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ZERO-SUM STOPPER VS. SINGULAR-CONTROLLER GAMES

WITH CONSTRAINED CONTROL DIRECTIONS

ANDREA BOVO, TIZIANO DE ANGELIS, AND JAN PALCZEWSKI

Abstract. We consider a class of zero-sum stopper vs. singular-controller games in which the
controller can only act on a subset d0 < d of the d coordinates of a controlled diffusion. Due to
the constraint on the control directions these games fall outside the framework of recently studied
variational methods. In this paper we develop an approximation procedure, based on L1-stability
estimates for the controlled diffusion process and almost sure convergence of suitable stopping times.
That allows us to prove existence of the game’s value and to obtain an optimal strategy for the
stopper, under continuity and growth conditions on the payoff functions. This class of games is a
natural extension of (single-agent) singular control problems, studied in the literature, with similar
constraints on the admissible controls.

1. Introduction

A zero-sum stopper vs. singular-controller game can be formulated as follows. Given a time
horizon T ∈ (0,∞), two players observe a stochastic dynamics X = (Xs)s∈[0,T ] in R

d described by
a controlled stochastic differential equation (SDE). One player (the minimiser) may exert controls
that impact additively on the dynamics and that may be singular with respect to the Lebesgue
measure, as functions of time. The other player (the maximiser) decides when the game ends by
selecting a stopping time in [0, T ]. At the end of the game, the first player (controller) pays the
second one (stopper) a payoff that depends on time, on the sample paths of X and on the amount
of control exerted. A natural question is whether the game admits a value, i.e., if the same expected
payoff is attained irrespective of the order in which the players choose their (optimal) actions.

In [4] we studied zero-sum stopper vs. singular-controller games in a diffusive setup with controls
that can be exerted in all d coordinates of the process X. The approach is based on a mix of
probabilistic and analytic methods for the study of a class of variational inequalities with so-called
obstacle and gradient constraints. It is shown that the value of the game is the maximal solution
of such variational inequality. More precisely, it is the maximal strong solution in the sense that it
belongs to the Sobolev space of functions that admit two spatial derivatives and one time derivative,
locally in Lp (i.e., in W 1,2,p

ℓoc ). The methods rely crucially on the assumption that all coordinates of
the process can be controlled. Indeed, that determines a particular form of the gradient constraint
that enables delicate PDE estimates for a-priori bounds on the solution. When only d0 < d coordi-
nates are controlled, i.e., there is a constraint on the control directions, the results from [4] are not
applicable (cf. Section 2.2 for details) and the existence of a value is an open question.

In this paper, we continue our study of zero-sum stopper vs. singular-controller games by showing
that even in the case d0 < d the game admits a value. We also provide an optimal strategy for the
stopper and we observe that it is of a slightly different form compared to the one obtained in [4]
(see Remark 2.7 below for details). The line of proof follows an approximation procedure, governed
by a parameter γ ∈ [0, 1], by which we relax the constraints on the class of admissible controls. For
γ = 1 we are in the same setting as in [4], whereas γ = 0 corresponds to the constrained case. It
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turns out that for γ ∈ (0, 1) we have an intermediate situation for which a suitable adaptation of
the arguments from [4] is possible. The idea is then to obtain the value of the constrained game in
the limit as γ ↓ 0.

When letting γ ↓ 0, we need L1-stability estimates for the controlled dynamics. These estimates
involve local times and a-priori bounds on the candidate optimal controls and they are not standard
in the literature. Optimality of the stopper’s strategy is derived via an almost sure convergence
for a suitable sequence of stopping times, based on path properties of the controlled dynamics and
uniform convergence of the approximating value functions as γ ↓ 0. We can no longer guarantee the
solvability of the associated variational problem in the strong (Sobolev) sense but, of course, our
value function satisfies both the appropriate gradient constraint and obstacle constraint. Moreover,
we show that the value of our game is the uniform limit of solutions of approximating variational
inequalities, paving the way to a notion of solution in the viscosity sense. Finally, we notice that
our results hold under continuity and (sub)linear growth conditions on the payoff functions. These
are much weaker conditions than those needed in [4], where continuous differentiability in time and
space and Hölder continuity of the derivatives is required.

The motivation for considering constrained control directions arises from the literature on (single-
agent) irreversible or partially reversible investment problems. In the classical paper [29], Soner and
Shreve consider a d-dimensional Brownian motion whose d-th coordinate is singularly controlled.
Various works by Zervos et al. (e.g., [27, 25, 26]), Guo and Tomecek [17], Federico et al. (e.g.,
[13, 12], Ferrari (e.g., [14]), De Angelis et al. (e.g., [7, 8, 9]) consider 2- or 3-dimensional dynamics
with only one controlled coordinate. We also notice that in those papers the controlled process X
is fully degenerate in the controlled dynamics (i.e., there is no diffusion in the control direction). In
all cases but [7] and [12] this assumption enables an explicit solution of the problem, because the
resulting free boundary problems are cast as families of ODEs parametrised by the state variable
associated to the control. A non-degenerate example arises instead in mathematical finance in the
paper by Bandini et al. [1] who deal with a 2-dimensional diffusive dynamics with only one controlled
coordinate. It seems therefore natural that game versions of similar problems should be studied in
detail and we provide the first results in this direction.

The literature on controller vs. stopper games has been developing in various directions in the case
of controls with bounded velocity (see, e.g., Bensoussan and Friedman [3], Karatzas et al. [21, 22],
Hamadene [18], Bayraktar and Li [2], among others). A more detailed review of the main results
in that direction is provided in the introduction of [4]. Instead, the case of singular controls is
widely unexplored. Prior to [4], the only other contribution was by Hernandez-Hernandez et al. [19]
(see also [20]), who studied the problem in a one-dimensional setting using free boundary problems
in the form of ODEs with appropriate boundary conditions. The present paper contributes to
the systematic study of zero-sum stopper vs. singular controller games while complementing and
extending the classical framework with controls of bounded velocity.

Our paper is organised as follows. In Section 2 we set up the problem, we explain the main
technical difficulties preventing the use of methods from [4], we state the main result (Theorem 2.3)
and introduce an approximation scheme. In Section 3 we obtain stability estimates. Those are later
used in Section 4 to prove convergence of the value functions of the approximating problems to the
original one. A technical appendix completes the paper.

2. Setting and main results

Let (Ω,F ,P) be a complete probability space, equipped with a right-continuous filtration F =
(Fs)s∈[0,∞) completed with P-null sets. Let (Ws)s∈[0,∞) be an F-adapted, d′-dimensional Brownian

motion. Fix T ∈ (0,∞), the horizon of the game. Let d ≤ d′ be the dimension of the controlled
diffusion process (Xs)s∈[0,T ]. We decompose d into two sets of coordinates: d = d0 + d1 with
d0, d1 > 0. The first d0 coordinates in the controlled dynamics are affected directly by singular
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controls. The remaining d1 coordinates, instead, are affected indirectly via drift and diffusion
coefficients. This is made rigorous in (2.1) after we introduce the class of admissible controls.

For t ∈ [0, T ], we denote

Tt := {τ |τ is a stopping time such that τ ∈ [0, T − t]} .

For a vector x ∈ R
d, |x|d stands for the Euclidean norm of x and |x|d0 for the Euclidean norm of

the first d0 coordinates. We consider the following class of admissible controls

Ad0 :=
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Analogously, we define the class Ad with the same properties as the one above but with ns =
(n1s, . . . , n

d
s) such that |ns|d = 1, P-a.s. The class Ad is the one used by [4], where the control may

act in all d coordinates. Instead, the class Ad0 is the one which we use in the present paper, where
the control directions are constrained to a subspace of Rd.

Notice that for P-a.e. ω, the map s 7→ ns(ω) is Borel-measurable on [0, T ] and s 7→ νs(ω) defines
a measure on [0, T ]; thus the Lebesgue-Stieltjes integral

∫

[0,s] nu(ω)dνu(ω) is well-defined for P-a.e.

ω. A jump of the process ν at time s is denoted by ∆νs := νs − νs−.
Given a control pair (n, ν) ∈ Ad0 and an initial condition x ∈ R

d, we consider a d-dimensional

controlled stochastic dynamics (X
[n,ν]
s )s∈[0,T ] described by

dX [n,ν]
s = b(X [n,ν]

s ) ds+ κ(X [n,ν]
s )dWs + ns dνs, X

[n,ν]
0− = x,(2.1)

where b : Rd → R
d and κ : Rd → R

d×d′ are continuous functions and X
[n,ν]
0− is the state of the

dynamics before a possible jump at time zero. We denote

Px

(

·
)

= P
(

·
∣

∣X
[n,ν]
0− = x

)

and Ex

[

·
]

= E
[

·
∣

∣X
[n,ν]
0− = x

]

.

It is important to remark that the control acts only in the first d0 coordinates of the dynamics
of X [n,ν]. However, the effect of such control is also felt by the remaining d1 coordinates via the
drift and diffusion coefficients. Under Assumption 2.1 on b and κ (stated below), there is a unique
(strong) F-adapted solution of (2.1) by, e.g., [24, Thm. 2.5.7].

We study a class of 2-player zero-sum games (ZSGs) between a (singular) controller and a stopper.
The stopper picks τ ∈ Tt and the controller chooses a pair (n, ν) ∈ Ad0 . At time τ the game ends

and the controller pays to the stopper a random payoff depending on τ and on the path of X [n,ν]

up to time τ . We denote the state space of the game by

R
d+1
0,T := [0, T ]× R

d.

Consider continuous functions g, h : Rd+1
0,T → [0,∞), f : [0, T ] → (0,∞), and a fixed discount rate

r ≥ 0 be given. For (t, x) ∈ R
d+1
0,T , τ ∈ Tt and (n, ν) ∈ Ad0 , the game’s expected payoff reads

Jt,x(n, ν, τ) = Ex

[

e−rτg(t+τ,X [n,ν]
τ )+

∫ τ

0
e−rsh(t+s,X [n,ν]

s ) ds+

∫

[0,τ ]
e−rsf(t+s) dνs

]

.(2.2)

We define the lower and upper value of the game respectively by

v(t, x) := sup
τ∈Tt

inf
(n,ν)∈Ad0

Jt,x(n, ν, τ) and v(t, x) := inf
(n,ν)∈Ad0

sup
τ∈Tt

Jt,x(n, ν, τ).(2.3)
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Then v(t, x) ≤ v(t, x) and if the equality holds we say that the game admits a value:

v(t, x) := v(t, x) = v(t, x).(2.4)

Before assumptions of the paper are formulated, we introduce necessary notations. Given a
matrix M ∈ R

d×d′ , with entries Mij , i = 1, . . . , d, j = 1, . . . , d′, we define its norm by

|M |d×d′ :=
(

d
∑

i=1

d′
∑

j=1

M2
ij

)1/2
,

and, if d = d′, we let tr(M) :=
∑d

i=1Mii. For x ∈ R
d we use the notation x = (x[d0], x[d1]) with

x[d0] = (x1, . . . , xd0) and x[d1] = (xd0+1, . . . , xd). Given a smooth function ϕ : Rd+1
0,T → R we denote

its partial derivatives by ∂tϕ, ∂xi
ϕ, ∂xixj

ϕ, for i, j = 1, . . . , d. We write ∇ϕ = (∂x1ϕ, . . . , ∂xd
ϕ) for

the spatial gradient, andD2ϕ = (∂xixj
ϕ)di,j=1 for the spatial Hessian matrix. The first d0 coordinates

of the gradient ∇ϕ are denoted by ∇0ϕ = (∂x1ϕ, . . . , ∂xd0
ϕ) and the remaining d1 coordinates are

denoted by ∇1ϕ = (∂xd0+1
ϕ, . . . , ∂xd

ϕ).
We now give assumptions under which we obtain our main result, Theorem 2.3.

Assumption 2.1 (Controlled SDE). The functions b and κ are such that:

(i) b ∈ C1(Rd;Rd), κ ∈ C1(Rd;Rd×d′) with derivatives bounded by D1 > 0;
(ii) For i = 1, . . . , d and κi = (κi1, . . . , κid′), it holds κ

i(x) = κi(xi);
(iii) For any bounded set B ⊂ R

d there is θB > 0 such that

〈ζ, κκ⊤(x)ζ〉 ≥ θB|ζ|2d for any ζ ∈ R
d and all x ∈ B,(2.5)

where 〈·, ·〉 denotes the scalar product in R
d and B the closure of B.

