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Abstract
Extraction of olive oil through a two-stage centrifugation process produces a large amount of phytotoxic waste known 
as alperujo. This research was performed to bioconvert alperujo into enriched ruminant feed by pretreatment with exog-
enous fibrolytic enzymes (EFE) or/and live yeasts (LY). These additives were used in a completely randomized design 
with 3 EFE doses (0, 4, and 8 µl/g dry matter) and 3 LY doses (0, 4, and 8 mg/g dry matter) in a 3 × 3 factorial arrange-
ment. Fermented alperujo with both EFE doses converted some of their hemicellulose and cellulose to simple sugars and 
increased bacterial abundance in the rumen. As a result, it shortens the lag time of rumen fermentation, increases the rate 
and amount of rumen fermentation, and improves digestibility. This improvement provides additional energy that can be 
used by ruminants to produce milk and by rumen microbiota to produce short-chain fatty acids. Fermented alperujo with 
a high dose of LY decreased their antinutritional compounds and reduced their high content of lipid. In the rumen, this 
waste became rapidly fermentable, and rumen bacteria became more abundance. Fermented alperujo with a high dose of 
LY + EFE accelerated rumen fermentation and improved rumen digestibility, energy available for milk production, and 
short-chain fatty acids compared to the use of LY or EFE alone. This synergistic interaction between these two additives 
increased protozoa abundance in rumen and the ability of rumen microbiota to bioconvert ammonia–nitrogen to microbial 
protein. Ultimately, fermentation alperujo with EFE + LY is a good strategy with minimum investment for a social sustain-
able economy and environment.
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Introduction

The olive oil sector is one of the most important socio-
economic activities in the Mediterranean region (Dahdouh 
et al. 2023), whose production has tripled since 1960, reach-
ing about 3 ×  106 tons in the 2021–2022 season, represent-
ing more than 90% of world production. Spain, Italy, and 
Tunisia are the main producers of olive oil, accounting for 
42.9%, 10.2%, and 7.7% of world production, respectively 
(International Olive Council 2022). Three methods are used 
in olive oil extraction: the traditional press, the three-stage 

method, and the two-stage centrifugation method (Dah-
douh et al. 2023). The use of the traditional method has 
declined and has been replaced by the three-stage and the 
two-stage continuous extraction methods, which use a cen-
trifuge to separate solid from liquid streams (Dahdouh et al. 
2023). The two-stage centrifugation system has become 
the predominant system used for olive oil extraction in 
many countries (Alburquerque et al. 2004). This extraction 
method significantly reduces water consumption and liquid 
waste compared to a three-stage system. However, it gener-
ates a large amount of semi-solid waste known as alperujo, 
which is a mixture of plant water, peels, pulp, and pits of 
olives and represents 80% of processed olives (Marcos et al. 
2019). This waste is characterized by high acidity, phenolic 
components, and sulfur dioxide emissions that damage soil 
structure, reduce soil microbial population and plant perfor-
mance, contaminate water resources, and generate undesir-
able odors (Alburquerque et al. 2004; Moreno-Maroto et al. 
2019; Dahdouh et al. 2023). Therefore, the appropriate 
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recycling process for this waste represents an economic and 
environmental challenge for the sustainable development of 
the olive oil sector.

Several studies have proved that wastes from the olive oil 
industry wastes can be used as a low-cost alternative feed 
for ruminants, improving milk and meat quality and animal 
health, and increasing livestock breeders’ income (Zagmutt 
et al. 2016; Obeidat and Kridli 2021). However, their high 
content of lignocellulose makes them resistant to ruminal 
microbial enzymes, and their high content of polyphenols 
and tannins inhibits the growth of the ruminal microbiota, so 
much of their nutrients cannot be degraded in the rumen and 
much of their energy cannot be metabolizable by ruminants 
(Yáñez-Ruiz and Molina-Alcaide 2007; Marcos et al. 2019). 
Therefore, their use in ruminant diets remains very limited 
and is mainly used in non-intensive ruminant systems for ani-
mals with low productivity and mainly in periods of scarce 
feed resources (Obeidat and Kridli 2021). Due to the recent 
global crises—the COVID-19 pandemic, the Russian–Ukrain-
ian war, and the global warming, the feed resources have 
become scarce, and their price has increased exponentially 
(Du et al. 2022; Galanakis 2023). Therefore, the valorization 
of agro-industrial by-products, such as byproducts of olive oil 
extraction, as alternative feed and the improvement of their 
nutritional value has become a very interesting research direc-
tion that needs to be further investigated.

