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Abstract This work is based on a bottom-up approach to
the standard-model effective field theory (SMEFT), result-
ing in an equiprobable space of Wilson coefficients. The
randomly generated Wilson coefficients of the SMEFT (in
the Warsaw basis) are treated as pseudo-data and, for each
observable, the corresponding probability density function is
computed. The goal has been to understand how large are the
deviations from the SM once the SMEFT scale (�) and the
range of the Wilson coefficients are selected. Correlations
between different observables are also discussed.

1 Introduction

The standard-model effective field theory [1] (SMEFT) is a
useful tool to analyze possible deviations from the standard
model (SM). In this work we will use the SMEFT (in the so-
called Warsaw basis [2]) at the one- loop level. This means
insertion of dim = 6 operators in one-loop SM diagrams
plus “pure” one loop SMEFT diagrams (i.e. diagrams with
no counterpart in the SM). In particular we will study the
following (pseudo-)observables:

• the g − 2 of the muon, i.e. the anomalous magnetic
moment a μ,

• the value for the W boson mass, MW, as derived by using
the LEP1 input parameter set (IPS),

• the vector and axial couplings for the Z− boson decay
Z → μ+μ− and the corresponding sin2 θ

μ
eff ,

• the Higgs boson decay H → γγ,
• the Higgs boson decay H → b̄b.

It is not the goal of this paper to describe the use and reuse
of the SMEFT (for that see Ref. [3]) in fits [4–9]. The goal is
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instead to compute SMEFT deviations w.r.t. the SM and to
understand how large they can be and the correlation among
different (pseudo-) observables.

All the calculations are based on in-house codes; the ana-
lytic expressions have been obtained by using a FORM code
(SMEFTO.frm), numerical results by using a FORTRAN
code (SMEFTO.f). General definitions and notations can be
found in Refs. [10,11], examples of observables in Ref. [3].
The strategy of the calculation will be as follows. Given an
observable O we first compute O(4), i.e. O at dimension four
(the SM). If MO is the corresponding matrix element then

O(4) =
∫

dPS
∑
spin

| M(4)

O |2, (1)

where dPS indicates the corresponding phase-space integra-
tion. Including SMEFT (i.e. dimension six operators) we will
have

MO = M(4)

O + g6√
2

M(6)

O , g6 = 1

GF �2 , (2)

giving the full O(6). Note that both dim = 4 and dim = 6
terms may or may not contain loop corrections. Here we have
introduced g−1

6 = GF �2, where GF is the Fermi coupling
constant and � is the SMEFT scale. Two options will follow,
linear or quadratic SMEFT. In the first case only the linear
term will be kept in squaring the amplitude.

After having computed the relevant quantities we will
define deviations

�O = O(6)/O(4) − 1, (3)

and 1© plot the relative probability density function (pdf) by
randomly generating the corresponding set of Wilson coeffi-
cients, 2© display relationships between observables.

Quoting [12] we can say that good scientific research can
be characterised by a fruitful interaction between fundamen-
tal theories, phenomenologicalmodels and effective field the-
ories. All of them have their appropriate functions in the
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research process. Therefore, we identify our “conservative”
scenario and will not deal with “matching-motivated” strate-
gies; it is clear that the model space does not necessarily
project evenly on all SMEFT parameters but our approach
will be purely bottom-up. To summarize:

• In a top-down approach we are assuming a space of UV-
complete models Mi ({pM}) functions of their parame-
ters (masses and couplings). By UV-completion we mean
passing from the SM to a more general quantum field
theory (QFT) above a threshold; the more general QFT
should explain more experimental data than the SM. We
are not addressing here the question posed by Georgi
[13]: it may even be possible that there is no end and,
simply more and more scales as one goes to higher and
higher energies. From the space M we ideally derive
the corresponding low-energy limit, taking into account
those models that can be described by the SMEFT; these
limits and mixings of heavy Higgs bosons are discussed
in Ref. [11] heavy-light contributions in Ref. [14]. In the
low-energy limit we obtain a space of Wilson coefficients
W ({a }); each parameter of M is now translated into a
set of Wilson coefficients. Of course there will be limi-
tations on M , e.g. models Mi should respect custodial
symmetry [15].

