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Abstract: Incorporating insect meals into poultry diets has emerged as a sustainable alternative to
conventional feed sources, offering nutritional, welfare benefits, and environmental advantages.
This study aims to monitor and compare volatile compounds emitted from raw poultry carcasses
and subsequently from cooked chicken pieces from animals fed with different diets, including the
utilization of insect-based feed ingredients. Alongside the use of traditional analytical techniques,
like solid-phase microextraction combined with gas chromatography-mass spectrometry (SPME-
GC-MS), to explore the changes in VOC emissions, we investigate the potential of S3+ technology.
This small device, which uses an array of six metal oxide semiconductor gas sensors (MOXs), can
differentiate poultry products based on their volatile profiles. By testing MOX sensors in this
context, we can develop a portable, cheap, rapid, non-invasive, and non-destructive method for
assessing food quality and safety. Indeed, understanding changes in volatile compounds is crucial
to assessing control measures in poultry production along the entire supply chain, from the field to
the fork. Linear discriminant analysis (LDA) was applied using MOX sensor readings as predictor
variables and different gas classes as target variables, successfully discriminating the various
samples based on their total volatile profiles. By optimizing feed composition and monitoring
volatile compounds, poultry producers can enhance both the sustainability and safety of poultry
production systems, contributing to a more efficient and environmentally friendly poultry industry.

Keywords: nanomaterials; MOX sensors; nanotechnologies; IoT applications; insect feeding; food
quality

1. Introduction

Population growth, urbanization, and the growth of the middle class have increased
the global demand for food, and in particular for sources of animal protein. In Europe, as
in many parts of the world, poultry consumption constitutes a substantial portion of
dietary protein intake and serves as a cornerstone of culinary traditions. Traditional
production of animal foods such as fishmeal, soya, and cereals needs to be further
intensified in terms of resource efficiency and extended using alternative sources [1,2]. By
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2030, more than 9 billion people will need to be fed [3], along with the billions of animals
raised annually for food or recreational purposes, such as pets. Furthermore, phenomena
such as water and land pollution caused by intensive livestock production and
deforestation caused by overgrazing will contribute to climate change and other
destructive impacts on the environment. In recent years, the link between farming
practices and environmental, animal, and human health has become increasingly evident,
demonstrated, and defined in the One Health approach, which calls for solutions to be
found to the challenges of our time [4]. One of the ways to address the problem of food
and feed safety is through insect farming. Farmed insects are highly nutritious, rich in
proteins, fats, and minerals, and can be raised using food waste as a feeding resource.
Furthermore, they can be consumed whole or reduced to powders or pastes and
incorporated into other types of food. Additionally, they can be processed into various
forms for incorporation into animal feed [5].

Utilizing insects in nutrition and feed production offers numerous benefits, including
high conversion efficiency and the ability to transform organic waste into valuable protein
sources. This approach aligns with the principles of sustainability, circular economy, and
resource optimization, offering a viable solution for poultry diets [6]. Insects live
everywhere, reproduce quickly, have a high growth rate and food conversion rate, and
have a low environmental impact throughout their life cycle.

The use of insects for nutrition and feed production presents various advantages for
the environment, for human health, and for the improvement of the social conditions and
livelihoods of various populations [7]. From a nutritional point of view, insect meals offer
a superior amino acid profile compared to conventional feeds, reducing the need for
synthetic additives and potentially lowering production costs. This can have not only an
economic advantage but also a qualitative one, both directly on the welfare of the chickens
(the feed must meet the amino acid and energy requirements of broilers for efficient
growth and development) and indirectly on the quality of the meat obtained [8].

Environmentally, insects require fewer resources and emit fewer greenhouse gases
compared to conventional livestock sources, contributing to sustainable agricultural
practices [9]. Insects can feed on organic waste such as food remains and human products,
compost, and animal sewage and can transform them into high-quality proteins that can
in turn be used for animal feed.

Furthermore, addressing challenges related to food security and global protein
demand is critical, and insect-derived meals provide a scalable, nutritionally dense
solution that can supplement traditional feed sources. To this end, our research was
carried out on samples of chicken fed with different types of feed (traditional, sustainable,
live larvae, and dry larvae) to identify their volatile patterns and the characteristics of
volatile organic compounds (VOCs) detected. In particular, traditional analytical methods
such as solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-
MS) and innovative approaches such as electronic noses (E-noses) have been used. In
many applications, the two technologies can be complementary. The SPME-GC-MS
technique can be chosen for a detailed analysis of the VOCs, identifying and quantifying
the chemical classes (such as amines, aldehydes, alcohols, esters, ketones, and others) and
the specific compounds (such as hexanal, 1-octen-30l, tridecane, and others) found in the
samples of interest. However, the costs and the need for specialized knowledge make
these traditional methods unsuitable for in-line or at-line use in meat processing facilities.
Instead, electronic noses mimic the human olfactory system by detecting and analyzing
the total pattern of volatile VOCs emitted by a biological sample or food product. The core
of electronic nose (E-nose) systems is the gas sensors that cover many technical solutions,
including metal oxide sensors (MOX). While these easy portable devices offer rapid, cost-
effective, nondestructive analysis with minimal sample preparation and the ability to
capture complex aroma profiles, on the other hand, their main disadvantage is that they
are less precise. E-nose and, in particular, sensor arrays are not able to give the name of
the molecules they are analyzing as output [10], but they can be employed for rapid
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screening, providing the total volatile fingerprint and allowing for a separation between
the samples after multivariate statistical analysis (LDA or PCA). In addition, they can be
trained to recognize target samples thanks to machine learning algorithms. This fact is
very useful in the whole agri-food chain, from the field to the industry of food
transformation and finally to the fork, since the volatile compounds influence consumer
choices [11-13].

