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A B S T R A C T

Functional magnetic resonance imaging research employing regional homogeneity (ReHo) analysis has uncov-
ered aberrant local brain connectivity in individuals with mild cognitive impairment (MCI) and Alzheimer’s
disease (AD) in comparison with healthy controls. However, the precise localization, extent, and possible overlap
of these aberrations are still not fully understood. To bridge this gap, we applied a novel meta-analytic and
Bayesian method (minimum Bayes Factor Activation Likelihood Estimation, mBF-ALE) for a systematic explo-
ration of local functional connectivity alterations in MCI and AD brains. We extracted ReHo data via a stan-
dardized MEDLINE database search, which included 35 peer-reviewed experiments, 1,256 individuals with AD or
MCI, 1,118 healthy controls, and 205 x-y-z coordinates of ReHo variation. We then separated the data into two
distinct datasets: one for MCI and the other for AD. Two mBF-ALE analyses were conducted, thresholded at “very
strong evidence” (mBF ≥ 150), with a minimum cluster size of 200 mm3. We also assessed the spatial consistency
and sensitivity of our Bayesian results using the canonical version of the ALE algorithm. For MCI, we observed
two clusters of ReHo decrease and one of ReHo increase. Decreased local connectivity was notable in the left
precuneus (Brodmann area – BA 7) and left inferior temporal gyrus (BA 20), while increased connectivity was
evident in the right parahippocampal gyrus (BA 36). The canonical ALE confirmed these locations, except for the
inferior temporal gyrus. In AD, one cluster each of ReHo decrease and increase were found, with decreased
connectivity in the right posterior cingulate cortex (BA 30 extending to BA 23) and increased connectivity in the
left posterior cingulate cortex (BA 31). These locations were confirmed by the canonical ALE. The identification
of these distinct functional connectivity patterns sheds new light on the complex pathophysiology of MCI and AD,
offering promising directions for future neuroimaging-based interventions. Additionally, the use of a Bayesian
framework for statistical thresholding enhances the robustness of neuroimaging meta-analyses, broadening its
applicability to small datasets.

1. Introduction

Mild cognitive impairment (MCI) can be considered as an interme-
diate state between normal aging and Alzheimer’s Disease (AD) and it is
mostly characterized by memory deficits, but with normal activities of
daily living (Klekociuk et al., 2016). Considering the growing field of
potential disease-modifying treatments, it is mandatory to elucidate the

neurobiology of MCI, to obtain the greatest likelihood to modify the
natural history of the disease with pharmacological (or
non-pharmacological) interventions (Márquez and Yassa, 2019). Over
the past 30 years, significant advancements in technology related to
functional magnetic resonance imaging (fMRI) have provided an
unparalleled environment for in-vivo assessment of the neurobiological
substrate of dementias. Notably, resting-state fMRI (rs-fMRI), a
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well-established set of methods capable of detecting spontaneous
low-frequency regional temporal correlations in the Blood Oxygen
Level-Dependent (BOLD) signal, has emerged as a valuable tool for
investigating the disrupted brain functional connectivity of the patho-
logical human brain. Previous rs-fMRI research has predominantly
concentrated on abnormalities in long-range connectivity using pre-
determined regions-of-interest, revealing patterns of hypo-connectivity
in distinct cohorts of individuals with MCI and AD (Badhwar et al.,
2017; Brier et al., 2014; Ibrahim et al., 2021). By contrast, the estab-
lishment of local (or short-range) functional connectivity abnormalities
remains less robust, primarily due to the absence of sound fMRI-based
metrics. Nevertheless, exploring local functional connectivity aberra-
tions for neurodegenerative conditions holds promise for providing a
precise definition of candidate diagnostic and prognostic biomarkers at
the brain level (Liu et al., 2021; Wang et al., 2021).

Independent research endeavors have been dedicated to unveiling
atypical local functional connectivity in MCI through the application of
regional homogeneity (ReHo). ReHo, a voxel-wise rs-fMRI technique,
utilizes Kendall’s coefficient of concordance to examine the coherence of
time series of the BOLD signal amplitude within small clusters of
neighboring voxels (Jiang and Zuo, 2016; Zang et al., 2004). The
data-driven whole-brain nature of the method and its demonstrated high
test–retest reliability (Zuo et al., 2013) have contributed valuable in-
sights into the spatial distribution of aberrant local connectivity in MCI,
appearing to be concentrated in diverse brain regions associated with
visual, default mode, attentional, and sensorimotor networks (Cha et al.,
2015; Min et al., 2019; Yuan et al., 2016; Yue et al., 2023). Notwith-
standing the significance of these findings, it is imperative to recognize
the inherent inconsistency observed in the outcomes of research efforts.
Recent neuroimaging meta-analyses (C. Yang et al., 2023; X. Yang et al.,
2023; Zhen et al., 2018) have successfully identified consistent changes
in ReHo among individuals with MCI in comparison to healthy controls
(HCs), encompassing prefrontal, temporo-parietal, limbic, and cere-
bellar regions. However, the specific localization of these changes varies
markedly across different studies (refer to Fig. S1 for the neuroana-
tomical distribution of observed ReHo variations in previous
meta-analyses conducted on MCI).

Somewhat unexpectedly, the exploration of ReHo in AD has been
relatively limited to date. Part of this body of research has revealed
concurrent patterns of both local hypo- and hyper-connectivity, span-
ning neocortical, limbic, and cerebellar territories (He et al., 2007;
Peraza et al., 2016). Other discrepancies emerge in this literature, as
certain studies singularly point to either decreased or increased ReHo
aberrations in AD when compared to HCs (Liao et al., 2022; Marchitelli
et al., 2018). Finally, conflicting effects have been observed in hub nodes
of the human connectome, such as the cingulate cortex, precuneus, and
superior temporal cortex (Cha et al., 2015; He et al., 2007; Peraza et al.,
2016). Hence, there exists a compelling interest in addressing the pre-
vailing inconsistency and systematically characterizing ReHo alterations
in individuals with AD by quantitatively aggregating the existing
studies. To date, no comprehensive study has undertaken this endeavor.
This gap in the literature underscores a critical need, as such an inves-
tigation holds potential significance for the advancement of
neuroimaging-based interventions. Additionally, it may contribute to
delineating the specific or shared local functional alterations occurring
in MCI and AD, a matter of particular importance given the scarcity of
direct comparisons and the inherent inconsistencies in the available
findings (Zhang et al., 2021, 2012).

Within the context delineated, the primary objective of this study is
to conduct a comprehensive meta-analysis using the most extensive
compilation of ReHo studies in MCI and AD available to date. This
investigation is designed to achieve two principal goals: firstly, to
elucidate consistent changes in local brain connectivity in MCI and AD
when compared to HCs; and secondly, to discern functional distinctions
and commonalities between the conditions, shedding light on potential
shared and/or distinct neuropathological pathways throughout the AD

continuum. To this end, we employed the minimum Bayes Factor
version of the activation likelihood estimation (ALE) algorithm (Costa
et al., 2023), a recently developed Bayesian implementation of the most
widely utilized neuroimaging meta-analytic method globally. This
updated statistical threshold not only assesses the spatial convergence of
functional variations among the outcomes of previously published
studies, but also offers several advantages over traditional thresholding
ALE procedures. Distinctive features include its capacity to provide
informative insights into the probabilities associated with the validity of
considered hypotheses, unlike conventional approaches that solely offer
a rejection criterion for the null hypothesis based on a critical p-value
(Liloia et al., 2023). Still, it eliminates the prerequisite for a minimum
number of studies in the ALE environment to generate unbiased results,
enhancing the robustness of the findings (Costa et al., 2021; Eickhoff
et al., 2016). To enhance the elucidation of the neurophysiological
foundation underlying ReHo aberrations in MCI and AD, we also con-
ducted an examination of large-scale network functional connectivity
and cognitive processes statistically associated with the observed ReHo
clusters of variation. This analysis was facilitated through the utilization
of the Neurosynth database (Yarkoni et al., 2011), providing an inter-
pretation of our findings from an observer-independent and unbiased
perspective.

