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Pázmány Péter sétány 1/A, 1117 Budapest, Hungary

8Department of Computational Sciences, Wigner Research Centre for Physics,
Konkoly-Thege Miklós utca 29-33, H-1121 Budapest, Hungary

(Received 20 December 2023; accepted 20 May 2024; published 9 July 2024)

Fluctuations play a key role in the study of QCD phases. Lattice QCD is a valuable tool to calculate
them, but going to high orders is challenging. Up to the fourth order, continuum results have been available
since 2015. We present the first continuum results for sixth-order baryon fluctuations for temperatures
between T ¼ 130 and 200 MeV and eighth order at T ¼ 145 MeV in a fixed volume. Comparison with
earlier studies with imaginary chemical potential suggests that the volume effect is under control for
T < 145 MeV. Our results are in sharp contrast with well-known results in the literature obtained at finite
lattice spacing.
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Introduction: Fluctuations and qcd phases. The main goal
of the heavy ion program of many accelerator facilities
(e.g., at LHC, RHIC, or the upcoming CBM/FAIR) is to
create new phases of matter and explore their properties
under extreme conditions. Several experimental programs
(such as the beam energy scan program at RHIC [1,2]) are
designed to search for a hypothetical critical end point in
the temperature-baryon density phase diagram. Some of the
most important observables in this quest are fluctuations of
conserved charges. In the grand canonical ensemble, they
are derivatives of the pressure with respect to the chemical
potentials coupled to the charges. In this work, we will
calculate such fluctuation observables at zero baryochem-
ical potential.
The physics applications of fluctuation observables are

numerous. First, the equation of state of the hot-and-dense
quark gluon plasma is one of the main inputs of lattice
QCD to the phenomenology of heavy ion physics.
Fluctuations at zero baryochemical potential μB are the

basis for extrapolations of the QCD equation of state to
nonzero μB, both by means of a truncated Taylor expansion
[3] as well as via different resummations of the Taylor
series [4–6].
Second, fluctuation observables are sensitive to critical-

ity. While first-principle lattice simulations have shown that
the chiral transition is a crossover at zero baryon density
[7], at larger baryon densities several model calculations
predict a critical end point in the 3D Ising universality class
[8–11], where the crossover line becomes a line of first-
order transitions. One of the proposed experimental sig-
natures of such a critical end point is a nonmonotonic
behavior of the fourth-to-second-order baryon number
fluctuations as a function of μB [12,13]. The extrapolation
of this ratio to μB > 0 is possible, if a sufficient number of
Taylor coefficients (fluctuations) are available at μB ¼ 0.
Thus, fluctuations at μB ¼ 0 are also important for the quest
to find the critical end point. An important baseline in this
search is given by the hadron resonance gas (HRG) model,
a noncritical model that describes thermodynamics below
the chiral transition at μB ¼ 0 remarkably well. A reason-
able minimum criterium for criticality searches, then, is the
presence of solid deviations between HRG predictions and
equilibrium QCD.
A different type of criticality—in the O(4) universality

class—is also expected to be present in QCD, related to
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chiral symmetry restoration, one of the most important
concepts in heavy ion physics. In the limit of zero light
quark masses, the SUð2Þ × SUð2Þ chiral symmetry
becomes exact, and the crossover transition occurring at
physical masses is expected to be replaced by a genuine
second-order transition [14–16]. Through the presence of a
single scaling variable (a combination of the quark masses,
the temperature and the chemical potential), O(4) criticality
has imprints on the temperature dependence of higher
baryon number fluctuations at μB ¼ 0 up to physical values
of the quark masses (for a model calculation, see, e.g.,
Ref. [17]). The presence of such an O(4) scaling regime is
likely the reason why lattice QCD calculation sees no
sharpening or strengthening of the crossover transition for
small chemical potentials [4,18,19]. The complicated inter-
play of O(4) and Ising criticality motivates more involved
theoretical approaches to the phase diagram, based on Lee-
Yang zeros [20,21], which have gained popularity in recent
years [22–26]. These approaches, too, require reliable
determinations of the corresponding fluctuations.
Third, fluctuation observables are very sensitive to the

degrees of freedom of a thermodynamic system. This fact
has been used before to argue, e.g., the existence of further
(yet undiscovered) resonances [27–29] in the hadron
spectrum, which was later confirmed by experiment [30].
Finally, fluctuation observables are central in the study of

chemical freeze-out in heavy ion collisions. This is an
especially interesting avenue of research, since it has the
potential of allowing a direct comparison between first-
principle QCD predictions and experimental data. While
the comparison itself has many caveats, due to experimen-
tal effects [31–33], it is obviously worth pursuing.