After nearly three decades of development, E-Nose technology has made great
progress, and the efficacy of MOX for various applications in the complex food world has
been investigated in numerous studies. For food quality control detection (e.g., freshness,
adulteration, microbiological contamination, quality classification), data are reported
among others in meat, fish, eggs, maize, potatoes, milk, and beer [14-23]. Other research
is about monitoring the evolution of VOCs as a function of time (e.g., shelf life, aging,
post-harvest storage, ripening, and fermentation) [24-28]; and about unmasking fraud on
the origin of food and determining its real authenticity (e.g., geographical origin, plant
cultivar, animal feed diet) [29-31].

In this study, the volatile components have been examined due to their susceptibility
to various factors, notably the diet of animals engaged in food production. Differences in
feed composition may lead to variances in the chemicals in meat, consequently affecting
sensory characteristics [32] and creating unique volatile patterns:

In view of environmental sustainability, animal welfare and production, and human
healthy alimentation, our research, using an integrated approach (an innovative S3+
device based on an array of six metal oxide semiconductor gas sensors and traditional
analytical techniques—gas chromatography coupled with mass spectrometry (SPME-GC-
MS)), not only highlights the nutritional potential of insect meals but also demonstrates
the efficacy of sensor technology in monitoring food diversity and processing stages (raw
and cooked), representing an advantageous decision-making aid to the business
transformation process. Indeed, by optimizing feed composition and monitoring volatile
compounds, poultry producers can enhance both the sustainability and safety of poultry
production systems, contributing to a more efficient and environmentally friendly poultry
industry.

2. Materials and Methods
2.1. Birds, Husbandry, and Diets

The in vivo trial took place at the poultry facility of the University of Turin in Italy,
with the experimental protocol (No. 814715) receiving approval from the Bioethical
Committee of the university. Adhering to European Union organic farming regulations
(Regulation (CE) n. 834/2007), all birds experienced identical management and
environmental conditions. At 39 days old, chicks were individually identified with wing
marks and selected based on their average live weight (LW) of 316.8 + 1.4 g. A total of 192
birds were then allocated to the experimental poultry facility, evenly distributed among
18 pens, each housing 8 birds and measuring 2.0 x 3.2 m, with rice hulls as litter. All birds
had unrestricted access to an outdoor area of similar dimensions.

The birds were divided into three groups, with each group comprising 6 pens
(considered replicates). The control group (CONTROL) received a basal diet containing
conventional ingredients like soybean meal, while the ST group received an experimental
basal diet where soybean meal was fully replaced by alternative ingredients. Two
additional experimental groups were fed the same experimental basal diet as ST, with the
inclusion of either dehydrated (DL) or live (LL) black soldier fly larvae (BSFL) at a level
equal to 5% of the expected daily feed intake of dry matter (DM). Weekly, the feed
consumption by the animals was calculated, and the amount of larvae provided was
adjusted to supply 5% DM of the actual feed consumed. Diets were formulated to be
isonitrogenous and isoenergetic, following INRA’s nutritional values for chickens
(metabolizable energy, AME 11.8-11.9 M]/kg; crude protein: 18.1%,; ether extract: 3.59—
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3.63%; crude fiber: 3.28-4.80%). The feeding regimen details are outlined in Fiorilla et al.
(2024) [33]. Dehydrated BSFL were supplied by “Entomo Agroindustrial” (Murcia, Spain),
while live BSFL were sourced from “Inagro” (Rumbeke-Beitem, Belgium). Larvae were
shipped weekly from Belgium and kept in a diapause state, reactivated before
administration following the procedure outlined by Bellezza Oddon et al. (2021) [34].

The trial lasted for 135 days, starting from the chick age of 39 days until the final
slaughter at 174 days. After a 12 h fasting period, chickens were electrically stunned
following the standard regulations of the European Union (Council Regulation (EC) No
1099/2009 of 24 September 2009 [35]). The right cranial side breast filets were weighed,
vacuum-packed, and frozen at 20 °C.

To investigate the volatile profiles of the poultry samples, two different techniques
were performed simultaneously on the same sample: solid phase microextraction-gas
chromatography-mass spectrometry (SPME-GC-MS) and electronic nose thanks to the
recently described S3+ device.

2.2. Conditions for Stocking and Cooking Samples

All samples were stored at —20 °C before analysis to maintain their properties.
Thawing methods varied depending on the intended use. Raw samples were thawed
overnight at 4 °C in a refrigerator, while cooked samples were boiled directly from frozen.
Boiling was conducted in a glass container filled with water on a hotplate equipped with
a thermal probe, maintaining a temperature of 85 °C. Samples were cooked for 25 min
while sealed in vacuum bags, then allowed to cool, sliced, and finally placed in the
analysis box. Throughout each phase, sterility was ensured to prevent contamination and
the detection of undesirable metabolites resulting from bacterial activity. Sterilized
materials, Bunsen burners, or laminar flow cabinets were utilized, and work surfaces were
sanitized to ensure optimal results.

In total, 48 samples from 2 different slaughters were analyzed. Each slaughter
underwent 4 different diet treatments, with half of each treatment analyzed raw and the
other half cooked. The diets that have been given to them, with the necessary codes
entrusted, are listed below:

1. Traditional diet—code CONTROL;
2. Livelarval integrated diet—code LL;
3.  Dry larval integrated diet—code LD;
4.  Sustainable diet—code ST.