Notice that the Lipschitz continuity of b and κ implies that there exists D2 such that

|b(x)|d + |κ(x)|d×d′ ≤ D2(1 + |x|d), for all x ∈ R
d.(2.6)

Assumption 2.2 (Payoffs). Functions f : [0, T ] → (0,∞), g, h : Rd+1
0,T → [0,∞) are continuous,

and:

(i) The function f is non-increasing;
(ii) There exist constants K1 ∈ (0,∞) and β ∈ [0, 1) such that

0 ≤ g(t, x) + h(t, x) ≤ K1(1 + |x|βd ) for all (t, x) ∈ R
d+1
0,T ;

(iii) The function g is Lipschitz in the first d0 spatial coordinates with a constant bounded by f
in the sense that for every t ∈ [0, T ], |∇0g(t, x)|d0 ≤ f(t) for a.e. x ∈ R

d.

Assumption 2.1(ii) says that the diffusion coefficient of each coordinate of the process depends
only on such coordinate. That is needed for L1-stability estimates provided in Sections 3.1 and it
is satisfied by, e.g., stock market models with stochastic interest rates (cf. [5]). The assumptions on
the payoff functions are in line with those in [4]. More precisely, we allow less smoothness than in [4]
but we require strictly sub-linear growth instead of quadratic growth as in [4]. Those assumptions
are satisfied by a wide class of strictly concave utility functions. Finally, we could allow for r < 0
by incorporating the discount factor in functions f, g, h (which are time-dependent).

The next theorem is the main result of the paper. Its proof builds on an approximation procedure
that allows us to invoke PDE results from [4]. By passing to the limit in the approximation scheme
we recover the value function of our game. Details of the scheme and the convergence are presented
in the next sections of the paper.

Theorem 2.3. Under Assumptions 2.1 and 2.2, the game described above admits a value v (i.e.,
(2.4) holds) with the following properties:
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(i) v is continuous on R
d+1
0,T ;

(ii) |v(t, x)| ≤ c(1 + |x|βd ) for some c > 0, and β from Assumption 2.2(ii);
(iii) v is Lipschitz continuous in the first d0 spatial variables with constant bounded by f in the

sense that |∇0v(t, x)|d0 ≤ f(t) for a.e. (t, x) ∈ R
d+1
0,T .

Moreover, for any given (t, x) ∈ R
d+1
0,T and any (n, ν) ∈ Ad0 , the stopping time θ∗ = θ∗(t, x;n, ν) ∈

Tt is optimal for the stopper, where θ∗ = τ∗ ∧ σ∗ and Px-a.s.

τ∗ = τ∗(t, x;n, ν) := inf
{

s ≥ 0
∣

∣ v(t+ s,X [n,ν]
s ) = g(t+ s,X [n,ν]

s )
}

,

σ∗ = σ∗(t, x;n, ν) := inf
{

s ≥ 0
∣

∣ v(t+ s,X
[n,ν]
s− ) = g(t+ s,X

[n,ν]
s− )

}

.
(2.7)

Remark 2.4. The set {s ≥ 0 | v(t + s,X
[n,ν]
s ) = g(t + s,X

[n,ν]
s )

}

always contains T − t, because
v(T, x) = g(T, x). Hence, θ∗ ≤ T − t, Px-a.s.

Remark 2.5. The stopper’s strategy θ∗ is of a closed-loop type, i.e., the stopping time θ∗ depends on
the dynamics of the underlying process X [n,ν]. Optimality of θ∗, asserted above, should be understood
in the sense that for any admissible control (n, ν) ∈ Ad0 , we have

v(t, x) ≤ Jt,x(n, ν, θ∗), (t, x) ∈ R
d+1
0,T .

In particular this implies v(t, x) = inf(n,ν)∈Ad0 Jt,x(n, ν, θ∗(t, x;n, ν)), but θ∗ may not be a best

response for any specific pair (n, ν). Existence of an optimal control remains an open question (cf.
[4, Rem. 3.5]).

Remark 2.6. The results in the theorem above continue to hold in the unconstrained case d0 = d.
That proves existence of a value under less stringent regularity conditions on g, h than in [4] and
when f is independent of the spatial coordinate. Notice that for d = d0 the approximation via
functions (uγ)γ>0 described in Section 2.1 is not needed. The rest of the analysis follows the same
steps as in Section 4 taking γ = 1 and ignoring the arguments about the limit as γ → 0 in Section
4.1.

Remark 2.7. The stopping time τ∗ is shown to be optimal for the game studied in [4]. Theorem
2.3 asserts the optimality of θ∗ which is the minimum of τ∗ and another stopping time σ∗. This
construction comes at no disadvantage as θ∗ is also optimal in the setting of [4] (see Lemma 3.5).
It however enables us to prove convergence of optimal stopping times in the form of θ∗ for games
with value functions converging uniformly on compacts (see Lemma 4.3 and the proof of Theorem
4.4). Note that one cannot expect such convergence to hold for τ∗.

2.1. Approximation procedure. The key step for the proof of Theorem 2.3 is based on an
approximation scheme that we present here. Fix γ ∈ (0, 1] . Given (n, ν) ∈ Ad, we consider the
controlled SDE

dX [n,ν],γ
s = b(X [n,ν],γ

s ) ds+ κ(X [n,ν],γ
s )dWs + nγs dνs,(2.8)

where nγs := (n1s, . . . , n
d0
s , γn

d0+1
s , . . . , γnds) (i.e., the parameter γ acts as a weight on the last d1

coordinates of ns).
Given vectors p, q ∈ R

d, recalling the notation p = (p[d0], p[d1]) ∈ R
d0 × R

d1 and the scalar

product 〈p, q〉 in R
d, we introduce the bilinear form 〈·, ·〉γ : Rd × R

d → R defined as 〈p, q〉γ :=
〈p[d0], q[d0]〉 + γ〈p[d1], q[d1]〉. Notice that we are slightly abusing the notation because 〈p[d0], q[d0]〉
and 〈p[d1], q[d1]〉 are scalar products in R

d0 and R
d1 , respectively. Associated with 〈·, ·〉γ we have

the norm |p|γ :=
√

〈p, p〉γ on R
d. It is worth noticing that ∇|p|2γ = 2(p1, . . . , pd0 , γ pd0+1, . . . , γ pd)

and, for j = 1, . . . , d, we clearly have
(

D2|p|2γ
)

ij
= 2δij for i = 1, . . . , d0 and

(

D2|p|2γ
)

ij
= 2γδij for

i = d0 + 1, . . . , d, where δij is the Kronecker delta.
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We introduce an approximation of f as

fγ(t) :=
√

f2(t) + γK2 for t ∈ [0, T ],(2.9)

where K is a suitable constant that we choose later on (the same as in (3.3)). By construction
fγ → f uniformly on [0, T ] as γ → 0. We consider a new payoff

J γ
t,x(n, ν, τ) := Ex

[

e−rτg(t+τ,X [n,ν],γ
τ ) +

∫ τ

0
e−rsh(t+s,X [n,ν],γ

s )ds

+

∫

[0,τ ]
e−rsfγ(t+s)dνs

]

.

Upper and lower value for the game with the expected payoff J γ
t,x are given by

uγ(t, x) = sup
τ∈Tt

inf
(n,ν)∈Ad

J γ
t,x(n, ν, τ) and uγ(t, x) = inf

(n,ν)∈Ad
sup
τ∈Tt

J γ
t,x(n, ν, τ),

and we say that the value exists if uγ := uγ = uγ . We formally set u0 = v and u0 = v.
Using results from [4] we will show that uγ is well-defined, i.e., the approximating game admits a

value, for every γ ∈ (0, 1]. Then we obtain limγ→0 u
γ = v and limγ→0 u

γ = v uniformly on compacts,
thus proving existence of a value for our constrained game.

2.2. Challenges in the constrained setup. The theory developed in [4] does not cover the game
we are considering here for two essential reasons. The first one is that the functions f, g, h are only
assumed to be continuous, whereas [4] requires continuous differentiability once in time and twice
in space (and Hölder continuity of all derivatives). The second one, and more important, is that
the constraints on the directions of the admissible control imply that estimates obtained in [4] via
analytical arguments can no longer be obtained. In the next paragraphs we briefly elaborate on
this fine technical issue.

The variational problem in [4] features a gradient constraint on the value function v of the form
|∇v|d ≤ f . In the penalisation procedure adopted in [4] we therefore consider a semi-linear PDE
with a non-linear term of the form R

d ∋ p 7→ ψε(|p|2d − f2) (see Eq. (5.14) in [4]), where ε > 0 is a
parameter that must tend to zero in the limit of the penalisation step. In our current setup, given
that the control only acts in the first d0 coordinates, the gradient constraint must be of the form
|∇0v|d0 ≤ f . That translates into a non-linear term of the form R

d ∋ p 7→ ψε(|p[d0]|2d0 − f2) in the
associated penalised problem. One of the key estimates in [4] is obtained in [4, Prop. 4.9] and it
concerns a bound on the gradient of the solution of the penalised problem. The method of proof
adopted in [4, Prop. 4.9] is also used in other places, e.g., in [4, Prop. 5.1]. We now show where
those arguments fail.

Arguing as in the proof of [4, Prop. 4.9], we obtain an analogue of [4, Eq. (4.38)] and it reads:

−2〈∇wn,∇(|∇0un|2d0 − f2m)〉 ≤ −2λ|∇0uε,δ|2d0 + R̃n.

Above, it is enough to understand that fm is an approximation of f , while wn and un both approx-
imate the solution uε,δ of the penalised problem. The term R̃n is a remainder which can be made
arbitrarily small and it plays no substantial role in this discussion. Continuing with the argument
that follows [4, Eq. (4.38)] we arrive at

λ|∇0uε,δ|2d0 ≤ α1|∇uε,δ|2d + α2,

where α1, α2 > 0 are given constants and λ > 0 can be chosen arbitrarily. From this estimate we
cannot conclude that |∇uε,δ| is bounded. Instead of λ|∇0uε,δ|2d0 , in [4] we have λ|∇uε,δ|2d, which
leads to λ|∇uε,δ|2d ≤ α1|∇uε,δ|2d +α2 and it allows to conclude |∇uε,δ|2d ≤ c for some constant c > 0,
by the arbitrariness of λ.

Other difficulties of a similar nature appear in, e.g., adapting the arguments of [4, Lem. 5.8],
where in Eq. (5.34) we would not be able to obtain a bound on |D2wn|2d×d, because we cannot
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control the derivatives ∂xixj
wn for i, j = d0 + 1, . . . , d. We avoid going into further detail and refer

the interested reader to the original paper for a careful comparison.

2.3. Notation. Before passing to the proof of Theorem 2.3, we introduce the remaining notation
used in the paper.

The d-dimensional open ball centred in 0 with radius m is denoted by Bm. For an arbitrary
subset O ⊆ R

d+1
0,T we let C∞

c, sp(O) be the space of functions on O with compact support in the spatial

coordinates (not in time) and infinitely many continuous derivatives. For an open bounded set

O ⊂ R
d+1
0,T , we denote by O the closure of O and we let C0(O) be the space of continuous functions

ϕ : O → R equipped with the supremum norm

‖ϕ‖C0(O) := sup
(t,x)∈O

|ϕ(t, x)|.(2.10)

Analogously, C0(Rd+1
0,T ) is the space of bounded and continuous functions ϕ : Rd+1

0,T → R equipped

with the norm ‖ϕ‖∞ := ‖ϕ‖C0(Rd+1
0,T ). We denote by C0,1,α(O) the space of α-Hölder continuous

functions on O with α-Hölder continuous spatial gradient, equipped with the supremum norm and
the α-Hölder semi-norm. The semi-norm is evaluated with respect to the parabolic distance; for
details see [16, Ch. 3, Sec. 2] (see also the notation section in [4]). The space of functions with

bounded C0,1,α-norm in any compact subset of Rd+1
0,T is denoted by C0,1,α

ℓoc (Rd+1
0,T ). For p ∈ [1,∞), we

recall the definition of the usual Sobolev space (see [23, Sec. 2.2]):

W 1,2,p
ℓoc (Rd+1

0,T ) :=
{

f ∈ Lp
ℓoc(R

d+1
0,T )

∣

∣ f ∈W 1,2,p(O), ∀O ⊆ R
d+1
0,T ,O bounded

}

.(2.11)

For e1 = (1, 0, . . . , 0) ∈ R
d and a(x) := (κκ⊤)(x), the infinitesimal generator of the uncontrolled

process X [e1,0] is denoted by L and it reads

(Lϕ)(t, x) = 1

2
tr
(

a(x)D2ϕ(t, x)
)

+ 〈b(x),∇ϕ(t, x)〉,

for a sufficiently smooth function ϕ : Rd+1
0,T → R.

