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Quentin Campbell-Hewson56,‡, Martin G. McCabe57,58, and Michaela Nathrath59,60 

�
 ABSTRACT 

Osteosarcoma and Ewing sarcoma are bone tumors mostly 
diagnosed in children, adolescents, and young adults. Despite 
multimodal therapy, morbidity is high and survival rates remain 
low, especially in the metastatic disease setting. Trials investi-
gating targeted therapies and immunotherapies have not been 
groundbreaking. Better understanding of biological subgroups, 
the role of the tumor immune microenvironment, factors that 
promote metastasis, and clinical biomarkers of prognosis and 
drug response are required to make progress. A prerequisite to 
achieve desired success is a thorough, systematic, and clinically 
linked biological analysis of patient samples, but disease rarity 
and tissue processing challenges such as logistics and infra-
structure have contributed to a lack of relevant samples for 
clinical care and research. There is a need for a Europe-wide 
framework to be implemented for the adequate and minimal 

sampling, processing, storage, and analysis of patient samples. 
Two international panels of scientists, clinicians, and patient and 
parent advocates have formed the Fight Osteosarcoma Through 
European Research consortium and the Euro Ewing Consortium. 
The consortia shared their expertise and institutional practices to 
formulate new guidelines. We report new reference standards for 
adequate and minimally required sampling (time points, diag-
nostic samples, and liquid biopsy tubes), handling, and bio-
banking to enable advanced biological studies in bone sarcoma. 
We describe standards for analysis and annotation to drive col-
laboration and data harmonization with practical, legal, and 
ethical considerations. This position paper provides compre-
hensive guidelines that should become the new standards of care 
that will accelerate scientific progress, promote collaboration, and 
improve outcomes. 

Introduction 
Osteosarcoma and Ewing sarcoma are malignant bone tumors 

affecting ∼1,800 people annually in Europe (1). Despite continuous 

efforts and the investigation and intensification of treatment mo-
dalities, the prognosis for patients is poor when compared with 
other cancers (2, 3). Repeated attempts by large international co-
operative groups to improve outcomes through randomized clinical 
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Villejuif, France. 20Medical Oncology, Leiden University Medical Center, 
Leiden, the Netherlands. 21Orthopaedic Oncology, The Royal National Or-
thopaedic Hospital NHS Trust, Stanmore, United Kingdom. 

AACRJournals.org | 3395 

https://crossmark.crossref.org/dialog/?doi=10.1158/1078-0432.CCR-24-0101&domain=pdf&date_stamp=2024-7-24
https://aacrjournals.org/


trials have not led to survival improvement in osteosarcoma (4–11) 
and brought only modest benefits in Ewing sarcoma (12–18). A lack 
of available high-quality biological samples for omics (e.g., genome- 
wide profiling) assessments has meant that we still have poor 
understanding of the molecular basis of observed heterogeneous 
clinical phenotypes and mechanisms of chemoresistance and metas-
tasis. Acquisition of snap-frozen and fresh tissue is recommended in 

international clinical guidelines (19–22) but is frequently not achieved 
and the absence of standardized procedures for sampling has 
hampered compliance. 

Two international panels of scientists, clinicians, and patient and 
parent advocates formed the Fight Osteosarcoma Through European 
Research (FOSTER) consortium (www.fosterconsortium.org) and 
the Euro Ewing Consortium (EEC; https://www.ucl.ac.uk/ 
cancer/research/centres-and-networks/euro-ewing-consortium/ 
euro-ewing-consortium) to promote European collaboration and 
to accelerate clinical and scientific progress. The consortia have 
already delivered benefits by bringing together multiple—previously 
disparate—national clinical trial groups and scientists to develop 
and deliver collaborative trial protocols (14, 17, 23, 24), share 
samples (25, 26), and expertise (27) to perform collaborative re-
search. A major goal of both consortia is the refinement and in-
tensification of translational research. Systematic acquisition of 
high-quality biological samples from children and adults across 
multiple sites with associated clinical metadata should enable the 
identification and characterization of disease subgroups and tumor 
and germline genetic, biological, immunologic, and cellular envi-
ronmental factors that can be used for the stratification of disease 
subgroup-specific therapies. 