2. Materials and methods

2.1. Search strategy and data selection

The study design adhered to established guidelines for neuroimaging
meta-analyses (Manuello et al., 2022; Müller et al., 2018) and followed
PRISMA statement quality criteria (Page et al., 2021). A systematic
literature search was conducted in the PubMed database using these two
sets of keywords: (search a) “mild cognitive impairment” OR “MCI” OR
“aMCI” AND “regional homogeneity” OR “ReHo” OR “local connectivity”;
(search b) “Alzheimer’s disease” OR “AD” AND “regional homogeneity” OR
“ReHo” OR “local connectivity”. Furthermore, reference lists of pertinent
reviews andmeta-analyses (Badhwar et al., 2017; X. Yang et al., 2023; C.
Yang et al., 2023; Zhen et al., 2018) were scrutinized to identify eligible
articles. The search was updated until December 2023, without
imposing restrictions on publication years.

Screening identified records based on the following inclusion
criteria: (i) original peer-reviewed English-language journal articles; (ii)
experiments investigating ReHo voxel-wise differences between subjects
with MCI or AD and HCs at the whole-brain level; (3) experiments
reporting significant results and coordinates (x–y-z foci) of clusters of
ReHo changes using a stereotactic space. Records exclusion was based
on: (i) case report, conference abstract, or review articles; (ii) animal
model investigations; (iii) absence of between-group comparison with
HCs; (iv) sample sizes < 7 participants per group; (v) experiments
focused on specific brain regions (i.e., region-of-interest and/or small
volume correction analyses); (vi) analysis of no resting-state fMRI data
(i.e., ReHo data derived from task-based fMRI experiments). Ultimately,
to mitigate the risk of spurious results stemming from population
overlap, multiple ReHo experiments within a single article were taken
into account only when reporting on independent clinical groups (Liloia
et al., 2024a).

The articles were first extracted by two authors (LD and CT). The full-
texts of the relevant articles were then independently evaluated by three
authors (LD, CT, and EP). Disagreements were resolved by unanimous
consensus. Peak coordinates of abnormal ReHo clusters were extracted
from all included ReHo experiments. Our analyses were carried out in
MNI space. To enhance the spatial accuracy of the meta-analysis, we
employed the icbm2tal algorithm (Laird et al., 2010). This algorithm
facilitated the conversion of experimental result coordinates initially
reported in Talairach space to the MNI space.

T. Costa et al.
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2.2. Data analysis

To ascertain the presence of consistent patterns of ReHo variation in
individuals with MCI and AD, as well as to determine the force of evi-
dence of our findings, we used both Bayesian-based and canonical ver-
sions of the activation likelihood estimation (ALE) method.

Specifically, we firstly adopted the recent version of the ALE algo-
rithm using a minimum Bayes Factor (mBF) thresholding (Costa et al.,
2023) as implemented in the MATLAB® script available at https:
//figshare.com/articles/software/minimum_bayes_factor_script
/17023931. Following the distribution of the evidence categories for the
Bayes Factor proposed by Kass and Raftery (Kass and Raftery, 1995), the
mBF-ALE threshold was set at strong evidence (i.e., BF ≥ 20) and very
strong evidence (i.e., BF≥ 150), with a cluster size≥ 200mm3. Thus, we
also evaluated the spatial consistency and sensitivity of our primary
findings using the canonical version of the ALE algorithm implemented
in the GingerALE software package (v.3.0.2; https://brainmap.
org/software.html#GingerALE) (Eickhoff et al., 2012) re-analyzing the
same data set. Following the recently recommended ALE setting
(Eickhoff et al., 2016), ALE results were family-wise error-corrected
(FWE-c) for multiple comparisons, with a cluster-level inference of p <

.05, a cluster-forming threshold of p < .001 on the voxel-level (1000
permutation runs), and a with a cluster size ≥ 200 mm3.

2.2.1. Anatomical likelihood estimation (canonical version)
The ALE technique furnishes insights into the spatial convergence of

coordinates across the selected neuroimaging literature. In this context,
each reported coordinate in a neuroimaging experiment is regarded as
the center of a Gaussian probability distribution, defined as:

p(d) =
1

σ2
̅̅̅̅̅̅̅̅̅̅̅̅

(2π)3
√ e−

d2
2σ2

Here, d represents the Euclidean distance between the coordinate and
the surrounding voxels, while σ signifies the spatial uncertainty. For
each selected experiment, a modeled alteration (MA) map is computed,
representing the union of all Gaussian distributions associated with that
experiment. The integration of all MAmaps produced the final ALEmap.
The significance of each voxel was assessed against a null-hypothesis
derived from an iterative random distribution of the coordinates. The
cluster-level threshold was hence established through a Monte Carlo
simulation of a cluster size distribution. For detailed technical infor-
mation about the method, consult Eickhoff et al. (2009).

2.2.2. Activation likelihood estimation (minimum Bayes factor version)
The mBF-ALE technique offers insights into the spatial convergence

of coordinates across the chosen neuroimaging literature. Importantly, it
possesses the capability to furnish informative perspectives on the
probabilities associated with the validity of considered hypotheses, even
in the context of small meta-analytic datasets. The computation of the
mBF relies on Bayes’ theorem. In accordance with this theorem, the
probability linked to two simultaneous hypotheses, denoted as H0 and
H1, can be formally expressed as follows:

P(H0|D) =
P(D|H0)

P(D)
P(H0)

and, correspondingly

P(H1|D) =
P(D|H1)

P(D)
P(H1)

where D is the measured effect for each brain voxel. Their quotient
represents the Bayes’ theorem in terms of relative belief:

P(H0|D)
P(H1|D)

=
P(D|H0)

P(D|H1)

P(H0)

P(H1)

Derived from the preceding formulas, the expression for BF01 can be
articulated as follows:

BF01 =
P(D|H0)

P(D|H1)

The BF01 value quantifies the strength of evidence for two concurrent
hypotheses: a BF01 > 1 supports the evidence favoring H0, while a
BF01 < 1 supports H1. Traditionally, using the Bayes Factor to gauge
evidence for a composite hypothesis involves averaging all potential
distinct alternative values. However, in scenarios where infinite alter-
native values exist, such as the hypothesis “the mean is different from
zero”, a method is required to address this. To overcome this challenge,
the approach involves selecting the alternative value with the most
substantial effect against the null hypothesis. This value is considered a
summary of evidence across all possible distinct values within the
composite alternative hypothesis and is termed the minimum Bayes
Factor (mBF). The mBF, therefore, represents the most compelling evi-
dence against the null hypothesis.

Now, consider the hypothesis as the probability of a generic observed
effect x modeled through a Gaussian distribution with mean μ and
variance σ2 :

p(x|μ, σ) = 1
σ

̅̅̅̅̅̅
2π

√ e−
(x− μ)2
2σ2

the BF for the null-hypothesis versus the supported hypothesis (μ = x) is
the mBF:

mBF01 = e−
x2
2σ2

Upon utilizing the Z map derived from the unthresholded ALE map,
the computation of the mBF can be achieved by applying the following
formula:

mBF01 = e−
Z2
2

by applying a simple exponentiation. This signifies the strength of evi-
dence supporting the null-hypothesis H0 over the alternative hypothesis
H1.

The mBF varies across a range from 0 to ∞. As per Kass and Raftery
(Kass and Raftery, 1995), the interpretation of values can be delineated
as illustrated in Table 1.

2.2.3. Amnestic mild cognitive impairment sub-analysis
A subgroup meta-analytic investigation was undertaken to elucidate

consistent patterns of ReHo variation specifically observed in ReHo
experiments analyzing individuals with MCI who have an explicitly re-
ported amnestic phenotype (i.e., amnestic mild cognitive impairment;
aMCI). This analysis is particularly pertinent as aMCI is characterized by
prominent memory impairment and is associated with a heightened risk
of progression to AD neuropathology compared to non-amnestic MCI
presentations (Dubois and Albert, 2004; Forlenza et al., 2009; Petersen
et al., 2014).

2.2.4. Meta-regression analysis
We employed the seed-based d mapping software (v.6.21) (Albaje-

s-Eizagirre et al., 2019) to perform a series of voxel-wise meta-regression

Table 1
The evidence categories for the Bayes Factor (BF).
Adapted from Kass & Raftery.