3. Properties of the approximating problems and stability estimates

In this section we study the game described in Section 2.1. Our first lemma shows that we can
restrict the class of admissible controls to those with bounded expectation uniformly in x in compact
sets. In the proof we use inft∈[0,T ] f(t) = f(T ) > 0 from Assumption 2.2. Recall that we formally

set u0 = v and u0 = v.

Lemma 3.1. There is K2 > 0 such that for any (t, x) ∈ R
d+1
0,T and γ ∈ [0, 1]

uγ(t, x) = inf
(n,ν)∈Ad,opt

t,x

sup
τ∈Tt

J γ
t,x(n, ν, τ), uγ(t, x) = sup

τ∈Tt

inf
(n,ν)∈Ad,opt

t,x

J γ
t,x(n, ν, τ),

where Ad,opt
t,x :=

{

(n, ν) ∈ Ad
∣

∣Ex[νT−t] ≤ K2(1 + |x|d)
}

. (When γ = 0 we must use Ad0,opt
t,x :=

Ad,opt
t,x ∩Ad0 instead of Ad,opt

t,x .)

Proof. Let (e1, 0) ∈ Ad be the null control, where e1 = (1, 0, . . . , 0) ∈ R
d, and denote X = X [e1,0]

(notice that X [e1,0] = X [e1,0],γ for all γ ∈ [0, 1]). We have

uγ(t, x) ≤ sup
τ∈Tt

J γ
t,x(e1, 0, τ) = sup

τ∈Tt

Ex

[

e−rτg(t+τ,Xτ )+

∫ τ

0
e−rsh(t+s,Xs)ds

]

≤K1(1 + T )
(

1 + Ex

[

sup
s∈[0,T ]

|Xs|2d
]1/2)

≤ C1(1 + |x|d),
(3.1)



8 BOVO, DE ANGELIS, AND PALCZEWSKI

where the second inequality uses the sub-linear growth of g and h, the third inequality is by standard
estimates for SDEs with linearly growing coefficients ([24, Cor. 2.5.10]). The constant C1 > 0
depends only on T ,D2 andK1 from (2.6) and Assumption 2.2(ii), respectively. Since 0 ≤ uγ , by (3.1)

we can restrict admissible controls in uγ to the class Ad,sub
t,x := {(n, ν) ∈ Ad | supτ∈Tt J

γ
t,x(n, ν, τ) ≤

C1(1 + |x|d)}.
A similar argument applies for the lower value uγ . As in (3.1),

inf
(n,ν)∈Ad

J γ
t,x(n, ν, τ) = inf

(n,ν)∈Ad,sub
t,x

J γ
t,x(n, ν, τ),

for any (t, x) and τ . So we can also restrict controls to Ad,sub
t,x in the definition of uγ .

It remains to show that Ad,sub
t,x ⊆ Ad,opt

t,x . To this end, recall that f > 0. For (n, ν) ∈ Ad,sub
t,x we

have

Ex

[

νT−t

]

≤ er(T−t)
(

min
s∈[0,T−t]

f(t+ s)
)−1

Ex

[

∫

[0,T−t]
e−rsf(t+ s) dνs

]

≤ er(T−t)

f(T )
Ex

[

∫

[0,T−t]
e−rsfγ(t+ s) dνs

]

≤ erT

f(T )
J γ
t,x(n, ν, T − t),

(3.2)

where the second inequality uses that f ≤ fγ and f is non-increasing in time and the third inequality

follows from g, h ≥ 0. Using (3.1) and (3.2), we have Ex[νT−t] ≤ erT

f(T )u
γ(t, x) ≤ K2(1 + |x|d), with

K2 = erTC1
f(T ) . This concludes the proof because Ad,sub

t,x ⊆ Ad,opt
t,x ⊆ Ad and in the first part of the

proof we have shown that Ad can be replaced by Ad,sub
t,x in the definitions of uγ and uγ . �

From now on we assume stronger conditions than in Assumption 2.2 for the sake of simplicity of
exposition. These will be relaxed in Section 4.2. In particular, throughout this section we enforce

Assumption 3.2. Functions f : [0, T ] → (0,∞), g, h : Rd+1
0,T → [0,∞) satisfy:

(i) g ∈ C∞
c, sp(R

d+1
0,T ) and h ∈ C∞

c, sp(R
d+1
0,T );

(ii) f ∈ C∞([0, T ]), non-increasing and strictly positive;

(iii) For all (t, x) ∈ R
d+1
0,T , it holds

|∇0g(t, x)|d0 ≤ f(t).

We notice that the assumptions of infinite continuous differentiability and compact support imply
the existence of a constant K ∈ (0,∞) such that:

(iv) f , g and h are bounded and, for all 0 ≤ s < t ≤ T and all x, y ∈ R
d,

|g(t, x)− g(s, y)| + |h(t, x) − h(s, y)| ≤ K
(

|x− y|d + (t− s)
)

;(3.3)

(v) For all (t, x) ∈ R
d+1
0,T , it holds

(h+ ∂tg + Lg − rg)(t, x) ≥ −K.
In the construction of fγ in (2.9) we take K > 0 as in (iv) and (v) above. Then, Assumption

3.2(iii) and (3.3) imply for all (t, x) ∈ R
d+1
0,T

|∇g(t, x)|2γ = |∇0g(t, x)|2d0 + γ|∇1g(t, x)|2d1 ≤ f2(t) + γK2 = (fγ(t))2.

For the game in Section 2.1 (with expected payoff J γ
t,x) our Assumption 3.2 implies Assumption

3.2 in [4], and our Assumption 2.1 implies Assumption 3.1 in [4]. The variational inequality that
identifies the value of such game is the following:

min
{

max
{

∂tu+ Lu− ru+ h, g − u
}

, fγ − |∇u|γ
}

= 0, a.e. in R
d+1
0,T ,

max
{

min
{

∂tu+ Lu− ru+ h, fγ − |∇u|γ
}

, g − u
}

= 0, a.e. in R
d+1
0,T ,

(3.4)
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with terminal condition u(T, x) = g(T, x) and growth condition |u(t, x)| ≤ c(1+ |x|d), for a suitable
c > 0. A simple adaptation of the results from [4] leads to the next theorem. Details of the changes
to the original proof of [4, Thm. 3.3] are given in Appendix for completeness.

Theorem 3.3. The game described above admits a value (i.e., uγ = uγ) and the value function uγ

is the maximal solution1 of (3.4) in the class W 1,2,p
ℓoc (Rd+1

0,T ) for all p ∈ [1,∞). Moreover, for any

given (t, x) ∈ R
d+1
0,T and any admissible control (n, ν) ∈ Ad, the stopping time defined Px-a.s. as

τγ∗ := inf
{

s ≥ 0 |uγ(t+ s,X [n,ν],γ
s ) = g(t+ s,X [n,ν],γ

s )
}

(3.5)

is optimal for the stopper.

Remark 3.4. Thanks to the boundedness and positivity of f, g, h, the value function of the game
uγ is bounded and non-negative. The upper bound is obtained by taking the sub-optimal control
(n, ν) ≡ (e1, 0) with e1 = (1, 0, . . . , 0). In turn, by the maximality of uγ across the solutions of

(3.4), we have that any solution of (3.4) in W 1,2,p
ℓoc (Rd+1

0,T ) is bounded.

The family of stopping times (τγ∗ )γ>0 is optimal for the stopper in the corresponding family of
games with values (uγ)γ>0. However, it turns out that studying the convergence of τγ∗ for γ ↓ 0 is
not an easy task. For that reason we introduce another family of stopping times and we prove some
of its useful properties. For γ > 0 and (n, ν) ∈ Ad, let

σγ∗ := inf{s ≥ 0|uγ(t+ s,X
[n,ν],γ
s− )− g(t+ s,X

[n,ν],γ
s− ) = 0},

and define

θγ∗ := τγ∗ ∧ σγ∗ .(3.6)

Notice that given (t, x) ∈ R
d+1
0,T and (n, ν) ∈ Ad the stopping time depends on both (t, x) and

(n, ν) via the controlled dynamics X [n,ν],γ (Remark 2.5). Therefore we sometimes use the notation
θγ∗ = θγ∗ (t, x;n, ν) or the shorter θγ∗ = θγ∗ (n, ν).

Next we show that θγ∗ is optimal for the stopper in the game with value uγ .

Lemma 3.5. Fix (t, x) ∈ R
d+1
0,T . We have

(3.7) uγ(t, x) ≤ J γ
t,x(n, ν, θ

γ
∗ ),

for any (n, ν) ∈ Ad. Furthermore,

uγ(t, x) = inf
(n,ν)∈Ad

J γ
t,x(n, ν, θ

γ
∗ (n, ν)),

hence θγ∗ is optimal for the stopper in the game with value uγ .

Proof. With no loss of generality we assume

Cγ = {(t, x) ∈ R
d+1
0,T : uγ(t, x) > g(t, x)} 6= ∅.

If Cγ = ∅ then θγ∗ = 0 and the lemma trivially holds. Next we adapt an argument from the
verification result for singular control, [15, Thm. VIII.4.1], to overcome the lack of smoothness of
uγ .

Let (ζk)k∈N be a standard family of mollifiers and consider the sequence (wγ
k)k∈N ⊂ C∞(Rd+1

0,T ),

obtained by convolution wγ
k := uγ ∗ ζk. Since uγ belongs to W 1,2,p

ℓoc (Rd+1
0,T ) which is compactly

embedded in C0,1,α
ℓoc (Rd+1

0,T ) for p > d + 2 and some α ∈ (0, 1), we have wγ
k → uγ and ∇wγ

k → ∇uγ
uniformly on compact sets, as k → ∞; moreover, ∂tw

γ
k → ∂tu

γ and D2wγ
k → D2uγ strongly in

1Maximal means that if w ∈ W
1,2,p
ℓoc (Rd+1

0,T ), for all p ∈ [1,∞), is another solution of (3.4), then uγ(t, x) ≥ w(t, x)

for all (t, x) ∈ R
d+1
0,T .
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Lp
ℓoc(R

d+1
0,T ) for all p ∈ [1,∞), as k → ∞ (see, e.g., arguments in Thm. 5.3.1 and Appendix C.4 in

[11]). For notational simplicity, denote the operator (∂t + L − r) by L̃.
Standard calculations based on integration by parts yield

∂tw
γ
k = (∂tu

γ) ∗ ζk, ∂xj
wγ
k = (∂xj

uγ) ∗ ζk, ∂xixj
wγ
k = (∂xixj

uγ) ∗ ζk,

and therefore

| (L̃uγ ∗ ζk)(t, x) − (L̃wγ
k)(t, x)|

=
∣

∣

∣

∫

R
d+1
0,T

(

d
∑

i,j=1

(aij(y)− aij(x))∂xixj
uγ(s, y) +

d
∑

i=1

(bi(y)− bi(x))∂xi
uγ(s, y)

)

ζk(t− s, x− y) dsdy
∣

∣

∣
.

Since first and second order derivatives of uγ belong to Lp
ℓoc(R

d+1
0,T ) for any p ∈ [1,∞), then Hölder’s

inequality and continuity of a and b yield for any compact Σ ⊂ R
d+1
0,T

lim
k→∞

QΣ
k = 0,(3.8)

where QΣ
k := sup(t,x)∈Σ |(L̃uγ ∗ ζk)(t, x) − (L̃wγ

k)(t, x)|. Since uγ is a solution of (3.4), we have

(L̃uγ + h)(t, x) ≥ 0 for almost every (t, x) ∈ Cγ and therefore

χγ
k(t, x) :=

(

(L̃uγ + h) ∗ ζk
)

(t, x) ≥ 0,(3.9)

for all (t, x) ∈ Cγ . Finally, denoting hk = h ∗ ζk and MΣ
k := sup(t,x)∈Σ

∣

∣hk(t, x)− h(t, x)
∣

∣ we have

lim
k→∞

MΣ
k = 0.(3.10)

From (3.8), (3.9) and (3.10) we have

lim inf
k→∞

inf
(t,x)∈Σ∩ Cγ

(

(L̃wγ
k)(t, x) + h(t, x)

)

≥ lim inf
k→∞

(

inf
(t,x)∈Σ∩Cγ

χγ
k(t, x)−QΣ

k −MΣ
k

)

≥ 0.
(3.11)

Fix (n, ν) ∈ Ad and let ρm = inf{s ≥ 0|X [n,ν],γ
s /∈ Bm} ∧ (T − t). By an application of Dynkin’s

formula we obtain

wγ
k(t, x) = Ex

[

e−r(θγ∗∧ρm)wγ
k

(

t+θγ∗ ∧ ρm,X [n,ν],γ

θγ∗∧ρm

)

−
∫ θγ∗∧ρm

0
e−rsL̃wγ

k(t+s,X
[n,ν],γ
s )ds

−
∫ θγ∗∧ρm

0
e−rs〈∇wγ

k(t+s,X
[n,ν],γ
s− ), ns〉γ dνcs

−
∑

s≤θγ∗∧ρm

e−rs

∫ ∆νs

0
〈∇wγ

k

(

t+s,X
[n,ν],γ
s− +λns

)

, ns〉γ dλ
]

.

