperability · Formal methods

1 Introduction

Workflows have been widely used to model large-scale scientific workloads. The
explicit definition of true dependencies between subsequent steps allows infer-
ring concurrent execution strategies automatically, improving performances, and
transferring input and output data wherever needed, fostering large-scale dis-
tributed executions. However, current Workflow Management Systems (WMSs)
struggle to keep up with the ever-more demanding requirements of modern scien-
tific applications, such as interoperability between different systems, distributed-
by-design workflow models, and automatic optimisation of data movements.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 226–244, 2025.
https://doi.org/10.1007/978-3-031-71162-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_12&domain=pdf
http://orcid.org/0000-0001-9290-2017
http://orcid.org/0000-0002-7163-5375
http://orcid.org/0009-0009-2600-613X
http://orcid.org/0000-0002-2533-0511
http://orcid.org/0000-0001-9097-1297
http://orcid.org/0000-0001-8788-0829
https://doi.org/10.1007/978-3-031-71162-6_12

An Intermediate Representation Language for Scientific Workflows 227

With the advent of BigData, adopting a proper data management strat-
egy has become a crucial aspect of large-scale workflow orchestration. Avoiding
unnecessary data movements and coalescing data transfers are two established
techniques for performance optimisation in distributed executions. Moving com-
putation near data to remove the need for data transfers is the underlying prin-
ciple of several modern approaches to large-scale executions, like Resilient Dis-
tributed Datasets [42] and in-situ workflows [4].

WMSs’ interoperability is an open problem in scientific workflows, which hin-
ders reusability and composability. Despite several attempts to model product-
agnostic workflow languages [11] and representations [28] present in the litera-
ture, these solutions capture only a subset of features, forcing WMSs to reduce
their expressive power in the name of portability. The main issue in unifying
workflow representations resides in the heterogeneity of different WMSs’ APIs
and programming models tailored to the needs of a domain experts. Conversely,
moving the interoperability efforts to the lower level of the workflow execution
plan representation is a promising but still relatively unexplored alternative.

The heterogeneity in contemporary hardware resources and their features,
further exacerbated by the end-to-end co-design approach [30], requires WMSs
to support a large ecosystem of execution environments (from HPC to cloud,
to the Edge), optimisation policies (performance vs. energy efficiency) and com-
putational models (from classical to quantum). However, maintaining optimised
executors for such diverse execution targets is an overarching effort. In this set-
ting, a just-in-time compilation of target-specific execution bundles, optimised
for a single workflow running in a single execution environment, would be a game-
changing approach. Indeed, this approach allows for the efficient use of resources,
as the compilation is done at the time of execution, taking into account the spe-
cific characteristics of the execution environment. It also ensures the effectiveness
of the execution, as the compiled bundle is optimised for the specific workflow,
leading to improved performance.

This work presents SWIRL, a “Scientific Workflow Intermediate Representa-
tion Language”. Unlike other product-agnostic workflow languages, SWIRL is not
intended for human interaction but serves as a low-level compilation target for
distributed workflow execution plans. It models the execution plan of a location-
aware workflow graph as a distributed system with send/receive communication
primitives. This work provides a formal method to encode a workflow instance
into a distributed execution plan using these primitives, promoting interoper-
ability and composability of different workflow models. It also includes a set
of rewriting rules for automatic optimisation of data communications with cor-
rectness and consistency guarantees. The optimised SWIRL representation can
then be compiled into one or more self-contained executable bundles, making it
adaptable to specific execution environments and embracing heterogeneity.

The SWIRL implementation follows the same line as the theoretical app-
roach, separating scientific workflows’ design and runtime phases. A SWIRL-
based compiler translates a workflow system W to a high-performance, self-
contained workflow execution bundle based on send/receive communication pro-

228 I. Colonnelli et al.

tocols and runtime libraries, which can easily be included in a Research Object
[5], significantly improving reproducibility.

In detail, Sect. 2 introduces a generic formalism for representing distributed
scientific workflow models, while the related work and the comparison with the
SWIRL language is given in Sect. 2.1. Section 3 introduces the SWIRL semantics,
and Sect. 4 derives the rewriting rules used for optimisation. Section 5 describes
the implementation of the SWIRL compiler toolchain while Sect. 6 shows how
to model the 1000 Genomes workflow [35], a Bioinformatics pipeline aiming at
fetching, parsing and analysing data from the 1000 Genomes Project [39] into
SWIRL system. Finally, Sect. 7 concludes the article. Full proofs and additional
material can be found in [10] while the experiment is in [9].

2 Background and Related Work

This section gathers the related work (Sect. 2.1) and introduces a formal repre-
sentation of scientific workflows (Sect. 2.2) and their mapping onto distributed
and heterogeneous execution environments (Sect. 2.3).

2.1 Related Work

Location-Aware WMSs. Grid-native WMSs typically support distributed work-
flows out of the box, providing automatic scheduling and data transfer manage-
ment across multiple execution locations. However, all the orchestration aspects
are delegated to external, grid-specific technologies, limiting the spectrum of
supported execution environments. For instance, Triana [36], Askalon [14] and
Pegasus [12] delegate tasks offloading and data transfers to the GAP interface
[37], the GLARE library [34], and HTCondor [38], respectively.

Recently, a new class of location-aware WMSs is bringing advantages in per-
formance and costs of workflow executions on top of heterogeneous distributed
environments. StreamFlow [8] allows users to explicitly map each step onto one
or more locations in charge of its execution. It relies on a set of connectors to
support several execution environments, from HPC queue managers to microser-
vices orchestrators. Jupyter Workflow [7] transforms a sequential computational
notebook into a distributed workflow by mapping each cell into one or more exe-
cution locations, semi-automatically extracting inter-cell data dependencies from
the code, and delegating the runtime orchestration to StreamFlow. Mashup [32]
automatically maps each workflow step onto the best-suited location, choosing
between traditional Cloud VMs and serverless platforms.

Each tool has its own strategy to derive an execution plan from a workflow
graph without relying on an explicit and consolidated intermediate representa-
tion. Moreover, none of them formalise this derivation process, hiding its details
inside the WMS’s codebase. Instead, relying on a common intermediate language
like SWIRL would allow interoperability between different tools and formal cor-
rectness guarantees on the adopted optimisation strategies.