Consequently, 3 samples from each treatment were analyzed raw, while 3 were
cooked. For each sample, triplicate analyses were performed using the GC-MS instrument,
along with 10 measurements on the S3+ device. In total, 624 analyses were conducted.

2.3. Preparation of GC-MS Samples

A quantity of 3 g of samples was extracted using a corer and transferred into 20 mL
chromatographic vials equipped with aluminum caps and PTFE silicone septa. To ensure
representative results, three different corers were employed for each vial, sampling from
distinct points. Following closure, the samples were refrigerated at 4 °C until analysis to
maintain the integrity of the volatilome profile and ensure consistent conditions for all
analyses. Triplicate values were obtained for each sample using three separate vials to
ensure statistically significant outcomes.

GC-MS Analysis Conditions

During analysis, a DVB/CAR/PDMS 50/30 pum solid-phase microextraction (SPME)
fiber (Supelco Co., Bellefonte, PA, USA) was exposed to the vial headspace for 90 min at
60 °C to extract all volatile organic compounds (VOCs).

Chromatographic separation of analytes was performed using a Shimadzu GC 2020
(Kyoto, KYT, Japan) coupled with a Shimadzu MS-QP2020 mass spectrometer (Kyoto,
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KYT, Japan). The fiber was desorbed for 6 min into the GC injector port set in direct mode,
where the entire sample was vaporized. The column temperature was maintained at 250
°C. The utilized column was a MEGA-5MS with dimensions of 25 m x 0.25 mm x 0.25 um
film thickness (Agilent Technologies, Santa Clara, CA, USA). The mass spectrometer
operated in EIl mode at 70 eV, with the ion source temperature set to 240 °C. Mass spectra
were recorded in the range of 35 to 500 m/z in TIC mode with scanning intervals of 0.3 s.
For all analyses, hydrogen (99.99%) generated by GENius PF500 (FullTech Instruments
Srl, Rome, Italy) was used as the carrier gas. The selected pressure was 35.7 kPa, with a
column flow of 2.2 mL/min, a linear velocity of 87.4 cm/s, and a purge flow of 4.0 mL/min.
The detector temperature was set at 240 °C. The GC oven temperature program
commenced at 40 °C, held for 1 min, followed by a temperature increase of 4.5 °C/min
until reaching 50 °C. Subsequently, the temperature was increased at a rate of 6.5 °C/min
to reach 80 °C. Finally, the temperature was ramped up to 15 °C/min to reach a final
temperature of 180 °C. The total run time was 17 min, with a total analysis time, including
exposure time, of 107 min. Peak identification was performed by comparison with three
different mass spectra libraries: Nist11, Nist 11b, and FFNSC2. Chromatographic peaks
were integrated into automatic mode using peak area as a parameter, considering at least
70 peaks with an area value not less than 500 AMU. Other parameters used in automatic
peak integration included a slope of 100/min, a width of 2 s, a drift of 0/min, and a
doubling time (T.DBL) of 1000 min. No smoothing method was applied. Finally, for post-
run analysis, quantification of volatile compounds was expressed as relative
abundance/time (% GC area) with mean + standard deviation (st).

2.4. S3+ Samples Preparation

Sample preparation for S3+ analysis involved utilizing the remaining samples from
GC-MS analysis, approximately 6 g in quantity. These samples were placed in a
polypropylene (PP) box equipped with 2 holes on the cap to accommodate the positioning
of aspiration tubes. After sealing the samples in the box, they were stored in a refrigerator
to maintain standardized parameters and minimize product degradation.

2.4.1. Calibration of MOX Sensor Arrays

The S3+ device and the sensor arrays used in this work were fully developed and
optimized (details see Section 2.3) in collaboration with the NANO SENSOR SYSTEMS
Srl spin-off of the University of Brescia, Italy. This device employs a gas array of metal-
oxide sensors composed of various materials, specifically tailored for the target
compounds [36]. The sensor calibration process adhered to rigorous protocols to ensure
the reproducibility of the results. Initially, the sensor underwent annealing to facilitate
stabilization of the sensing layer on the substrate. The annealing process was tailored
according to the intended application of the sensor, with adjustable parameters including
temperature (ranging from 500 °C to 800 °C) and duration (ranging from 1 h to 10 h).

Subsequent to annealing, each sensor underwent an aging process in the air to
standardize and reduce the electrical resistance (measured in ohms) of the sensing layers [37].
This aging period, adaptable to the sensitivity requirements of future applications, played a
crucial role in optimizing sensor performance. The validation of the sensor was carried out
within a well-established system comprising several components: a chamber with
standardized dimensions to ensure uniform airflow, a mass flow program regulating the
intake from air and ethanol pressure cylinders, and an electronic board overseeing sensor
conditioning, monitoring, and data transmission to the cloud. The S3+ device consisted of a
sensor chamber, a fluid dynamic circuit for the distribution of volatile compounds, and an
electronic control system. Within the sensor steel chamber resided six in-house-developed
Metal Oxide (MOX) sensors, each doped differently: two utilizing SnO2, two incorporating
SnO2 with Pd, and two with SnO2 with Au. Operated at 500 °C (as outlined in Table 1), this
temperature facilitated a clear delineation between sensors and their ambient environment.
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Table 1. Schematic description of the setup for different sensing elements.