The contribution to wγ
k of the final jump of X [n,ν],γ at θγ∗ ∧ ρm is removed using

(3.12) wγ
k

(

t+ θγ∗ ∧ ρm,X [n,ν],γ

θγ∗∧ρm

)

= wγ
k

(

t+ θγ∗ ∧ ρm,X [n,ν],γ

θγ∗∧ρm−

)

+

∫ ∆ν
θ
γ
∗
∧ρm

0
〈∇wγ

k(t+ s,X
[n,ν],γ

θγ∗∧ρm−
+ λnθγ∗∧ρm), nθγ∗∧ρm〉γ dλ.
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Then, substituting the latter in the expectation yields

wγ
k(t, x) = Ex

[

e−r(θγ∗∧ρm)wγ
k

(

t+ θγ∗ ∧ ρm,X [n,ν],γ

θγ∗∧ρm−

)

−
∫ θγ∗∧ρm

0
e−rsL̃wγ

k(t+ s,X [n,ν],γ
s )ds

−
∫ θγ∗∧ρm

0
e−rs〈∇wγ

k(t+ s,X
[n,ν],γ
s− ), ns〉γ dνcs

−
∑

s<θγ∗∧ρm

e−rs

∫ ∆νs

0
〈∇wγ

k(t+ s,X
[n,ν],γ
s− + λns), ns〉γ dλ

]

.

We expand L̃wγ
k(t+ s,X

[n,ν],γ
s ) as

(

L̃wγ
k + h

)

(t+ s,X
[n,ν],γ
s )− h(t+ s,X

[n,ν],γ
s ) and let k → ∞. We

apply the inequality (3.11)) to the term (L̃wγ
k +h) and the dominated convergence theorem for the

remaining terms, justified by the uniform convergence of (wγ
k ,∇w

γ
k) to (uγ ,∇uγ) on compacts:

uγ(t, x) ≤ Ex

[

e−r(θγ∗∧ρm)uγ(t+ θγ∗ ∧ ρm,X [n,ν],γ

θγ∗∧ρm−
)+

∫ θγ∗∧ρm

0
e−rsh(t+ s,X [n,ν],γ

s )ds

−
∫ θγ∗∧ρm

0
e−rs〈∇uγ(t+s,X [n,ν],γ

s− ), ns〉γ dνcs

−
∑

s<θγ∗∧ρm

e−rs

∫ ∆νs

0
〈∇uγ(t+ s,X

[n,ν],γ
s− + λns), ns〉γ dλ

]

.

Notice that Px(ρm < θγ∗ ) ↓ 0 as m→ ∞. Then, in the limit as m→ ∞ the dominated convergence
theorem yields (recall uγ and h are bounded, |∇uγ |γ ≤ fγ and Ex[νT−t] <∞)

uγ(t, x) ≤ Ex

[

e−rθγ∗uγ(t+ θγ∗ ,X
[n,ν],γ

θγ∗−
)+

∫ θγ∗

0
e−rsh(t+ s,X [n,ν],γ

s )ds

−
∫ θγ∗

0
e−rs〈∇uγ(t+s,X [n,ν],γ

s− ), ns〉γ dνcs(3.13)

−
∑

s<θγ∗

e−rs

∫ ∆νs

0
〈∇uγ(t+s,X [n,ν],γ

s− +λns), ns〉γ dλ
]

.

On {τγ∗ ≤ σγ∗} we have

(3.14)

uγ(t+ θγ∗ ,X
[n,ν],γ

θγ∗−
) = uγ(t+ τγ∗ ,X

[n,ν],γ

τγ∗ −
)

= uγ(t+ τγ∗ ,X
[n,ν],γ

τγ∗
)−

∫ ∆ν
τ
γ
∗

0
〈∇uγ(t+τγ∗ ,X

[n,ν],γ

τγ∗ −
+λnτγ∗ ), nτγ∗ 〉γ dλ

= g(t+ τγ∗ ,X
[n,ν],γ

τγ∗
)−

∫ ∆ν
τ
γ
∗

0
〈∇uγ(t+τγ∗ ,X

[n,ν],γ

τγ∗ −
+λnτγ∗ ), nτγ∗ 〉γ dλ

≤ g(t+ τγ∗ ,X
[n,ν],γ

τγ∗
) + fγ(t+ τγ∗ )∆ντγ∗ ,

where the third equality is by the definition of τγ∗ , the continuity of uγ and g, and the right-continuity

of t 7→ X
[n,ν],γ
t ; the inequality follows from |∇uγ |γ ≤ fγ . We insert the estimate (3.14) into the
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expression under the expectation in (3.13) and apply the bound |∇uγ |γ ≤ fγ again to obtain

(3.15)

e−rθγ∗uγ(t+ θγ∗ ,X
[n,ν],γ

θγ∗−
) +

∫ θγ∗

0
e−rsh(t+ s,X [n,ν],γ

s )ds

−
∫ θγ∗

0
e−rs〈∇uγ(t+s,X [n,ν],γ

s− ), ns〉γ dνcs −
∑

s<θγ∗

e−rs

∫ ∆νs

0
〈∇uγ(t+s,X [n,ν],γ

s− +λns), ns〉γ dλ

≤ e−rθγ∗ g(t+ θγ∗ ,X
[n,ν],γ

θγ∗
) +

∫ θγ∗

0
e−rsh(t+s,X [n,ν],γ

s )ds+

∫

[0,θγ∗ ]
e−rsfγ(t+s)dνs.

On the event {σγ∗ < τγ∗ }, the arguments are more involved. We start from showing that

uγ(t+ σγ∗ ,X
[n,ν],γ

σγ
∗−

) = g(t+ σγ∗ ,X
[n,ν],γ

σγ
∗−

).

Since σγ∗ < τγ∗ ≤ T − t, we have (uγ − g)(t+ σγ∗ ,X
[n,ν],γ

σγ
∗

) > 0. The process

s 7→ (uγ − g)
(

t+ s,X [n,ν],γ
s

)

is right-continuous due to continuity of uγ and g and right-continuity of t 7→ X
[n,ν],γ
t . Using this

fact we deduce that for Px-almost every ω there is ε(ω), δ(ω) > 0 such that

(uγ − g)
(

t+ s,X [n,ν],γ
s

)

> ε(ω), ∀ s ∈ [σγ∗ , σ
γ
∗ + δ(ω)].

This means that (σγ∗ , σ
γ
∗ +δ(ω)]∩

{

s ≥ 0
∣

∣ (uγ−g)
(

t+s,X
[n,ν],γ
s−

)

= 0
}

= ∅. Hence, by the definition

of σγ∗ , we conclude that (uγ − g)
(

t+ σγ∗ ,X
[n,ν],γ

σγ
∗−

)

= 0.

We now rewrite

(3.16)

uγ(t+ θγ∗ ,X
[n,ν],γ

θγ∗−
) = uγ(t+ σγ∗ ,X

[n,ν],γ

σγ
∗−

) = g(t+ σγ∗ ,X
[n,ν],γ

σγ
∗−

)

= g(t+ σγ∗ ,X
[n,ν],γ

σγ
∗

)−
∫ ∆ν

σ
γ
∗

0
〈∇g(t+σγ∗ ,X

[n,ν],γ

σγ
∗−

+λnσγ
∗
), nσγ

∗
〉γ dλ

≤ g(t+ σγ∗ ,X
[n,ν],γ

σγ
∗

) + fγ(t+ σγ∗ )∆νσγ
∗
,

where in the first line we use the identity uγ(t+ σγ∗ ,X
[n,ν],γ

σγ
∗−

) = g(t+ σγ∗ ,X
[n,ν],γ

σγ
∗−

) proved above and

in the last line the bound |∇g|γ ≤ fγ. We insert the estimate (3.16) into the expression under the
expectation on the right-hand side of (3.13) and apply the bound |∇uγ |γ ≤ fγ to obtain (3.15).

Substituting (3.15) inside the expectation on the right-hand side of (3.13) yields

uγ(t, x) ≤ Ex

[

e−rθγ∗ g(t+θγ∗ ,X
[n,ν],γ

θγ∗
) +

∫ θγ∗

0
e−rsh(t+s,X [n,ν],γ

s )ds+

∫

[0,θγ∗ ]
e−rsfγ(t+s) dνs

]

= J γ
t,x(n, ν, θ

γ
∗ ),

which proves the first claim in the lemma. By arbitrariness of the pair (n, ν) ∈ Ad we conclude

uγ(t, x) ≤ inf
(n,ν)∈Ad

J γ
t,x(n, ν, θ

γ
∗ ) ≤ uγ(t, x),

hence proving the second statement of the lemma. �

Remark 3.6. When the sets {uγ = g} and {|∇uγ |γ = f} are disjoint, heuristic arguments based on
classical verification theorems suggest that the controller and the stopper do not act simultaneously.
In particular, this means that with no loss of generality we should be able to restrict the class of
admissible pairs (n, ν) to those for which ∆νθγ∗ = 0 so that τγ∗ (n, ν) = σγ∗ (n, ν). This type of analysis
is left for future work on more concrete examples.



STOPPER-(SINGULAR)CONTROLLER GAMES WITH CONSTRAINED CONTROLS 13

3.1. Some stability estimates. We next provide a stability estimate in L1 for the approximating
process. The proof uses a generalisation of [10, Lem. 5.1] which is given as Lemma B.1 in Appendix
for completeness.

Proposition 3.7. Fix (t, x) ∈ R
d+1
0,T and a treble [(n, ν), τ ] ∈ Ad×Tt. Then, there exists (n̄, ν̄) ∈ Ad0

such that

Ex

[

∣

∣X [n,ν],γ
τ −X [n̄,ν̄]

τ

∣

∣

d

]

≤ γK3Ex[νT−t],(3.17)

where K3 > 0 is a constant depending only on d, D1 and T .

Proof. For each pair (n, ν) ∈ Ad, setting ns = n(s) = (n[d0](s), n[d1](s)) ∈ R
d0 × R

d1 , we can define

a pair (n̄, ν̄) ∈ Ad0 as follows: for i = 1, . . . , d0, we set

n̄is =

{

ni
s

|n[d0]
(s)|d0

, if |n[d0](s)|d0 6= 0,

(1, 0, . . . , 0), if |n[d0](s)|d0 = 0;

ν̄s =

∫ s

0
|n[d0](r)|d0 dνr,

(3.18)

and n̄is = 0, i = d0 + 1, . . . , d. By construction the process (n̄s)s∈[0,T ] ∈ R
d is progressively

measurable, hence ν̄ is adapted, right-continuous and non-decreasing with
∫ s

0
n̄irdν̄r =

∫ s

0
nirdνr(3.19)

for all s ∈ [0, T ] and i = 1, . . . , d0.
For τ ∈ Tt and (n, ν) ∈ Ad, let

τR := inf
{

s ≥ 0
∣

∣ |X [n,ν],γ
s |d ∨ |X [n̄,ν̄]

s |d ≥ R
}

∧ T.