BF10 value Force of evidence

1 - 3 Very weak
3 - 20 Positive
20 - 150 Strong
> 150 Very strong
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analyses. These post-hoc analyses aimed to investigate the potential
influence of socio-demographic, clinical, and methodological variables
on both MCI and AD meta-analytic ReHo findings. Specifically, we
assessed the impacts of mean age at the scan session, sex distribution (i.
e., percentage of males), mean years of education, sample size, and
cognitive impairment (i.e., mean score of the mini-mental state exami-
nation test). Details of the data included in these analyses are summa-
rized in Table 2. We also evaluated the effects of MRI field strength and
image smoothing level. Details of the data included in these analyses are
summarized in Table S1. ReHo experiments missing these measures
were excluded from the analysis. To achieve an optimal balance be-
tween specificity and sensitivity (Radua et al., 2012), we adopted a
voxel-level threshold of p < .0005 and a minimum cluster size of 150
mm3.

2.2.5. Contrast data analysis
A comprehensive whole-brain voxel-wise comparison analysis was

performed to identify shared regions exhibiting ReHo variations be-
tween MCI and AD. This involved the comparison of canonical ALE
maps, as well as mBF-ALE maps for MCI and AD, with thresholds set at
strong evidence (BF ≥ 20) and very strong evidence (BF ≥ 150), along
with a minimum cluster size of ≥ 10 mm3.

2.2.6. Cognitive association analysis
The NeuroSynth meta-analytic tool was used to estimate the asso-

ciation between regions with significant ReHo variations and relevant
cognitive terms. By utilizing high-frequency keywords associated with
functional MRI stereotactic coordinates, NeuroSynth taps into findings
from over 15,000 published fMRI studies (https://github.com/neurosyn
th). This estimation is grounded in the likelihood of a given cognitive
function being mentioned alongside the activation of a specific region-
of-interest (ROI). In our study, ROIs were defined as 10-mm radius
areas surrounding the local peak of each altered ReHo cluster. The
values used are derived from quantitative estimates of spatial uncer-
tainty associated with stereotactic coordinates in the ALE environment,
indicating a mean spatial uncertainty of 10.2 mm (StDev = 0.4 mm)
(Eickhoff et al., 2009; Liloia et al., 2021). The estimate from NeuroSynth
offers a quantitative measure of the relationship between abnormal
brain areas and cognitive processes. Following prior studies (Hansen
et al., 2021; Liloia et al., 2024b, 2024a), we exclusively focused on
concepts from the Cognitive Atlas (Poldrack et al., 2011) (i.e., 886
concepts at the time of analysis).

2.2.7. Large-scale functional networks decomposition
To quantitatively delineate the functional localization of identified

ReHo variations in MCI and AD, we delved into their impact on large-
scale functional networks. Specifically, we examined the distribution
of ReHo variation voxels from mBF-ALE analyses across different brain
networks. We adopted the network parcellation introduced by Yeo et al.
(Yeo et al., 2011), which delineates the human brain cortex into seven
functionally distinct networks based on resting-state fMRI data from
1000 healthy human subjects.

3. Results

The literature searches identified 1374 articles. After the title/ab-
stract screening, 124 records were evaluated at the full-text level. A total
of 35 ReHo experiments coming from 27 different articles were included
in the quantitative synthesis. PRISMA flow charts are reported in
Fig. S2. In detail, the MCI group included 28 ReHo experiments, for a
total of 1010 subjects compared with 954 HCs and 143 coordinates of
alteration (78 of ReHo decrease and 65 of ReHo increase; Fig. 1A). The
aMCI sub-group included 16 ReHo experiments, for a total of 600 sub-
jects compared with 622 HCs and 99 coordinates of alteration (59 of
ReHo decrease and 40 of ReHo increase). The AD group included seven
ReHo experiments, for a total of 246 subjects compared with 229 HCs

and 62 coordinates of alteration (50 of ReHo decrease and 12 of ReHo
increase; Fig. 2A). Detailed clinical and methodological information
about the MCI and AD groups are summarized in Table 2 and Table S1.

3.1. Local connectivity changes in mild cognitive impairment

mBF-ALE (thresholded at strong evidence). Compared to HCs,
subjects with MCI showed seven clusters of ReHo decrease and 14
clusters of ReHo increase, respectively (Fig. S3A and Table S2). Local
peaks of decreased local connectivity were found in the left precuneus
(Brodmann area – BA 7), right supramarginal gyrus (BA 40), left inferior
temporal gyrus (ITG; BA 20), right globus pallidus, right posterior
cingulate cortex (PCC; BA 30), right middle frontal gyrus (BA 46), and
left precentral gyrus (BA 6). By contrast, increased local connectivity
was found in the right parahippocampal gyrus (BA 36), left lingual gyrus
(BA 18), left inferior parietal lobule (BA 39), right postcentral gyrus (BA
40), left cuneus (BA 17), left inferior frontal gyrus (IFG; BAs 9 and 44),
right paracentral lobule (BA 5), right culmen of the cerebellum, bilateral
putamen, left caudate body, right anterior cingulate cortex (ACC; BA
24), and left precuneus (BA 7). Sub-analysis of the aMCI phenotype
revealed statistically significant clusters that largely overlapped with
those identified in the main MCI analysis (Table S2).

mBF-ALE (thresholded at very strong evidence). Compared to
HCs, subjects with MCI showed two clusters of ReHo decrease and one
cluster of ReHo increase, respectively (Fig. 1B and Table 3). Local peaks
of decreased local connectivity were found in the left precuneus (BA 7)
and left ITG (BA 20). By contrast, increased local connectivity was found
in the right parahippocampal gyrus (BA 36). The analysis of the aMCI
sub-group revealed statistically significant clusters that overlapped with
those identified in the primary MCI analysis, except for the cluster
located in the left BA 20 (Table 3).

Canonical ALE (thresholded at cluster-level). Compared to HCs,
subjects with MCI showed one cluster of ReHo decrease and one cluster
of ReHo increase, respectively (Fig. 1C and Table 3). Local peak of
decreased local connectivity was found in the left precuneus (BA 7). By
contrast, increased local connectivity was found in the right para-
hippocampal gyrus (BA 36). The analysis of aMCI sub-group revealed
statistically significant clusters that overlapped with those identified in
the primary MCI analysis.

3.2. Local connectivity changes in Alzheimer’s disease

mBF-ALE (thresholded at strong evidence). Compared to HCs,
subjects with AD showed 17 clusters of ReHo decrease and 10 clusters of
ReHo increase, respectively (Fig. S3B and Table S3). Local peaks of
decreased local connectivity were found in the bilateral PCC (BAs 23,
30, and 31), left medial frontal gyrus (BA 10), left superior parietal
lobule (BA 40), left precuneus (BA 7), left cuneus (BA 17), right middle
occipital gyrus (BA 18), right precentral gyrus (BA 4), left ACC (BA 24),
left superior temporal gyrus (BAs 22), left postcentral gyrus (BA 2),
bilateral middle temporal (BA 39) and left supramarginal gyrus (BA 40).
By contrast, increased local connectivity was found in the left ITG (BA
19), right declive of the cerebellum, left PCC (BA 31), left precuneus (BA
7), left IFG (BA 44), and in the bilateral cuneus (BA 18) and lingual gyrus
(BA 19).

mBF-ALE (thresholded at very strong evidence). Compared to
HCs, subjects with AD showed one cluster of ReHo decrease and one
cluster of ReHo increase, respectively (Fig. 2B and Table 4). The peak of
decreased local connectivity was found in the right PCC (BA 30
extending to BA 23). By contrast, increased local connectivity was found
in the left PCC (BA 31).

Canonical ALE (thresholded at cluster-level). Compared to HCs,
subjects with AD showed one cluster of ReHo decrease and one cluster of
ReHo increase, respectively (Fig. 2B and Table 4). The peak of decreased
local connectivity was found in the right PCC (BA 30 extending to BA
23). Increased local connectivity was found in the left PCC (BA 31).
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Table 2
Regional homogeneity experiments included in the activation likelihood estimation meta-analyses of mild cognitive impairment (A) and Alzheimer’s disease (B):
demographic and clinical details.