An Intermediate Representation Language for Scientific Workflows 229

Formal Models for Distributed Workflows. In the literature, the number of
different WMSs is notable [3], however, up to our knowledge, there are only a
few WMS for which formal models have been developed: Taverna [41], employ-
ing the lambda calculus [25] to define the workflow language in functional terms;
Kepler [21] adopting Process Networks [18] and BPEL [26], where the workflow
language is formalised with Petri Nets. YAWL [1] is another workflow language
based on Petri Nets extended with constructs to address the multiple instances,
advanced synchronisation, and cancellation patterns. It provides a detailed rep-
resentation of workflow patterns [2] supported by an open-source environment.

Process algebra, in particular, different versions of π-calculus [33] are suited
to model the workflow system due to the ability of processes to change their
structure dynamically. A class of workflow patterns has been precisely defined
using the execution semantics of π-calculus, in [29], while the basic control flow
constructs modelled by π-calculus are given in [13]. A distributed extension of
π-calculus [15] is examined as a formalisation for distributed workflow systems
in [23], providing a discussion on the flexibility of the proposed representation.
Aside from π-calculus, CCS (Calculus of Communication Systems) [24] models
Web Service Choreography Interface descriptions.

2.2 Scientific Workflow Models

A generic workflow can be represented as a directed bipartite graph, where the
nodes refer to either the computational steps of a modular application or the
ports through which they communicate, and the edges encode dependency rela-
tions between steps.

Definition 1. A workflow is a directed bipartite graph W = (S, P,D) where S
is the set of steps, P is the set of ports, and D ⊆ (S × P)∪ (P × S) is the set of
dependency links.

In the considered graph, one port can have multiple output edges meaning
that more steps are dependent on it. The sets of input/output ports (steps) of
a step (port) are defined with the following definition.

Definition 2. Given a workflow W = (S, P,D),a step s ∈ S and a port p ∈
P , the sets of input and output ports of s are denoted with In(s) and Out(s),
respectively, and defined as:

In(s) = {p′ | (p′, s) ∈ D} Out(s) = {p′ | (s, p′) ∈ D}
while the sets of input and output steps of p are denoted with In(p) and Out(p),
respectively, and defined as:

In(p) = {s′ | (s′, p) ∈ D} Out(p) = {s′ | (p, s′) ∈ D}

Traditionally, scientific workflows are modelled using a dataflow approach,
i.e., following token-pushing semantics in which tokens carry data values. The
step executions are enabled by the presence of tokens in their input ports and

230 I. Colonnelli et al.

produce new tokens in their output ports. In general, a single workflow model
can generate infinite workflow instances. Different instances preserve the same
graph structure but differ in the values carried by each token.

Definition 3. A workflow instance is a tuple (W,D, I) where W = (S, P,D) is
a workflow, D is a set of data elements, and I ⊆ (D × P) is a mapping relation
connecting each data element d ∈ D to the port p ∈ P that contains it.

Definition 4. Given a workflow instance (W,D, I), where W = (S, P,D), and
a step s ∈ S, the sets of input and output data elements of s are denoted with
InD(s) and OutD(s), respectively, and defined as:

InD(s) = {d | (d, p) ∈ I ∧ p ∈ In(s)} OutD(s) = {d | (d, p) ∈ I ∧ p ∈ Out(s)}
Introducing more precise evaluation semantics, triggering strategies, or lim-

itations on the dependencies structure can specialise this general definition to
an actual workflow model (e.g., a Petri Net [31] or Coloured Petri Nets [16], a
Kahn Processing Network [17], or a Synchronous Dataflow Graph [20]).

2.3 Distributed Workflow Models

A distributed workflow is a workflow whose steps can target different deployment
locations in charge of executing them. To compute the step, the corresponding
location must have access to or store all the input data elements, additionally,
it will store all the output data elements on its local scope. Locations can be
heterogeneous, exposing different hardware devices, software libraries, and secu-
rity levels. Consequently, the steps are explicitly mapped onto execution loca-
tions depending on their computing requests. Given that, a distributed workflow
model must contain a specification of the workflow structure, the set of available
locations, and a mapping relation between steps and locations.

Definition 5. A distributed workflow is a tuple (W,L,M), where W = (S, P,D)
is a workflow, L is the set of available locations, and M ⊆ (S ×L) is a mapping
relation stating which locations are in charge of executing each workflow step.

Each location can execute multiple steps on it, and a single step can be
mapped onto multiple locations. Multiple steps related to a single location intro-
duce a temporal constraint : all the involved steps compete to acquire the loca-
tion’s resources. They can be serialised if the location does not have enough
resources to execute all of them concurrently. Conversely, multiple locations
related to a single step express a spatial constraint : all involved locations must
collaborate to execute the step. This work does not impose any particular strat-
egy for scheduling different step executions on a single location when temporal
constraints arise. However, it is helpful to know the work queue of a given loca-
tion l, i.e., the set of steps mapped onto it.

Definition 6. Given a distributed workflow (W,L,M), where W = (S, P,D),
and a location l ∈ L, the set of steps mapped onto l is called the work queue of
l, denoted as Q(l) and defined as: Q(l) = {s | l ∈ M(s)}.

An Intermediate Representation Language for Scientific Workflows 231

Similarly to what was discussed in Sect. 2.2, a single distributed workflow
model can generate potentially infinite distributed workflow instances with dif-
ferent data elements and condition evaluations.

Definition 7. A distributed workflow instance is a tuple I = (W,L,M,D, I)
where (W,L,M) is a distributed workflow, D is a set of data elements, and
I ⊆ (D × P) is a mapping relation connecting each data element d ∈ D to the
port p ∈ P that contains it.