Denote the stopped processes (X
[n,ν],γ
s∧τ∧τR)s∈[0,T ] and (X

[n̄,ν̄]
s∧τ∧τR)s∈[0,T ] by (Xγ,R

s )s∈[0,T ] and (XR
s )s∈[0,T ],

respectively. Let J γ,R := Xγ,R −XR and notice that J γ,R is a càdlàg semimartingale. To further
simplify notation we set J = J γ,R for as long as γ and R are fixed. For each i = 1, . . . , d we denote
the i-th coordinate of J by J i. By Meyer-Itô formula for semimartingales (see2 [28, Thm. IV.70]),
noting that J0− = 0 and that the jump part of the process J is of bounded variation, we have for
s > 0 and for i = 1, . . . , d,

|J i
s| =

∫

[0,s∧τ∧τR]
sign(J i

λ−) dJ
i,c
λ + L0

s∧τ∧τR(J
i) +

∑

0≤λ≤s∧τ∧τR

(

|J i
λ| − |J i

λ−|
)

(3.20)

where J i,c is the continuous part of the process J i, sign(y) = −1 for y ≤ 0 and sign(y) = 1 for
y > 0. The process (L0

t (J
i))t≥0 is the semi-martingale local time at zero of (J i

t )t≥0.
Fix i = 1, . . . , d0. Notice that J i

λ = J i
λ− for all λ ≥ 0 because of (3.19). Thus, using the form of

the dynamics of Xγ,R and XR, we have

|J i
s| =

∫ s∧τ∧τR

0
sign(J i

λ)
(

bi(Xγ,R
λ )− bi(XR

λ )
)

dλ

+

∫ s∧τ∧τR

0
sign(J i

λ)
(

κi(Xγ,R;i
λ )− κi(XR;i

λ )
)

dWλ + L0
s∧τ∧τR(J

i),

where we notice that in the diffusion coefficient of |J i|, the functions κi depend only on the i-th
coordinate Xγ,R;i and XR;i, as per (ii) in Assumption 2.1. Taking expectation in the equation above

2In [28], the author considers a càdlàg semi-martingale X starting from X0 = x, whereas here we have X0− = x.
Thus, we must account for a possible jump at time zero when using [28, Thm. IV.70].
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and removing the martingale term (κi has a linear growth so it is bounded on compacts) we get

Ex

[

|J i
s|
]

=Ex

[

∫ s∧τ∧τR

0
sign(J i

λ)
(

bi(Xγ,R
λ )− bi(XR

λ )
)

dλ+ L0
s∧τ∧τR

(J i)
]

≤Ex

[

∫ s

0

∣

∣bi(Xγ,R
λ )− bi(XR

λ )
∣

∣ dλ+ L0
s(J

i)
]

(3.21)

≤Ex

[

D1

∫ s

0

∣

∣Jλ|d dλ+ L0
s(J

i)
]

,

where in the first inequality we extend the integrals up to time s and for the second one we use
Lipschitz continuity of bi with the constant D1 from Assumption 2.1. In order to estimate the local
time, we follow [10, Lem. 5.1], which we can apply because J i is a continuous semimartingale: for
arbitrary ε ∈ (0, 1)

Ex

[

L0
s(J

i)
]

≤ 4ε− 2Ex

[

∫ s

0

(

1{Ji
λ
∈[0,ε)} + 1{Ji

λ
≥ε}e

1−
Ji
λ
ε

)

(

bi(Xγ,R
λ )− bi(XR

λ )
)

dλ
]

+
1

ε
Ex

[

∫ s

0
1{Ji

λ
>ε}e

1−
Ji
λ
ε

(

κi(Xγ,R;i
λ )− κi(XR;i

λ )
)2

dλ
]

.(3.22)

In order to estimate the final term above we are going to use that
(

κi(Xγ,R;i
λ )− κi(XR;i

λ )
)2 ≤ D2

1

∣

∣J i
λ

∣

∣

2 ≤ 2RD2
1

∣

∣J i
λ

∣

∣,(3.23)

because κ is Lipschitz by (i) in Assumption 2.1 and |J i| ≤ |Jγ,R|d ≤ 2R. Denote by Iε the last
expectation on the right-hand side of (3.22) and pick ζ ∈ (12 , 1). We have

Iε =
1

ε
Ex

[

∫ s

0
1{Ji

λ
∈(ε,εζ)}e

1−
Ji
λ
ε

(

κi(Xγ,R;i
λ )− κi(XR;i

λ )
)2

dλ
]

+
1

ε
Ex

[

∫ s

0
1{Ji

λ
≥εζ}e

1−
Ji
λ
ε

(

κi(Xγ,R;i
λ )− κi(XR;i

λ )
)2

dλ
]

≤ 1

ε
Ex

[

D2
1

∫ s

0
1{Ji

λ
∈(ε,εζ)}|J i

λ|2 dλ+ e1−εζ−1

∫ s

0
1{Ji

λ
≥εζ}

(

κi(Xγ,R;i
λ )− κi(XR;i

λ )
)2

dλ
]

≤D2
1ε

2ζ−1T +
2RD2

1

ε
e1−εζ−1

Ex

[

∫ s

0
|J i

λ|dλ
]

,

where we use (3.23) and the bounds

e1−
Ji
λ
ε 1{Ji

λ
∈(ε,εζ)} ≤ 1 and e1−

Ji
λ
ε 1{Ji

λ
≥εζ} ≤ e1−εζ−1

.

Thanks to the Lipschitz continuity of b, we bound the first expectation on the right-hand side of
(3.22) by

4D1Ex

[

∫ s

0
|Jλ|ddλ

]

.

Combining those upper bounds we obtain

Ex

[

L0
s(J

i)
]

≤ 4ε+
(

4D1+
2RD2

1

ε
e1−εζ−1

)

Ex

[

∫ s

0
|Jλ|d dλ

]

+D2
1ε

2ζ−1T.(3.24)

We insert this bound into (3.21) and obtain the following estimate:

Ex

[

|J i
s|
]

≤ 4ε+
(

5D1+
2RD2

1

ε
e1−εζ−1

)

Ex

[

∫ s

0
|Jλ|d dλ

]

+D2
1ε

2ζ−1T,(3.25)

for i = 1, . . . , d0.
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Coordinates J i for i = d0 + 1, . . . , d are estimated slightly differently. From (3.20)

|J i
s| =

∫ s

0
sign(J i

λ)
(

bi(Xγ,R
λ )− bi(XR

λ )
)

dλ+

∫ s

0
sign(J i

λ)
(

κi(Xγ,R;i
λ )− κi(XR;i

λ )) dWλ

+ γ

∫ s

0
sign(J i

λ−)n
i
λ− dνcλ + L0

s(J
i
λ) +

∑

0≤λ≤s

(

|J i
λ| − |J i

λ−|
)

,(3.26)

where νc is the continuous part of the process ν. Notice that

|J i
λ| = |J i

λ− + γniλ∆νλ| ≤ |J i
λ−|+ γ∆νλ,(3.27)

which implies

γ

∫ s

0
sign(J i

λ)n
i
λ dν

c
λ +

∑

0≤λ≤s

(

|J i
λ| − |J i

λ−|
)

≤ γνs.(3.28)

Thus, we get from (3.26) the inequality:

|J i
s| ≤

∫ s

0
sign(J i

λ)
(

bi(Xγ,R
λ )− bi(XR

λ )
)

dλ+

∫ s

0
sign(J i

λ)
(

κi(Xγ,R;i
λ )− κi(XR;i

λ )) dWλ

+ γνs + L0
s(J

i
λ).

Since J i may have jumps, the upper bound on the local time [10, Lemma 5.1] does not apply.
Additional terms appear as detailed in Lemma B.1 in Appendix. Thus, we obtain

Ex

[

L0
s(J

i)
]

≤ 4ε − 2Ex

[

∫ s

0

(

1{Ji
λ
∈[0,ε)} + 1{Ji

λ
≥ε}e

1−
Ji
λ
ε

)

(

bi(Xγ,R
λ )− bi(XR

λ )
)

dλ
]

− 2Ex

[

∫ s

0

(

1{Ji
λ
∈[0,ε)} + 1{Ji

λ
≥ε}e

1−
Ji
λ
ε

)

γniλ dν
c
λ

]

(3.29)

+ Ex

[1

ε

∫ s

0
1{Ji

λ
>ε}e

1−
Ji
λ
ε

(

κi(Xγ,R;i
λ )− κi(XR;i

λ )
)2

dλ+ 2γ
∑

0≤λ≤s

∆νλ

]

.

Repeating the same arguments as those we used to obtain (3.25) and additionally noticing that
∣

∣

∣
Ex

[

∫ s

0

(

1{Ji
λ
∈[0,ε)} + 1{Ji

λ
≥ε}e

1−
Ji
λ
ε

)

γniλ dν
c
λ

]
∣

∣

∣
+ Ex

[

γ
∑

0≤λ≤s

∆νλ

]

≤ γEx[νs]

yields

Ex

[

|J i
s|
]

≤ 4ε+
(

5D1 +
2RD2

1

ε
e1−εζ−1

)

Ex

[

∫ s

0
|Jλ|d dλ

]

+D2
1ε

2ζ−1T + 3γEx

[

νs
]

.(3.30)

Now, combining (3.25) and (3.30) we have

Ex

[

|Js|d
]

≤
d

∑

i=1

Ex

[

|J i
s|
]

≤ 4dε+ d
(

5D1 +
2RD2

1

ε
e1−εζ−1

)

Ex

[

∫ s

0
|Jλ|d dλ

]

+ dD2
1ε

2ζ−1T + 3dγEx

[

νs
]

.

Sending ε ↓ 0 and recalling now that J = Jγ,R and ζ ∈ (12 , 1), we get

Ex

[

|J γ,R
s |d

]

≤ 5dD1Ex

[

∫ s

0
|J γ,R

λ |d dλ
]

+ 3dγEx

[

νs
]

.

By Gronwall’s lemma, there is a constant K3 > 0, depending only on d, D1 and T , such that

Ex

[

|J γ,R
s |d

]

≤γ K3 Ex

[

νT−t

]

, for any s ∈ [0, T − t].



16 BOVO, DE ANGELIS, AND PALCZEWSKI

Passing to the limit as R→ ∞ and using Fatou’s lemma, we get

Ex

[

|X [n,ν],γ
s∧τ −X

[n̄,ν̄]
s∧τ |d

]

≤ lim inf
R→∞

Ex

[

|J γ,R
s |d

]

≤ γK3Ex

[

νT−t

]

, for any s ∈ [0, T − t].

Hence, the proof is completed by setting s = T − t and recalling that τ ≤ T − t. �

Another lemma of a similar nature allows us to compare the dynamics induced by a generic
control (n, ν) ∈ Ad0 to its uncontrolled counterpart.

Lemma 3.8. Fix (t, x) ∈ R
d+1
0,T . Let (n, ν) ∈ Ad0 and τ ∈ Tt. Then

Ex[|X [n,ν]
τ −X [e1,0]

τ |d] ≤ K3Ex[νT−t],

with the same constant K3 > 0 as in Proposition 3.7.

Proof. Similarly as in the proof of Proposition 3.7, we denote X = X [n,ν] and X0 = X [e1,0], and
define

τR := inf
{

s ≥ 0
∣

∣ |Xs|d ∨ |X0
s |d ≥ R

}

∧ T.

We denote the two processes (Xt∧τ∧τR)t∈[0,T ] and (X0
t∧τ∧τR

)t∈[0,T ] by X
R and X0,R, respectively.

Let JR := XR −X0,R and notice that JR is a càdlàg semimartingale. To further simplify notation
we set J = JR for as long as R is fixed. For each i = 1, . . . , d we denote the i-th coordinate of J
by J i. Now, for i = 1, . . . , d0 repeating verbatim, for γ = 1, the same arguments as in the proof of
(3.30) we obtain

Ex

[

|J i
s|
]

≤ 4ε+
(

5D1 +
2RD2

1

ε
e1−εζ−1

)

Ex

[

∫ s

0
|Jλ|d dλ

]

+D2
1ε

2ζ−1T + 3Ex

[

νs
]

.

Instead, for i = d0 + 1, . . . , d, the same arguments that yield (3.25) now give us

Ex

[

|J i
s|
]

≤ 4ε+
(

5D1+
2RD2

1

ε
e1−εζ−1

)

Ex

[

∫ s

0
|Jλ|d dλ

]

+D2
1ε

2ζ−1T.

Therefore the same conclusions as in Proposition 3.7 hold but with γ = 1. �

Combining the above results with Lemma 3.1 we obtain the following corollary.

Corollary 3.9. There is a constant K4 > 0 such that Ex

[

|X [n,ν]
τ |d

]

≤ K4(1 + |x|d) for any (t, x) ∈
R
d+1
0,T , (n, ν) ∈ Ad0,opt

t,x and τ ∈ Tt.

Proof. We observe that Ex

[

|X [n,ν]
τ |d

]

≤ Ex

[

|X [n,ν]
τ − X

[e1,0]
τ |d

]

+ Ex

[

|X [e1,0]
τ |d

]

. The first term is
bounded using Lemma 3.8 and 3.1. Standard SDE estimates ([24, Cor. 2.5.10]) give

Ex

[

|X [e1,0]
τ |d

]

≤
(

Ex

[

sup
s∈[0,T ]

|X [e1,0]
s |2d

])1/2
≤ c(1 + |x|d),

for some c > 0, thanks to Assumption 2.1. �

4. Convergence of the approximating problems

In this section we first study the limit as γ → 0 and then we relax the smoothness assumptions
made in Assumption 3.2. We observe that we could alternatively fix γ and relax Assumption 3.2
before passing to the limit as γ → 0. That approach motivates Remark 2.6.
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4.1. Limits as γ → 0. Throughout this subsection we enforce Assumptions 2.1 and 3.2.