Our previous studies have proved that pretreatment of 
solid waste from the olive oil industry using the traditional 
press or the three-stage method at 26 °C with exogenous 
fibrolytic enzymes (EFE) produced from Trichoderma longi-
brachiatum bioconvert part of their cell-wall polysaccharides 
into simple sugars, during preincubation. Consequently, it 
increases ruminal fermentation, nutrient digestibility, palat-
ability, and growth performance of ruminants without affect-
ing their health (Abid et al. 2020, 2022a). Recent researches 
have also proved that incorporation of live yeasts (LY) con-
taining Saccharomyces cerevisiae in rumen feed is beneficial 
to animals. In the rumen, these probiotics scavenge oxygen, 
stabilize rumen pH, and produce several beneficial nutrient 
cofactors such as organic acids, peptides, and vitamins that 
stimulate and facilitate the growth and proliferation of the 
beneficial rumen microbiota (Elghandour et al. 2022), result-
ing in improved of nutriment digestibility, feed palatability, 
growth performance and milk production, animal health, 
and providing a clear economic advantage for sheep, buf-
falo, calf, and cow breeding (Anjum et al. 2018; Villot et al. 
2019; Wang et al. 2022; Xue et al. 2022; Hiltz et al. 2023). In 
recent years, many experiments have proved that fermenting 
feeds such as potato peel, orange pulp, sobyan meals, and 
food waste with Saccharomyces cerevisiae before offering 
them to animals is a good strategy to reduce their antinutri-
tional factors and improve their nutritional value (Hassaan 
et al. 2015; Maxwell et al. 2018; Guerra et al. 2021; Li et al. 

2022). The LY, including the Saccharomyces cerevisiae, is 
the best microorganism that effaces fermented feeds in an 
aerobic environment and enhances their quality (Rai et al. 
2019; Li et al. 2022). Temperature is the most important 
parameter affecting the growth of Saccharomyces cerevisiae, 
which grows well between 25 and 33 °C. The temperatures 
between 25 and 30 °C are the optimum for their cell repro-
duction (Yalcin and Ozbas 2008).

To our knowledge, there is no information on the pre-
treatment of alperujo by LY and EFE in ruminant nutrition. 
Our hypothesis was that fermentation of alperujo with EFE 
or LY would improve their nutritional value and that syn-
ergy between these two additives could be established. The 
aim of this study is to bioconvert this phytotoxic waste into 
enriched alternative feed for ruminants through EFE and LY 
pretreatments in order to reduce the environment pollution 
of olive oil mills using a two-stage centrifugation system.

Materials and methods

Collect of alperujo and pretreatment with biological 
additives

Fresh alperujo were harvested immediately after olive oil 
extraction from olive oil mills located in Sfax, Tunisia, using 
a two-stage centrifugation system. This waste was dried at 
55 °C for 48 h and ground to 1 mm size to obtain small 
homogeneous particles. Then, 2 ml of sterile distilled water 
contended 0 (control), 4 µl EFE, 8 µl EFE, 4 mg LY, 4 mg 
LY + 4 µl EFE, 4 mg LY + 8 µl EFE, 8 mg LY, 8 mg LY + 4 µl 
EFE, 8 mg LY + 8 µl EFE was added to 1 g dry matter alpe-
rujo. These solid-state fermentations were realized at a 
120 rpm shaker in an aerobic environment at a temperature 
of 26 °C for 24 h. The EFE used in this study was produced 
by Trichoderma longibrachiatum (Dyadic International Inc. 
Jupiter, Florida, USA) and consisted of 2267 UI xylanases, 
1161UI endoglucanase, and 113 UI exoglucanase per ml 
(Abid et al. 2022a). The LY used in this study contained 
5 ×  1010 CFU Saccharomyces cerevisiae per g dry matter 
(Yea- Sacc1026, Alltech Inc, Nicholasville, KY, USA).