Example 1. Fig. 1 shows an example of a distributed workflow model. A step
s1 produces two different output data elements d1 and d2, which are mapped
to ports p1 and p2. The second and the third step, s2 and s3 depend on the
data elements on the ports p1 and p2, respectively. None of them produces other
outputs. This workflow is mapped onto four locations. Step s1 is executed on
location ld, while s2 is offloaded to l1 and step s3 is mapped to two locations l2
and l3. Using definitions above, Fig. 1 can be written as follows:

W = ({s1, s2, s3}, {p1, p2}, {(s1, p1), (s1, p2), (p1, s2), (p2, s3)})
L = {ld, l1, l2, l3} M = {(s1, ld), (s2, l1), (s3, l2), (s3, l3)}
D = {d1, d2} I = {(d1, p1), (d2, p2)}

Fig. 1. Example of a distributed workflow model. Steps are represented as squares and
ports as circles. Dependency links between steps and ports are depicted as arrows with
black-filled heads. Locations are represented as squashed rectangles. Mapping relations
are expressed as dotted arrows. A potential instance of this model can be derived by
adding data elements, denoted as sets of values, near their related port.

3 The SWIRL Representation

This section introduces SWIRL, a “Scientific Workflow Intermediate Represen-
tation Language”. Given a distributed workflow instance (Sect. 2.3), SWIRL
can model a decentralised execution plan, called workflow system, by infer-
ring and projecting execution traces on each involved location and specifying

232 I. Colonnelli et al.

Fig. 2. SWIRL structural congruence rules.

Fig. 3. SWIRL reduction semantics rules.

inter-location communications using send/receive primitives. The following sec-
tions introduce SWIRL syntax and semantics and derive a procedure to formally
encode a workflow instance I into a SWIRL workflow system W.

SWIRL models a distributed execution plan as a workflow system W, which
can be seen as a parallel composition of location configurations, tuples 〈l,D, e〉,
containing the location name l, the set D of data elements laying on l at a given
time, and the execution trace e representing the actions to be executed on l.

Definition 8. The syntax of a workflow system W is defined by the following
grammar:

W ::= 〈l, D, e〉 ‖ (W1 | W2)
e ::= μ ‖ e1.e2 ‖ (e1 | e2) ‖ 0

μ ::= exec(s, F (s), M(s)) ‖ send(d � p, l, l′) ‖ recv(p, l, l′)

F (s) ::= InD(s) �→ OutD(s)

Each execution trace e is constructed from the predicates μ, which can be com-
posed using two operators: the sequential execution e1.e2 and the parallel com-
position e1 | e2. The 0 symbol represents the empty trace.

A predicate μ represents an action to be performed during workflow execu-
tion. Predicates send(d � p, l, l′) and recv(p, l, l′) allow transferring the data
element d over port p from location l to location l′. Modelling ports and data
separately seams redundant, but we prefer to keep them divided for the future
extensions of the framework, as adding the loops. The exec(s, F (s),M(s)) action
represents the execution of step s. Besides the name of the step, this predicate
contains the set M(s) of locations onto which s is mapped and the dataflow

An Intermediate Representation Language for Scientific Workflows 233

F (s), i.e., the set InD(s) of input data needed by s and the set OutD(s) of
output data produced on each l ∈ M(s) after the execution of s.

3.1 Semantics

The SWIRL semantics is defined in terms of a reduction semantics.

Definition 9. The SWIRL semantics is defined by the reduction relation −→
defined as a smallest relation closed under the rules of Figs. 2 and 3.

The structural congruence properties are reported in Fig. 2. The commutativ-
ity of the parallel composition in location and the execution trace level is defined
with rule (Comtu). For both operators, parallel composition and sequential exe-
cution, the identity element is 0 (rules (Id |) and (Id.)).

The rules of a SWIRL semantics are depicted in Fig. 3. The step execution is
performed by the (Exec) rule. It collects all the locations M(s) onto which step
s is mapped and synchronises the execution action. The data OutD(s) produced
by the step execution are added to the set Di in all executing locations. Rule
(L-Comm) describes local communication, while rule (Comm) represents a data
transfer between two locations. In the latter case, the involved data element is
copied to the targeted (receiving) location. Note that communications do not
consume the data element on the sending location.

Assuming that configuration 〈l,D, e1〉 can be computed, rules (L-Par) and
(Seq) allow for the execution of the parallel and the sequential composition
inside the same location, respectively. The execution of the workflow sub-system
as a part of a larger system is allowed by the rule (Par). The (Congr) rule
allows the application of structural congruence.

When a step s is mapped onto multiple locations, each of them must contain
an exec predicate with the set of involved locations. Such predicates introduce
synchronisation points among different locations, as all involved execution traces
must step forward in a single pass. Additionally, each location must have a copy
of the input data InD(s), requiring multiple send operations for each element
d ∈ InD(s), and will own a copy of OutD(s).

Example 2. The behaviour of the distributed workflow instance given in Fig. 1
can be modelled as a workflow system W with the following syntax:

W = 〈ld, ∅, ed〉 |
3∏

i=1

〈li, ∅, ei〉

ed = exec(s1, ∅ �→ {d1, d2}, {ld}).
(
send(d1 � p1, ld, l1) |

send(d2 � p2, ld, l2) | send(d2 � p2, ld, l3)
)

e1 = recv(p1, ld, l1).exec(s2, {d1} �→ ∅, {l1})
e2 = recv(p2, ld, l2).exec(s3, {d2} �→ ∅, {l2, l3})
e3 = recv(p2, ld, l3).exec(s3, {d2} �→ ∅, {l2, l3})

In the execution trace ed, step s1 is sending output data d2 to both locations
l2, l3 ∈ M(s3) through the same port p2.

234 I. Colonnelli et al.

3.2 Workflow Model Encoding

Example 2 describes the encoding of a distributed workflow instance I into a
workflow system W. This section introduces a formal methodology to perform
this encoding automatically for any distributed workflow instance.

In SWIRL, the execution trace el of a location l ∈ L models the actions
required to execute all the steps in its work queue Q(l). In this respect, el can be
seen as the parallel composition of building blocks Bl(s), one for each s ∈ Q(l).
Each building block Bl(s) contains the same sequence of actions: (i) receives all
the necessary data elements for the step execution in which case it is necessary to
determine all input data elements (InD(s)) and for each element to identify the
step producing it (In(I(di))) and the locations on which the steps are mapped to
(M(In(I(di)))) (ii) executes the step s; (iii) sends the produced data elements
(OutD(s)) to the locations onto which the receiving steps are mapped (one data
element can be sent, over the same port, to the different steps/locations, therefore
it is necessary to identify the steps data di is sent to with Out(I(di)) and the
locations lj on which each step is deployed).