• In a purely bottom-up approach [12] (our framework),
W defines our computable “theory”, see Ref. [16]. Our
“conservative” scenario is realized by generating val-
ues for the Wilson coefficients with the random num-
ber generator RANLUX [17]. In the bottom-up approach
“equiprobable” is a a prior in the sense that we assume
zero knowledge of the UV (except for the possible option
of suppressing operators containing field strengths) so
we assume that any Wilson coefficient is as likely as any
other.

In order to arrive at the final result we will have to (briefly)
discuss the main ingredients of the calculation.

2 SM and SMEFT renormalization

We will not discuss renormalization of the SMEFT in great
details. To summarize what has been done (for full details
see Refs. [10,11,18]) we will define a renormalization pro-
cedure.

• After the specification of the gauge fixing term including
the corresponding ghost Lagrangian we select a renor-
malization scheme and a choice of the IPS. Every coun-
terterm for the parameters in the Lagrangian contains an
arbitrary UV-finite constant. Any explicit definition of the
constant is a definition of the renormalization scheme.

• It will be enough to say that the SMEFT, as any QFT,
depends on parameters and on fields. Our strategy is to
define counterterms (CT) for the parameters, to intro-
duce an IPS and to perform on-shell renormalization for
the SM parameters and the MS renormalization for the
Wilson coefficients, see Appendix A. Beyond two-point
functions this will require a mixing of the Wilson coeffi-
cients.

Some comment is needed on external leg wave-function
factors: external unstable particles represent a notorious
problem, see Refs. [19,20]. Here we will follow the strategy
developed for LEP observables. As a consequence the wave
function factors are taken to be real; of course, one should
introduce the notion of complex poles but the Z-observables
(and also the H-observables) have not been described in terms
of complex poles.

Removal of UV-poles is not the end of any renormalization
procedure, see Ref. [21]. For instance, after removing the UV-
poles, we need to connect the renormalized SU (2) coupling
constant (gR) to the fine structure constant α(0) or to the
Fermi coupling constant GF. Most of the renormalization
procedure has to do with two-point functions, therefore we
recall few definitions

Sγγ = g2 s2
θ

16 π2 �γγ(p
2) p2, SZγ = g2 sθ

16 π2 cθ

�Zγ(p
2),

SZZ = g2

16 π2 c2
θ

�ZZ(p2), SWW = g2

16 π2 �WW(p2),

(4)

where sθ is the (bare) sine of the weak-mixing angle. The
procedure is as follows:

1© Introduce the transition SZγ and the corresponding
self-energy Sγγ.
2© Define the γ1̄1 vertex at LO (but including SMEFT

terms) and compute the corresponding amplitude for
Coulomb scattering obtaining

A c
LO = 	LO γ μ ⊗ γμ. (5)

3© Introduce the Dyson resummed γ propagator and
define (residue of the pole at zero momentum transfer)

A (gR) = 	2
LO

[
1 − �γγ |p2=0

]−1
. (6)

4© Introduce CTs for g and mix the Wilson coefficients.
It will follow that the dimension four is UV-finite after
introducing the parameter CTs and dimension six is UV-
finite after mixing.
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5© Next we write the equations

A (gR) = 4 π α(0), g2
R = 4π α(0)

s2
θ

{
1 + g6√

2
δg(6)

0

+α(0)

π

[
δg(4) + g6√

2
δg(6)

1

]}
, (7)

where g6 id defined in Eq. (2), and fix the δ g (UV-finite)
CTs, i.e. the δg in Eq. (7) are the unknowns to be fixed
by solving the (UV-finite) renormalization equations.

Of course, this procedure requires the well-known WST
identities for the cancellation of vertices and wave function
factors at p2 = 0. What we have here is that this WST identity
is, well known for QED, proven for the SM [21,22], proven
to be valid in the SMEFT by our explicit calculations.

Of course we also need the relation between gR and the
Fermi coupling constant. The derivation follows in a similar
way.