Chemical composition

The chemical composition of fresh, unfermented alperjo was 
determined immediately after the collection from industry 
and after treatment with these additives. Crude protein, ether 
extracts, and ash were analyzed according to the procedures 
of AOAC (2016). Total polyphenols were determined by 
the Folin-Ciocalteu colorimetric method using a spectro-
photometer (Shimadzu UV-1201 UV–Vis spectrophotom-
eter) at 725 nm absorbance (Makkar et al. 1993). Condensed 
tannins were analyzed by the acid-butanol-HCl-Fe method 
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using a spectrophotometer (Shimadzu UV-1201 UV–Vis 
spectrophotometer) at an absorbance of 550 nm (Makkar 
et al. 1993). Neutral detergent fiber (NDF), acid detergent 
fiber (ADF), and acid detergent lignin (ADL) were deter-
mined using the ANKOM220 fiber analyzer (ANKOM 
technology, Macedon, NY, USA) (Van Soest et al. 1991). 
Cellulose was determined by subtracting the acid detergent 
lignin from the acid detergent fiber (Van Soest et al. 1991). 
Hemicellulose was determined by subtracting the acid deter-
gent fiber from the neutral detergent fiber (Van Soest et al. 
1991). Total sugars were determined by the phenol–sulfuric 
acid method using a spectrophotometer (Shimadzu UV-1201 
UV–Vis spectrophotometer) at an absorbance of 490 nm fol-
lowing the procedure of Dubois et al. (1956).

In vitro ruminal incubation

In vitro rumen fermentation was performed according to 
the gas production technique method of Theodorou et al. 
(1994). Briefly, the rumen contents of 2 slaughtered adult 
Holstein cows (700 kg body weight) were obtained from 
different parts of the rumen. Before slaughter, the cows 
were fed 7 kg of oat hay and 3 kg of commercial con-
centrate. The rumen inoculum was filtered through four 
layers of cheesecloth, mixed in equal volume ratio, and 
immediately transported to the laboratory in a thermos 
flask maintained at 39 °C and flushed with  CO2. In the 
laboratory, rumen inoculum was mixed with an artifi-
cially buffered solution in a 1:2 (v/v) ratio according to 
Menke and Steingass (1988). Two hundred milligrams 
of dry matter of alperujo was weighed into amber glass 
serum bottles of 120 ml and incubated with 30 ml of the 
buffered rumen inoculum. These bottles were immedi-
ately closed with rubber stoppers and metal ring and 
incubated in a water bath at 39 °C. All preparations were 
performed at a temperature of 39 °C and in an anaerobic 
environment. Gas pressure was measured after 2, 4, 6, 8, 
12, 24, 48, 72, and 96 h of incubation using a pressure 
transducer connected to a data logger. The gas produced 

was corrected for the gas produced in the negative con-
trol bottles (which contained only the buffered rumen 
inoculum) and converted to volume. This experience was 
repeated three times (3 runs). For each run, three repli-
cates of each pretreatment were performed (3 replicates).

Fermentation kinetics parameters were determined from 
the adjusted cumulative gas volume using a nonlinear pro-
cess from SAS (2018) following the model of France et al. 
(2000) described in Eq. 1:

where GP is net gas production (ml/g dry matter); t is incu-
bation time (h); B is potential gas production (ml/g dry mat-
ter); C is constant gas production rate (ml/h); and Lag is lag 
phase (h).

The energy available for milk production was deter-
mined according to the equation of Menke and Steingass 
(1988) described in Eq. 2:

where energy available for milk production (MJ/kg dry 
matter); GP24 is net gas production (ml) from 200 mg dry 
matter after 24 h of incubation; CP is crude protein (% dry 
matter); and EE is ether extracts (% dry matter).

Total short-chain fatty acids were calculated accord-
ing to the equation of Getachew et al. (1998) described 
in Eq. 3:

where total short-chain fatty acids (mmol/ 200 mg dry mat-
ter) and GP24 is net gas production (ml) from 200 mg dry 
matter after 24 h of incubation.