Type of Sensor Doping Working Temperature (°C)
500 °C
MOX sensor SnO: 500°C
X P
MOX sensor SnO2+ Pd 500°C
MOX sensor SnO2 + Au

The chamber dimensions were 11 x 6.5 x 1.3 cm, with sensor selection based on
optimal performance during preliminary testing. Volatile compounds were constrained
to pass only through inlet and outlet channels within the sensor chamber. The response
of the MOX sensors relies on changes in electrical resistance caused by the interaction of
volatile compounds with the sensor surface. This interaction leads to variations in charge
carrier concentration, influencing the sensor’s conductance [38]. Environmental
parameters such as temperature, humidity, and flow were continuously monitored within
the chamber. The dynamic fluid circuit comprised a pump (Knf, model: NMPO05B),
polyurethane tubes, an electro valve (Camozzi Group s.p.a., model: K000-303-K11M), and
a metal cylinder containing activated carbon. This circuit facilitated air filtration to prevent
contamination by environmental odors, thereby ensuring the integrity of sensor
responses. The solenoid valve positioned at the chamber inlet regulates pump flow with
a maximum rate of 250 standard cubic centimeters per minute (sccm). The electronic board
processed sensor responses, detecting changes in electrical resistance and controlling
sensor temperature, a critical parameter for volatile compound detection. Ultimately, the
system transmitted data to a dedicated web application for the S3 device via an internet
connection, underscoring its status as an Internet of Things (IoT) device [39].

2.4.2. 53+ Setup

To conduct the analysis, the samples were placed in a 30 °C bath created using a hotplate
equipped with a thermal probe, secured to prevent water infiltration, and connected to the
instrument and carbon filters with PP tubes sealed by Parafilm® Two carbon filters were
utilized, one attached to the sample to filter air in the headspace and another attached to the
S3+ device. Each analysis lasted 13 min, comprising 100 s for sensor stabilization, 200 s for
sample analysis, and 500 s for sensor recovery. Ten replicates were conducted within 130 min.
A schematic representation of the S3+ setup is provided in Figure 1.

Variable 1

Air filter Sample S3+ Air filter

Figure 1. S3+ setup representation.

For each sample, 10 replicates were performed, analyzing sensor output (Figure 2)
such as resistance, which was normalized to the initial acquisition value (R0). The
difference between the initial value and the minimum value during analysis was calcu-
lated for each sensor.
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Figure 2. Graphical representation of the output of a single sensor. The y-axis shows the resistance
value (Q2), while the x-axis shows time (s).

Subsequently, the R/R0O parameter and standard deviation were determined for each
sensor across all 10 measurements. The data from the various sensors were transmitted to
the Microsoft Azure platform, where two web applications are available: a management
portal and a mixture classification service. The output information from these sensing
devices is interpreted using multivariate statistical analysis.

2.5. Post-Run Analysis

Linear Discriminant Analysis (LDA) is a technique used in statistics, pattern
recognition, and machine learning to find a linear set of functions that distinguish between
two or more classes of events [40]. The core concept of this method is to decrease the
dimensionality of the data set while maintaining the significance of the T2 statistic, which
assesses the hypothesis regarding the equality of means in a multidimensional context.
Through LDA, a new space is generated where the dimensionality is reduced to, at most,
k -1 (where k represents the number of classes) (see Table 2) [41,42].

Table 2. Features extracted from the recorder tracks of each sensor.

Features Description
Sharpe Forward 25% Variability index equivalent to the ratio between the mean and tohe st.andard deviation calculated from the beginning
of the signal to 25% of it.
Variability index equivalent to the ratio between the mean and the standard deviation calculated from the end of the
Sharpe Back 25%

signal to 25% of it.

Sharpe Forward 50%

Variability index equivalent to the ratio between the mean and the standard deviation calculated from the beginning
of the signal to 50% of it.

Sharpe back 50%

Variability index equivalent to the ratio between the mean and the standard deviation calculated from the end of the
signal to 50% of it.

Minimum derivative

Calculation of the minimum derivative of the function in the selected interval.

Maximum derivative

Calculation of the maximum derivative of the function in the selected interval.

Integral

Calculation of the integral of the function in the selected interval.

AR

Often called excursion range, this feature represents the difference between the maximum and minimum values
observed in the time series.

Logarithm of sum

The sum of the natural of the signal.

Minimum

The minimum value observed in the time series.

Maximum

The maximum value observed in the time series.

3. Results and Discussion
3.1. Poultry

In this study, both raw and cooked poultry samples, fed with different diets
(CONTROL, LL, LD, and ST), were examined. Innovative techniques (electronic nose) and
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traditional techniques (GC-MS) have been used to conduct the research study. It is well
known that raw meat has a bland flavor with little aroma. However, raw meat contains
numerous precursors of meat flavor, which result in the formation of volatile odor
compounds, especially during cooking [43].