This position paper complements international clinical guide-
lines and provides comprehensive procedures for the adequate 
minimal sampling, handling, and storage of bone sarcoma samples 
that should be adopted across European centers. Although this 
statement has been drafted by the osteosarcoma and Ewing sar-
coma communities, the principles discussed apply equally to other 
bone sarcoma histotypes and perhaps other cancers in which a 
lack of samples hinders translational research and clinical 
progress. 
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Translational Relevance 
Most patients with osteosarcoma and Ewing sarcoma have 

minimal sampling performed at clinical presentation, sufficient 
for diagnosis but not for comprehensive molecular analysis. 
Mechanistic understanding of tumorigenesis, metastasis, and 
treatment resistance has progressed little. Standard management 
involves upfront biopsy, frequently by an interventional radiol-
ogist, followed by chemotherapy ± definitive resection, by which 
time post-treatment necrotic tumor may be less informative for 
cellular analysis and model generation. Few patients have fresh 
or frozen tissue stored for patient-specific or unspecified mo-
lecular research. Treatment has changed little in decades and 
outcomes are poor. Here, the European patient and professional 
communities with osteosarcoma and Ewing sarcoma set out 
minimum standards for tissue sampling, sufficient for histologic 
and molecular evaluation and for all patients to have the op-
portunity to donate samples for research. The proposed core 
samples will facilitate a revolution in biologically rational 
treatment of pediatric-type bone sarcomas. 
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Unmet Challenges in Osteosarcoma 
and Ewing Sarcoma Biology 

Key features of osteosarcoma biology include in utero loss-of- 
imprinting at chr.14q32 (28, 29), postnatal TP53 loss-of-function (or 
possibly mutant gain-of-function; refs. 30, 31) and complex genome 
rearrangements via chromoplexy and chromothripsis [(32, 33) and 
bioRxiv 2023.12.29.573403]. Specific molecular alterations in some 
cases include MYC amplification (34), RB1 deletion and mutation, 
and a “BRCAness” phenotype (35). Ewing sarcoma cells are char-
acterized by gain-of-function gene rearrangements between FET 
(FUS, EWSR1, and TAF15) RNA binding proteins and ETS (FLI1, 
ERG, and FEV) transcription factors, most commonly EWSR1::FLI1 
(36). The FET::ETS fusions encode oncogenic chimeric transcription 
factors with neomorphic features that reprogram the transcriptome 
(37), binding to GGAA microsatellites that become neoenhancers 
(38, 39), which leads to ectopic gene expression and tumor devel-
opment. Additional STAG2 and TP53 cooperative mutations are 
associated with poorer survival (40–43). 

Although the key driver mutations and recurrent alterations 
present in a subset of cases have been identified in both tumors, 
fragmented data from multiple small series and a lack of sufficient 
and appropriate solid and liquid tissue biopsies have hindered the 
development of molecular classifications and risk stratifications. 
Current and recent European clinical trials in Ewing sarcoma 
(ISRCTN92192408, ISRCTN36453794, and NCT00987636) have 
collected prospective liquid biopsies and accessed clinical diagnostic 
tissue samples to validate previously reported prognostic bio-
markers, but none include specific molecular analysis of pretreat-
ment and posttreatment tumor samples and clinical trials are not 
representative of all patient groups. For osteosarcoma, there have 
been no large prospective clinical trials since the closure of the 
EURAMOS-1 study and clinical trial samples do not inform indi-
vidual patient treatment decisions. A culture of more universal 
prospective tissue collection is needed. 

“Representativeness” of Current 
Research Models 

Preclinical models are a central component of translational re-
search. Model systems such as patient-derived cell lines, ex vivo 
engineered models (44–46) and spheroids/tumoroids (47, 48), in 
addition to in vivo rodent (e.g., mice and rats), nonrodent (e.g., 
canine, zebrafish, and Xenopus; ref. 49), and chicken chorioallantoic 
membrane (50, 51) models, allow researchers to mimic bone sar-
coma including its genetics and molecular biology, local microen-
vironment, systemic dissemination, and drug response. Most bone 
sarcoma deaths occur because of the emergence of drug-resistant 
lung, bone, and/or bone marrow metastases. Orthotopic and 
patient-derived xenograft (52) and engineered mouse models (53) 
recapitulating disseminated disease are essential. Sampling paired 
treatment-näıve and relapsed material is critical for the development 
of relevant models to avoid unfavorable scenarios in which pre-
clinical drug efficacy data generated using less-relevant models seem 
promising (54–56), but the subsequent clinical trials show no pa-
tient benefit (23, 57, 58). 

Historical cell lines, recent patient-derived cells, and orthotopic 
xenograft mouse models have been developed for osteosarcoma (52, 
53, 59–63) and Ewing sarcoma (53, 56, 64, 65) but they typically 
over-represent the higher risk end of the disease spectrum. The 
Innovative Therapies for Children with Cancer consortium has 

generated patient-derived xenografts for in vivo compound testing 
from children with relapsed disease and includes some bone sar-
coma models (66–68), but more representative and accessible 
patient-derived cell lines, xenograft, and genetically engineered 
autograft models that allow simultaneous examination of the tumor, 
immune, extracellular, and structural microenvironment are needed 
(69–72). 