No. Author (sub-group) Year Diagnosis Sample (%male) Age (SD) Education (SD) MMSE (SD) ReHo changes

Patients Controls Patients Controls Patients Controls Patients Controls Pat <
HC

Pat >
HC

(A) Mild Cognitive Impairment
1 Bai et al. (1) 2008 aMCI 20(50) 20(45) 71.3(3.8) 69.4

(3.8)
14(3.1) 13.8(4) 27.2

(1.6)
28.3
(1.4)

9 4

2 Zhang et al. (2) 2012 aMCI 19(52.6) 21(63.1) 76(8) 70(7) N/A N/A 27(2) 29(1) 0 6
3 Liu Z et al. (3) 2014 aMCI 12(8.3) 12(33.3) 59.3(3.3) 60.6

(5.8)
10.5
(1.8)

10.6
(2.1)

26.4
(0.9)

29.9
(0.4)

4 4

4 Cha et al. (4) 2015 aMCI 34(52.9) 62(27.4) 68.4(7.9) 68.5(8) 11.5
(5.2)

10.9
(5.2)

27.1
(2.1)

28.6
(1.9)

13 0

5 Wang et al. (5) 2015 MCI 30(60) 32(46.9) 69.1(5.8) 70.1
(5.5)

N/A N/A 26.2
(2.2)

28.1
(1.5)

5 6

6 Ni et al. (6) 2016 MCI 26(46.2) 28(60.7) 71(9) 70(9) 12(3.1) 15(1.4) 25(1.5) 29(1.1) 1 5
7 Long et al. (7) 2016 MCI 29(44.8) 32(37.5) 66.5(8.4) 62.9

(8.1)
10.1
(4.5)

11(4.1) 23.4(3) 27.9
(1.6)

1 2

8 Yuan et al. (8) 2016 aMCI 36(47.2) 46(41.3) 66.8(9.5) 64.3
(7.8)

10(4.1) 11.4
(5.1)

24.9
(3.4)

28.5(2) 8 7

9 Cai et al. (R group)
(9)

2018 MCI 20(55) 53(54.7) 69.8(6.5) 76.1
(6.5)

N/A N/A 25.6
(2.7)

28.2
(2.1)

1 1

10 Cai et al. (S group)
(9)

2018 MCI 50(52) 53(54.7) 72.3(6.9) 76.1
(6.5)

N/A N/A 24.3
(2.5)

28.2
(2.1)

1 1

11 Cai et al. (P group)
(9)

2018 MCI 32(47) 53(54.7) 74(6.1) 76.1
(6.5)

N/A N/A 22.9
(2.1)

28.2
(2.1)

2 2

12 Kang et al. (10) 2018 aMCI 34(20.6) 38(50) 76.1(4.7) 74(5.4) 9.4(4.7) 11.7(5) 22.7
(3.9)

26.3
(2.3)

3 5

13 Luo et al. (SD group)
(11)

2018 aMCI 32(53.1) 49(36.7) 72.4(4.3) 73.3
(4.6)

16.5
(2.6)

16.2
(2.6)

28.3
(1.7)

29(1.2) 1 2

14 Luo et al. (MD group)
(11)

2018 aMCI 32(53) 49(36.7) 74.9(5.3) 73.3
(4.6)

15.3
(2.7)

16.2
(2.6)

27.2
(1.7)

29(1.2) 1 0

15 Min et al. (12) 2019 aMCI 10(50) 10(50) 69.8(2.7) 69.9
(2.6)

13.2
(1.1)

13.6
(1.7)

25.9
(0.7)

29.3
(0.8)

5 4

16 Zuo et al. (13) 2019 MCI 31(58) 32(56.2) 63.8
(14.1)

62.7
(8.2)

9.3(2.1) 10.2
(2.3)

26.3
(2.1)

28.7
(1.4)

2 0

17 Zhang et al. (14) 2020 aMCI 98(60.2) 64(42.2) 73.7(6.8) 75.6(6) 16.8
(2.6)

16.4
(2.5)

28.4
(1.6)

29(1.4) 1 0

18 Liu et al. (15) 2021 MCI 28(50) 38(47.4) 68.4(4.7) 68.7
(5.1)

9(2.8) 10.4
(3.5)

N/A N/A 2 0

19 Zhang Q et al. (16) 2021 aMCI 20(40) 20(60) 71.9(5.9) 70.7
(5.4)

11.4
(3.7)

13.4
(2.9)

26.9
(2.1)

28.6
(1.2)

2 0

20 Zhang Z. et al. (17) 2022 aMCI 28(46.4) 37(40.5) 65.7(6.9) 63.9
(8.4)

12.2
(3.2)

12.2
(3.4)

27(N/A) 29(N/A) 3 1

21 Hu et al. (18) 2022 MCI 32(59.4) 37(62.2) 75.4(7.9) 73.4(7) 16.7
(2.5)

16.9
(2.4)

28.9
(1.4)

29.1(1) 0 2

22 Liu et al. (19) 2022 aMCI 114
(40.4)

101
(35.6)

72.4(5.2) 71.7(5) 10.8
(2.6)

10.2
(2.7)

24.1(1) 28.3(1) 4 0

23 Wu et al. (20) 2022 MCI 12(50) 12(50) 64.3(7) 64(6.2) N/A N/A 21.4
(4.6)

27.8
(2.5)

2 5

24 Gao et al. (21) 2022 MCI 53(N/A) 68(50) 69.1(4.9) 68.8
(4.9)

10(3.3) 9.7(3.4) N/A N/A 1 0

25 Wu et al. (22) 2023 aMCI 40(45) 42(38) 64.5(8) 63.8
(7.3)

11.9
(3.1)

11.8
(3.3)

27.5(N/
A)

29(N/A) 1 0

26 Yue et al. (23) 2023 aMCI 26(53.8) 26(53.8) 62(2.7) 60.6
(3.9)

13.1(2) 13.5
(1.9)

25.6
(1.2)

29.8
(0.4)

2 7

27 Zhong et al. (NA
group) (24)

2023 MCI 64(34.4) 74(27.7) 67.6(7.7) 66.1(5) 9(3.6) 10.8
(2.9)

25.4
(2.4)

27.2(2) 1 1

28 Zhong et al. (A
group) (24)

2023 aMCI 45(30) 74(27.7) 66.8(8.3) 66.1(5) 8.4(3.6) 10.8
(2.9)

24.6
(2.9)

27.2(2) 2 0

(B) Alzheimer’s Disease
1 He et al. (25) 2007 AD 14(42.8) 14(42.8) 70.1(6.4) 69.6

(5.5)
9.4(4.9) 9.4(4.2) 23.2

(2.8)
28.8(1) 1 4

2 Zhang et al. (2) 2012 AD 23(30.4) 21(63.1) 73(9) 70(7) N/A N/A 20(4) 29(1) 24 0
3 Cha et al. (4) 2015 AD 37(27) 62(27.4) 72.8(8.2) 68.5(8) 10.9

(5.3)
10.9
(5.2)

16.8
(6.9)

28.6
(1.9)

16 0

4 Peraza et al. (26) 2016 AD 18(83.3) 16(72.2) 75.4(8.6) 76.7
(5.9)

N/A N/A 21.8
(3.8)

29.1
(0.9)

1 7

5 Marchitelli et al. (27) 2018 AD 17(58.8) 23(30.4) 72(6) 64(13) N/A N/A 21(3.8) 29(2) 3 0
6 Zhang Q et al. (16) 2021 AD 20(50) 20(60) 73(6) 70.7

(5.4)
10.7
(3.5)

13.4
(2.9)

19.6
(3.3)

28.6
(1.2)

5 0

7 Liao et al. (28) 2022 AD 111
(33.3)

73(43.8) 68.3(9.6) 66.3
(9.5)

7.9(4.4) 8.3(3.4) 17.2
(5.6)

28.8
(0.8)

0 1

AD, Alzheimer’s Disease; aMCI, amnestic mild cognitive impairment; HC, healthy control group; MCI, mild cognitive impairment; N/A, data not associated; PAT,
patients; SD, standard deviation.
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Fig. 1. Results of mild cognitive impairment (MCI) meta-analysis. (A) Neuroanatomical distribution of regional homogeneity variation findings selected from
included experiments. Brain clusters of regional homogeneity decrease (red) and increase (blue) in subjects with mild cognitive impairment compared to healthy
controls using the minimum Bayes Factor version of the activation likelihood estimation thresholded at very strong evidence (A) and using the cluster-level family-
wise error rate (FWE) version of the activation likelihood estimation (B). Findings are visualized as coronal/axial/sagittal slices (2-D cortical, subcortical, and
cerebellar view) in neurological convention. Below, the functional network decomposition results (bar charts represent the number of mm3 of regional homogeneity
variation in subjects with mild cognitive impairment compared to healthy controls) and the cognitive processes statistically related to the ALE findings according to
the Neurosynth database (font sizes represent the magnitude of the associated Z-scores). ALE = activation likelihood estimation; mBF =minimum Bayes Factor; VA =

ventral Attention network; DM = default mode network; FP = frontoparietal network; SM = somatomotor network; DA = dorsal attention network; VIS = visual
network; LIM = limbic network.