3.2. GC-MS Detection Results

The results obtained from the SPME-GC-MS analysis allowed for the identification of the
volatile profile of each sample. A meticulous examination of these results revealed a variety of
compounds, some of which are extremely important for the aromatic impact of the product.
The chemical classes identified in the analyzed poultry samples include aldehydes, alcohols,
ketones, alkanes, esters, alkenes, carboxylic acids, and ethers. Among these, aldehydes, alco-
hols, alkenes, and carboxylic acids were the most prevalent compounds found in both raw
and cooked poultry samples, irrespective of the diet provided (Figure 3A,B).

diets

ALDEHYDES ALCOHOLS KETONES ALKANES ESTERS ALKENES CARBOXYLIC ETHERS
ACIDS
BCK LL mCK_CONTROL mCK LD mCK_ST
Chemical classes in raw samples from poultry fed with different B
diets

ALDEHYDES

ALCOHOLS KETONES ALKANES ESTERS ALKENES CARBOXYLIC ETHERS

ACIDS

HRAW_LL mRAW_CONTROL ERAW_LD mRAW_ST

Figure 3. (A,B) Chemical classes in cooked and raw samples from poultry fed with different diets.
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From the above images, it is evident that there is a variation in chemical compounds
between raw and cooked poultry products. Specifically, there is a quantitative reduction
in aldehydes, alcohols, and ketones in raw samples in comparison to cooked samples (ex-
cept alcohols in sample CK_ST and RAW_ST, which are 9 in both, and ketones in sample
CK_LL and RAW_LL, which remain 1), an increase in esters, carboxylic acids (except car-
boxylic acids in sample CK_CONTROL and RAW_CONTROL, which are 2 in both), and
ethers, while alkanes and alkenes remain nearly unchanged. This behavior is primarily
due to two factors: cooking processes and variations in specific compounds [44].

Regarding cooking processes, it is noted that high temperatures lead to protein de-
naturation, lipid oxidation, the Maillard reaction, and Strecker degradation. The detailed
explanations are as follows:

1. Protein Denaturation: cooking causes the denaturation of proteins, which alters the
structure of protein molecules, leading to the formation of new volatile compounds.

2. Maillard Reactions: this set of chemical reactions occurs between amino acids and
reducing sugars at elevated temperatures, producing a wide range of volatile com-
pounds responsible for the flavor and aroma of cooked food.

3. Related to the Maillard reaction is a subset of chemical processes called Strecker deg-
radation, which plays a critical role in meat flavor generation and, in general, in pro-
ducing aroma-active volatiles in processed foods. The Strecker degradation converts
an a-amino acid into an aldehyde containing the side chain by way of an imine inter-
mediate, directing the Maillard reaction from chromogenic pathways toward more
aromagenic pathways [45]. Depending on the parent amino acid, the Strecker alde-
hydes normally have low-odor threshold values with characteristic aroma properties.

4. Lipid Oxidation: lipids present in the meat oxidize during cooking, producing alde-
hydes, alcohols, and ketones in the initial stages, which subsequently transform into
acids and other compounds [46].

The variation in specific compounds between raw and cooked poultry samples [47]
is explained as follows:

e  Reduction in aldehydes, alcohols, and ketones: aldehydes can further oxidize during
cooking, transforming into carboxylic acids. Alcohols, in turn, can oxidize into alde-
hydes and ketones, which can subsequently transform into carboxylic acids. Ketones
can undergo further oxidation reactions, becoming carboxylic acids.

e Increase in esters, carboxylic acids, and ethers: esters can form through reactions be-
tween alcohols and acids, facilitated by the presence of heat. Carboxylic acids in-
crease due to the oxidation of aldehydes, alcohols, and ketones. Ethers can form
through condensation reactions between alcohols, especially under high heat condi-
tions.

e  Unchanged alkanes and alkenes: these hydrocarbon compounds are relatively stable
and do not readily participate in the chemical reactions that occur during cooking.
Therefore, their concentrations tend to remain unchanged.

In summary, cooking induces a series of chemical reactions that transform the com-
pounds present in raw poultry products. Oxidation reactions and chemical transfor-
mations lead to a reduction in aldehydes, alcohols, and ketones, while increasing carbox-
ylic acids, esters, and ethers. Alkanes and alkenes remain unchanged due to their chemical
stability. A variation in chemical compounds is also evident when comparing the different
diets (LL, CONTROL, LD, and ST). The following graphs examine specific chemical com-
pounds (Figures 4 and 5): the y-axis represents the volatile molecules found in the exam-
ined samples, while the x-axis shows the mean percentage abundance, indicating the sig-
nificance of each compound for the specific sample. Regarding aldehydes, hexanal
(CeH120) is the most prominent molecule in all samples. It is an aliphatic aldehyde natu-
rally found in many foods and plant products. Hexanal can be produced through both the
lipoxygenase pathway, which involves the enzymatic oxidation of polyunsaturated fatty
acids, and the non-enzymatic chemical oxidation of lipids. Both pathways are crucial for
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the formation of volatile compounds that contribute to the aroma and flavor of many
foods, as well as serving as indicators of freshness and quality [48]. Moreover, aldehydes
dominate in the headspace of cooked meat, while hexanal is a powerful contributor to the
odor of chicken meat due to its low odor threshold [49]. In particular, hexanal provides a

green and fresh aroma.

ALDEHYDES in cooked samples from poultry fed with different diets

Dec-(2E)-enal
Benzaldehyde, 2,5-bis[(trimethylsilyl)oxy]-
2-Ethyl-1-hexanol, trifluoroacetate
Benzaldehyde
Hexadecanal
Pentadecanal-
Heptadecanal
Tetradecanal
Tridecanal

Dodecanal
2-Undecenal
2,4-Decadienal, (E,E)-
Undecanal

2-Octenal, 2-butyl-
Decanal
Benzaldehyde, 4-ethyl-
2-Nonenal, (E)-
Isobutyrate <hexyl->
Nonanal

2-Octenal, (E)-

Octanal

2-Heptenal, (2)-
Heptanal

Hexanal

Pentanal
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Figure 4. Aldehydes in cooked samples.