3 Computing (pseudo-)observables

We have selected the IPS containing MW and MZ. The first
observable to be considered is the g − 2 of the muon. After
computing the (QED) Schwinger term we have included
the one-loop SM contributions and added the dimension six
contributions. The strategy is, as described, to make UV-
renormalization, to separate the IR/collinear QED correc-
tions, and to develop an efficient algorithm for computing
the p2 → 0 limit. For a model-independent analysis of the
magnetic and electric dipole moments of the muon and elec-
tron see Ref. [23].

As far as Z → μ+μ− is concerned we will adopt the
LEP strategy, see Refs. [24,25]: the explicit formulae for
the Z1̄1 vertex are always written starting from a Born-like
form of a pre-factor times a fermionic current, where the
Born parameters are promoted to effective, scale-dependent
parameters

γ μ
(
G f

V + G f
A γ 5

)
. (8)

The corresponding width (LEP1 conventions) is

	(Z → 1̄1) = 4 	0

[
| G f

V |2 R1
V+ | G f

A |2 R1
A

]
,

	0 = GF M3
Z

24
√

2 π
, (9)

where the radiator factors describe the final state QED and
QCD corrections and take into account the fermion mass.
Next define gf

V, A as the real part of G f
V, A and define

sin2 θ
μ
eff = 1

4

(
1 − gμ

V

gμ
A

)
. (10)

The processes H → γγ and H → b̄b do not need addi-
tional comments.

Predicting the W mass means changing the IPS. Therefore
we start from the following equations:

1

g2s2
θ

= 1

4π α
+ 1

16 π2 �γγ(0),

8
M2

g2 =
√

2

GF
+ 1

16 π2

[
�WW(0) + M2 s2

θ
δG

]
,

M2

c2
θ

= M2
Z + g2

16 π2 c2
θ

��ZZ(M2
Z), (11)

where g, sθ and M are bare parameters and � and � are
self-energies containing dimension six contributions. In the
second equation δG collects the contributions to the muon
decay coming from vertices and boxes. While δ

4)
G has been

known since a long time [26] we still miss a complete calcu-
lation of δ

(6)
G . This missing ingredient should be considered

as contributing to the SMEFT “theoretical uncertainty”.
By solving the set of renormalization equations we obtain

bare parameters as a function of experimental data. It is
always convenient to resum large logarithmic corrections so
that the lowest-order resummed solution for the weak-mixing
angle will be

s2
θ

= s̄2 = 1

2

⎧⎨
⎩1 −

[
1 − 4

π α(M2
Z)√

2 GF M2
Z

]1/2
⎫⎬
⎭ . (12)

By sθ we mean the Lagrangian parameter while will
reserve the notation θW for sin2 θW = 1−M2

W/M2
Z. Inserting

the solutions into the inverse W propagator returns MW with
a lowest-order solution given by MW = c̄ MZ which receives
corrections in perturbation theory, including the ones due to
dimension six operators.

It is worth noting that the inclusion of dimension six opera-
tors touches all the ingredients of the calculation. For instance
we have

α(MZ) = α(0)
[
1 − �α1 − �αt − �α

(5)
had

]−1
(13)

Corrections due to leptons and to the top quark contain
both dim = 4 and dim = 6 terms; the hadronic part is taken,
as usual from data.

It is important to understand that the inclusion of dim =
6 only in tree-diagrams introduces blind directions in the
space of Wilson coefficients. The inclusion of loops partially
removes the degeneracy.

4 Numerical results

For the masses we use the values quoted by the PDG and
define two scenarios corresponding to

123



67 Page 4 of 9 Eur. Phys. J. C (2023) 83 :67

Fig. 1 The pdf for �a μ. Left figure refers to scenario S1, right figure to scenario S2

Fig. 2 The pdf for �a μ. � = 1 Tev and Wilson coefficients ∈ [−0.5, +0.5]

S1 � = 1 Tev with values of the (renormalized) Wilson
coefficients ∈ [−0.1, +0.1].
S2 � = 2 Tev with values of the (renormalized) Wilson
coefficients ∈ [−0.1, +0.1].

We start with the observation that α(MZ) in the SMEFT
differs from the SM value by less than a permille.