Current lattice estimates. Conserved charge fluctuations
have been a focus of lattice simulations for well over a
decade now. Like any other observable, a reliable calcu-
lation of these requires a continuum limit extrapolation, via
simulations using smaller-and-smaller lattice spacings. Up
to second order, they have been known in the continuum
since 2012 [34]. Fourth-order fluctuations in the baryon
number and strangeness were first continuum extrapolated
in 2015 [35]. In that case, a large temperature range was
considered, showing good agreement with the hadron
resonance gas model at low temperatures, as well as good
agreement with perturbative calculations [36,37] at high
temperatures. Since then, calculations of the fourth-order
coefficients were pushed to very high precision [38]. Thus,
up to fourth order, the derivatives in full QCD are known
accurately, with the exception of electric charge fluctua-
tions, which suffer from large cutoff effects that make
continuum extrapolations difficult [35].
At the sixth and eighth orders, the statistics requirements

for the direct determination of the coefficients dramatically
blow up; thus, a continuum extrapolation of these coef-
ficients has never been attempted. Because of the high

statistics required, all available results on higher fluctua-
tions employ the computationally cheapest discretization:
staggered fermions. These suffer from a lattice artifact
called taste breaking [39,40], whose effect is to strongly
distort the meson spectrum and to some extent also the
baryon spectrum at a finite spacing. At low temperatures
baryon fluctuations receive their dominant contributions
from the B ¼ 1 sector of the Hilbert space; this part is also
predicted by the HRG model. Since the relative taste
breaking effect on baryons is mild, continuum extrapola-
tions are well controlled with most staggered discretiza-
tions. The first deviations from HRG in the fluctuation
ratios come from the B ¼ 2 sector, which in many models
dominated by repulsive interactions. Their characteristic
scale isOð1Þ fm3 still fitting in our simulation volume [41].
Since mesons mediate this repulsion, the relatively impor-
tant taste breaking effect on these may have a significant
effect on the magnitude of the B ¼ 2. In χBn the sectors are
represented with a weight of Bn. Thus, higher-order
fluctuations are increasingly sensitive to such cutoff effects.
The statistics required for the calculation of higher-order

fluctuations can be drastically reduced by introducing a
purely imaginary chemical potential, calculating lower-
order fluctuations, and fitting their functional dependence
on the imaginary chemical potential. The price for this
reduction in statistics requirements is that assumptions have
to be made on the functional form of the lower-order
fluctuations, leading to hard-to-control systematic errors.
So far, three collaborations have presented results up to the

eighth order with improved lattice actions. In chronological
order: First, the Pisa group presented results on lattices with
six time slices of 2stout improved fermions [7,42] in
Ref. [43]. Second, the Wuppertal-Budapest Collaboration
presented results with 12 time slices of 4stout improved
fermions [44] in Ref. [45]. These two calculations took
advantage of simulations at imaginary chemical potential.
Finally, the HotQCD Collaboration presented results with
eight time slices of Highly Improved Staggered Quark
(HISQ) fermions [46], using a direct determination at μB ¼
0 (i.e., without imaginary μB simulations) inRefs. [6,38]. For
the latter calculation, 2 orders of magnitude more statistics
were collected, compared to the previous two. It is a
testament to the efficacy of the imaginary chemical potential
method, then, that the error bars on the imaginary chemical
potential calculations of the sixth- and eighth-order coef-
ficients are substantially smaller.
At the current level of precision, discrepancies emerge

between the calculations. In particular, the results based on
the imaginary chemical potential method are in good
agreement with the hadron resonance gas model for low
temperatures. On the other hand, the direct calculation
shows significant deviations for both observables even at
the lowest temperature considered. To shed light on QCD
criticality, this discrepancy has to be resolved.
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In addition to the different extraction method for the
higher-order coefficients (direct at μB ¼ 0 vs indirect from
μ2B ≤ 0), a potentially more significant difference between
the two types of calculation lies in how the chemical
potential is defined. Due to the extreme cost of the direct
method, for fluctuations of order six and higher, the chemical
potential in that case was introduced via the so-called linear
prescription. In the other two cases, the exponential defi-
nition was used. Derivatives with respect to the chemical
potential can be shown to be UV finite by virtue of a Uð1Þ
symmetry if the chemical potential is introduced like a
constant imaginary gauge field [47]. This is the exponential
definition. If, instead, a naive linear definition is employed,
power-law UV divergences appear in the free energy already
in the case of free quarks. By taking enough derivatives with
respect to the chemical potential, such power-law divergen-
ces disappear. However, this is not the case for logarithmic
divergences, the absence of which for the naive linear
definition is not proven for the interacting theory. Thus,
although the linear definition is computationally cheaper,
care should be taken in considering these results.
The linear definition also breaks the exact Roberge-

Weiss periodicity [48] of the partition function. Even if one
assumes that there are no problems with logarithmic
divergences, the loss of Roberge-Weiss periodicity with
the linear definition can potentially lead to large cutoff
effects, since it effectively means that at a finite spacing, in
contrast to the continuum, the free energy gets contribu-
tions from Hilbert subspaces not only at integer, but also at
noninteger values of the baryon number, which at the very
least, is a nonphysical feature at finite spacing.