Access to Novel Therapies 
There is limited commercial incentive for the development of 

novel therapies for bone sarcoma. The European Medicines Agency 
(EMA) implemented the European Union Paediatric Regulation in 
2006, requiring the investigation of new therapies in children before 
marketing authorization was granted. A waiver system in the initial 
legislation was modified in 2015 (73), strengthening the legal re-
quirement to investigate all therapies with a relevant mechanism of 
action for childhood cancer. US Congress approval of the Research 
to Accelerate Cures and Equity for Children Act (“RACE Act”) 
enacted in 2020 gave the FDA powers to mandate pediatric clinical 
trials for new oncology drugs with a molecular target relevant to 
childhood cancers. There is considerable alignment between the 
EMA and FDA and this concerted regulatory approach has and will 
lead to greater opportunities for access to novel targeted therapies in 
children. 

Although peaking in incidence in the second and third decades 
and occurring in older adults as well as children, osteosarcoma and 
Ewing sarcoma are frequently considered “pediatric” cancers and 
are represented in early phase pediatric drug trials. The regulatory 
coordination between the EMA and FDA presents an opportunity to 
utilize the inclusion of patients with osteosarcoma and Ewing sar-
coma in early phase trials to study drug response and to develop 
predictive biomarkers. However, the number of patients with bone 
sarcomas recruited to each early phase trial is typically small (27, 
74), sampling is not standardized, correlative biomarker studies are 
typically published long after conclusion of the trial, if at all, and 
together these factors have led to an extreme paucity of high-quality 
predictive biomarker evidence relevant to bone sarcoma. IGF1R 
inhibitors in Ewing sarcoma are an example of a failed opportunity 
to identify why only some patients responded to treatment. Across 
multiple early-phase trials, multiple agents, and more than 400 
patients, IGF1R inhibitors resulted in response rates of 5% to 15%, 
including some sustained responses (75–80), but no predictive 
biomarkers were identified. As a result, no patient enrichment was 
possible in the Children’s Oncology Group AEWS1221 study 
comparing standard interval compressed VDC/IE with or without 
ganitumab. There was no significant difference in survival between 
the arms. 

The Importance of Optimizing Sample 
Collection 

Several factors have converged to limit translational progress in 
osteosarcoma and Ewing sarcoma including recurrent molecular 
alterations not being validated, a consensus on molecular classifi-
cation being made, a burgeoning of preclinical models but with an 
overemphasis on high-risk disease, a relative paucity of models for 
some disease settings, limited access to samples, almost nonexistent 
validated information about predictive biomarkers of response to 
cytotoxic chemotherapy, and molecularly directed treatment plus 
poor recruitment to early phase trials. In particular, while the key 
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molecular drivers of osteosarcoma and Ewing sarcoma are rela-
tively well understood, there is a fundamental lack of under-
standing of how genetic and epigenetic modifiers and tumor– 
host interactions affect disease progression and treatment re-
sponse. This lack of understanding is largely driven by the ab-
sence of comprehensive, serial, annotated tumor tissue, normal 
tissue stroma, and liquid biopsy. At the level of clinical trials and 
collaborative large-scale research, there is a need for more, high- 
quality, tumor and normal tissue (solid and liquid) biopsies, 
ideally, serial biopsies to facilitate research into the molecular 
drivers and inhibitors of treatment response. At the level of in-
dividual patients, tissue acquisition needs to meet the needs of 
modern, multiomic analysis to monitor disease response and 
facilitate options for molecularly targeted, personalized medicine 
and critically for osteosarcoma, to identify patients with under-
lying cancer predisposition syndromes. Taking tyrosine kinase 
inhibitors (TKI) as an example, several TKIs have shown promise 
as single agents in osteosarcoma and Ewing sarcoma (81–86) but 
despite responses in up to 40% of patients, there are as yet no 
validated predicted biomarkers and the TKI mechanism of action 
remains obscure. Ongoing trials are evaluating combinations of 
TKIs with chemotherapy in first-line and relapse settings (e.g., 
the INTER-EWING-1 and rEECur trials developed by the EEC 
and NCT05691478 in the United States) and the FOSTER con-
sortium was recently awarded ATTRACT funding to investigate 
the TKI cabozantinib as 12-month maintenance therapy fol-
lowing first-line standard therapy in osteosarcoma. All include 
sampling timepoints designed to investigate biomarkers predic-
tive of TKI response. 

A decades-long limitation to resolving some of the challenges 
discussed above is that there are no consistent or systematic Europe- 
wide practices for sample collection. Standard operating procedures 
(SOP) for biopsies and other sample types, storage, and sharing are 
either absent or only developed at local or national level. Exacer-
bating the problem is that there is little infrastructure and few 
dedicated staff to obtain bone sarcoma biopsies for both clinical care 
and translational research, although recent initiatives are working 
toward changing this landscape. 

Across Europe, the stakeholders engaged in obtaining biopsy 
material have different practices. The amount, quality, and avail-
ability of viable tumor material is variable and frequently inadequate 
for molecular analyses. Because of the lack of a framework for 
sampling, much tumor tissue research is performed on postopera-
tive, necrotic material obtained after induction therapy meaning 
there is “tainted” data and knowledge on tumorigenesis, clonal 
evolution, metastasis, and experimental drug response. There is 
evidence that the chromoplexy attribute of osteosarcoma results in 
dramatically different genetic alterations in different regions of the 
same tumor (bioRxiv 2023.12.29.573403), making a strategic ap-
proach to tissue biopsy critical to understanding patient-specific 
tumor biology and target actionability (Table 1). 