Definition 10. Given a distributed workflow instance I = (W,L,M,D, I), a
deployment location l ∈ L and a step s ∈ S s.t. l ∈ M(s), the building block
representing s in el is denoted by Bl(s) and defined as:

Bl(s) =

⎛

⎝
∀di∈InD(s)∏ ∀lj∈M(In(I(di)))∏

recv(I(di), lj , l)

⎞

⎠ .

exec(s, InD(s) �→ OutD(s), M(s)).
⎛

⎝
∀di∈OutD(s)∏ ∀sk∈Out(I(di))∏ ∀lj∈M(sk)∏

send(di � I(di), l, lj)

⎞

⎠

Definition 10 introduces the general form of Bl(s), which holds for steps
connected to both input and output ports. If a step does not consume input data,
as in the case of step s1 from Example 2, the receiving part of Bl(s) is modelled
with 0, resulting in Bld(s1) = 0.exec(s, ∅ 	→ {d1}, {ld}).send(d1 � p1, ld, l1).
The same applies to steps that do not produce output data.

The concept of building blocks Bl(s) allows for the modular construction of
execution traces by processing one pair (s, l) at a time. Intuitively, for each map-
ping pair step-location (s, l), corresponding building blocks Bl(s) are made and
added to the execution trace of the location l. Another important information is
the instance data distribution on the locations, denoted by G(l) = {d|d ∈ Dl}.

Definition 11. The encoding function [[·]] : WI −→ WW, where WI and WW are
the sets of distributed workflow instances and workflow systems represented in
SWIRL, respectively, is inductively defined as follows:

An Intermediate Representation Language for Scientific Workflows 235

[[I]] = [[I, M, G; W]] where W =
∏

∀li∈L

〈li, ∅, el〉

[[I, M ∪ (s, l), G; W | 〈l, ∅, el〉]] = [[I, M, G; W | 〈l, ∅, el | Bl(s)〉]]
[[I, M, G ∪ G(l); W | 〈l, ∅, el〉]] = [[I, M, G; W | 〈l, G(l), el〉]]
[[I, ∅, ∅; W]] = W

Formally, the encoding operator can be defined as a function with four input
parameters: (i) a workflow instance I to be translated; (ii) the set of pairs (s, l)
containing all mappings in M; (iii) the set G representing the distribution of
the data over locations; (iv) placeholder to build the workflow system W. The
translation starts by adding the auxiliary parameters into the encoding process
and inside a SWIRL placeholder, creating a workflow containing locations con-
figurations for each location in the workflow instance I (for all l ∈ L). The
iteration process is divided in two phases, first at each iteration, the encoding
function takes the pair (s, l), identify the location l and add the building block
Bl(s) into the execution trace to be executed on the location l. When all pairs
are encoded, in the second phase, the iteration is on the distribution of the data
over locations. Each set G(l) ⊆ G is encoded to the corresponding locations. In
that way, the trace el is the parallel composition of building blocks Bl(s) for
each s ∈ Q(l). The encoding finishes when both sets M and G are empty.

3.3 Consistency of SWIRL Semantics

This section defines a concurrency relation on the derivations of a workflow
system W, which is then used to show the consistency of different execution
diagrams through the semantics. As commonly done in the literature, this section
only considers reachable workflow systems defined below.

Definition 12. Given a distributed workflow instance I = (W,L,M,D, I) and
the function [[·]] : WI −→ WW, the initial state of a distributed workflow system is

WInit = [[I, L, ∗]] =
∏

lj∈L

〈
lj , ∅,

∏

s∈Q(lj)

B(s)

〉

Definition 13. A state of a workflow system W is reachable if it can be derived
from the initial state (WInit) by applying the rules in Figs. 2 and 3.

Having a transition t : W −→ W′, the workflow states W and W′ are called source
and target of the transition t, respectively. The concurrency relation is defined
on the transitions having the same source. Formally:

Definition 14 (Concurrency relation). Two different transitions t1 : W −→ W1
and t2 : W −→ W2 having the same source, are always concurrent, written t1 � t2.

Following the standard notation, let t2/t1 represent a transition t2 executed
after the transition t1. The concurrency relation is used to prove the Church-
Rosser property, which states that when two concurrent transitions execute at
the same time, the ordering of the executions does not impact the eventual result.
This finding shows that the concurrent semantics is confluent. Formally:

236 I. Colonnelli et al.

Lemma 1 (Church-Rosser property). Given two concurrent transitions t1 :
W −→ W1 and t2 : W −→ W2, there exist two transitions t2/t1 : W1 −→ W3 and
t1/t2 : W2 −→ W3 having the same target.

4 Optimisation

This section introduces an optimisation function that scans the entire work-
flow system to remove redundant communications, improving performance. In
particular, there are two cases in which execution traces can be optimised: (i)
communications between steps deployed on the same location, which are always
redundant; (ii) multiple communications of the same data element between a
pair of locations, when different steps mapped onto the destination location
require the same input data from the same ports.

The encoding function adds a communication to the workflow system W every
time a data element is required for the execution of a step, no matter if it is
already present at the destination location, creating unnecessary communica-
tions. For instance, consider a location 〈l,D, e〉 where D = ∅ and

e = recv(p, l1, l).exec(s, {d} �→ {d1}, {l}).send(d1 � p1, l, l) |
recv(p1, l, l).exec(s1, {d1} �→ ∅, {l})

After the execution of the step s, the data element d1 is saved on the location
l (D ∪ {d1}), therefore the send/recv pair does not affect the state of W. By
removing the unnecessary communication, the trace e can be rewritten as:

e′ = recv(p, l1, l).exec(s, {d} �→ {d1}, {l}) | exec(s1, {d1} �→ ∅, {l})

The rule (Exec) in Fig. 3, preserves dependency between steps s and s1 by
ensuring that step s1 will not execute until the required data d1 is produced.