Fig. 2. Results of Alzheimer’s disease (AD) meta-analysis. (A) Neuroanatomical distribution of regional homogeneity variation findings selected from included
experiments. (B) Brain clusters of regional homogeneity decrease (red) and increase (blue) in subjects with Alzheimer’s disease compared to healthy controls using
both the minimum Bayes Factor version of the activation likelihood estimation thresholded at very strong evidence and using the cluster-level family-wise error rate
(FWE) version of the activation likelihood estimation. Findings are visualized as coronal/axial/sagittal slices (2-D cortical, subcortical, and cerebellar view) in
neurological convention. Below, the functional network decomposition results (bar charts represent the number of mm3 of regional homogeneity variation in subjects
with Alzheimer’s compared to healthy controls) and the cognitive processes statistically related to the ALE findings according to the Neurosynth database (font sizes
represent the magnitude of the associated Z-scores). ALE = activation likelihood estimation; mBF = minimum Bayes Factor; VA = ventral Attention network; DM =

default mode network; FP = frontoparietal network; SM = somatomotor network; DA = dorsal attention network; VIS = visual network; LIM = limbic network.
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3.3. Effects of clinical, socio-demographic, and methodological variables

Several moderators were examined to understand their between-
experiment influence on published ReHo findings in MCI and AD. No
significant linear associations were found with age, sex distribution,
education, sample size, cognitive impairment, smoothing, and MRI field
strength at p < .0005 and a minimum cluster size of 150 mm3.

3.4. Local connectivity changes in Alzheimer’s disease vs. mild cognitive
impairment

Using voxel-wise maps coming from canonical ALE and mBF-ALE
thresholded at very strong evidence analyses, no voxels of overlap
were identified between the two primary data sets for both ReHo de-
creases and increases. Contrariwise, findings coming from the mBF-ALE
thresholded at strong evidence revealed a spatial convergence of ReHo
decrease in the right PCC (BA 30) and bilateral precuneus (BA 7). One
cluster of convergence of ReHo increase was also identified in the left
IFG (BA 44) (Fig. S3C and Table S4).

3.5. Cognitive associations

NeuroSynth association analyses uncovered quantitative associa-
tions between ReHo changes in MCI/AD and a diverse array of cognitive
processes. Utilizing both canonical and mBF-ALE algorithms, we iden-
tified cognitive functions linked to peaks of ReHo variation in MCI,
including learning and memory domain, such as navigation, episodic
memory, memory retrieval, encoding, and spatial ability. Although both
algorithms highlighted the same overall functions, a notable difference
emerged in the language domain associated with the left ITG. Specif-
ically, the mBF-ALE algorithm revealed significant associations with
orthographic lexicon and phonological retrieval. Further details on the
cognitive terms associated with MCI are presented in Fig. 1 and
Table S5. In AD, ReHo alterations were characterized by the involve-
ment of different cognitive processes within the learning and memory
and social function domains, encompassing navigation, memory, auto-
biographical memory, social cognition, social norm processing, and
mentalization (Fig. 2 and Table S6).

3.6. Large-Scale functional networks decomposition

The results of the functional large-scale network decomposition
analysis for MCI and AD are illustrated in Figs. 1 and 2, respectively. In
AD, the entire pattern of variation was associated with the default mode
network (DMN), regardless of whether there was an increase or decrease
in ReHo changes. In MCI, a distinct pattern emerged with the DMN
prominently implicated in ReHo decreases, while the limbic network
was exclusively involved in ReHo increases.

4. Discussion

To the best of our knowledge, this study offers a unique quantitative
synthesis of aberrant local functional connectivity in MCI and AD
compared with HCs. By employing both novel Bayesian-based and ca-
nonical versions of the ALE method, we provided evidence about the
presence of consistent patterns of ReHo variation in these clinical pop-
ulations, mainly localized within certain hub areas of the functionally
defined default mode network. However, when stringent statistical
thresholds were applied, our data-driven approach did not uncover
spatial overlap of alterations between MCI and AD for both decreased
and increased ReHo data. Additionally, cognitive large-scale analysis of
the identified brain areas unveiled observer-independent associations
with memory, language, and social functioning domains commonly
impaired starting from the predementia stage of AD spectrum disease.

4.1. Altered reho in mci

The bilateral precuneus and left ITG revealed very strong evidence of
local hypo-connectivity in MCI, while the right parahippocampal gyrus
reported very strong evidence of local hyper-connectivity. Current
findings only partially corroborate with those of the previous meta-
analyses on the topic, while also introduce novel insights into the
functional pathophysiology of this clinical entity. Specifically, we
confirmed previous observations of ReHo decrease in the bilateral pre-
cuneus, as reported by C. Yang et al. (2023) and X. Yang et al. (2023),
alongside identifying a significant ReHo increase in the right para-
hippocampus, a phenomenon previously highlighted solely by X. Yang
et al. (2023). In contrast, our findings diverge from the early heteroge-
neous observations regarding ReHo alterations in several brain regions

Table 3
Clusters of regional homogeneity variation in mild cognitive impairment compared with healthy controls.

Cluster Brain Region (Local Maxima) MNI Cluster Size (mm3) mBF Value (Very Strong Evidence) Frequentist ALE (Cluster-level)

x y z Maximum Minimum

MCI < HCs
1 Left Precuneus (BA 7)*,§ 0 − 62 50 874 1,388,879 150 Yes
2 Left ITG (BA 20) − 52 − 54 − 14 276 1525 150 No
MCI > HCs
1 Right Parahippocampus (BA 36)*,§ 36 − 38 − 8 208 2023 150 Yes

BA = Brodmann area; ITG = inferior temporal gyrus; MNI =Montreal Neurological Institute; mBF = minimum Bayes Factor; ALE = activation likelihood estimation.
* = brain cluster also identified via canonical ALE algorithm with a cluster-level inference of p < .05, and a cluster-forming threshold of p < .001 on the voxel-level.
§ = brain cluster also identified for the amnestic mild cognitive impairment (aMCI) sub-group using the mBF-ALE algorithm and thresholded at very strong evidence.

Table 4
Clusters of regional homogeneity variation in Alzheimer’s disease compared with healthy controls.

Cluster Brain Region (Local Maxima) MNI Cluster Size (mm3) mBF Value (Very Strong Evidence) Frequentist ALE (Cluster-level)

x y z Maximum Minimum

AD < HCs
1 Right PCC (BA 30)* 22 − 58 18 400 2153 150 Yes
AD > HCs
1 Right PCC (BA 31)* 2 − 48 30 383 8246 150 Yes

BA= Brodmann area; PCC= posterior cingulate cortex; MNI=Montreal Neurological Institute; mBF=minimum Bayes Factor; ALE= activation likelihood estimation.
* = brain cluster also identified via canonical ALE algorithm with a cluster-level inference of p < .05, and a cluster-forming threshold of p < .001 on the voxel-level.
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(C. Yang et al., 2023; X. Yang et al., 2023; Zhen et al., 2018). We did not
replicate, at least at very strong evidence and cluster-level FWE
thresholding, patterns of increased/decreased ReHo changes in ACC,
insular cortex, lingual gyrus, cerebellum, superior temporal gyrus,
inferior parietal lobule, and prefrontal areas. These discrepancies may
be attributed to a number of methodological factors. For example, our
study leveraged the rapid expansion of the field, allowing us to integrate
the largest available dataset on the topic; therefore, we optimized the
balance between sensitivity and susceptibility to false positive effects,
increasing the statistical power of our analysis (Eickhoff et al., 2016;
Manuello et al., 2022; Müller et al., 2018). Moreover, in light of evi-
dence from recent simulation and experimental efforts (Albajes-Eiza-
girre et al., 2019; Albajes-Eizagirre and Radua, 2018; Eickhoff et al.,
2016), it is plausible to hypothesize that the statistical thresholding
procedures and multiple comparisons correction utilized in early
meta-analyses are susceptible to insufficient control over type I errors
within the neuroimaging coordinate-based meta-analytic domain.