We present consensus guidelines on the appropriate type and 
timing of tissue and liquid samples to facilitate research for fu-
ture patients and to inform the treatment and future surveillance 
of current patients. Where this dedicated approach has taken 
place in other cancers, for example melanoma, the 10-year sur-
vival rate has improved from ∼10% (87) to ∼56% (88) because 
high-quality samples are made available for routine testing of the 
BRAF gene, which dictates first-line immunotherapy decision. 
Cytotoxic chemotherapy is now disregarded as first-line therapy 
in melanoma. 

Guidelines and Recommendations 
Introduction 

Cooperative effort from all involved disciplines is required. 
Routinely obtained written informed consent, collection, and stor-
age of patient material for advanced biological studies is recom-
mended in international clinical guidelines (19, 20, 22) but 
noncompliance exists because of the lack of standard procedures for 
biological sampling. Our position, complementing the clinical 
guidelines, is that all patients with bone sarcoma should have snap- 
frozen and fresh tissue samples (in addition to the conventional 
diagnostic samples) taken at diagnosis, surgery, and relapse re-
gardless of their inclusion in research initiatives or clinical trials. 

Biopsies should be performed at specialist bone sarcoma units 
(89, 90). Within research groups, clear definitions of the sample 
types and relevant SOPs should be used. Solutions for ethical, legal, 
and practical issues should be widely shared. To maximize the ad-
vantages of sample collection, to obtain a comprehensive biological 
understanding of bone sarcoma and host-related factors, different 
sample types at sequential stages of the clinical pathway should be 
collected (Fig. 1; Table 2). To enhance fundamental understand-
ing of bone sarcoma clonal evolution and chemoresistance, tumor 
tissue collection at relapse and autopsy (e.g., PEACE study, 
NCT03004755) is essential. Metastases often comprise different 
genetics to the original primary tumor, so sampling metastatic 
lesions is recommended to ensure that the maximal amount of 
biological information is collected. 

Diagnostic biopsy 
Treatment-naı̈ve core or open biopsies should be obtained from 

suspected bone sarcoma cases at sarcoma specialist centers with the 
infrastructure to take, process and store (or send to a centralized 
national center) snap-frozen and fresh tissue in addition to the bi-
ological material placed in formalin. Fine-needle aspiration is not 
adequate. Biopsies and their position should be determined at a 
multidisciplinary team meeting with discussion on what the sus-
pected lesion is expected to be, which tumor zones the biopsies 
should be taken from and by which approach to avoid unnecessary 
contamination. The procedure should be performed by a muscu-
loskeletal or interventional radiologist experienced in the diagnosis 
of bone tumors or by a specialist surgeon and reported in line with 
the International Collaboration on Cancer Reporting (https:// 
www.iccr-cancer.org/; ref. 20). The biopsy tract should be consid-
ered contaminated and resected en bloc during local therapy or be 
included in the radiotherapy field to minimize the risk of local 
recurrence (19, 21, 91–93). The surgeon who will perform the tumor 
resection should be involved in defining the optimal approach for 
the biopsy. The biopsy tract is preferably marked and described 
according to compartmental anatomy (91, 94, 95). In many cases, 
image-guided percutaneous biopsy using 8-, 11-, or 14-gauge nee-
dles represents a well-established alternative to open biopsy in terms 
of safety and diagnostic results (21, 91–93). Advantages and (contra) 
indications have been described for both procedures (91, 96–99). 

Sampling focused purely on histologic diagnosis, usually from 
decalcified formalin-fixed, paraffin-embedded (FFPE) tissue, does 
not consider the developing prognostic technologies that require 
snap-frozen and/or fresh tissue that are becoming standards of care, 
for example, the macrophage expression phenotype in osteosarcoma 
(100). The equivalent of three 11- or 14-gauge needle biopsy sam-
ples have typically been sufficient to provide diagnostic yield (101) 
when paired with conventional histology. Our position is that where 
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a core biopsy is performed, five samples should be collected where 
possible, of which at least one must be snap-frozen (Table 2). The 
fourth and fifth sample should be designated for research but can 
be used for diagnostic purposes in which a diagnosis could not be 
made using the FFPE samples. In many cases, the fourth and fifth 
sample will also be snap-frozen and stored but depending on ac-
tive research studies, one or both could be formalin-fixed for use 
in spatial transcriptomics or used fresh for the isolation of live 
tumor cells for cell line generation, organoid development, and/or 
engraftment into immunocompromised animals (Table 2). For 
open biopsy, a minimum of 1 cm3 of tissue cut into multiple 

0.2 cm3 sections is recommended. Where there are detectable 
oligometastases at presentation, consideration should be given to 
obtaining metastatic tissue at the time of the biopsy. For reference, 
recent Children’s Oncology Group guidance advocates up to 20 
core biopsies for bone sarcomas with a soft tissue component (or 
up to seven core biopsies in which there is no soft tissue) plus up 
to three cores of underlying osteoid (102). 