Lattice calculation of fluctuations up to eighth order. In
this paper, we present the first continuum results for baryon
fluctuations up to the sixth order for temperatures between
T ¼ 130 and 200 MeV and up to the eighth order for a
temperature of T ¼ 145 MeV. Continuum extrapolation is
made possible by the introduction of a new discretization,
which we call the 4HEX action, that strongly suppresses
taste breaking effects compared to all available actions in
the literature. Although more costly, we pursue a direct
determination at μB ¼ 0, in order to avoid possible sys-
tematic effects due to a choice of fit ansatz, necessary for
the imaginary chemical potential method. Moreover, in
order to avoid possible issues with the introduction of the
chemical potential, we employ the exponential definition to
all orders. Due to the extreme statistics cost of the direct
method, this endeavor is only feasible in a volume that is
smaller than what is typically used in the field, with an
aspect ratio LT ¼ 2. Thanks to the availability in the
literature of the aforementioned results at finite lattice
spacing, but with larger volume, we are able to show that,
below T ¼ 145 MeV, finite volume effects in our results
are under control. At this temperature the simulation
volume is 20 fm3, which is several times larger than the

Oð1Þ fm3 volume scale of the repulsive core of baryon-
baryon interactions. Note also that T ≤ 145 MeV is the
relevant temperature range for the search for the elusive
critical end point of QCD.
The novel lattice action we use for this thermodynamics

study, 4HEX, is based on rooted staggered fermions with
four steps of HEX smearing [49] with physical quark
masses and the DBW2 gauge action [50]. This lattice action
benefits from dramatically reduced taste breaking effects,
compared to all other actions used in the literature. We
simulate 163 × 8, 202 × 10 and 243 × 12 lattices to obtain a
well-controlled continuum extrapolation. Details on the
4HEX action, the scale setting procedure, and the system-
atic error estimation can be found in Supplemental
Material [51].
We calculate fluctuations of the baryon number at zero

strangeness chemical potential:

χBn ≡
�
∂
nðp=T4Þ
∂ðμB=TÞn

�
μS¼0

: ð1Þ

We also include results on the strangeness neutral line
ns ≡ 0 (see later in Fig. 2), which lead to similar con-
clusions as in the μS ¼ 0 case.
We use the exponential definition of the chemical

potential at all orders in μB on all our lattices. For the
Nτ ¼ 8, 10 lattices, we use the reduced matrix formalism to
calculate the fluctuations, in the same way as we did in
Refs. [52,53]. For the Nτ ¼ 12 lattice, we use the standard
random source method [54].
We show our continuum extrapolated results for χB4 =χ

B
2

(left) and χB6 =χ
B
2 (center), together with the corresponding

finite lattice spacing results in Fig. 1. The continuum
results are obtained together with a spline fit of the
temperature dependence. The exact procedure is described
in Supplemental Material [51]. The bands include stat-
istical and systematic uncertainties, consisting of different
scale settings and different spline fits of the data. The
covered temperature range is 130 MeV ≤ T ≤ 200 MeV.
Also shown are the results on the Nτ ¼ 8, 10 lattices for
χB8 =χ

B
2 (right). For this observable, we also include the

continuum extrapolation at a single temperature of
T ¼ 145 MeV. Hadron resonance gas predictions are
shown, and they equal 1 in all cases independently from
the temperature and the hadron spectrum used.
From Fig. 1, it is apparent how small the cutoff effects of

the 4HEX action are, as is the fact that, for T < 145 MeV,
the fluctuations in continuum QCD are in very good
agreement with the HRG results.
We also calculated the expansion coefficients at constant

vanishing strangeness. These facilitate the computation of
the QCD pressure at finite μB while maintaining the
experimental constraint of zero strangeness density
(nS ¼ 0) through the introduction of a strangeness chemical
potential μSðT; μBÞ:
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pn ≡
�
∂
nðp=T4Þ
∂ðμB=TÞn

�
nS¼0

: ð2Þ

Our results for the Taylor coefficient ratios p4=p2, p6=p2

and p8=p2 we show together with the HRG predictions in
Fig. 2. We observe mild cutoff effects.