Sensors 2024, 24, 4921

11 of 23

ALDEHYDES in raw samples from poultry fed with different diets
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Figure 5. Aldehydes in raw samples.

Regarding alcohols (Figures 6 and 7), 1-Octen-3-ol is the compound with the highest
average abundance in all cooked and raw samples (except for RAW_LD, which does not
have one). It is an organic compound with a characteristic fungal odor, naturally present
in various food products, and used in multiple applications. It is generally produced by
various organisms through the enzymatic decomposition of unsaturated fatty acids. In
addition, 1-octen-3-ol concentration is found to be differentiated mainly at high tempera-
tures and could be a marker of lipid oxidation but not microbial spoilage [50]. However,
alcohols, as a whole, could have an insignificant contribution to odor due to their rela-
tively high odor threshold values [51]. It is well known that volatiles originating from lipid
oxidation, such as alcohols and ketones, have high odor thresholds (mg/L range), alde-
hydes (ug/L to mg/L range), and N- and S-heterocyclic compounds originating from the
Maillard reaction and Strecker degradation have odor thresholds in the ug/L range.

Both in cooked and raw samples, there are some compounds that are present only in
one type of diet. In particular, in cooked samples, there are nine alcohols on a total of
seventeen compounds revealed (Vinyl amyl carbinol in CK_CONTROL; Tridecanol <n->
in CK_LL; n-Tridecan-1-ol in CK_LL; cis-1,2-Cyclododecanediol in CK_ST; 4-Ethylcyclo-
hexanol in CK_LL; 1-Tetradecanol in CK_CONROL; 1-Hexadecanol in CK_CONTROL; 1-
Heptanol in CK_LL; 1-Decanol, 2-hexyl- in CK_CONTROL), while in raw ones the half of
samples (seven on fourteen measured) are resulted present only in a type of diet [Cyclo-
hexanol,5-methyl-2-(1-methylethyl)-(1.alpha.,2.beta.,5.alpha.)-(.+/-.)-; Hexanol <2-ethyl->;
n-Tridecan-1-o0l, Silanediol, dimethyl- all three present only in RAW_ST.
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ALCOHOLS in cooked samples from poultry fed with different diets
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Figure 6. Alcohols in cooked samples.

ALCOHOLS in raw samples from poultry fed with different diets
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Figure 7. Alcohols in raw samples.
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Regarding carboxylic acids (Figures 8 and 9), the samples cooked with the LS diet do

not have any compounds. Conversely, CK_LL and CK_ST samples are those with more
carboxylic acids, especially nonanoic acid and octanoic acid (medium-chain fatty acids
that contribute to the flavor and aroma of chicken meat). In raw samples, carboxylic acids
tend to increase significantly, especially for raw samples fed on the LD diet (RAW_LD).
The increase in carboxylic acids in raw poultry meat compared to cooked meat can be
explained by several reasons related to chemical processes that occur during cooking [52]:

Thermal decomposition: during cooking, fatty acids can undergo thermal decompo-
sition, leading to the formation of volatile compounds or the degradation of shorter-
chain fatty acids. This can reduce the concentration of nonanoic acid and octanoic
acid in cooked meat.

Oxidation: cooking, especially at high temperatures, can accelerate the oxidation of
fatty acids. Nonanoic and octanoic acids can oxidize and transform into other com-
pounds, such as aldehydes, ketones, and shorter acids, thereby reducing their con-
centration in cooked meat.

Evaporation: some short- and medium-chain fatty acids can evaporate during cook-
ing. Octanoic acid and nonanoic acid have relatively low boiling points compared to
longer-chain fatty acids, which can lead to their partial loss as volatile compounds
during cooking.

Maillard reactions: during cooking, especially at high temperatures, Maillard reac-
tions occur, which are complex chemical reactions between amino acids and reducing
sugars. These reactions can influence the lipid profile of the meat, leading to the for-
mation of new compounds and the reduction of the originally present fatty acids.
Lipolysis: in the case of raw meat, enzymatic processes such as lipolysis can be active,
leading to the release of free fatty acids like nonanoic acid and octanoic acid. Cooking
inactivates these enzymes, interrupting the lipolysis process and thereby reducing
the formation of free fatty acids.

CARBOXYLIC ACIDS in cooked samples from poultry fed with

different diets

Pentadecanoic acid

Octanoic acid
Nonanoic acid ==

n-Hexadecanoic acid

n-Decanoic acid "

Heptanoic acid

Eicosanoic acid

Dodecanoic acid

8,11,14-Eicosatrienoic acid, (Z,Z,2)-

o

0.5 1 15 2 2.5 3

mCK_CONTROL mCK_ST mCK_LD mCK_LL

Figure 8. Carboxylic acids in cooked samples.
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CARBOXYLIC ACIDS in raw samples from poultry fed with different diets

Octanoic acid

Nonanoic acid

n-Hexadecanoic acid

n-Decanoic acid

Heptanoic acid

Dodecanoic acid

e

o
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=RAW_CONTROL mRAW_ST mRAW_LD mRAW_LL
Figure 9. Carboxylic acids in raw samples.

These combined factors explain why levels of acids can be higher in raw chicken meat
and decrease after cooking. Several acids were detected in other studies on different meat
species, such as nonanoic acid in goat and fried chicken meat [53], pentanoic acid in
roasted chicken [54], and octanoic acid in roasted chicken [55].