Primary tumor resection and metastasectomy 
There are three surgical specimens in which resection serves as 

both performing standard of care and obtaining research samples: 

Table 1. Advantages of appropriately consented, collected, and/or biobanked samples. 

For individual patients 
Druggable target identification and screening for early-phase trials 
Identification of germline predisposition syndromes 
Monitoring of minimal residual diseasea 

Assignment to molecular strataa 

Therapeutic use for immuno-oncology approaches such as tumor vaccinesa 

For future research 
Identification and validation of molecular stratification 
Identification of mechanisms of pathogenesis, drivers of tumor growth, and resistance mechanisms 
Analysis of biological drivers of relapse, particularly if paired diagnostic/relapse samples available 
Analysis of tumor microenvironment and immunologic aspects 
Prognostic and predictive biomarker development and validation 
Validation of liquid biopsy methodologies and development of minimal residual disease biomarkers 
Identification and validation of SNVs associated with pharmacokinetic properties and treatment-induced early and late toxicities 
Establishment of representative preclinical models and patient-derived cell lines 

For future research: particular benefits of prospective clinical trial samples 
Uniform sample processing, homogeneously treated patients 
Uniform clinical datasets within and between trialsb 

Cross-validation of liquid biopsy, molecular classification, and prognostic and predictive biomarkers between independent cohorts 

aAssumes successful completion of ongoing research. 
bAided by ongoing Pediatric Cancer Data Commons initiatives (https://commons.cri.uchicago.edu/pcdc/). 

Primary treatment Recurrence

Standard of care sampling Standard of care sampling Serial sampling within
a specific study  

Serial sampling within
a specific study  

Circulating
biomarkers

Metastatic disease

Circulating
biomarkers

Circulating
biomarkers

Circulating
biomarkers

Local recurrence

Bone metastases

Lung metastases

Primary tumour 

Figure 1. 
Overview of the sample types to be collected. To maximize the advantages of sample collection, in order to obtain a comprehensive biological understanding of 
bone sarcoma and host-related factors, different sample types at sequential stages of the clinical pathway should be collected. (Created with BioRender.com.) 
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(i) primary tumor, (ii) matched adjacent normal tissue, and 
(iii) metastatic lesions. Samples should be prioritized by the pa-
thologist to collect, depending on the availability of biobanking 
and specific research initiatives: (i) FFPE as the standard of care 
and neoadjuvant chemotherapy assessment, (ii) snap-frozen and 
stored, (iii) fresh and placed into an RNA-preserving medium, 
and (iv) fresh and placed into a culture-compatible medium 
(Table 2). 

Relapsed disease 
Samples from relapsed disease are particularly valuable if they 

can be paired with tissue from the primary diagnosis. As most 
bone sarcoma recurrences develop early and there is usually little 
doubt about the diagnosis, pretreatment biopsy material is 
scarcer than at initial diagnosis. Given the poor outcomes of 
relapsed disease and the limited treatment options, consideration 
should be given to obtaining snap-frozen and fresh and/or fixed 
tumor tissue at recurrence. These samples should be appropri-
ately processed for omics assessment, other research, or bio-
banking. Irrespective of whether there are currently recruiting 
and/or routinely commissioned omics initiatives available at the 
time of recurrence, relapsed tissue is highly valuable if stored for 
future assessment. 

Blood samples 
Blood samples should be obtained at (i) diagnosis, (ii) before and 

after surgery, and (iii) at follow-up. Blood can be used as a liquid 
biopsy for the identification of ctDNA and circulating tumor RNA 
(ctRNA), circulating cell-free DNA, and circulating tumor cells 
(CTC). For specific diagnostic, monitoring and biomarker studies, 
urine and other body tissues (e.g., tears and hair) may be collected. 
Blood samples should be processed according to the relevant study, 
for example, CTC studies to be collected in cell-free Streck, PAX-
gene, or EDTA blood collection tubes (BCT) and processed im-
mediately. Streck and PAXgene both have BCTs specifically 

designed for ctDNA and ctRNA capture. EDTA tubes can be used 
for either analytes, proteins, or live cells. There are pros and cons to 
each BCT related to the need for immediate versus delayed pro-
cessing, plasma volume yield, and transport and storage costs. There 
is no consensus among European centers on which, if any, is best 
overall. We recommend that EDTA is used as a minimum for 
storage as these BCTs enable most analyses. But other more specific 
BCTs can be used according to research studies taking place at the 
time of collection. Blood samples may be key to detect micro-
metastases as well as allowing for the analysis of metastatic tumor- 
derived DNA, RNA (including microRNA), or proteins in 
circulation. 