Precuneus (BA 7) has been mentioned in previous MCI research,
showing gray matter atrophy (Nickl-Jockschat et al., 2012), cortical
thickness reduction (Haussmann et al., 2017), accumulation of
amyloid-β plaque (Mak et al., 2023), as well as reduced connectivity
(Drzezga et al., 2011). Moreover, in line with our cognitive association
analysis, studies have found that this area can be associated with spatial
ability and egocentric navigation impairment in aMCI populations
(Vlček and Laczó, 2014; Weniger et al., 2011). Independent efforts have
indicated an intricate large-scale functional organization linked to the
human precuneus, dividing it into anterior, central, and posterior parts
(Margulies et al., 2009; Zhang and Li, 2012). Intriguingly, our decom-
position analysis demonstrated that the identified cluster of local
hypo-connectivity predominantly resides in the central portion of the BA
7, known for its hub role within the DMN (Cunningham et al., 2016).
Therefore, this result confirms the notion that such a network is func-
tionally impaired in MCI (Eyler et al., 2019; Joo et al., 2016) and un-
derscores that the decreased short-range functionality of BA 7 stands out
as a robust pathophysiological indication, plausibly representing effects
of ongoing early neurodegeneration (Sorg et al., 2007).

We have identified voxels of ReHo decrease in the left ITG, an
associative region recently found hypoperfused via arterial spin labeling
in MCI patients (Thomas et al., 2021) and known to be involved in
high-cognitive functions, including learning tasks and semantic lan-
guage processing (Lin et al., 2020). However, it is worth noting that this
finding has not been replicated in the sub-analysis focused on in-
dividuals with aMCI, even though aMCI and prodromal stages of AD are
known to have a specific involvement of the inferior temporal gyrus,
also with an increased synaptic loss (Scheff et al., 2011). The different
sample size of the studies in MCI and aMCI as well as the clinical het-
erogeneity could at least partially explain this discrepancy.

Both Bayesian and canonical versions of the ALE method have
revealed a statistically significant ReHo increase at the level of the right
parahippocampal gyrus. This is not a surprising result, given that many
studies revealed higher cortical thickness (Fernández et al., 2020),
increased long-range (Penalba-Sánchez et al., 2023) and short-range
(Yue et al., 2023) connectivity of this memory-related region. Previous
research suggests that the ReHo increase of the BA 36 may be explained
by a mechanism of compensation for the neurodegeneration of other
temporo-limbic regions recruited in memory processing (Bai et al.,
2008; X. Yang et al., 2023; Zhang et al., 2012) and for the functional
disruption of the DMN (C. Yang et al., 2023; Zhou et al., 2014). Other
authors have proposed that this phenomenon, in the context of aging
and neurodegeneration, could be a temporary reorganization of regional
neural activity of the connectome hub nodes due to neuroanatomical
damage localized elsewhere (Damoiseaux et al., 2012; Dolcos et al.,
2002; Hillary et al., 2014), followed by a structural morphometric
decrease with progression of behavioral deficits (Mancuso et al., 2020;
Manuello et al., 2018; Montal et al., 2018). While it is tempting to
speculate about the biological meaning of the identified abnormal

patterns of local connectivity, our non-invasive meta-level approach
cannot directly address this issue, which remains a subject of ongoing
debate (Jiang et al., 2015). In other words, the biological implications of
ReHo variations in the neurological context remain unclear, empha-
sizing the critical need to investigate the histological and physiological
basis of abnormal connectivity for distinct clinical entities.

4.2. Altered ReHo in AD

The PCC was the focus of perturbed connectivity in AD, with a
concordance between mBF-ALE at very strong evidence and canonical
ALE. As reported, one cluster of reduced connectivity on the right side of
the PCC and one contralateral cluster of increased connectivity were
evident. PCC is commonly affected in neurodegenerative diseases and
particularly in AD (Zhang et al., 2024). This involvement can be seen in
a more complex picture of amyloid deposition and brain atrophy
spatially resembling the pattern of DMN (Buckner et al., 2005). Inter-
estingly, PCC functional connectivity is also related to the APOE genetic
status, with young healthy E4 carriers showing an increased DMN
functional connectivity, as a coping strategy to overcome network in-
efficiency related to the at-risk APOE genotype (Filippini et al., 2009).
Furthermore, considering the integrated model of PCC function (i.e.,
Arousal, Balance, and Breadth of Attention model; ABBA) (Leech and
Sharp, 2014) a dynamic system approach can help in the understanding
of the complex functioning of PCC. From this point of view, dynamic
functional connectivity recently demonstrated a fine-grained fluctuation
of PCC connectivity in the AD spectrum, in particular for the right PCC
dynamic ReHo variability (Liao et al., 2022). Taken together, these data
can partially account for the differential left/right involvement of PCC in
our analysis, as a result of different pathological and compensatory
mechanisms still in action in AD spectrum and potentially captured by
this methodological approach.

We have observed a more circumscribed patterning of ReHo varia-
tion in AD compared to MCI. This is an unexpected result given the
numerous pieces of evidence suggesting network-based damage spread
in the AD course (Cauda et al., 2020; Fornari et al., 2019; Li et al., 2022;
Raj and Powell, 2018). Probably, moot points are the left medial frontal
gyrus, right precentral gyrus, left IFG, and bilateral temporal areas that,
although found aberrant with a more liberal threshold (i.e., mBF-ALE at
strong evidence), did not survive our most rigorous statistical thresh-
olding procedures. One possible methodological explanation for this
result is that the exact loci of local maximum in these brain areas
differed considerably across experiments. This, and the fact that our
design used x–y-z coordinates instead of three-dimensional parametric
maps, could explain why no significant spatial convergences survived in
this study. We also note, however, that peaks of ReHo variation in AD
tend to concentrate in ventral and dorsal PCC across independent studies
(Cha et al., 2015; He et al., 2007; Liao et al., 2022; Marchitelli et al.,
2018; Zhang et al., 2012). In light of this, we speculate that short-range
local functional connectivity aberrations may not follow the same
transneural spread and connectome-based mechanisms linked to volu-
metric degeneration and long-range functional connectivity impair-
ments. Future multidisciplinary research is sorely needed to disentangle
this issue and to further elucidate the mechanisms underlying ReHo
variations in the AD continuum.

4.3. Altered ReHo in MCI vs. AD

Patients diagnosed with MCI and AD did not exhibit voxel of alter-
ation overlap for both decreased and increased ReHo data. This result
remains consistent when conservative thresholding procedures are
employed at Bayesian and FWE levels of inference, as well as when the
aMCI sub-group was compared with the AD group. However, using a
more liberal Bayesian force of evidence (i.e., BF ≥ 20) we found com-
mon clusters of local hypo-connectivity in the right PCC and bilateral
precuneus. It is essential to highlight that our meta-level finding aligns

T. Costa et al.
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with the only two extant cross-sectional reports addressing directly this
topic (Zhang et al., 2021, 2012). Interestingly, previous literature data
partially support the idea of a differential involvement of precuneus and
PCC in the different stages of AD pathology, with the former more
involved in MCI and the latter progressively impaired in AD (Benzinger
et al., 2013; Liu et al., 2008; Miners et al., 2016; Thomas et al., 2015).
Beside this, we cannot also rule out a diagnostic heterogeneity in the
reported clinical diagnosis across studies, as well as the inclusion of a
portion of patients with an official diagnosis of AD but with a clinical
picture more resembling atypical presentation of AD pathology like
posterior cortical atrophy or dementia with Lewy body. Interestingly,
these clinical entities are often characterized by a relative sparing of
posterior cingulate/precuneus regions, defined as cingulate island sign
(Whitwell et al., 2017), which can play a role in the aforementioned
discrepancy among MCI and AD.

4.4. Limitations and future challenges

The current findings should be considered in light of several limi-
tations, primarily stemming from the coordinate-based approach
employed. Whether in its Bayesian or canonical form, the ALE method
selectively examined local maxima of functional variation (Costa et al.,
2023; Eickhoff et al., 2009), thereby overlooking other significant voxels
within clusters of hypo/hyperconnectivity. While the rigorous stan-
dardization of this methodology minimizes the likelihood of spatial er-
rors, original image-based analyses utilizing statistical parametric
mapping offer superior spatial resolution and signal-to-noise ratio
(Manuello et al., 2023, 2022; Müller et al., 2018). Therefore, future
research endeavors could expand upon our findings by replicating them
using multi-site mega-analysis designs.