Theorem 4.1. The pointwise limit u := limγ→0 u
γ exists on R

d+1
0,T . Moreover, u coincides with the

value of the game with payoff (2.3), i.e., u = v = v = v, and there exists C > 0 such that

|uγ(t, x)− v(t, x)| ≤ C(1 + |x|d)γ
1
2 , for all (t, x) ∈ R

d+1
0,T .(4.1)

Proof. Let uγ be the value of the game described in Theorem 3.3. We introduce u := lim infγ→0 u
γ

and u := lim supγ→0 u
γ . We want to prove that

u(t, x) ≤ v(t, x) and u(t, x) ≥ v(t, x),

for all (t, x) ∈ R
d+1
0,T , so that u = u = v = v = v as claimed.

Fix (t, x) ∈ R
d+1
0,T . We first prove that u ≥ v. Let (n, ν) ∈ Ad be an η-optimal control for uγ(t, x),

i.e.,

sup
σ∈T

J γ
t,x(n, ν, σ) ≤ uγ(t, x) + η.

With no loss of generality, thanks to Lemma 3.1 we can assume (n, ν) ∈ Ad,opt
t,x . Consider the

associated (n̄, ν̄) ∈ Ad0 constructed as in (3.18). Recall the processes X [n,ν],γ and X [n̄,ν̄] as in (2.8)

and (2.1), respectively. For notational simplicity, denote Xγ = X [n,ν],γ and X = X [n̄,ν̄]. Let τ ∈ Tt
be an η-optimal stopping time for supσ∈Tt Jt,x(n̄, ν̄, σ), which implies v(t, x) ≤ Jt,x(n̄, ν̄, τ)+ η. We
have

uγ(t, x)− v(t, x)

≥ J γ
t,x(n, ν, τ)− Jt,x(n̄, ν̄, τ)− 2η

= Ex

[

e−rτ
(

g(t+ τ,Xγ
τ )− g(t+ τ,Xτ )

)

+

∫ τ

0
e−rs

(

h(t+ s,Xγ
s )− h(t+ s,Xs)

)

ds

+

∫

[0,τ ]
e−rsfγ(t+ s) dνs −

∫

[0,τ ]
e−rsf(t+ s) dν̄s

]

− 2η

≥ Ex

[

e−rτ
(

g(t+ τ,Xγ
τ )− g(t+ τ,Xτ )

)

+

∫ τ

0
e−rs

(

h(t+ s,Xγ
s )− h(t+ s,Xs)

)

ds
]

− 2η

≥ −KEx

[

|Xγ
τ −Xτ |d

]

−KEx

[

∫ T−t

0
|Xγ

s −Xs|d ds
]

− 2η

≥ −KEx

[

|Xγ
τ −Xτ |d

]

−KT sup
s∈[0,T−t]

Ex

[

|Xγ
s −Xs|d

]

− 2η

where K > 0 is the same as in (3.3). The first inequality is by the choice of (n, ν) and τ . The

second inequality holds because by the definition of ν̄ in (3.18) we have dν̄s(ω)
dνs(ω)

= |n[d0](s, ω)|d0 ≤ 1

for all (s, ω) ∈ R+ × Ω and fγ ≥ f by (2.9). The third inequality is by the Lipschitz continuity of
g and h, and the final one is by Fubini’s theorem. Using Proposition 3.7 combined with Ex[νT−t] ≤
K2(1 + |x|d) from Lemma 3.1 we have that

uγ(t, x)− v(t, x) ≥ −K(1 + T )γK2K3(1 + |x|d)− 2η.(4.2)

Taking the liminf as γ ↓ 0 we get

u(t, x)− v(t, x) ≥ −2η.

By the arbitrariness of η, we obtain u(t, x) ≥ v(t, x) as claimed.
We prove now that u(t, x) ≤ v(t, x). Let τ ∈ Tt be an η-optimal stopping time for uγ , i.e.,

inf
(n,ν)∈Ad

J γ
t,x(n, ν, τ) ≥ uγ(t, x)− η.
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Let (n, ν) ∈ Ad0 be an η-optimal control for

inf
(n̂,ν̂)∈Ad0

Jt,x(n̂, ν̂, τ),

corresponding to τ , i.e., v(t, x) ≥ Jt,x(n, ν, τ) − η. Thanks to Lemma 3.1 we can assume without

loss of generality that (n, ν) ∈ Ad0,opt
t,x . Notice that (n, ν) ∈ Ad0,opt

t,x ⊂ Ad is an admissible control in
the game with value uγ and, moreover,

X [n,ν],γ
s = X [n,ν]

s for all s ∈ [0, T − t], Px-a.s.(4.3)

Thus, using the above indistinguishability and recalling fγ ≤ f +
√
γK we easily obtain

uγ(t, x)− v(t, x) ≤J γ
t,x(n, ν, τ)− Jt,x(n, ν, τ) + 2η(4.4)

=Ex

[

∫

[0,τγ ]
e−rs

(

fγ(t+ s)− f(t+ s)
)

dνs

]

+ 2η

≤√
γKEx[νT−t] + 2η ≤ √

γKK2(1 + |x|d) + 2η,

where the final inequality is by Lemma 3.1. Taking limsup as γ ↓ 0 and thanks to the arbitrariness
of η we get u(t, x) ≤ v(t, x) as claimed.

As a result, the pointwise limit limγ→0 u
γ is well-defined and u := limγ→0 u

γ = v = v = v.
Combining (4.2) and (4.4) for γ ∈ (0, 1) yields (4.1). �

Since |∇uγ |γ ≤ fγ for every γ > 0, the next corollary holds.

Corollary 4.2. The value function v is Lipschitz in the first d0 spatial coordinates with constant
bounded by f , i.e., |∇0v(t, x)|d0 ≤ f(t) for a.e. (t, x) ∈ R

d+1
0,T .

For (n, ν) ∈ Ad0 , we recall stopping times

τ∗ = inf{s ≥ 0|v(t+ s,X [n,ν]
s )− g(t+ s,X [n,ν]

s ) = 0},
σ∗ = inf{s ≥ 0|v(t+ s,X

[n,ν]
s− )− g(t+ s,X

[n,ν]
s− ) = 0},

and

(4.5) θ∗ = τ∗ ∧ σ∗.

Lemma 4.3. Fix (t, x) ∈ R
d+1
0,T . For any pair (n, ν) ∈ Ad0 we have

lim inf
γ↓0

θγ∗ ≥ θ∗, Px-a.s.,

where θγ∗ is defined in (3.6).

Proof. Fix (t, x) ∈ R
d+1
0,T and take (n, ν) ∈ Ad0 . Let

Zs = (v − g)(t+ s,X [n,ν]
s ) and Zγ

s = (uγ − g)(t+ s,X [n,ν]
s ).

Since (n, ν) ∈ Ad0 , we have X [n,ν] ≡ X [n,ν],γ, so θγ∗ = inf{s ≥ 0 : min(Zγ
s , Z

γ
s−) = 0}. Similarly,

θ∗ = inf{s ≥ 0 : min(Zs, Zs−) = 0}.
For ω ∈ Ω such that θ∗(ω) = 0 the claim in the lemma is trivial. Let ω ∈ Ω be such that

θ∗(ω) > 0. Take arbitrary δ < θ∗(ω). Then, by the definition of θ∗ we have

(4.6) min(Zs(ω), Zs−(ω)) > 0 for all s ∈ [0, δ].

Furthermore,

inf
0≤s≤δ

min(Zs(ω), Zs−(ω)) =: λδ,ω > 0,(4.7)

as the mapping s 7→ min(Zs(ω), Zs−(ω)) is lower semi-continuous so it attains its infimum on [0, δ].
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Since (n, ν) is fixed and Ex[ν
2
T−t] <∞ by definition of Ad0 , for almost every ω there is a compact

Kδ,ω ⊂ R
d+1
0,T that contains the trajectories

s 7→ (t+ s,X [n,ν]
s (ω)) and s 7→ (t+ s,X

[n,ν]
s− (ω))

for s ∈ [0, δ]. Then, uniform convergence of uγ to v on Kδ,ω (see (4.1)) yields

lim
γ→0

sup
0≤s≤δ

(

|Zγ
s (ω)− Zs(ω)|+ |Zγ

s−(ω)− Zs−(ω)|) = 0.

Hence, for all sufficiently small γ > 0, (4.7) yields

inf
0≤s≤δ

min(Zγ
s (ω), Z

γ
s−(ω)) ≥

λδ,ω
2
,

which implies

lim inf
γ↓0

θγ∗ (ω) ≥ δ.

We conclude that

lim inf
γ↓0

θγ∗ (ω) ≥ θ∗(ω),

because δ was arbitrary. The result holds for a.e. ω, and the proof is complete. �

We will extract from the uniform convergence of uγ to v and from Lemma 4.3 the optimality of
the stopping time θ∗. This notion of optimality is discussed in detail in Remark 2.5.

Theorem 4.4. Fix (t, x) ∈ R
d+1
0,T . We have

v(t, x) ≤ Jt,x(n, ν, θ∗),

for any (n, ν) ∈ Ad0 , where we recall that θ∗ = θ∗(t, x;n, ν) depends on the initial point and the
control pair. Furthermore,

v(t, x) = inf
(n,ν)∈Ad0

Jt,x

(

n, ν, θ∗(t, x;n, ν)
)

,

hence θ∗ is optimal for the stopper in the game with value v.

Proof. We follow an approach inspired by [6, Thm. 4.12] in optimal stopping. Notice that (n, ν) ∈
Ad0 ⊂ Ad and X [n,ν],γ = X [n,ν], i.e., the processes are indistinguishable. Since θγ∗ ∧ θ∗ ≤ θγ∗ it is not

difficult to verify that (3.13) continues to hold when we replace the pair (t+ θγ∗ ,X
[n,ν],γ

θγ∗
) therein by

(t+ θγ∗ ∧ θ∗,X [n,ν]

θγ∗∧θ∗
). That is, we have

uγ(t, x) ≤ Ex

[

e−r(θγ∗∧θ∗)uγ
(

t+ θγ∗ ∧ θ∗,X [n,ν]

θγ∗∧θ∗−

)

+

∫ θγ∗∧θ∗

0
e−rsh(t+ s,X [n,ν]

s )ds

−
∫ θγ∗∧θ∗

0
e−rs〈∇uγ(t+s,X [n,ν]

s− ), ns〉γ dνcs(4.8)

−
∑

s<θγ∗∧θ∗

e−rs

∫ ∆νs

0
〈∇uγ(t+s,X [n,ν]

s− +λns), ns〉γ dλ
]

.
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Further using that |∇uγ |γ ≤ fγ leads to

uγ(t, x) ≤Ex

[

e−r(θγ∗∧θ∗)uγ
(

t+ θγ∗ ∧ θ∗,X [n,ν]

θγ∗∧θ∗−

)

+

∫ θγ∗∧θ∗

0
e−rsh(t+ s,X [n,ν]

s )ds

+

∫

[0,θγ∗∧θ∗)
e−rsfγ(t+ s) dνs

]

(4.9)

≤Ex

[

e−r(θγ∗∧θ∗)v
(

t+ θγ∗ ∧ θ∗,X [n,ν]

θγ∗∧θ∗−

)

+

∫ θγ∗∧θ∗

0
e−rsh(t+ s,X [n,ν]

s )ds

+

∫

[0,θγ∗∧θ∗)
e−rsfγ(t+ s) dνs

]

+ Cγ1/2
(

1 + Ex

[
∣

∣X
[n,ν]

θγ∗∧θ∗

∣

∣

d

]

)

,

where in the second inequality we used (4.1).
We now let γ ↓ 0 and notice that θγ∗ ∧ θ∗ → θ∗ by Lemma 4.3. Since the mappings

s 7→ X
[n,ν]
s− and s 7→

∫

[0,s)
e−ruf(t+ u)dνu

are left-continuous Px-a.s. and θ
γ
∗ ∧θ∗ converges to θ∗ from below (although not strictly from below),

we can conclude that for a.e. ω ∈ Ω

lim
γ→0

X
[n,ν]

θγ∗∧θ∗−
= X

[n,ν]
θ∗−

and lim
γ→0

∫

[0,θγ∗∧θ∗)
e−rsfγ(t+ s)dνs =

∫

[0,θ∗)
e−rsf(t+ s)dνs.(4.10)

Moreover, we can use dominated convergence thanks to, e.g., Corollary 3.9 and the identification

Ad0 = Ad0,opt
t,x following Lemma 3.1. That yields

v(t, x) ≤ Ex

[

e−rθ∗v
(

t+ θ∗,X
[n,ν]
θ∗−

)