Another relevant chemical class is that of alkanes (Figures 10 and 11). Heptane,
2,2,4,6,6-pentamethyl, is the compound with a very high impact in all cooked and raw
samples. Although hydrocarbons are not primarily responsible for the aroma, they can
still affect the organoleptic characteristics of the meat, contributing to a complex and
unique aromatic profile [56,57].

Esters, ethers, and ketones were found in small quantities in all the samples analyzed,
and their average abundance is below 1%. This means that their contribution to the aro-
matic profile is irrelevant. An exception is the ketone compounds 2-heptanone, 3-oc-
tanone, and 2-nonanone, which have an average abundance of 1.5%, 4.5%, and 2.3%, re-
spectively, in samples cooked with the ST diet. These compounds are correlated with
spoilage since they are metabolic products of several microorganisms found in meat, such
as Pseudomonas spp., Carnobacterium spp., and Enterobacteriaceae.
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ALKANES in cooked samples from poultry fed with different diets
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Figure 10. Alkanes in cooked samples.

ALKANES in raw samples from poultry fed with different diets
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Figure 11. Alkanes in raw samples.

3.3. 83+ Detection Results

Having performed the GC-MS analysis to highlight the differences in the volatile fin-
gerprints of poultry samples, we decided to investigate the same with the Small Sensor
System (S3+). The device successfully analyzed the volatile fingerprints, allowing us to
observe a separation between the samples, as shown in the LDA plot. The primary objec-
tive of LDA is to maximize the separation between classes while simultaneously minimiz-
ing the variance within each class [53]. In our case, it was used to reduce the
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dimensionality of the data collected by the S3+ device and to visualize the separation be-
tween samples fed with different diets.

Figure 12 presents a three-dimensional representation of the LDA applied to cooked

poultry samples fed with different diets:

The blue points represent the control samples (CK_CONTROL). The points appear
clustered in a specific area, indicating that the control samples tend to have similar
olfactory profiles.

The red points indicate the samples with a sustainable diet (CK_ST). These points are
located in an area distinct from the area of the blue dots, indicating significant differ-
ences in olfactory profiles compared to the control samples. The separate position
suggests that a sustainable diet has a measurable and distinct impact on the olfactory
profile of chicken meat.

The green points represent the samples fed with a dry larval diet (CK_LD), and they
are mainly concentrated in the center of the chart.

The purple points correspond to the samples fed with a live larval diet (CK_LL). Pur-
ple dots are placed in their region of the LDA analysis space. Their separation from
other groups implies that the diet based on live larvae has a complex and character-
istic volatilome.

The calculation of LDA performances led to an accuracy of 86.53%.
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Figure 12. LDA in 3D, representing cooked samples with CONTROL diet (blue points), ST (red
points), LD diet (green points), and LL diet (purple points).

Figure 13 presents a three-dimensional representation of the LDA applied to raw

poultry samples fed with different diets:

The blue points represent the control samples (RAW_CONTROL) and are mainly
concentrated in the center of the chart.

The red points indicate the samples with a sustainable diet (RAW_ST). These points
are also concentrated in the center, partially overlapping with the blue control sam-
ples.

The green points represent the samples fed with a dry larval diet (RAW_LD), primar-
ily distributed on the lower right side of the chart.

The purple points correspond to the samples fed with a live larval diet (RAW_LL),
mainly distributed on the upper right side of the chart.
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The RAW_LD and RAW_LL samples (green and purple) show good spatial separa-
tion from the other two groups (blue and red), indicating that the LDA effectively distin-
guished these samples based on their characteristics detected by the S3+. The control sam-
ples and those with a sustainable diet show significant overlap, suggesting they may have
very similar characteristics as detected by the device.

In this case, LDA achieves a classification rate equal to 81.78%.

¢-dwod

\ comp-1

Figure 13. LDA in 3D, representing raw samples with the CONTROL diet (blue points), ST diet (red
points), LD diet (green points), and LL diet (purple points).

3.4. Confusion Matrix and ROC Curve Images

The results obtained with the S3+ device for generating the confusion matrix and
ROC curve were divided using 80% of the total data for the training set and 20% for the
test set. Regarding the raw samples, the value used for calculating the test set corresponds
to 46, which is 20% of the total 228 samples. Similarly, for the cooked samples, the corre-
sponding value is 42, which is 20% of the total of 209 samples.

3.4.1. Confusion Matrix

The confusion matrix, presented in Figure 14, is an effective method for evaluating
the performance of a classifier on a test dataset with known true labels. In this case, the
classifier was used to distinguish between four classes: COOKED_LD, COOKED_LL,
COOKED_ST, and COOKED_CONTROL.
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Figure 14. Confusion Matrix on cooked samples.
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For the COOKED_LD class, the classifier correctly identifies 62% of the samples, but
25% are misclassified as COOKED_LL and 12% as COOKED_CONTROL. This indicates
some degree of confusion between these categories. In contrast, the COOKED_LL class
shows perfect accuracy, with 100% of its samples being correctly identified, highlighting
high precision for this class. Considering the COOKED_ST class, the classifier achieves
78% accuracy. However, there is a notable error rate, with 22% of the COOKED_ST sam-
ples being incorrectly classified as COOKED_LD. For the COOKED_CONTROL class, the
classifier performs well, with 92% of the samples correctly classified. There is a small error
rate, with 8% of the COOKED_CONTROL samples being misclassified as COOKED_LD.
Figure 15 provides a similar analysis for a different set of data: RAW_CONTROL,