4.1 SMEFT and a μ

The accepted theoretical value for a μ is 0.00116591810 (43)

[27]; the new experimental world-average results today is
0.00116592061 (41) [28] with a difference of 251 × 10−11.
Given the one-loop EW contribution [29]

a EW
μ |one−loop=

GF M2
μ

24
√

2 π2

[
5 +

(
1 − 4 sin2 θW

)2
]

(14)

where sin2
W = 0.22301, we obtain a EW

μ = 194.8 × 10−11

at one loop (higher order EW corrections bring this value
to 153.6 × 10−11 [30]). Therefore the new experimental
value requires deviations of O (100) percent w.r.t. the SM
which are obviously difficult to reach in the context of the
SMEFT. For instance, with � = 1 Tev and Wilson coeffi-

cients ∈ [−0.5, +0.5] we can reach a 50% deviations but
only in the corners of the space of Wilson coefficients. Note
that at tree level a μ depends only on a 1 W and a 1 B (Wilson
coefficients in the Warsaw basis).

We define

�a μ = a (6)
μ

a (4)
μ

− 1, a (4)
μ = a EW

μ |oneloop . (15)

In Fig. 1 we show the pdf for �a μ. Left figure refers
to S1, right figure to S2. We have also produced results for
� = 1 Tev and Wilson coefficients ∈ [−0.5, +0.5]. The
result is shown in Fig. 2.

We have also investigated a scenario where � = 1 Tev,
Wilson coefficients ∈ [−1, +1] and where we discard points
in the space of Wilson coefficients where | � sin2 θ

μ
eff |>

10−3. In the resulting distribution the largest fraction of �a μ

deviations is compatible with zero. From the histograms we
derive an approximate value for the standard deviation of
the pdf: they are σ = 0.357 for S2, σ = 1.428 for S1 and
σ = 7.142 for the last scenario (Fig. 3). For the sake of
completeness we have repeated the calculation assuming the
all Wilson coefficients are positive; the result shows a mean
μ = 1.414 with σ = 1.429
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Fig. 3 The pdf for � sin2 θ
μ
eff in scenario S1 (left figure). A scattered plot displaying the relationship between �a μ and � sin2 θ

μ
eff (right figure)

By looking at the data we can ask “what happens when
we put constraints on the space of Wilson coefficients”? The
situation seems to be the following: there is one combina-
tion of Wilson coefficients (in the Warsaw basis), a1 WB =
sin θW a1 W − cos θW a1 B, which appears at tree level in the
calculation of a μ but only at one-loop in the other pseudo-
observables. Selecting large values for a 1 WB while putting to
zero the remaining Wilson coefficients could do the job. It is
worth noting that according to Ref. [31] a 1 WB is the Wilson
coefficient of a Loop-Generated operator (containing field
strengths), thus requiring a loop suppression factor. The rele-
vance of a 1 W, a 1 B (called a e W,B in Ref. [2]) becomes clear
when we observe that the corresponding operators contain
σμν .

To give an example, suppose that we use the SMEFT at
the tree level; let us define

a φ 1 V = a (3)
φ 1 − a (1)

φ 1 − a φ 1, a φ 1 A = a (3)
φ 1 − a (1)

φ 1 + a φ 1,

(16)

where the a are Wilson coefficients in the Warsaw basis. We
can derive both of them in terms of other Wilson coefficients
by asking zero deviation in the vector and axial couplings of
the Z− boson. Then we fix a1 WB = sin θW a1 W−cos θW a1 B

in order to reproduce the a μ deviation with the rest of the
Wilson coefficients left free. Always accepting to work at tree
level, if we fix the free Wilson coefficients ∈ [−0.1, +0.1]
values of a 1 WB/(16 π2) > 0.01 are needed to reach 50%
deviations for a μ.

Alternatively, we can proceed as follows: every observable
can be decomposed as

O = O(4) + g6√
2

[
δ
(6)

O + GF M2
W

π2 �
(6)

O

]
. (17)

The first term in Eq. (17) represents the tree-level contri-
bution in the SMEFT while the second accounts for loops
in SMEFT. We have set to zero the δ(6) terms in the vector

and axial couplings of the Z boson, which means two linear
conditions among Wilson coefficients.