+

∫ θ∗

0
e−rsh(t+ s,X [n,ν]

s )ds+

∫

[0,θ∗)
e−rsf(t+ s) dνs

]

.(4.11)

We now follow similar arguments as in the proof of Lemma 3.5 (below Eq. (3.15)) to show that

on the event {σ∗ < τ∗} we have v
(

t+ σ∗,X
[n,ν]
σ∗−

)

= g
(

t+ σ∗,X
[n,ν]
σ∗−

)

, so

v
(

t+ θ∗,X
[n,ν]
θ∗−

)

= v
(

t+ σ∗,X
[n,ν]
σ∗−

)

= g
(

t+ σ∗,X
[n,ν]
σ∗−

)

= g
(

t+ σ∗,X
[n,ν]
σ∗

)

−
∫ ∆νσ∗

0
〈∇0g(t+ σ∗,X

[n,ν]
σ∗− + λnσ∗

), nσ∗
〉dλ(4.12)

≤ g
(

t+ σ∗,X
[n,ν]
σ∗

)

+ f(t+ σ∗)∆νσ∗
,

where the inequality uses the bound on the gradient ∇0g imposed by Assumption 2.2(iii).
On the event {σ∗ ≥ τ∗} we have

v
(

t+ θ∗,X
[n,ν]
θ∗−

)

= v
(

t+ τ∗,X
[n,ν]
τ∗−

)

= v
(

t+ τ∗,X
[n,ν]
τ∗

)

−
∫ ∆ντ∗

0
〈∇0v(t+ τ∗,X

[n,ν]
τ∗− + λnτ∗), nτ∗〉dλ(4.13)

≤ v
(

t+ τ∗,X
[n,ν]
τ∗

)

+ f(t+ τ∗)∆ντ∗ ,

= g
(

t+ τ∗,X
[n,ν]
τ∗

)

+ f(t+ τ∗)∆ντ∗ ,

where the inequality uses the bound on the gradient ∇0v from Corollary 4.2 and the last equality
holds by the definition of τ∗ and the right-continuity of the process X [n,ν].

Combining the upper bounds above with (4.11) yields v(t, x) ≤ Jt,x(n, ν, θ∗), where we emphasise

that θ∗ depends on the control (n, ν). By arbitrariness of (n, ν) ∈ Ad0 we can conclude the proof of
the theorem because v = v implies v(t, x) ≥ inf(n,ν)∈Ad0 Jt,x(n, ν, θ∗). �
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4.2. Relaxing Assumption 3.2 into Assumption 2.2. In this section we prove Theorem 2.3 via
a localisation and mollification procedure, and using the results from the section above. For technical
reasons, we assume first that the functions g and h are uniformly bounded, i.e., ‖g‖∞+ ‖h‖∞ <∞,
and then we relax this condition in the second part of the proof.

Fix a compact set Σ̂ ⊂ R
d and denote Σ = [0, T ] × Σ̂. There is a family (ζj)j∈N = (ζΣj )j∈N of

mollifiers in R
d+1
0,T and a sequence (cj)j∈N of positive numbers converging to 0 such that, denoting

gj := g ∗ ζj, hj := h ∗ ζj and f j := (f + cj) ∗ ζj , we have

‖gj − g‖C0(Σ) + ‖hj − h‖C0(Σ) ≤ KΣ
j for any j ∈ N and a constant KΣ > 0,(4.14)

and

(4.15) 0 ≤ f j − f ≤ c0
j , for any j ∈ N and a constant c0 > 0.

Note that the definition of f j is with an abuse of notation as f depends only on t: for this mollifi-
cation we extend f into the spatial dimension as a constant function.

Recall that Bk ⊂ R
d denotes the ball of radius k centred in the origin. Let (ξk)k∈N ⊂ C∞

c (Rd)
be a sequence of cut-off functions such that ξk(x) = 1 for x ∈ Bk and ξk(x) = 0 for x /∈ B2k. We
find it convenient to construct the sequence as follows: let

ξ(z) :=







1 z ≤ 0,
0 z ≥ 1,
exp

(

1
z−1

)

/
[

exp
(

1
z−1

)

+ exp
(

− 1
z

)]

, z ∈ (0, 1),
(4.16)

so that ‖ξ′‖∞ = 2, and define ξk(x) := ξ( |x|d−k
k ) for x ∈ R

d. Then

|∇0ξk(x)|2d0 ≤ |∇ξk(x)|2d = 1
k2
|ξ′( |x|d−k

k )|2 ≤ 4
k2
.(4.17)

Now we set gj,k := gjξk, h
j,k := hjξk, and

f j,k(t) := f j(t) + 2
k‖g‖∞,

where we construct gj , hj and f j using the above mollification procedure with Σ̂ = Bk. With such
choice of f j,k, recalling that |∇0gj |d0 ≤ f j by (iii) in Assumption 2.2 and using the bound in (4.17),
we have

|∇0gj,k(t, x)|2d0
= (ξk(x))

2|∇0gj(t, x)|2d0 + 2ξk(x)g
j(t, x)〈∇0gj(t, x),∇0ξk(x)〉+ (gj(t, x))2|∇0ξk(x)|2d0

≤ (f j(t))2 + 4‖g‖∞f j(t)/k + 4‖g‖2∞/k2

= (f j(t) + 2
k‖g‖∞)2 =

(

f j,k(t)
)2
.

Fix (t, x) ∈ R
d+1
0,T . For an arbitrary treble [(n, ν), τ ] ∈ Ad0×Tt we consider the game with expected

payoff

J j,k
t,x (n, ν, τ)(4.18)

= Ex

[

e−rτgj,k(t+τ,X [n,ν]
τ )+

∫ τ

0
e−rshj,k(t+s,X [n,ν]

s ) ds+

∫

[0,τ ]
e−rsf j,k(t+s) dνs

]

.

Since f j ∈ C∞([0, T ]), gj,k, hj,k ∈ C∞
c, sp(R

d+1
0,T ), then Theorems 4.1 and 4.4 yield that there exists a

value vj,k of the game and an optimal stopping time θj,k∗ = τ j,k∗ ∧ σj,k∗ , with

τ j,k∗ := inf
{

s ≥ 0
∣

∣ vj,k(t+ s,X [n,ν]
s ) = gj,k(t+ s,X [n,ν]

s )
}

,

σj,k∗ := inf
{

s ≥ 0
∣

∣ vj,k(t+ s,X
[n,ν]
s− ) = gj,k(t+ s,X

[n,ν]
s− )

}

.
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Finally, we set

v∞ := lim sup
k→∞

lim sup
j→∞

vj,k

and proceed to show that v∞ ≥ v and v∞ ≤ v.

Lemma 4.5. Let Assumptions 2.1 and 2.2 hold and assume ‖g‖∞ + ‖h‖∞ < ∞. For any (t, x) ∈
R
d+1
0,T we have

v∞(t, x) = v(t, x) = v(t, x),

hence the value v of the game (2.4) exists.

Proof. We start by proving v∞ ≤ v. Take θj,k∗ defined above. Then

v(t, x) ≥ inf
(n,ν)∈Ad0

Jt,x(n, ν, θ
j,k
∗ ),

as θj,k∗ is suboptimal for v. For any η > 0 there is a pair (nj,k,η, νj,k,η) such that

inf
(n,ν)∈Ad0

Jt,x(n, ν, θ
j,k
∗ ) ≥ Jt,x(n

j,k,η, νj,k,η, θj,k∗ )− η.

Moreover, from the optimality of θj,k∗ for vj,k in the sense of Theorem 4.4, we have

vj,k(t, x) ≤ J j,k
t,x (n

j,k,η, νj,k,η, θj,k∗ ).

For ease of notation we denote (θj,k∗ , nj,k,η, νj,k,η) = (θ, n, ν) in what follows. Combining the two
bounds above and recalling that gj,k = gj and hj,k = hj in [0, T ] ×Bk we obtain

vj,k(t, x)− v(t, x) ≤ J j,k
t,x (n, ν, θ)− Jt,x(n, ν, θ) + η

≤ Ex

[

∣

∣gj
(

t+ θ,X
[n,ν]
θ

)

− g
(

t+ θ,X
[n,ν]
θ

)∣

∣1
{X

[n,ν]
θ

∈Bk}
+ 2e−rθ‖g‖∞1

{X
[n,ν]
θ

/∈Bk}

]

+ Ex

[

∫ θ

0

∣

∣hj,k
(

t+ s,X [n,ν]
s

)

− h
(

t+ s,X [n,ν]
s

)∣

∣1
{X

[n,ν]
s ∈Bk}

ds
]

+ Ex

[

2‖h‖∞
∫ θ

0
e−rs

1
{X

[n,ν]
s /∈Bk}

ds+ νT−t

(

c0
j + 2

k‖g‖∞
)

]

+ η,

where we used f j,k − f ≤ c0/j + 2‖g‖∞/k. Next, from (4.14) we obtain

(4.19)

vj,k(t, x) − v(t, x)

≤ (1 + T )
KBk

j + ( c0j + 2
k‖g‖∞)Ex

[

νT−t

]

+ 2‖g‖∞Px

(

X
[n,ν]
θ /∈ Bk

)

+ 2‖h‖∞
∫ T−t

0
Px

(

X [n,ν]
s /∈ Bk

)

ds+ η,

From the proof of Lemma 3.1, we can restrict our attention to processes (n, ν) ∈ Ad0,opt
t,x for which

E[νT−t] ≤ c(1 + |x|d), where the constant c can be chosen independently of (j, k). From Corollary
3.9 and Markov’s inequality we deduce that

Px

(

X
[n,ν]
θ /∈ Bk

)

≤ 1

k
Ex

[
∣

∣X
[n,ν]
θ

∣

∣

d

]

≤ K̃4(1 + |x|d)
k

for some K̃4 > 0 and the same upper bound also holds for Px(X
[n,ν]
s /∈ Bk). Now, letting j → ∞

first and then letting k → ∞ in (4.19) we obtain v∞ ≤ v + η. Finally we send η → 0.
Next we are going to show that v∞ ≥ v. Fix an arbitrary η > 0. Take (nj,k,η, νj,k,η) ∈ Ad0 such

that

vj,k(t, x) ≥ sup
τ∈Tt

J j,k
t,x (n

j,k,η, νj,k,η, τ)− η.
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Then there is τ j,k,η such that

v(t, x) ≤ sup
τ∈Tt

Jt,x(n
j,k,η, νj,k,η, τ) ≤ Jt,x(n

j,k,η, νj,k,η, τ j,k,η) + η,

where the first inequality follows from suboptimality of (nj,k,η, νj,k,η) for v(t, x). Relabelling

[(nj,k,η, νj,k,η), τ j,k,η] = [(n, ν), τ ],

the above inequalities give the bound

v(t, x)− vj,k(t, x) ≤ Jt,x(n, ν, τ)− J j,k
t,x (n, ν, τ) + 2η.

Similar estimates as in (4.19) continue to hold, with a simplification that the inequality f j,k ≥ f
allows us to drop the second term in the final expression therein. Then, passing to the limit in j
and, then, in k we arrive at the desired conclusion. �

Remark 4.6. Notice that if we introduce

v̂∞ := lim inf
k→∞

lim inf
j→∞

vj,k,

then we can repeat the same arguments of proof as in Lemma 4.5 to show that v̂∞ = v = v = v.
Hence,

v = v = v = lim
k→∞

lim
j→∞

vj,k.

Moreover, it is clear from the proof (see in particular (4.19)) that the convergence is uniform on

any compact subset of Rd+1
0,T . This fact will be used later to prove convergence of optimal stopping

times.

We now want to extend the result above to the case of unbounded g and h. Recalling that
g, h ≥ 0, we can approximate them with bounded ones by setting gm = g ∧m and hm = h ∧m for
m ∈ N. Let us denote by vm the value of the game associated with the functions gm and hm, which
exists by Lemma 4.5. By construction vm ≤ vm+1 and we denote the limit

v∞ := lim
m→∞

vm.

Lemma 4.7. Let Assumptions 2.1 and 2.2 hold. For any (t, x) ∈ R
d+1
0,T we have

v∞(t, x) = v(t, x) = v(t, x),

hence the value v of the game (2.4) exists.

Proof. Since hm ≤ h and gm ≤ g, it is immediate to verify that v∞ ≤ v. It remains to verify that
v∞ ≥ v.