The second optimisation step is to remove redundant communications
between different pairs of locations when the same data element is sent mul-
tiple times through the same port. For instance, consider two locations 〈l,D, e〉
and 〈l′,D′, e′〉 where D = D′ = ∅ and

e = recv(p, l1, l).exec(s, {d} �→ {d1}, {l}).(
3∏

i=1

send(d1 � p1, l, l
′))

e′ =
3∏

i=1

recv(p1, l, l
′).exec(si, {d1} �→ ∅, {l′})

The first location l sends the data element d1 to three steps mapped onto
location l′. Transferring the data element only once is enough, as the subsequent
communications will not affect the state of W, hence, there is:

e = recv(p, l1, l).exec(s, {d} �→ {d1}, {l}).send(d1 � p1, l, l
′)

e′ = recv(p1, l, l
′).exec(sk, {d1} �→ ∅, {l′}) |

3∏

i=1,i�=k

exec(si, {d1} �→ ∅, {l′})

An Intermediate Representation Language for Scientific Workflows 237

The optimisation of a workflow system W is defined in terms of three functions:
the first and the second1 ones start the optimisation process and controls it till
the end, by taking the additional parameter A (the set of all prefixes/actions) and
calling the third function that actually rewrite the execution trace of a location.
It goes through the execution traces of the workflow W and breaks them into
single action (prefix) blocks. Analysing the blocks one by one, it performs the
following actions: (i) if the predicate is a part of the communication on the same
location, it is removed; (ii) if the predicate is already in the set A, it is removed
as well (meaning the same data element was already sent to the same location
through the same port, just to different step); (iii) otherwise, the predicate is
added to the set A and the drilling function moves to the next element.

Definition 15. Given the workflow system W and sets of workflow and optimised
systems WW and WO, respectively, the optimisation function W, �·� : WW −→ WO is
defined in terms of the auxiliary functions, �·� : WW × A −→ WO and �·� : WW −→
WO (where o ∈ {|, .} and Al,l = {send(d � p, l, l), recv(p, l, l)}) as follows:

�W� = ��W�, ∅�

��〈l, D, e〉�, A� = 〈l, D, ��e�, A�〉
��W1 | W2�, A� = ��W1�, A� | ��W2�, A�

�e o e1� = �e � o � e1�

�e o � μ � o � e1�, A� =

{
�e o 0 o � e1�, A� if μ ∈ A ∨ μ ∈ Al,l

�e o μ o � e1�, A ∪ μ� otherwise

�e, A� = e

The two workflow systems W and O = �W� are modelling the same behaviour of
the distributed workflow system, i.e. the computations of the workflow steps are
executed in the same order in both systems with the difference in the number of
communications. Therefore, the weak barbed bisimulation [33] is used to define
the relation between the distributed workflow system and its optimised version.

To highlight that the executing action is a communication, it is labelled by
τ . Therefore, W τ−→ W′ indicates that workflow system W can evolve into W′ by
performing the communication (transfer) action. The reflexive and transitive
closure of τ−→ is denoted with τ=⇒ and the transition W

τ=⇒ W′ express the ability
of the system W to evolve into W′ by executing some number, possibly zero, of
τ actions (communications). Given the transition W −→ W′ (any type of action,
including the communication), if the same action can be executed after a certain
number of communication actions, it is denoted as W

τ=⇒−→ W′.
The observable elements in this setting are the executions of the steps and

it is denoted by W ↓ν (resp. O ↓ν) where ν = exec(s, F (s),M(s)) where the
1 The two functions have the same notation to simplify the notation, they can be

easily distinguished because of the different number of arguments.

238 I. Colonnelli et al.

Fig. 4. The SWIRL compiler toolchain.

weak barb is denoted by W ⇓ν (resp. O ⇓ν), and it is defined as W
τ=⇒↓ν (resp.

O
τ=⇒↓ν). Hence, the barbed bisimulation will check that all the step executions

in a workflow system can be matched by the executions in the optimised one.

Definition 16. A relation R ⊆ W × O is a weak barbed simulation if WR�W�:

– W ↓ν implies �W� ⇓ν

– W −→ W′ implies �W� ⇒ �W′� with W′R�W′�

A relation R ⊆ W × O is a weak barbed bisimulation if R and R−1 are weak
barbed simulations. Weak bisimilarity, ≈, is the largest weak barbed bisimulation.

The next theorem shows the operational correspondence between a dis-
tributed workflow system and its optimised term.

Theorem 1. For any distributed workflow system W, W ≈ �W�.

5 Implementation

The SWIRL compiler reference implementation2, called swirlc, follows the same
line as the theoretical approach, separating scientific workflows’ design and run-
time phases. On the one hand, it allows the translation of high-level, product-
specific workflow languages designed for direct human interaction to chains of
low-level primitives easily understood by distributed runtime systems. A com-
mon representation fosters composability and interoperability among different
workflow models, which can be easily combined into a single workflow system.
Moreover, the translation process is performed with the formal consistency guar-
antees discussed in Sect. 3.2.

Finally, a SWIRL-based compiler can translate a workflow system W to a high-
performance, self-contained workflow execution bundle based on send/receive
communication protocols and runtime libraries, which can easily be included
in a Research Object [5], improving reproducibility. An advanced compiler can
also generate multiple execution bundles from the same workflow system, each
optimised for a different execution environment (e.g., Cloud, HPC, or Edge),
2 https://github.com/alpha-unito/swirlc.

https://github.com/alpha-unito/swirlc

An Intermediate Representation Language for Scientific Workflows 239

improving performance. As a bonus feature, the intrinsically distributed nature
of SWIRL execution traces promotes decentralised runtime architectures, avoid-
ing the single point of failure introduced by a centralised control plane.