At the end of incubation, rumen pH was immediately 
measured using a pH meter (Jenway Ltd Felsted, model 
3020, England) calibrated with buffers (pH 4 and 7). The 
contents of each serum bottle were filtered using filter 
paper disks (Whatman 541). The residues were collected 
and dried at 55 °C for 48 h to determine the digestibility of 
the dry matter using Eq. 4:

(1)GP
(t)

= B (1 − e
−C(t−Lag)

)

(2)
Energy available for milk production = 0.101 × GP24 + 0.051 × CP

+ 0.112 × EE

(3)Total short − chain fatty acids = −0.00425 + 0.0222 × GP24

(4)Dry matter digestibility (%) =
initial weight (dry matter) − residual weight (dry matter)

initial weight (dry matter)
× 100

Microbial protein synthesis was determined accord-
ing to the equation of Blümmel et al. (1997) described 
in Eq. 5:

where the microbial protein synthesis (mg/g dry matter); 
DMD is the amount of digestible dry matter (mg/g) at 
the end of incubation, and GP24 is the net gas production 

(5)Microbial protein synthesis = DMD − 2.2 × GP24

(ml) from 200 mg dry matter of the substrate after 24 h of 
fermentation.

Ruminal ammonia–nitrogen was analyzed according 
to the protocol of Broderick and Kang (1980). Briefly, 
5 ml of the filtered liquid was preserved with 0.5 mol/L 
 H2SO4, centrifuged at 16,000 × g for 15 min, and the 
supernatant was stored at − 20  °C. Rumen ammo-
nia–nitrogen concentration was determined by the 
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phenol-hypochlorite method using a spectrophotom-
eter (Shimadzu UV-1201 UV–Vis spectrophotometer) 
at 630 nm absorbance. Ruminal protozoa and bacteria 
were counted in the filtered liquid according to the 
methods of Galyean (1989).

Statistical analysis

All collected data were statistically analyzed using the gen-
eral linear model (GLM) procedure of SAS (2018). The sta-
tistical module used was

where Y ijk represents the dependent variable; μ represents 
the overall mean; EFE i represents the effect of the ith EFE 
(i = 0, 4, and 8); LY j represents the effect of the jth LY (i = 0, 
4, and 8); (EFE × LY) ij represents the interaction between 
the ith EFE and the jth LY; and εijk represents the residual 
experimental error. The differences between treatments were 
compared using Tukey’s multiple range test. Significant was 
declared when p < 0.05.

Yijk = μ + EFEi + LYj + (EFE × LY)ij + �ijk

Results and discussion

The analysis of the chemical composition of the fresh unfer-
mented alperujo obtained from different industrial of extrac-
tion of olive oil using a two-stage centrifugation system in 
Tunisia is shown in Table 1. This semi-solid waste is charac-
terized by a high content of lignocellulosic compounds simi-
lar to those of cereal straw widely used in rumen feeding, but 
with a higher content of lignin, protein, and EE (Datsomor 
et al. 2022; Sufyan et al. 2022). The chemical composition 
of this semi-solid waste was comparable to that found by 
Marcos et al. (2019) in alperujo from Spain. In addition, 
higher levels of polyphenols and condensed tannins were 
found in alperjo from Tunisia than in alperjo from Spain 
(Yáñez-Ruiz and Molina-Alcaide 2007). These differences 
can be explained by the diversity in the varieties of olive, 
fruit maturation, and agronomic conditions.

The effects of pre-treatment of alperujo with EFE and LY 
on their chemical composition are shown in Table 2. Both 
EFE dosages reduced (p < 0.05) their high lignocellulose 
content and increased (p < 0.05) their total sugar content. 
This result is consistent with previous researches in which 

Table 1  Chemical composition of fresh unfermented alperujo (g/kg dry matter)

CP is crude protein. EE is ether extracts. NDF is neutral detergent fiber. ADF is acid detergent fiber. ADL is acid detergent lignin. Ce is cellulose. 
HC is hemicellulose. TP is total polyphenols. CT is condensed tannins. TS is total sugars

CP EE NDF ADF ADL Ce HC Ash TP CT TS

117.8 ± 2.1 106.1 ± 3.3 649.4 ± 6.0 428.3 ± 5.1 223.1 ± 2.3 205.2 ± 4.2 221.1 ± 6.4 107.8 ± 3.8 55.6 ± 0.9 38.3 ± 0.3 22.6 ± 0.9