Technical considerations 
Technical aspects of collection and storage need to be considered 

to obtain minimum amounts of high-quality samples (Table 3), 
which may require a fundamental change in clinical practice in 
individual centers. Radiologists, surgeons, and pathologists have 
critical roles in the collection of adequate samples for histologic and 
molecular diagnostics and for translational research. The biopsy, 
operative, and histology procedures need to allow sufficient time to 
be devoted to sample collection and processing. These procedures 
should be appropriately funded. If diagnostic centers are unable to 
adequately process and store relevant material, consideration should 
be given by national bodies to restrict diagnostic biopsies to centers 
with adequate infrastructure or establish regulated delivery channels 
to central repositories. 

Standard operating procedures 
SOPs for tissue processing should be implemented by designated 

staff other than the radiologist or surgeon because the tissue needs 
to be processed at the same time as the procedure being performed, 
which requires the full attention of the radiologist or surgeon. After 
collection, material allocated by the pathologist for diagnostic pro-
cedures will be processed as standard. Samples to be frozen should 

Table 2. Guidelines for sample collection ensuring diagnostic and translational research efficiency. 

Processing Purpose 

Standard of care at: diagnosis, primary tumor resection, metastasectomy, recurrence 
Minimum essential 3–5 core biopsies using 8-, 11-, or 14-gauge 

needles; or larger cores divided into two or three pieces; 
or 1-cm3 open biopsy cut into multiple 0.2-cm3 pieces 

FFPE Diagnostic 
At least one core or tumor piece snap-frozen in liquid N2 or 

immediately stored in �80°C 
Diagnostic and 

research 
Optimal 5–7 core biopsies using 8-, 11-, or 14-gauge needles; 

or larger cores divided into pieces; or 2-cm3 (or 2 � 1 cm3) 
open biopsy cut into multiple 0.2-cm3 pieces plus normal 
tissue comparator 

Material to be snap-frozen or fresh material used in ongoing 
research projects to develop PDXs, tumor organoids, primary 
cultures, etc. 

Research 

Optimal whole blooda in EDTA or other normal tissue for 
germline sequencingb 

PBMCs, plasma, and serum Research 

Samples for specific research studies and/or biobankingc 

Live cells in a culture-compatible medium/organ transplant 
preservation solution 

Tumor cells Research 

Whole blooda in EDTA or PAXgene tubes Circulating tumor cells Research 
Whole blooda in EDTA or cell-free Streck tubes ctDNA, plasma, serum, and PBMCs Research 
1–5 mL other biofluids Saliva and urine Research 
Samples at death/autopsy 
Oligometastases samples Snap-frozen in liquid N2 or immediately stored in �80°C Research 

aProcedures and volumes for children and adults in accordance with the WHO guidelines on drawing blood: best practices in phlebotomy. 
bGermline sequencing is not currently international standard of care, but many European countries have ongoing standard-of-care next-generation sequencing 
studies that include germline sequencing. 
cBlood samples may be taken serially during and after treatment in which specific research projects are available. 
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be transferred to sterile vials and immediately snap-frozen and 
stored in �80°C freezers or in liquid nitrogen. Fresh samples for cell 
and organoid cultures or animal engraftment need to be placed 
under sterile conditions into appropriate vials with a culture- 
compatible medium. The logistics and reagents may require pre-
planning with the research group for material transfer to the labo-
ratory within 24 hours. 

Infrastructure and personnel 
Sampling requires a team effort. Some centers will require 

changes to current care pathways, for example, automatic re-
minders to collect samples and duplicating processes so the bio-
bank sample pathway is parallel with the pathology sample 
pathway. The radiologist’s and surgeon’s focus will be on the 
clinical procedure so it is important to establish a tissue processing 
pipeline as an interdisciplinary effort and adapt it to local condi-
tions, which may include oncology, pathology, biobanking and 
theater staff. For SOPs to work, theater staff must be well in-
formed, prepared, and adequately resourced to undertake the extra 
work. All personnel involved should recognize that tissue pro-
cessing for research is pertinent to future patients being cured. 
Understanding the importance of their new role in tissue sampling 
could increase personnel efficiency and reliability. 

Patient and Public Support 
Patients and their families overwhelmingly support research 

sample donation surplus to diagnostic requirement. FOSTER to-
gether with the Sarcoma Patient Advocacy Global Network has 
undertaken an international survey. The survey includes questions 
on diagnosis, treatment, and survivorship experiences, plus assess-
ment of patient and family priorities for future research. Four 
questions are specific to sample donation. As of February 2, 2024, 
there were 372 combined osteosarcoma and Ewing sarcoma re-
spondents (n ¼ 234 osteosarcoma, median age 16 years; n ¼ 138 
Ewing sarcoma, median age 14 years). Just more than half of re-
spondents with Ewing sarcoma (52.2%) and less than half with 
osteosarcoma (46.6%) were asked to donate research samples 
(Table 4). Of those asked, 97% consented to donate (Table 4). For 
the half of respondents who were not asked, almost two thirds 
reported that they would like to have been asked (Table 4). 