Figure 4 sketches the SWIRL compiler toolchain. We implemented the
SWIRL grammar using ANTLR [27], and we automatically generated Python3
parser classes to process the SWIRL syntax. All the components of the
SWIRL toolchain rely on these parsers to process ∗.swirl files. An abstract
SWIRLTranslator class implements the encoding function, producing a SWIRL
file from a workflow instance I. A concrete implementation specialises the
SWIRLTranslator logic to the semantics of a given workflow language, e.g., CWL

Fig. 5. Graphical representation of the 1000 Genomes workflow contains five classes of
steps mapped to diverse locations: (i) individuals (blue), number of steps n, mapped
to locations lIj , j ∈ [1, a]; (ii) individuals_merge (violet), a single step mapped
to location lIM ; (iii) sifting (yellow), a single step mapped to location lIM ; (iv)
mutations_overlap (red), number of steps m, mapped to locations lMO

t , t ∈ [1, b], and
(v) frequency (green) number of steps m, mapped to locations lFk , k ∈ [1, c]. The ini-
tial step s0, mapped to driver location ld is a step that sends each input data element
to the correct location for processing. The mapping between data elements and ports,

where i ∈ [1, n] and h ∈ [1, m], is: I =

{
(d0

i , p
0
i), (d

P
h , pP

h), (d
0
SF , p0

SF),

(dI
i , p

I
i), (d

IM , pIM), (dSF , pSF)

}
(Color

figure online)

240 I. Colonnelli et al.

[11], DAX (for Pegasus [12]), or the Galaxy Workflow Format (GWF) [40]3. A
SWIRLOptimizer5 class implements the optimisation function �·� : WW −→ WO,
generating an optimised ∗.swirl file. Finally, an abstract SWIRLCompiler class
produces an executable bundle from a ∗.swirl file and a declarative metadata
file, which contains additional information not currently modelled in the SWIRL
semantics, e.g., step commands, data types and location IP addresses. We have
implemented a simple compiler class that generates a multithreaded Python pro-
gram for each location, relying on TCP sockets for send/receive communications.

6 Evaluation

This section tests the flexibility of the SWIRL representation on the 1000
Genomes workflow [35], a Bioinformatics pipeline aiming at fetching, parsing
and analysing data from the 1000 Genomes Project [39] to identify mutational
overlaps and provide a null distribution for rigorous statistical evaluation of
potential disease-related mutations. However, we used the 1000 Genomes appli-
cations written in C++ [22]. Figure 5 shows a slightly simplified version of the
1000 Genomes workflow model. We removed some ports to simplify the nota-
tion, but their absence does not affect the reasoning reported in the rest of this
Section. Note that the number of locations could be smaller than the number of
steps. Hence, there could be a case when more steps are mapped to the same
location.

The corresponding workflow system W can be constructed using the encoding
function [[·]] : WI −→ WW (Sect. 3.2). It can be written as follows:

W =
∏

i∈{d,SF,IM}

〈
li, ∅, ei

〉
|

a∏

j=1

〈
lIj , ∅, eIj

〉
|

b∏

t=1

〈
lMO
t , ∅, eMO

t

〉
|

c∏

k=1

〈
lFk , ∅, eFk

〉

where each execution trace e∗
∗ defines the actions (steps and data transfers)

depicted in Fig. 5 to be executed on the corresponding location. For instance, if
the driver location is taken, the execution trace ed is defines as:

ed =
n∏

i=1

send(d0
i � p0

i , l
d, lIj) | send(d0

SF � p0
SF , ld, lSF) |

m∏

h=1

(send(dP
h � pP

h , ld, lMO
t) | send(dP

h � pP
h , ld, lFk))

The full representation of W is discussed in [10]. The 1000 Genomes workflow
modelled above can be reproduced using the SWIRL implementation (Sect. 5).
To keep the experiment small and ease reproducibility, the ten homogeneous
execution locations and a single chromosome, i.e., a single workflow instance,
are considered. The necessary installing package and instructions on how to run
the experiment can be find in [9].

3 The implementation of the CWL and GWF translators and the SWIRLOptimizer are
ongoing works.

An Intermediate Representation Language for Scientific Workflows 241

7 Conclusion

This work introduced SWIRL, a “Scientific Workflow Intermediate Representa-
tion Language” based on send/receive communication primitives. An encoding
function maps any workflow instance onto a distributed execution plan W, fos-
tering interoperability and composability of different workflow models. A set
of rewriting rules allows for automatic optimisation of data communications,
improving performance with correctness and consistency guarantees. The opti-
mised SWIRL representation can be compiled into one or more self-contained
executable bundles addressing specific execution environments, ensuring repro-
ducibility and embracing heterogeneity. SWIRL already proved itself to be flex-
ible enough to model a real large-scale scientific workflow (even if still not sup-
porting all features of modern WMSs).

The foundational contribution of SWIRL is to propose a novel direction to
solve well-known problems in the field of scientific workflows. Indeed, SWIRL
shifts the focus from high-level workflow languages, designed either for direct
human interaction or to encode complex, product-specific features, to a low-
level minimalistic representation of a workflow execution plan, which is far more
manageable from both formalisation methods and compiler toolchains. In this
context, we hope that SWIRL can pave the way to a novel, more formal approach
to distributed workflow orchestration research.

The formal SWIRL representation gives the possibility to build the formally
correct extensions, for instance, adding a type system where the multiparty
sessions are enriched with security levels for messages (data in our case) [6] or
deriving the causal-consistent reversible framework by applying the approach
[19], that later can be used as a base to build fault-tolerance mechanism.

Acknowledgments. This work was supported by: the Spoke 1 “FutureHPC & Big-
Data” of ICSC - Centro Nazionale di Ricerca in High-Performance Computing, Big
Data and Quantum Computing, funded by European Union - NextGenerationEU; the
EUPEX EU’s Horizon 2020 JTI-EuroHPC research and innovation programme project
under grant agreement No 101033975.

Data Availability Statement.. The artifact presented in this article is openly avail-
able at https://doi.org/10.5281/zenodo.12523000

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow lan-
guage. Inf. Syst. 30(4), 245–275 (2005). https://doi.org/10.1016/j.is.2004.02.002

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed Parallel Databases 14(1), 5–51 (2003). https://
doi.org/10.1023/A:1022883727209

3. Amstutz, P., Mikheev, M., Crusoe, M.R., Tijanic, N., Lampa, S., et al.: Existing
workflow systems. common workflow language wiki (2022). https://s.apache.org/
existing-workflow-systems. Accessed 05 Oct 2023

https://doi.org/10.5281/zenodo.12523000
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1023/A:1022883727209
https://doi.org/10.1023/A:1022883727209
https://s.apache.org/existing-workflow-systems
https://s.apache.org/existing-workflow-systems