Table 2  Influence of pretreatment of alperujo with live yeasts and/or exogenous fibrolytic enzymes on chemical composition (g/kg dry matter)

a ,b Means of each chemical fraction with different superscripts are significantly different at p < 0.05 (Tukey test).  EFE0 is alperujo untreated with 
exogenous fibrolytic enzymes.  EFE1 is alperujo pretreated with exogenous fibrolytic enzymes at 4 µl g/dry matter.  EFE2 is alperujo pretreated 
with exogenous fibrolytic enzymes at 8 µl/g dry matter.  LY0 is alperujo untreated with live yeasts.  LY1 is alperujo pretreated with live yeasts at 
4 mg g/dry matter.  LY2 is alperujo pretreated with live yeasts at 8 mg/g dry matter. SEM is the standard error of means. CP is crude protein. EE 
is ether extracts. NDF is neutral detergent fiber. ADF is acid detergent fiber. ADL is acid detergent lignin. Ce is cellulose. HC is hemicellulose. 
TP is total polyphenols. CT is condensed tannins. TS is total sugars

LY0 LY1 LY2 ESM P value

EFE0 EFE1 EFE2 EFE0 EFE1 EFE2 EFE0 EFE1 EFE2 EFE LY EFE × LY

CP 117 119 118 120 119 121 118 120 122 2.1 0.84 0.88 0.86
EE 106a 104a 105a 102a 98a 100a 89b 87b 86b 4.6 0.77  < 0.001 0.76
NDF 650a 573b 560b 648a 568b 554b 648a 568b 552b 14.1  < 0.001 0.91 0.87
ADF 429a 393b 384b 430a 392b 383b 430a 391b 381b 13.4  < 0.001 0.90 0.71
ADL 223 218 222 222 220 219 220 221 218 4.9 0.91 0.92 0.92
Ce 206a 175b 162b 208a 172b 164b 210a 170b 163b 11.5  < 0.001 0.93 0.68
HC 221a 180b 176b 218a 176b 171b 218a 177b 171b 10.6  < 0.001 0.88 0.65
Ash 109 108 103 107 104 103 108 103 105 5.2 0.73 0.85 0.74
TP 55.9a 55.4a 55.5a 54.9a 55.0a 54.8a 50.1b 49.9b 48.3b 1.74 0.81 0.002 0.77
CT 38.4a 38.2a 38.4a 37.9a 38.0a 38.1a 33.5b 33.4b 33.1b 0.63 0.83 0.001 0.78
TS 22.5b 32.4a 33.4a 23.0 32.2a 33.3a 22.7b 32.5a 33.5a 3.9 0.009 0.84 0.85
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various industrial wastes such as crude olive cake and ses-
ame seed coats were pretreated with the same EFE prepara-
tion (Abid et al. 2022a, b). In contrast, the same prepara-
tion did not modify the chemical composition of Posidonia 
oceanica wastes (Abid et al. 2023). This variability may be 
attributed to the different on chemical composition and fiber 
structure of the treated substrates. Fermented alperujo with 
a high dose of LY significantly reduced their excessive anti-
nutritional compounds (total polyphenol and condensed tan-
nins) responsible for low digestibility and palatability (Kelln 
et al. 2020). This detoxification is due to the ability of LY 

to extract abundant extracellular enzymes, such as tannase, 
which hydrolyzes tannins into glucose and gallic acid or 
ellagic acid (Hawashi et al. 2019). In addition, this feed addi-
tive significantly decreased the excessive EE compounds of 
alperujo that reduce the attachment of the rumen microbiota 
to carbohydrates in the rumen (Joy et al. 2021). A compara-
ble effect was found with gum seed kernels fermented with 
LY (Gunun et al. 2022).