The resulting scattered plot is shown in Fig. 4. The inter-
esting fact in comparing the left and right figures is that the
tree-level SMEFT correction is dominant but the one-loop
SMEFT contribution is not negligible [32,33]. In the right
panel of Fig. 2 we have shown the (tiny) effect of changing
the renormalization scale.

For � = 1 Tev and Wilson coefficients ∈ [−0.1, +0.1],
although we have reduced the deviations for sin2 θ

μ
eff at the

level of ±0.2% we can only obtain deviations for a μ at the
level of ±4% (Fig. 5).

4.2 SMEFT and Z → μ+μ−

LEP data [24] return sin2 θ1
eff = 0.23153 ± 0.00016 (the

error is 0.07 %). The natural comment is that it is extremely
difficult to evade this bound. Despite this evidence we should
observe the following facts: the LEP1 data were used to pre-
dict MW = 80.363 ± 0.032 GeV (we use 80.379 GeV) and
the Higgs boson mass was not an input parameter, it was
obtained MH < 285 GeV at 95 % C.L.

The pdf for sin2 θ
μ
eff is shown in Fig. 3 for S1 and where

we have defined

� sin2 θ
μ
eff = sin2 θ

μ
eff |dim=6

sin2 θ
μ
eff |dim=4

− 1. (18)

We should remember that the corresponding experimental
error is 0.07%. From the histogram we derive the following
approximate deviation, σ = 0.498.

• From the scattered plot of Fig. 3 we observe that, due to
the low correlation, it is still possible to accommodate
large deviations for a μ while keeping (very) low devia-
tions for sin2 θ

μ
eff .
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Fig. 4 A scattered plot displaying the relationship between �a μ and � sin2 θ
μ
eff . Left figure is the same as in Fig. 3. Right figure takes into account

the constraint described in Eq. (17)

Fig. 5 A scattered plot displaying the relationship between �(Z → μ+μ−) and � sin2 θ
μ
eff (left figure) or �a μ (right figure)

Fig. 6 The pdf for �MW, scenario S1

4.3 SMEFT and MW

The result from the CDF II detector is MW = 80.4335 ±
0.0094 GeV [34] to be compared with the previous world-
average, MW = 80.379 ± 0.012 GeV [35]. Therefore we
require a deviation of + 0.068%. For fits see Ref. [36]. Our

result for the �MW pdf are shown in Fig. 6. From the
histogram we derive the following approximate deviation,
σ = 0.098.

4.4 SMEFT and H → γγ, H → b̄b

In Fig. 7 we show a scattered plot displaying the relationship
between the set of “data” corresponding to Z → μ+μ− and
H → γγ.

In Fig. 7 we show a scattered plot displaying the relation-
ship between the set of “data” corresponding to Z → μ+μ−
and H → b̄b. For H → b̄b we use the deconvoluted result
(both QED and QCD).

From LHC Run 1 Higgs results (combined ATLAS and
CMS results as reported in Ref. [5]) the γγ decay (production
mechanism ggH) the signal strength is 1.10+0.23

−0.22 while the b̄b
decay (VH production) is 1.0 ± 0.5 (1.01 ± 0.20 for Run 2).

4.5 Impact of QED corrections on Z → μ+μ−

Let us consider QED corrections to the decay Z → μ+μ−.
After adding up virtual and real contributions and defining
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Fig. 7 A scattered plot displaying the relationship between �	(Z → μ+μ−) and �	(H → γγ) (left figure) or �	(H → b̄b) (right figure)

the linear combination of Wilson coefficients, the final result
for the decay width is an IR/collinear-free quantity, both in
the SM and in the SMEFT. The result can be written as

	QED(Z → μ+μ−) = 3

4

α

π
	0

×
[
(1 + v2

1)

(
1 + g6√

2
δ
(6)
1

)
+ g6√

2
δ
(6)
2

]
, (19)

with v1 = 1−4 sin2 θW, showing a double (SM and SMEFT)
factorization. The explicit expressions for the δ(6) terms can
be found in Ref. [37]. The scattered plot displaying the rela-
tionship between � sin2 θ

μ
eff and �	QED(Z → μ+μ−) is

shown in Fig. 8.
This result is important, not only for extending IR/collinear

finiteness to the SMEFT but also because it shows that higher
dimensional operators enter everywhere: signal, background
and radiation. The latter is particularly relevant when one
wants to include (SM-deconvoluted) EW precision observ-
able constraints in a fit to Higgs data. Since LEP POs are
(mostly) SM- deconvoluted, the effect of dim = 6 operators
on the deconvolution procedure should be checked carefully.