Comparisons with the literature. Our results on the sixth-
and eighth-order fluctuations being the first ever continuum
extrapolated, we proceed to compare them to previous
results from the literature, with an aspect ratio LT ¼ 4. In
the top panel of Fig. 3, we show the continuum χB6 (yellow
band) alongside previous results by the Wuppertal-
Budapest Collaboration obtained with the imaginary
chemical potential method using 12 time slices of 4stout
improved staggered fermions [45] (black points) and results
by the HotQCD Collaboration obtained with the direct
method and eight time slices of HISQ fermions [6] (green
band). The latter are not direct data but rather come from a
spline interpolation of the direct data. The comparison is
fair, since we also use a spline interpolation on our data, to
allow for systematic error estimation on the continuum
limit. The role of the spline interpolation in thermodynam-
ics studies is to (i) reduce the random noise on the direct
data, by utilizing continuity in T, and (ii) allow one to take
temperature derivatives, which are needed for the calcu-
lation of certain thermodynamic quantities, such as the
speed of sound. The HotQCD Collaboration has also used

the splined version of their results on high-order fluctua-
tions in determining phenomenological quantities (see, e.g.,
Ref. [6]). Looking at the three results in comparison, a very
simple interpretation emerges. First, at temperatures below
145 MeV, our results at Nτ ¼ 12 agree with our new
continuum-extrapolated results, even though the volume is
different in the two simulations. On the other hand, the
Nτ ¼ 8 HotQCD result does not agree with our old Nτ ¼
12 results, even though the physical volumes are the same.
Unless there is an accidental cancellation between cutoff,
volume and methodical effects this means that, at low
temperatures, finite volume effects are small in comparison
to the present statistical errors. It appears that the HISQ
Nτ ¼ 8 lattices are too coarse for phenomenological
applications. The Nτ ¼ 8 results show very significant
deviations from the hadron resonance gas. For example,
it is noteworthy that the sign of dχB6 =dT is opposite to the
HRG model prediction at all these low temperatures. Such
deviations turned out to be cutoff effects, since the
continuum-extrapolated results show good quantitative
agreement with the HRG. Finally, note that while we have
presented a comparison of splined results, a comparison of
the direct data points—without interpolation—would lead to
the same conclusion: The Nτ ¼ 8 HISQ results systemati-
cally appear roughly 1σ below our continuum-extrapolated
results. Since the temperatures are statistically independent,
having many points 1σ away in the same direction has a
negligible probability to arise due to statistical fluctuations.
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Actually, one way to present the global significance of this
point-by-point disagreement is to look at the spline inter-
polations presented here.
A similar scenario appears in the bottom panel of Fig. 3,

where we compare our new results on 203 × 10 lattices with
results from the same LT ¼ 4 simulations—Wuppertal-
Budapest Nτ¼12 [45] (black points) and HotQCD Nτ¼8

[6] (green band)—as shown in the case of χB6 .We also include
our new continuum extrapolation at T ¼ 145 MeV. Besides
the markedly smaller errors, our results are in good agree-
ment with each other, showing small volume dependence
especially at lower temperature. Moreover, quantitative
agreement with HRG model predictions is evident up to
T ¼ 145 MeV. Our continuum result at T ¼ 145 MeV
confirms these findings. As in the previous case, it appears
that cutoff effects for T ≤ 145 MeV are too large to allow for
a safe use of results on coarse lattices for phenomenological
applications. Finally, we note that for T > 145 MeV, our old
Nτ ¼ 12 large volume and new Nτ ¼ 10 small volume
results do not agree. In particular, the local minimum of
χB8 is shifted to lower temperatures. This is likely a finite
volume effect, due to the crossover transition moving to
slightly lower T in a smaller volume.

Discussion. In this paper, we have reported the first
continuum-extrapolated results for high-order baryon num-
ber fluctuations available in the literature. By means of a
novel discretization of the QCD action, we were able to
carry out a continuum extrapolation using lattices with 8,
10 and 12 time slices. We used an aspect ratio of LT ¼ 2.
We calculated sixth-order fluctuations in the continuum in a
temperature range between T ¼ 130 and 200 MeV. We also
calculated the eighth-order fluctuations in the continuum at
a single temperature T ¼ 145 MeV. A comparison of our
results with existing results at finite lattice spacing and
larger physical volumes showed that, in the temperature
regime relevant for the critical point search, volume effects
are well under control already for the smaller volume used
in our study. In contrast, cutoff effects in previous results in
the literature were not always under control, especially at
the lower temperatures relevant for constraining the posi-
tion of the critical end point. Thus, phenomenological
conclusions based on erroneous coefficients ought to be
reexamined in the near future. These include estimates of
the radius of convergence and poles of Padé approximants,
used to constrain the location of the critical end point and
the convergence of the Taylor expansion for the equation of
state, used as input for hydrodynamic simulations as well as
estimates of fluctuation observables at μB > 0 used to study
chemical freeze-out. We plan to revisit all of these points
quantitatively in future publications. However, based on the
better agreement with the HRG (which can be used as a
noncritical baseline for the CEP search) we anticipate that
estimates or constraints on the critical end point location
should fall to lower temperatures and higher chemical
potentials, compared to previous estimates based on the
Nτ ¼ 8 HISQ data.
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