The effects of EFE and LY on rumen fermentation and 
the nutritional value of alperujo are shown in Table 3 and 
Fig. 1. Pretreated alperujo with EFE significantly improves 

Table 3  Influence of pretreatment of alperujo with live yeasts and/or exogenous fibrolytic enzymes on rumen fermentation characteristics and 
microflora

a ,b,c Means of each parameter with different superscripts are significantly different at p < 0.05 (Tukey test).  EFE0 is alperujo untreated with 
exogenous fibrolytic enzymes.  EFE1 is alperujo pretreated with exogenous fibrolytic enzymes at 4 µl g/dry matter.  EFE2 is alperujo pretreated 
with exogenous fibrolytic enzymes at 8 µl/g dry matter.  LY0 is alperujo untreated with live yeasts.  LY1 is alperujo pretreated with live yeasts at 
4 mg g/dry matter.  LY2 is alperujo pretreated with live yeasts at 8 mg/g dry matter. SEM is the standard error of means. B is potential gas pro-
duction (ml/g dry matter). C is constant gas production rate (ml/h). Lag is lag phase (h). NH3-N is ammonia nitrogen (mg/l). DMD is dry matter 
digestibility (g/kg DM). EML is energy available for milk production (MJ/kg dry matter). SCFA is total short-chain fatty acids (mmol/200 mg 
dry matter). MP is microbial protein synthesis (mg/g dry matter). TProt is total protozoa  (105 cells/ml). TBact is total bacteria  (1010 cells/ ml)

LY0 LY1 LY2 SEM P value

EFE0 EFE1 EFE2 EFE0 EFE1 EFE2 EFE0 EFE1 EFE2 EFE LY EFE × LY

B 89.3c 133.5b 136.1b 92.0c 130.8b 136.9b 91.7c 131.0b 145.7a 8.77  < 0.001 0.49  < 0.001
C 0.038c 0.044b 0.045b 0.039c 0.045b 0.046b 0.047b 0.048b 0.062a 0.005  < 0.001 0.002  < 0.001
Lag 0.71a 0.43b 0.49b 0.70a 0.44b 0.49b 0.49b 0.46b 0.44b 0.06  < 0.001  < 0.001 0.67
pH 6.46a 6.45a 6.30b 6.45a 6.44a 6.45a 6.46a 6.44a 6.43a 0.09 0.02 0.87 0.81
NH3-N 232a 229a 228a 233a 231a 229a 230a 224a 209b 8.4 0.87 0.88 0.02
DMD 254c 285b 288b 253c 284b 290b 265c 284b 363a 10.1 0.004 0.19  < 0.001
EML 2.81c 3.54b 3.56b 2.87c 3.45b 3.59b 2.81c 3.39b 3.83a 0.19  < 0.001 0.47  < 0.001
SCFA 0.22c 0.38b 0.39b 0.24c 0.37b 0.39b 0.26c 0.39b 0.49a 0.04  < 0.001 0.46  < 0.001
MPs 231.6b 246.5b 249.1b 228.6b 246.9b 250.5b 238.6b 244.8b 314.1a 22.4 0.09 0.38  < 0.001
TPort 5.2b 5.3b 5.5b 5.3b 5.4b 5.4b 5.3b 5.6b 6.4a 0.3 0.81 0.80 0.003
TBact 4.0b 4.9a 5.1a 4.2b 4.9a 5.1a 4.7a 4.9a 5.0a 0.4 0.007 0.008 0.79

Fig. 1  Influence of pretreatment 
of alperujo with live yeasts 
and/or exogenous fibrolytic 
enzymes on the gas profile 
control is alperujo untreated. 
 EFE1 is alperujo pretreated 
with exogenous fibrolytic 
enzymes at 4 µl g/dry matter. 
 EFE2 is alperujo pretreated with 
exogenous fibrolytic enzymes 
at 8 µl/g dry matter.  LY1 is 
alperujo pretreated with live 
yeasts at 4 mg g/dry matter.  LY2 
is alperujo pretreated with live 
yeasts at 8 mg/g dry matter 0

25

50

75

100

125

150

0 12 24 36 48 60 72 84 96

G
as

 p
ro

d
u
ct

io
n

(m
l/

g
 d

ry
m

at
te

r)