Ethical, Legal, Privacy, and Practical 
Considerations 

Responding to patient-led direction involves important ethical, 
legal, privacy, and practical consideration (Table 5). Patients or their 
families must provide written informed consent for the collection, 

Table 3. SOPs to be considered in local institutions. 

• Obtain information and written informed consent from patients or their legal guardians 
• Determining the amount and types of tissue, blood, and other material to be collected 
• Orthopedic surgical considerations (frozen section, infiltration zone, and margin material); freezing and fixation of maximal amounts of material 
• Orthopedic and pathologic diagnosis and reference assessments 
• Sending MRI data via digital route or anonymized and coded external drive 
• Providing adequate short-term storage of tumor tissue and other samples 
• Transferring materials to long-term storage or shipping samples according to SOPs 
• Ensuring trial-specific requirements are met (e.g., tumor sections not sent to pathology for analysis but straight from the operating theater to the 

research lab) 
• Supplying material for cell culture in specific sterile cell culture medium 
• Filing documentation of collected materials per study in institution-specific lists or databases 
• Confirming received materials at research institute 
• Establishing procedure for prioritization of pathology in case of sparse material 

Staff from all involved disciplines (e.g., interventional radiologists, surgeons, operating room staff, pathologists, pediatric and medical oncologists, and research 
nurses) should be aware of the importance of the availability of adequate biological samples and define the practical steps of collection, storage, and shipment 
of samples according to local structures. 

Table 4. The Patient and Parent Advocacy Group and Sarcoma Patient Advocacy Global Network international survey on sarcoma 
experiences. 

Question 

Osteosarcoma Ewing sarcoma 

Yes (%) No (%) Other (%) Yes (%) No (%) Other (%) 

Were you or your child/family asked to 
donate tissue samples for research? 

109 (46.6%) 84 (35.9%) 41 (17.5%) 72 (52.2%) 39 (28.3%) 27 (19.6%) 

If you or your child/family member were 
not asked to donate tissue, would you 
have liked to be asked? 

82 (65.6%) 3 (2.4%) 40 (32%) 40 (60.6%) 2 (3%) 24 (36.4%) 

If asked, did you or your child/family 
member agree to donate tissue? 

106 (97.2%) 0 (0%) 3 (2.8%) 68 (94.4%) 0 (0%) 4 (5.6%) 

If you or your child/family member 
consented, was tissue successfully 
collected/donated? 

63 (59.4%) 0 (0%) 43 (40.6%) 42 (61.8%) 1 (1.5%) 25 (36.8%) 

The survey has so far included 598 respondents with bone sarcoma experience, of which there are 234 with osteosarcoma and 138 with Ewing sarcoma. 
Questions were asked on diagnosis, treatment, and survivorship as well as priorities for future research. Four questions were specific to research sampling. 
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storage, and use of research samples. Lawful protocols should be in 
place to ensure that patient confidentiality and personally identifiable 
data are protected. Consent and protocols need to navigate the range 
of legal frameworks of different European nations. Age-appropriate 
information sheets for patients and their guardians must explain the 
purpose of the planned tissue storage and/or research, the recipients 
of the material (either now or in future), and the use of pseudony-
mized clinical data prior to providing forms for informed consent. 
Pairing sample data with pseudonymized clinical data including 
treatment and imaging findings and where the law allows, explicit 
linkage to regional and national cancer registries, should be possible. 
Ethical approval from international, national, or local authorities to 
study samples previously collected should be obtained. 

Advantages of centralized versus decentralized (virtual) tumor 
banking and procedures to check for appropriate tissue represen-
tation for interpretable biological results should be considered. 
Whether sample availability should be defined as a mandatory in-
clusion criterion for patients going into clinical trials should be 
evaluated by regulatory bodies and ethics panels. For clinical trials, 
responsibilities of trial coordinators and local centers should be 
defined and adapted to applicable laws and regulations. Adequate 
coverage of the local costs and shipment of samples by research 
grants or national initiatives can help facilitate the compliance of 
local institutions, particularly where there are financial challenges 
faced by sample collection units. However, in some cases, financial 
constraints will prevent the collection of samples for unspecified 
research. Reusable tumor box devices can facilitate the shipment of 
frozen and unfrozen material. Practical aspects of exchange (in-
cluding transborder) and the use of material should be defined by 
material transfer agreements (MTA) between research centers. 