Our meta-level design is also cross-sectional; thus, our short-range
functional connectivity evaluation was circumscribed to a group cate-
gorization of published data about MCI/aMCI and AD. In this regard, we
note that the MCI label encompasses subjects in the prodromal dementia
stage but also with stable cognitive functions (Mitchell and Shiri-Feshki,
2009). While we found that patterns of variation in the aMCI subgroup
largely overlapped with those of the overall MCI group, the existing
literature did not allow us to fully resolve this issue due to the un-
availability of biological marker analyses for detecting prodromal Alz-
heimer’s disease in the considered cohorts. De facto, only etiological
characterization utilizing biological and imaging markers, or follow-up
evaluations, can reliably predict the development of Alzheimer’s disease
or other neurodegenerative dementias. However, follow-up studies have
consistently reported a high conversion rate to AD among individuals
who meet the clinical criteria for MCI. The annual conversion rate from
MCI to dementia ranges from 15 % to 40 %, with those diagnosed with
aMCI being at the most and closest risk of conversion (Espinosa et al.,
2013; Farias et al., 2009; Geslani et al., 2005; McGrattan et al., 2022;
Tabert et al., 2006; Thaipisuttikul et al., 2022). Among these in-
dividuals, approximately 80 % tend to progress to AD (Schmidtke and
Hermeneit, 2008; Tábuas-Pereira et al., 2016; Visser and Verhey, 2008).
Further primary research incorporating longitudinal follow-up analyses
is essential to identify distinctive short-range functional connectivity
profiles. Future cohorts should therefore include subjects with MCI who
have undergone biological characterization and for whom ReHo data
are available.

Future investigations could enhance this methodological issue by
incorporating longitudinal follow-up analyses to gain deeper insights
into the dynamic trajectories of ReHo aberrations in the AD continuum,
particularly concerning the transition from aMCI to AD. Also, it can be
argued that in analyzing the AD dataset we cannot ensure an adequate
type I error control due to the limited availability of published data.
While we aspire that future AD fMRI research will place greater
emphasis on ReHo analyses, it is important to note that previous
empirical tests have shown that the mBF-ALE algorithm effectively
minimizes this type of error in such scenarios (Costa et al., 2023). Lastly,

while we were able to reveal consistent and reproducible findings across
the published literature, it is crucial to acknowledge the limitations of
our group-level design in discerning the influence of specific critical
variables (i.e., sex, level of cognitive performance or education, and
sample size) that could potentially affect the replicability of functional
connectivity brain research in MCI/AD (Mohtasib et al., 2022; Passa-
monti et al., 2019; Williamson et al., 2022; Zhu et al., 2021). We note
that our post hoc meta-regression analyses did not find a significant
impact of these socio-demographic and clinical variables on ReHo
findings in both clinical conditions of interest. However, it is crucial to
recognize that these results are derived from mean group values that
may include considerable variability among subjects, especially in
multicenter contexts. Therefore, these findings should be interpreted
cautiously and warrant further investigation in primary ReHo research
studies.

5. Conclusions

This meta-analysis provides a first quantitative synthesis about
regional homogeneity aberrations in MCI and Alzheimer’s disease
identified over the last two-decades, providing valuable insights into a
relatively underexplored area of research. Despite the heterogeneity in
the literature, our meta-level approach has uncovered compelling evi-
dence for consistent patterns of local hypo/hyperconnectivity variation
in these clinical populations, predominantly localized within specific
hub nodes of the human connectome. These findings represent a pro-
visional yet insightful step toward a deeper understanding of the com-
plex pathophysiology of these clinical entities and present promising
avenues for future neuroimaging-based interventions and diagnostic
MRI-based approaches.
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Fornari, S., Schäfer, A., Jucker, M., Goriely, A., Kuhl, E., 2019. Prion-like spreading of
Alzheimer’s disease within the brain’s connectome. J. R. Soc. Interface 16,
20190356. https://doi.org/10.1098/rsif.2019.0356.

Geslani, D.M., Tierney, M.C., Herrmann, N., Szalai, J.P., 2005. Mild cognitive
impairment: an operational definition and its conversion rate to Alzheimer’s disease.
Dement. Geriatr. Cogn. Disord. 19, 383–389. https://doi.org/10.1159/000084709.

Hansen, J.Y., Markello, R.D., Vogel, J.W., Seidlitz, J., Bzdok, D., Misic, B., 2021.
Mapping gene transcription and neurocognition across human neocortex. Nat. Hum.
Behav. 5, 1240–1250. https://doi.org/10.1038/s41562-021-01082-z.

Haussmann, R., Werner, A., Gruschwitz, A., Osterrath, A., Lange, J., Donix, K.L., Linn, J.,
Donix, M., 2017. Precuneus structure changes in amnestic mild cognitive
impairment. Am. J. Alzheimers. Dis. Other Demen. 32, 22–26. https://doi.org/
10.1177/1533317516678087.

He, Y., Wang, L., Zang, Y., Tian, L., Zhang, X., Li, K., Jiang, T., 2007. Regional coherence
changes in the early stages of Alzheimer’s disease: a combined structural and resting-
state functional MRI study. Neuroimage 35, 488–500. https://doi.org/10.1016/j.
neuroimage.2006.11.042.

Hillary, F.G., Rajtmajer, S.M., Roman, C.A., Medaglia, J.D., Slocomb-Dluzen, J.E.,
Calhoun, V.D., Good, D.C., Wylie, G.R., 2014. The rich get richer: brain injury elicits
hyperconnectivity in core subnetworks. PLoS ONE 9, e104021. https://doi.org/
10.1371/journal.pone.0104021.

Ibrahim, B., Suppiah, S., Ibrahim, N., Mohamad, M., Hassan, H.A., Nasser, N.S.,
Saripan, M.I., 2021. Diagnostic power of resting-state fMRI for detection of network
connectivity in Alzheimer’s disease and mild cognitive impairment: a systematic
review. Hum. Brain Mapp. 42, 2941. https://doi.org/10.1002/hbm.25369.

Jiang, L., Xu, T., He, Ye, Hou, X.-H., Wang, J., Cao, X.-Y., Wei, G.-X., Yang, Z., He, Yong,
Zuo, X.-N., 2015. Toward neurobiological characterization of functional
homogeneity in the human cortex: regional variation, morphological association and
functional covariance network organization. Brain Struct. Funct. 220, 2485–2507.
https://doi.org/10.1007/s00429-014-0795-8.

Jiang, L., Zuo, X.-N., 2016. Regional homogeneity: a multimodal, multiscale
neuroimaging marker of the human connectome. Neuroscientist. 22, 486–505.
https://doi.org/10.1177/1073858415595004.

Joo, S.H., Lim, H.K., Lee, C.U., 2016. Three large-scale functional brain networks from
resting-state functional MRI in subjects with different levels of cognitive impairment.
Psychiatry Investig. 13, 1–7. https://doi.org/10.4306/pi.2016.13.1.1.

Kass, R.E., Raftery, A.E., 1995. Bayes factors. J. Am. Stat. Assoc. 90, 773–795. https://
doi.org/10.2307/2291091.

Klekociuk, S.Z., Saunders, N.L., Summers, M.J., 2016. Diagnosing mild cognitive
impairment as a precursor to dementia: fact or fallacy? Aust. Psychol. 51, 366–373.
https://doi.org/10.1111/ap.12178.