Incubation time (hours)

control EFE1 EFE2
LY1 LY1+EFE1 LY1+EFE2
LY2 LY2+EFE1 LY2+EFE2



 Environmental Science and Pollution Research

1 3

their fermentation in the rumen by shortening the delay 
phase of the onset of rumen formation and increasing the 
rate and amount of rumen fermentation, as well as improve 
their digestibility. This improvement provides additional 
energy that can be used by the ruminants for milk produc-
tion and used by the rumen microbiota to form short-chain 
fatty acids. A comparable result was obtained with crude 
olive cake and sesame seed coats pretreated with the same 
EFE preparation (Abid et al. 2022a, b). Moreover, this feed 
additive significantly increased the bacterial abundance in 
rumen. These results are consistent with previous in vivo 
studies in which diets of Holstein bulls were pretreated with 
EFE preparations (Zhang et al. 2022). However, both doses 
of EFE used in this study did not improve the ability of the 
rumen microbiota to convert rumen ammonia–nitrogen to 
microbial protein. These results are consistent with previ-
ous in vivo studies in which diets of Jersey heifers and Hol-
stein bulls were pretreated with EFE preparations (Gandra 
et al. 2017; Zhang et al. 2022). Fermented alperujo with a 
high dose of EFE decreased rumen pH due to an increase 
in rumen fermentation and short-chain fatty acid produc-
tion without causing the risk of rumen acidosis (Van Soest 
1994). A similar effect was found in vivo experiments when 
the EFE preparation was added to the feed of Holstein 
bulls (Zhang et al. 2022). Fermented alperujo with a high 
dose of LY improved the proliferation of rumen bacteria 
and accelerated the fermentation of this waste in the rumen 
similar to EFE. However, it did not modify the digestibility, 
energy available for milk production, ruminal pH, ruminal 
ammonia–nitrogen, and the ability of ruminal microbiota 
to produce short-chain fatty acids and microbial protein. 
These results are consistent with previous in  vitro and 
in vivo experiments by Maamouri and Ben Salem (2022), 
who found improvement in rumen fermentation in fattening 
calves with the addition of LY without changes in rumen pH, 
organic matter digestibility, rumen ammonia–nitrogen, and 
metabolizable energy. However, Kholif et al. (2017) found 
that addition of the same LY to the diet of Nubian goats 
increased their digestibility and rumen pH, improved the 
capacity of rumen microbiota to produce total short-chain 
fatty acid, and decreased rumen ammonia–nitrogen. This 
difference could be due to several factors, such as the differ-
ences between the substrates treated, the animals used, the 
mode of using LY, and the dose of the LY.

There are few researches investigating the effect of fer-
mented feed with a complex of EFE and LY. In this study, 
fermented alperujo with a high dose of complex LY and 
EFE accelerates rumen fermentation and improves dry mat-
ter digestibility compared to the use of LY or EFE alone. 
As a result, the ability of the rumen microbiota to produce 
short-chain fatty acids and the capacity of rumen to utilize 
energy from this waste for milk production increase. This 
improvement can be explained by the ability of this complex 

to promote the proliferation of rumen protozoa, which are 
responsible for up to 30% of fibrolytic enzyme activity in 
the rumen (Takenaka et al. 2004) and 20% of fiber digestion 
(Newbold et al. 2015). This complex also enhanced the abil-
ity of the rumen microbiota to convert ammonia–nitrogen 
to microbial protein. According to Fonty and Chaucheyras-
Durand (2006), improving microbial crude protein synthe-
sis is an interesting strategy to protect the environment by 
reducing nitrous oxide and ammonia emissions produced by 
ruminants. This synergistic interaction between LY and EFE 
has also been demonstrated in previous studies of buffalo 
calf growth performance (Malik and Bandla 2010). Despite 
the capacity of this complex to enhance rumen fermentation 
and stimulate short-chain fatty acids production, it did not 
affect rumen pH in contrast to the use of EFE alone. This 
result is due to the ability of LY to reduce lactate formation 
and stabilize rumen pH (Elghandour et al. 2022).

Conclusion

Fermented alperujo with LY and EFE is a promising option 
for conversion into enriched alternative feeds for ruminants. 
This biological complex converts dietary fiber into simple 
sugars and reduces nutritionally harmful compounds. This 
change in chemical composition increases the rumen micro-
flora and allows an increase in the rumen fermentation pro-
cess, dry matter digestibility, energy available for lactation, 
and total short-chain fatty acid production. In addition, this 
complex stimulates the bioprocess of conversion of ammo-
nia–nitrogen into microbial protein without disturbing the 
pH in the rumen. This strategy provides a suitable matrix 
with adequate nutritional value and low cost that can com-
pete with conventional feeds, provide additional income 
for the olive oil industry, and protect the environment from 
pollution.
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