Biobanking 
Biological material can be stored centrally by an academic tissue 

bank with software systems allowing for maximal up-to-date in-
formation about the stored materials. The materials can also be 
stored in local tumor banking facilities and later shipped in batches, 
as required, for use in further analyses. Both centralized and 
decentralized material storage allow for their use in big data analyses 
with bioinformatics support. Regardless of storage location (e.g., 
accredited laboratories with alarm monitoring vs. research lab 
freezers), proper evaluation by experienced bone sarcoma patholo-
gists should ensure appropriate tissue representation before being 
used in specific projects. Biological material storage in aliquots al-
lows for the tissue to be used for multiple research projects. Within 
existing legal frameworks of some European countries, it has been 

possible in some clinical units to store fresh and snap-frozen ma-
terial from the biopsy before a diagnosis is obtained for a limited 
time prior to explicit patient consent for biobanking (103). This 
practice requires the appropriate infrastructure to be in place at the 
time of the biopsy and some bureaucracy to ensure adequate record 
keeping. Across most European centers, it is the tissue bank where 
the samples were collected that owns the biological material. Tissue 
banks are typically nonspecific repositories for all patient materials 
collected at a local institution or within a region or sometimes can 
be a study-specific biobank. 

Transparent criteria for the regulation of access to larger material 
series by researchers from local contributing institutions could 
positively influence the cooperation of local centers. MTAs and 
SOPs for material shipment and adequate cost coverage (e.g., re-
search grants) could further facilitate cooperative tumor banking. It 
is also important to establish procedures for the coupling of tumor 
material data to patient data. Genomic, transcriptomic, methylomic, 
and metabolomic data from tumor biopsies plus data from experi-
ments on patient-derived cell cultures and xenografts should ideally 
be stored in an international bone sarcoma registry together with 
comprehensive anonymous clinical, radiological, and pathologic 
data. It is worth investing in the collection of large amounts of 
retrospective clinical data about baseline characteristics, treatment 
and survival from multiple international groups and to correlate 
these data with the analysis of genomic and epigenomic data from 
corresponding banked tumor samples. FOSTER, the EEC, and 
clinical trial groups should consider aspects of data collection and 
sample storage and discuss early in the planning phase of collabo-
rative projects so that specific national requirements and future 
projects linking datasets can be implemented in a timely manner. 
Data sustainability beyond individual projects and connection of 
data at overarching levels should be considered. 

Conclusion 
Tangible progress in bone sarcoma has been bottlenecked by 

insufficient biological assessment and investigation, which in sig-
nificant part has been caused by limitations in sample collection. 
Routine collection of decalcified and formalin-fixed tissue for his-
tologic examination will not support diagnostic and prognostic 
technologies that evolve from translational research, for example, 
next-generation sequencing, in large part because fresh and snap- 
frozen tissue is not routinely stored. The benefits of obtaining fresh 
and snap-frozen samples at biopsy exceed the risks of complications 
of taking more tissue. Changing the process in which we collect 
biological samples and link patient data will lead to new molecular- 

Table 5. Ethical, legal, privacy, and practical aspects of sample storage, sharing, and shipment between research groups. 

• Age-appropriate information sheets must explain the purpose of the planned research, the recipients of the material and the use of anonymized or 
pseudonymized clinical data 

• Coupling of tumor material data to patient data, including treatment and imaging findings 
• Ethical approval and permissions from international, national, or local authorities 
• A monitoring system for available samples and for associated informed consents per local hospital 
• Ownership issues relating to biological tissue and clinical data, which might be different between countries, should be considered 
• Advantages of centralized vs. decentralized (virtual) tumor banking and procedures to check for appropriate tissue representation for interpretable 

biological results should be considered 
• Adequate coverage of the local costs and shipment of samples by research grants can facilitate the compliance of local institutions 
• Integrated, reusable tumor box devices can facilitate the shipment of frozen and unfrozen materials 
• Practical aspects of exchange and use of biological samples should be defined by MTAs between institutions 
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based standards of care as well as new targeted therapies with fewer 
side effects. 

Metastatic sites are not routinely sampled. Liquid biopsies are not 
routine. Screening for germline predisposition syndromes is not 
routine. The availability of properly sampled and stored biological 
materials will confer multiple scientific and clinical advantages in-
cluding allowing identification and validation of new and reported 
prognostic factors and druggable targets. We need to ensure that 
children, teenagers, and young adults with bone sarcoma are not left 
behind while precision oncology offers new treatment solutions for 
more common, typically older adult, cancers. Because pediatric 
sarcomas are clinically and biologically highly distinct from adult 
cancers, precision medicine approaches should be adapted to make 
the best use of samples that are as informative as possible. Appro-
priate sample collection, storage, and sharing can only be achieved 
successfully if all the relevant steps are optimized at each local 
center. Collection and storage procedures could be adapted by local 
institutions to suit their individual structures, defined and assigned 
to dedicated individuals who are specifically educated and trained. 
FOSTER, EEC, and institutional researchers should actively col-
laborate, share data, methods, and samples, and disseminate good 
practice. These approaches will advance progress in bone sarcoma. 
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