T. Costa et al.

https://doi.org/10.1016/j.neuroimage.2024.120798
https://doi.org/10.1016/j.neuroimage.2018.04.065
https://doi.org/10.1016/j.neuroimage.2018.04.065
https://doi.org/10.1016/j.neuroimage.2018.10.077
https://doi.org/10.1016/j.dadm.2017.03.007
https://doi.org/10.1016/j.dadm.2017.03.007
https://doi.org/10.1016/j.neulet.2008.04.021
https://doi.org/10.1073/pnas.1317918110
https://doi.org/10.1073/pnas.1317918110
https://doi.org/10.1089/brain.2014.0236
https://doi.org/10.1089/brain.2014.0236
https://doi.org/10.1523/JNEUROSCI.2177-05.2005
https://doi.org/10.1002/hbm.25093
https://doi.org/10.1155/2015/907464
https://doi.org/10.1007/s12021-023-09626-6
https://doi.org/10.1002/hbm.25452
https://doi.org/10.1002/hbm.23429
https://doi.org/10.1016/j.neurobiolaging.2011.06.024
https://doi.org/10.1016/S0149-7634(02)00068-4
https://doi.org/10.1093/brain/awr066
https://doi.org/10.1093/brain/awr066
https://doi.org/10.1016/S1474-4422(04)00710-0
https://doi.org/10.1016/j.neuroimage.2011.09.017
https://doi.org/10.1016/j.neuroimage.2011.09.017
https://doi.org/10.1002/hbm.20718
https://doi.org/10.1016/j.neuroimage.2016.04.072
https://doi.org/10.3233/JAD-122002
https://doi.org/10.3233/JAD-180847
https://doi.org/10.3233/JAD-180847
https://doi.org/10.1001/archneurol.2009.106
https://doi.org/10.1002/alz.040944
https://doi.org/10.1073/pnas.0811879106
https://doi.org/10.1017/S1041610209990792
https://doi.org/10.1098/rsif.2019.0356
https://doi.org/10.1159/000084709
https://doi.org/10.1038/s41562-021-01082-z
https://doi.org/10.1177/1533317516678087
https://doi.org/10.1177/1533317516678087
https://doi.org/10.1016/j.neuroimage.2006.11.042
https://doi.org/10.1016/j.neuroimage.2006.11.042
https://doi.org/10.1371/journal.pone.0104021
https://doi.org/10.1371/journal.pone.0104021
https://doi.org/10.1002/hbm.25369
https://doi.org/10.1007/s00429-014-0795-8
https://doi.org/10.1177/1073858415595004
https://doi.org/10.4306/pi.2016.13.1.1
https://doi.org/10.2307/2291091
https://doi.org/10.2307/2291091
https://doi.org/10.1111/ap.12178


NeuroImage 298 (2024) 120798

12

Laird, A.R., Robinson, J.L., McMillan, K.M., Tordesillas-Gutiérrez, D., Moran, S.T.,
Gonzales, S.M., Ray, K.L., Franklin, C., Glahn, D.C., Fox, P.T., Lancaster, J.L., 2010.
Comparison of the disparity between Talairach and MNI coordinates in functional
neuroimaging data: validation of the Lancaster transform. Neuroimage 51, 677–683.
https://doi.org/10.1016/j.neuroimage.2010.02.048.

Leech, R., Sharp, D.J., 2014. The role of the posterior cingulate cortex in cognition and
disease. Brain 137, 12–32. https://doi.org/10.1093/brain/awt162.

Li, W., Yang, D., Yan, C., Chen, M., Li, Q., Zhu, W., Wu, G., 2022. Characterizing network
selectiveness to the dynamic spreading of neuropathological events in Alzheimer’s
disease. J. Alzheimers. Dis. 86, 1805–1816. https://doi.org/10.3233/JAD-215596.

Liao, Z., Sun, W., Liu, X., Guo, Z., Mao, D., Yu, E., Chen, Y., 2022. Altered dynamic
intrinsic brain activity of the default mode network in Alzheimer’s disease: a resting-
state fMRI study. Front. Hum. Neurosci. 16, 951114 https://doi.org/10.3389/
fnhum.2022.951114.

Liloia, D., Cauda, F., Uddin, L.Q., Manuello, J., Mancuso, L., Keller, R., Nani, A.,
Costa, T., 2023. Revealing the selectivity of neuroanatomical alteration in autism
spectrum disorder via reverse inference. Biol. Psychiatry Cognit. Neurosci.
Neuroimaging 8, 1075–1083. https://doi.org/10.1016/j.bpsc.2022.01.007.

Liloia, D., Mancuso, L., Uddin, L.Q., Costa, T., Nani, A., Keller, R., Manuello, J., Duca, S.,
Cauda, F., 2021. Gray matter abnormalities follow non-random patterns of co-
alteration in autism: meta-connectomic evidence. NeuroImage Clinical 30, 102583.
https://doi.org/10.1016/j.nicl.2021.102583.

Liloia, D., Manuello, J., Costa, T., Keller, R., Nani, A., Cauda, F., 2024a. Atypical local
brain connectivity in pediatric autism spectrum disorder? A coordinate-based meta-
analysis of regional homogeneity studies. Eur. Arch. Psychiatry Clin. Neurosci. 274,
3–18. https://doi.org/10.1007/s00406-022-01541-2.

Liloia, D., Zamfira, D.A., Tanaka, M., Manuello, J., Crocetta, A., Keller, R., Cozzolino, M.,
Duca, S., Cauda, F., Costa, T., 2024b. Disentangling the role of gray matter volume
and concentration in autism spectrum disorder: a meta-analytic investigation of 25
years of voxel-based morphometry research. Neurosci. Biobehv. Rev. 164, 105791
https://doi.org/10.1016/j.neubiorev.2024.105791.

Lin, Y.-H., Young, I.M., Conner, A.K., Glenn, C.A., Chakraborty, A.R., Nix, C.E., Bai, M.Y.,
Dhanaraj, V., Fonseka, R.D., Hormovas, J., Tanglay, O., Briggs, R.G., Sughrue, M.E.,
2020. Anatomy and white matter connections of the inferior temporal gyrus. World
Neurosurg. 143, e656–e666. https://doi.org/10.1016/j.wneu.2020.08.058.

Liu, L., Jiang, H., Wang, D., Zhao, X., 2021. A study of regional homogeneity of resting-
state functional magnetic resonance imaging in mild cognitive impairment. Behav.
Brain Res. 402, 113103 https://doi.org/10.1016/j.bbr.2020.113103.

Liu, Y., Wang, K., Yu, C., He, Y., Zhou, Y., Liang, M., Wang, L., Jiang, T., 2008. Regional
homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: a
review of resting-state fMRI studies. Neuropsychologia 46, 1648–1656. https://doi.
org/10.1016/j.neuropsychologia.2008.01.027.

Mak, E., Zhang, L., Tan, C.H., Reilhac, A., Shim, H.Y., Wen, M.O.Q., Wong, Z.X.,
Chong, E.J.Y., Xu, X., Stephenson, M., Venketasubramanian, N., Zhou, J.H.,
O’Brien, J.T., Chen, C.L.-H., 2023. Longitudinal associations between β-amyloid and
cortical thickness in mild cognitive impairment. Brain Commun. 5, fcad192. https://
doi.org/10.1093/braincomms/fcad192.

Mancuso, L., Fornito, A., Costa, T., Ficco, L., Liloia, D., Manuello, J., Duca, S., Cauda, F.,
2020. A meta-analytic approach to mapping co-occurrent grey matter volume
increases and decreases in psychiatric disorders. Neuroimage 222, 117220. https://
doi.org/10.1016/j.neuroimage.2020.117220.

Manuello, J., Costa, T., Cauda, F., Liloia, D., 2022. Six actions to improve detection of
critical features for neuroimaging coordinate-based meta-analysis preparation.
Neurosci. Biobehv. Rev. 137, 104659 https://doi.org/10.1016/j.
neubiorev.2022.104659.

Manuello, J., Liloia, D., Crocetta, A., Cauda, F., Costa, T., 2023. CBMAT: a MATLAB
toolbox for data preparation and post hoc analyses in neuroimaging meta-analyses.
Behav. Res. https://doi.org/10.3758/s13428-023-02185-3.

Manuello, J., Nani, A., Premi, E., Borroni, B., Costa, T., Tatu, K., Liloia, D., Duca, S.,
Cauda, F., 2018. The pathoconnectivity profile of Alzheimer’s disease: a
morphometric coalteration network analysis. Front. Neurol. 8 https://doi.org/
10.3389/fneur.2017.00739.

Marchitelli, R., Aiello, M., Cachia, A., Quarantelli, M., Cavaliere, C., Postiglione, A.,
Tedeschi, G., Montella, P., Milan, G., Salvatore, M., Salvatore, E., Baron, J.C.,
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Förstl, H., Kurz, A., Zimmer, C., Wohlschläger, A.M., 2007. Selective changes of
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