In Eq. (19) 	0 is the LO width and the LEP definition is

	dec(Z → 1̄1) = 	(Z → 1̄1)

1 + 3
4

α(M2
Z)

π

. (20)

Once again, fitting the deconvoluted pseudo-observable
as reported at LEP with the SMEFT is not fully consistent.

5 Conclusions

Without looking at the experimental data we have assumed
a bottom-up approach described by the SMEFT. Therefore,
the randomly generated Wilson coefficients of the SMEFT
(in the Warsaw basis) are treated as pseudo-data and, for each
observable, we have computed the corresponding probability
density function.

Fig. 8 A scattered plot displaying the relationship between
�	QED(Z → μ+μ−) and � sin2 θ

μ
eff

The equiprobability bias (EB) is a tendency to believe that
every process in which randomness is involved corresponds
to a fair distribution, with equal probabilities for any possible
outcome. It has been shown that the EB is actually not the
result of a conceptual error about the definition of random-
ness. On the contrary, the mathematical theory of randomness
does imply uniformity [38].

Stated differently we consider a single “supersystem”
where we identify the values of the Wilson coefficients and
implement the principle that equal ignorance should be rep-
resented by equiprobability.

Our goal has been to understand how large are the devia-
tions from the SM once the SMEFT scale (�) and the range of
the Wilson coefficients are selected. Theory-driven research
[39] focuses on identifying abstract constructs and the rela-
tionships among them.

Our set of pseudo-observables includes a μ, sin2 θ
μ
eff , MW,

	(Z → μ+μ−), 	(H → γγ) and 	(H → b̄b). The corre-
sponding results can be compared with the experimental data
to understand how easy or difficult will be to explain (possi-
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ble) SM-deviations in terms of the SMEFT language. In par-
ticular, constraints in the space of Wilson coefficients have
been introduced to explain large deviations for one observ-
able and very small deviations for a second observable. These
constraints put you on the hedge of the equiprobable space
of Wilson coefficients with some of them taking “very” large
values.

Theories can be changed by data or even invalidated by
them. We have an initial theory (the SM) and a theory of
deviations (the SMEFT), and then we add and absorb new
data, altering the theories at each point.
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Appendix A: Details on renormalization

Since a large part of the renormalization procedure depends
on two-point functions we briefly summarize the procedure.
Let X be any boson field, the inverse X propagator (with
p2 = −s) is

− s + m2
X − g2

16 π2 �X(s), (A.1)

where mX is the bare X mass. We introduce CTs, i.e.

mX = mren
X

{
1 + g2

16 π2

[
δ(4)

mX
+ g6√

2
δ(6)

mX

]}
, (A.2)

and remove s−independent UV poles. Next we write the
renormalization equation at s = M2

X where MX is the physi-
cal (on-shell) mass.

�X(s) = �X(M2
X) + (s − M2

X)�′
X(m2

X) + rest. (A.3)

Introducing now

mren
X = MX

{
1 + g2

16 π2

[
�(4)

mX
+ g6√

2
�(6)

mX

]}
, (A.4)

we fix the new CTS such that

M2
X = m2

X − g2

16 π2 ��X(M2
X), (A.5)

and derive the corresponding wave-function factors. For
fermions the procedure requires the introduction of 1 ± γ 5

projectors and will not be repeated here.
The inclusion of vertices and boxes in the amplitude (after

the introduction of the wave-function factors for the external
legs) is such that

• for the SM (dim = 4) the amplitudes are UV finite,
• for the SMEFT (dim = 6) we have to introduce a mixing

a i = Zi j a ren
j ,

Zi j = δi j + g2

16 π2

[
δZ(4)

i j + g6√
2

δZ(6)
i j

]
, (A.6)

where a i are Wilson coefficients.
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