RAW_LD, RAW_ST, and RAW_LL.
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Figure 15. Confusion Matrix on RAW samples.
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The confusion matrix for the RAW data reveals several key observations about the
classifier’s performance. For the RAW_CONTROL class, the classifier correctly identifies
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79% of the samples. However, there is a 7% error rate, with these samples being misclas-
sified as RAW_LD, RAW_ST, and RAW_LL. Examining the RAW_LD class, 67% of the
samples are accurately classified, but there is a significant error rate: 25% of RAW_LD
samples are misclassified as RAW_CONTROL and 8% as RAW_ST. The RAW_ST class
demonstrates a high accuracy rate, with 92% of samples correctly classified. However,
there is still an 8% error rate, with these samples being incorrectly identified as
RAW_CONTROL. Similarly, the RAW_LL class shows a high accuracy rate of 88%, though
12% of these samples are misclassified as RAW_LD. The confusion matrix for the RAW
data shows high accuracy for the RAW_ST and RAW_LL classes, while the RAW_LD class
shows more confusion, particularly with RAW_CONTROL.

3.4.2. ROC Curve

Figures 16 and 17 present the Receiver Operating Characteristic (ROC) curves for the
different classes, along with the Area Under the Curve (AUC) values.

ROC_AUC lIda

True Positive Rate

- micro-average ROC curve (area = 0.90)
_++++ macro-average ROC curve (area = 0.89)
“" —— ROC curve of class COOKED_LD (area = 0.77)
ROC curve of class COOKED_LL (area = 0.97)
ROC curve of class COOKED_ST (area = 0.89)
—— ROC curve of class COOKED_CONTROL (area = 0.94)

08 10

) )
False Positive Rate

Figure 16. ROC Curve of cooked samples.

The black dashed line is the Random Classifier which is a versatile classification tool
that makes an aggregated prediction using a group of decision trees trained using the
bootstrap method with extra randomness while growing trees by searching for the best
features among a randomly selected feature subset.

The ROC curve analysis provides several important insights into the classifier’s per-
formance. The micro-average ROC curve has an AUC of 0.90, representing the average
performance of the classifier across all classes, indicating good discriminative ability. Sim-
ilarly, the macro-average ROC curve, with an AUC of 0.89, reflects the average perfor-
mance considered independently for each class, also suggesting good overall perfor-
mance. The COOKED_LD class has an AUC of 0.77, which indicates moderate perfor-
mance but is lower compared to the other classes. The COOKED_LL class shows excellent
discriminative ability with an AUC of 0.97. The COOKED_ST class has an AUC of 0.89,
indicating good discriminative ability, while the COOKED_CONTROL class has an AUC
of 0.94, reflecting very good discriminative ability. The ROC curves highlight that the clas-
sifier performs best for the COOKED_LL and COOKED_CONTROL classes, while the
COOKED_LD class shows relatively lower performance compared to the others.
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Figure 17. ROC Curve of raw samples.

As for the raw samples, the micro-average ROC curve has an AUC of 0.87, represent-
ing the average performance of the classifier across all classes, which indicates good dis-
criminative ability. Similarly, the macro-average ROC curve, with an AUC of 0.87, reflects
the average performance when considered independently for each class, also suggesting
good overall performance.

Looking at specific classes, the RAW_CONTROL class has an AUC of 0.83, indicating
moderate performance. The RAW_LD class shows slightly lower performance with an
AUC of 0.80, still within the moderate range. The RAW_ST class stands out with excellent
discriminative ability, having an AUC of 0.93. The RAW_LL class also performs very well,
with an AUC of 0.92, indicating very good discriminative ability.

The ROC curves for the RAW data highlight that the classifier performs best for the
RAW_ST and RAW_LL classes, while the RAW_LD and RAW_CONTROL classes show
relatively lower performance.

The images provide a detailed analysis of the model’s classification performance on
both COOKED and RAW datasets. The confusion matrices indicate that the model has
good precision for the COOKED_LL, COOKED_CONTROL, RAW_ST, and RAW_LL clas-
ses. The ROC curves confirm these observations, showing high discriminative ability for
COOKED_LL, COOKED_CONTROL, RAW_ST, and RAW_LL, and relatively lower per-
formance for COOKED_LD and RAW_LD. This information is crucial for understanding
the strengths and areas for improvement of the model.

4. Conclusions

In conclusion, our study has demonstrated the importance of exploring alternative
feeds for livestock intended for human consumption. The research focused on the analysis
of volatile components in cooked and raw chicken samples fed with different types of
feed: traditional, alternative diet, a diet with the addition of live larvae, and a diet with
the addition of dried larvae. The study was conducted using innovative techniques (S3+)
and traditional methods (GC-MS). This combined approach facilitated the classification
and quantification of various gas samples, while the sole use of the S3+ device has proven
to be a useful and effective tool for ensuring discrimination not only between cooked and
raw samples but also among samples subjected to different diets. The integration of inno-
vative feeds, such as those based on larvae, could represent a viable strategy to enhance
the quality and sustainability of poultry production systems, contributing to a more effi-
cient and environmentally friendly poultry industry. The effectiveness of LDA in this
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context underscores its potential as a powerful analytical tool for distinguishing complex
gas mixtures, thereby highlighting its applicability in advanced volatile analysis and sen-
sor technology development. By implementing continuous, non-destructive monitoring
of the process, data can be consistently collected and utilized to develop an IoT-integrated
system capable of managing the entire production process. This study is important for
paving the way towards novel future applications in this field.
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