242 I. Colonnelli et al.

4. Ayachit, U., Bauer, A.C., Duque, E.P.N., Eisenhauer, G., Ferrier, N.J., et al.: Per-
formance analysis, design considerations, and applications of extreme-scale in situ
infrastructures. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2016, Salt Lake City,
UT, USA, November 13-18, 2016, pp. 921–932. IEEE Computer Society (2016).
https://doi.org/10.1109/SC.2016.78

5. Bechhofer, S., Buchan, I.E., Roure, D.D., Missier, P., Ainsworth, J.D., et al.: Why
linked data is not enough for scientists. Futur. Gener. Comput. Syst. 29(2), 599–
611 (2013). https://doi.org/10.1016/j.future.2011.08.004

6. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: Information flow safety in mul-
tiparty sessions. Math. Struct. Comput. Sci. 26(8), 1352–1394 (2016). https://doi.
org/10.1017/S0960129514000619

7. Colonnelli, I., Aldinucci, M., Cantalupo, B., Padovani, L., Rabellino, S., et al.:
Distributed workflows with Jupyter. Futur. Gener. Comput. Syst. 128, 282–298
(2022). https://doi.org/10.1016/j.future.2021.10.007

8. Colonnelli, I., Cantalupo, B., Merelli, I., Aldinucci, M.: StreamFlow: cross-breeding
cloud with HPC. IEEE Trans. Emerg. Top. Comput. 9(4), 1723–1737 (2021).
https://doi.org/10.1109/TETC.2020.3019202

9. Colonnelli, I., Medic, D., Mulone, A., Bono, V., Padovani, L., Aldinucci, M.: Arti-
fact for paper “Introducing SWIRL: An Intermediate Representation Language for
Scientific Workflows”. https://doi.org/10.5281/zenodo.12523000 (2024). Accessed
26 June 2024

10. Colonnelli, I., Medić, D., Mulone, A., Bono, V., Padovani, L., Aldinucci, M.:
Introducing swirl: an intermediate representation language for scientific workflows
(2024). https://iris.unito.it/handle/2318/1989870

11. Crusoe, M.R., Abeln, S., Iosup, A., Amstutz, P., Chilton, J., et al.: Methods
included: standardizing computational reuse and portability with the common
workflow language. Commun. ACM (2022). https://doi.org/10.1145/3486897

12. Deelman, E., et al.: The evolution of the Pegasus workflow management soft-
ware. Comput. Sci. Eng. 21(4), 22–36 (2019). https://doi.org/10.1109/MCSE.
2019.2919690

13. Dong Yang, S.S.Z.: Approach for workflow modeling using π-calculus. J. Zhejiang
Univ. Sci. 2003 4(6), 643–650 (2003). https://doi.org/10.1631/jzus.2003.0643

14. Fahringer, T., Prodan, R., Duan, R., Hofer, J., Nadeem, F., et al.: ASKALON: A
development and grid computing environment for scientific workflows. In: Work-
flows for e-Science, Scientific Workflows for Grids, pp. 450–471. Springer (2007).
https://doi.org/10.1007/978-1-84628-757-2_27

15. Hennessy, M.: A distributed Pi-calculus. Cambridge University Press (2007)
16. Jensen, K.: Coloured petri nets: A high level language for system design and analy-

sis. In: Advances in Petri Nets 1990 [10th International Conference on Applications
and Theory of Petri Nets, Bonn, Germany, June 1989, Proceedings], pp. 342–416
(1989). https://doi.org/10.1007/3-540-53863-1_31

17. Kahn, G.: The semantics of a simple language for parallel programming. In: Rosen-
feld, J.L. (ed.) Information processing, pp. 471–475. North Holland, Amsterdam,
Stockholm, Sweden (1974)

18. Kahn, G., MacQueen, D.B.: Coroutines and networks of parallel processes. In:
Information Processing. In: Proceedings of the 7th IFIP Congress 1977, Toronto,
Canada, August 8-12, 1977, pp. 993–998. North-Holland (1977)

19. Lanese, I., Medic, D.: A general approach to derive uncontrolled reversible seman-
tics. In: 31st International Conference on Concurrency Theory, CONCUR 2020,

https://doi.org/10.1109/SC.2016.78
https://doi.org/10.1016/j.future.2011.08.004
https://doi.org/10.1017/S0960129514000619
https://doi.org/10.1017/S0960129514000619
https://doi.org/10.1016/j.future.2021.10.007
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.5281/zenodo.12523000
https://iris.unito.it/handle/2318/1989870
https://doi.org/10.1145/3486897
https://doi.org/10.1109/MCSE.2019.2919690
https://doi.org/10.1109/MCSE.2019.2919690
https://doi.org/10.1631/jzus.2003.0643
https://doi.org/10.1007/978-1-84628-757-2_27
https://doi.org/10.1007/3-540-53863-1_31

An Intermediate Representation Language for Scientific Workflows 243

September 1-4, 2020, Vienna, Austria (Virtual Conference). LIPIcs, vol. 171, pp.
33:1–33:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.
org/10.4230/LIPICS.CONCUR.2020.33

20. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987). https://doi.org/10.1109/PROC.1987.13876

21. Ludäscher, B., et al.: Scientific workflow management and the Kepler system. Con-
currency and Computation: Practice and Experience 18(10), 1039–1065 (2006).
https://doi.org/10.1002/cpe.994

22. Martinelli, A.R., Torquati, M., Aldinucci, M., Colonnelli, I., Cantalupo, B.: Capio:
a middleware for transparent i/o streaming in data-intensive workflows. In: 2023
IEEE 30th International Conference on High Performance Computing, Data, and
Analytics (HiPC). IEEE, Goa, India (2023). https://doi.org/10.1109/HiPC58850.
2023.00031

23. Medic, D., Aldinucci, M.: Towards formal model for location aware workflows. In:
47th IEEE Annual Computers, Software, and Applications Conference, COMPSAC
2023, Torino, Italy, June 26-30, 2023, pp. 1864–1869. IEEE (2023). https://doi.org/
10.1109/COMPSAC57700.2023.00289

24. Milner, R.: Communication and concurrency. PHI Series in computer science, Pren-
tice Hall (1989)

25. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS 89), Pacific
Grove, California, USA, 5–8 June, 1989, pp. 14–23. IEEE Computer Society (1989).
https://doi.org/10.1109/LICS.1989.39155

26. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter
Hofstede, A.H.M.: Formal semantics and analysis of control flow in WS-BPEL.
Sci. Comput. Program. 67(2–3), 162–198 (2007). https://doi.org/10.1016/j.scico.
2007.03.002

27. Parr, T.J., Quong, R.W.: ANTLR: a predicated- LL(k) parser generator. Softw.
Pract. Exp. 25(7), 789–810 (1995). https://doi.org/10.1002/spe.4380250705

28. Plankensteiner, K., Montagnat, J., Prodan, R.: IWIR: a language enabling porta-
bility across grid workflow systems. In: WORKS’11, Proceedings of the 6th Work-
shop on Workflows in Support of Large-Scale Science, pp. 97–106. ACM (2011).
https://doi.org/10.1145/2110497.2110509

29. Puhlmann, F., Weske, M.: Using the pi-calculus for formalizing workflow pat-
terns. In: Business Process Management, 3rd International Conference, BPM 2005,
Nancy, France, September 5-8, 2005, Proceedings, vol. 3649, pp. 153–168 (2005).
https://doi.org/10.1007/11538394_11

30. Reed, D.A., Gannon, D., Dongarra, J.J.: Reinventing high performance computing:
Challenges and opportunities. CoRR abs/2203.02544 (2022). https://doi.org/10.
48550/arXiv.2203.02544

31. Reisig, W., Rozenberg, G. (eds.): ACPN 1996. LNCS, vol. 1491. Springer, Heidel-
berg (1998). https://doi.org/10.1007/3-540-65306-6

32. Roy, R.B., Patel, T., Gadepally, V., Tiwari, D.: Mashup: making serverless com-
puting useful for HPC workflows via hybrid execution. In: PPoPP ’22: 27th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp.
46–60. ACM (2022). https://doi.org/10.1145/3503221.3508407

33. Sangiorgi, D., Walker, D.: The Pi-Calculus - a theory of mobile processes. Cam-
bridge University Press (2001)

34. Siddiqui, M., Villazón, A., Hofer, J., Fahringer, T.: GLARE: a grid activity registra-
tion, deployment and provisioning framework. In: Proceedings of the ACM/IEEE

https://doi.org/10.4230/LIPICS.CONCUR.2020.33
https://doi.org/10.4230/LIPICS.CONCUR.2020.33
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1002/cpe.994
https://doi.org/10.1109/HiPC58850.2023.00031
https://doi.org/10.1109/HiPC58850.2023.00031
https://doi.org/10.1109/COMPSAC57700.2023.00289
https://doi.org/10.1109/COMPSAC57700.2023.00289
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/j.scico.2007.03.002
https://doi.org/10.1016/j.scico.2007.03.002
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1145/2110497.2110509
https://doi.org/10.1007/11538394_11
https://doi.org/10.48550/arXiv.2203.02544
https://doi.org/10.48550/arXiv.2203.02544
https://doi.org/10.1007/3-540-65306-6
https://doi.org/10.1145/3503221.3508407

244 I. Colonnelli et al.

SC2005 Conference on High Performance Networking and Computing, p. 52 (2005).
https://doi.org/10.1109/SC.2005.30

35. da Silva, R.F., Filgueira, R., Deelman, E., Pairo-Castineira, E., Overton, I.M.,
Atkinson, M.P.: Using simple pid-inspired controllers for online resilient resource
management of distributed scientific workflows. Futur. Gener. Comput. Syst. 95,
615–628 (2019). https://doi.org/10.1016/j.future.2019.01.015

36. Taylor, I.J., Shields, M.S., Wang, I., Harrison, A.: The Triana workflow envi-
ronment: architecture and applications. In: Workflows for e-Science, Scientific
Workflows for Grids, pp. 320–339. Springer (2007). https://doi.org/10.1007/978-
1-84628-757-2_20

37. Taylor, I.J., Shields, M.S., Wang, I., Rana, O.F.: Triana applications within grid
computing and peer to peer environments. J. Grid Comput. 1(2), 199–217 (2003).
https://doi.org/10.1023/B:GRID.0000024074.63139.ce

38. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the
Condor experience. Concurrency and Computation: Practice and Experience 17(2–
4), 323–356 (2005). https://doi.org/10.1002/cpe.938

39. The 1000 Genomes Project Consortium: A global reference for human genetic
variation. Nature 526(7571), 68–74 (2015). https://doi.org/10.1038/nature15393

40. The Galaxy Community: The Galaxy platform for accessible, reproducible and
collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 50(W1), W345–
W351 (2022). https://doi.org/10.1093/nar/gkac247

41. Turi, D., Missier, P., Goble, C.A., Roure, D.D., Oinn, T.: Taverna workflows: Syn-
tax and semantics. In: Third International Conference on e-Science and Grid Com-
puting, e-Science 2007, 10-13 December 2007, Bangalore, India, pp. 441–448. IEEE
Computer Society (2007). https://doi.org/10.1109/E-SCIENCE.2007.71

42. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., et al.: Resilient dis-
tributed datasets: a fault-tolerant abstraction for in-memory cluster computing.
In: Proceedings of the 9th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2012, pp. 15–28. USENIX Association (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/SC.2005.30
https://doi.org/10.1016/j.future.2019.01.015
https://doi.org/10.1007/978-1-84628-757-2_20
https://doi.org/10.1007/978-1-84628-757-2_20
https://doi.org/10.1023/B:GRID.0000024074.63139.ce
https://doi.org/10.1002/cpe.938
https://doi.org/10.1038/nature15393
https://doi.org/10.1093/nar/gkac247
https://doi.org/10.1109/E-SCIENCE.2007.71
http://creativecommons.org/licenses/by/4.0/

	Introducing SWIRL: An Intermediate Representation Language for Scientific Workflows
	1 Introduction
	2 Background and Related Work
	2.1 Related Work
	2.2 Scientific Workflow Models
	2.3 Distributed Workflow Models

	3 The SWIRL Representation
	3.1 Semantics
	3.2 Workflow Model Encoding
	3.3 Consistency of SWIRL Semantics

	4 Optimisation
	5 Implementation
	6 Evaluation
	7 Conclusion
	References