Thanks to (sub)linear growth of g and h there is a sequence (R(m))m∈N such that R(m) ↑ ∞
as m → ∞ and gm = g and hm = h on [0, T ] × BR(m). Let us denote by Jm

t,x the expected
payoff of the game with the payoff functions gm and hm. For fixed η > 0, we can find a pair
(n, ν) = (nm,η, νm,η) ∈ Ad0 and a stopping time τ = τm,η ∈ Tt such that

v(t, x)− vm(t, x)

≤ Jt,x(n, ν, τ)− Jm
t,x(n, ν, τ) + 2η

≤ Ex

[

g(t+τ,X [n,ν]
τ )1

{X
[n,ν]
τ /∈BR(m)}

+

∫ T−t

0
e−rs

1
{X

[n,ν]
s /∈BR(m)}

h(t+s,X [n,ν]
s )ds

]

+2η,

where we obtained the inequality simply by dropping the positive terms hm and gm on the events
when the process is outside the ball BR(m).
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By the strict sub-linear growth of g and h and using Hölder’s inequality we obtain

(4.20)

v(t, x)−vm(t, x)− 2η

≤ Ex

[

K1

(

1+
∣

∣X [n,ν]
τ

∣

∣

β

d

)

1
{X

[n,ν]
τ /∈BR(m)}

+

∫ T−t

0
K1

(

1+
∣

∣X [n,ν]
s

∣

∣

β

d

)

1
{X

[n,ν]
s /∈BR(m)}

ds
]

≤ K1

{

(

Ex

[
∣

∣X [n,ν]
τ

∣

∣

d

])β(
Px(X

[n,ν]
τ /∈ BR(m))

)1−β

+

∫ T−t

0

(

Ex

[
∣

∣X [n,ν]
s

∣

∣

d

])β(
Px(X

[n,ν]
s /∈ BR(m))

)1−β
ds

}

.

+K1Px

(

X [n,ν]
τ /∈ BR(m)

)

+K1

∫ T−t

0
Px

(

X [n,ν]
s /∈ BR(m)

)

ds.

For any σ ∈ Tt, Markov’s inequality and an estimate for Ex[|X [n,ν]
σ |d] from Corollary 3.9 give

Px

(

X [n,ν]
σ /∈ BR(m)

)

≤
Ex

[∣

∣X
[n,ν]
σ

∣

∣

d

]

R(m)
≤ K4(1 + |x|d)

R(m)
.

Therefore, letting m→ ∞ in (4.20) we find v ≤ v∞+2η and, by arbitrariness of η > 0, we conclude
the proof. �

Remark 4.8. As in Lemma 4.5, also in the lemma above the convergence of vm to v is uniform on
compact subsets of Rd+1

0,T . This is immediately deduced from (4.20) and the concluding estimates in
the proof.

Since |∇0vj,k|d0 ≤ f j,k a.e. for every j, k > 0 (Corollary 4.2), then |∇0v∞|d0 ≤ f a.e. By the same
rationale, also v∞ satisfies the same bound. That is stated formally in the next corollary.

Corollary 4.9. Under Assumptions 2.1 and 2.2, the value function v is Lipschitz in the first
d0 spatial coordinates with constant bounded by f in the sense that |∇0v(t, x)|d0 ≤ f(t) for a.e.

(t, x) ∈ R
d+1
0,T .

The last result in this section concerns an optimal stopping time for the value v = v∞. Given
(n, ν) ∈ Ad0 , set θ∗ = τ∗ ∧ σ∗ as in (4.5).

Lemma 4.10. Let Assumptions 2.1 and 2.2 hold. For any (t, x) ∈ R
d+1
0,T and (n, ν) ∈ Ad0 we have

v(t, x) ≤ Jt,x(n, ν, θ∗),

where we recall that θ∗ = θ∗(n, ν) depends on the control pair. Hence

v(t, x) = inf
(n,ν)∈Ad0

Jt,x(n, ν, θ∗(n, ν))

and θ∗ is optimal for the stopper in the game with value v.

Proof. The proof follows similar arguments as those used in the proof of Thorem 4.4, so we provide
only a sketch. Let g and h be functions that satisfy Assumption 2.2. For m ∈ N, consider their
truncations gm(t, x) = g(t, x) ∧m and hm(t, x) = h(t, x) ∧m. We further mollify and localise those
functions to fit into the setting of Theorem 4.4 as in the beginning of Section 4.2. Denote

f j,km (t) := ((f + cm,k
j ) ∗ ζm,k

j )(t) + 2m
k ,

gj,km (t, x) := (gm ∗ ζm,k
j )(t, x)ξk(x),

hj,km (t, x) := (hm ∗ ζm,k
j )(t, x)ξk(x),

where (ζm,k
j )j∈N is a sequence of standard mollifiers and cm,k

j is a sequence of positive numbers so that

estimates (4.14)-(4.15) hold, and the cut-off functions (ξk)n∈N are obtained with the construction
in (4.16).
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Denote by vj,km the value function of the game with payoff functions f j,km , gj,km and hj,km (c.f. (4.18)).

An optimal stopping time for this game is θj,k,m∗ := τ j,k,m∗ ∧ σj,k,m∗ with

τ j,k,m∗ := inf
{

s ≥ 0
∣

∣ vj,km (t+ s,X [n,ν]
s ) = gj,km (t+ s,X [n,ν]

s )
}

,

σj,k,m∗ := inf
{

s ≥ 0
∣

∣ vj,km (t+ s,X
[n,ν]
s− ) = gj,km (t+ s,X

[n,ν]
s− )

}

,

for an arbitrary pair (n, ν) ∈ Ad0 . The same arguments as in the proof of Lemma 4.3 and the

uniform convergence of vj,km to v on compact subsets of Rd+1
0,T (Lemmas 4.5 and 4.7, and Remarks

4.6 and 4.8) yield

lim inf
m→∞

lim inf
k→∞

lim inf
j→∞

θj,k,m∗ ≥ θ∗, Px-a.s.

Hence,

lim
m→∞

lim
k→∞

lim
j→∞

θj,k,m∗ ∧ θ∗ = θ∗, Px-a.s.(4.21)

The functions f j,km , gj,km , hj,km satisfy the assumptions of Theorem 4.4. Then, by the same arguments

as in the proof of that theorem, replacing uγ , θγ∗ , f
γ , g and h by vj,km , θj,k,m∗ , f j,km , gj,km and hj,km ,

respectively, we obtain

(4.22)

vj,km (t, x) ≤ Ex

[

e−r(θj,k,m∗ ∧θ∗)vj,km

(

t+ θj,k,m∗ ∧ θ∗,X [n,ν]

θj,k,m∗ ∧θ∗−

)

+

∫ θj,k,m∗ ∧θ∗

0
e−rshj,km (t+ s,X [n,ν]

s )ds+

∫

[0,θj,k,m∗ ∧θ∗)
e−rsf j,km (t+ s) dνs

]

.

We pass to the limit as j → ∞, k → ∞ and m → ∞ (with the limits taken in the stated order).
Using (4.21) and similar arguments as in (4.10), we have that Px-a.s.

lim
j,k,m→∞

X
[n,ν]

θj,k,m∗ ∧θ∗−
= X

[n,ν]
θ∗−

and lim
j,k,m→∞

∫

[0,θγ∗∧θ∗)
e−rsf j,k,m(t+ s)dνs =

∫

[0,θ∗)
e−rsf(t+ s)dνs.

We apply dominated convergence theorem to (4.22) justified by the linear growth of all functions
involved and the fact that one can restrict the attention to controls (n, ν) ∈ Ad0 such that

Ex[νT−t] ≤
c(1 + |x|d)

infm,j,k f
j,k
m (T )

≤ c̃(1 + |x|d)

for some c̃ <∞ (c.f. Lemma 3.1 and arguments leading to (4.11)). In the limit we obtain

v(t, x) ≤Ex

[

e−rθ∗v
(

t+ θ∗,X
[n,ν]
θ∗−

)

+

∫ θ∗

0
e−rsh(t+ s,X [n,ν]

s )ds+

∫

[0,θ∗)
e−rsf(t+ s) dνs

]

.(4.23)

Corollary 4.9 and ideas from (4.12) and (4.13) yield

v(t, x) ≤ Jt,x(n, ν, θ∗(n, ν)),

which concludes the proof. �

We combine results from this section to prove Theorem 2.3.

Proof of Theorem 2.3. Lemma 4.7 shows that the game with expected payoff (2.2) admits a value
function v. The optimality of the stopping time θ∗ is asserted in Lemma 4.10. The continuity of the

value function v follows from the continuity of vj,km in the proof of Lemma 4.10 (from Theorem 3.3)

and the uniform convergence of vj,km to v on compact sets (see Remarks 4.6 and 4.8). Corollary 4.9
implies the Lipschitz continuity of v in the first d0 spatial coordinates in the sense required in the
statement of the theorem. Finally, the growth condition is easily deduced from Assumption 2.2(ii)
and the uniform bound from Corollary 3.9. �
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Appendix A.

Proof of Theorem 3.3. This proof repeats almost verbatim the one from [4]. Here we only
summarise the main steps and highlight a few minor changes.

The game considered here satisfies [4, Ass. 3.1 and 3.2] with the only exception that the dynamics

of X [n,ν],γ in (2.8) has a weight γ in the last d1 coordinates of the control process (nt)t∈[0,T ]. Such
weight does not appear in the controlled state-dynamics in [4] but we will show that it only induces
minor changes to the proof.

Following the methodology in [4] we study the penalised problem

∂tu+ Lu− ru = −h− 1
δ (g − u)+ + ψε

(

|∇u|2γ − (fγ)2
)

, on [0, T ) × R
d,(A.1)

with terminal condition u(T, x) = g(T, x) and growth condition |u(t, x)| ≤ c(1 + |x|d) (actually
it is enough to consider bounded u; see Remark 3.4). In [4] the penalised problem is first solved
on bounded domains, via a localisation procedure, and then on unbounded domain by passing to
the limit in the size of the bounded domains. Notice that the parameter γ leads to a different
penalisation term in (A.1) compared to [4]. Indeed, in [4, Eqs. (4.3) and (5.14)] the penalisation
reads ψε(|∇u|2d − (fγ)2), whereas here we use the γ-norm | · |γ of the gradient ∇u.

By Assumption 3.2(i), for all sufficiently large m ∈ N we have g, h ≡ 0 on [0, T ]× (Rd \Bm) and
therefore the localisation performed in [4, Sec. 4.1] is superfluous. In particular, we do not need
here to introduce functions fm, gm, hm from [4]. The penalised problem on a bounded domain
[0, T ]×Bm is given by







∂tu+ Lu− ru = −h− 1
δ (g − u)+ + ψε

(

|∇u|2γ − (fγ)2
)

, on [0, T )×Bm,
u(t, x) = 0, for (t, x) ∈ [0, T )× ∂Bm,
u(T, x) = g(T, x), for x ∈ Bm.

(A.2)

For the existence of a solution uε,δ;γm to (A.2) the key gradient bounds in [4, Sec. 4.3] can be recovered
in our set-up with minor adjustments. In particular, [4, Prop. 4.9] holds by replacing [4, Eq. (4.38)]
with

−2〈∇wn,∇(|∇un|γ − (fγ)2)〉 ≤ 2λ|∇un|2γ + R̃n,(A.3)

where wn and un are two proxies of uε,δ;γm defined in [4, Lemma 4.7] (with wn, un → uε,δ;γm for

n → ∞), λ is an arbitrary constant and R̃n is a remainder that vanishes when n → 0. Since
|∇un|2γ ≥ γ|∇un|2d then, using (A.3), [4, Eq. (4.37)] becomes

0 ≤ (C1 − λγ)|∇u|2d + C2 + λrM1 +Rn + R̃n,

where C1, C2,M1 are the same constants as in the original paper and Rn is another vanishing
remainder. The rest of the proof is the same, up to choosing λ = γ−1(C1 + 1).

The proof of Proposition [4, Prop. 5.1], which gives another gradient bound for uε,δ;γm (uniformly
in m) requires analogous changes. In particular, [4, Eq. (5.10)] becomes

ξ〈∇wn,∇
(

|∇un|2γ − (fγ)2
)

〉 ≥λ|∇u|2γ − |∇u|3d|∇ξ|d − ξR̂n ≥ λγ|∇u|2d − |∇u|3d|∇ξ|d − ξR̂n,

where ξ is a cut-off function (4.16) supported on Bm0 for fixed m0 < m, and R̂n is a vanishing
remainder. The rest of the proof continues as in the original paper. Care is only needed to replace
λ̄ in [4] with γ−1λ̄.

Thanks to the gradient bounds, and following the arguments from [4], we show the existence and
uniquenss of solution to (A.2). Then, letting m → ∞, we obtain the unique solution uε,δ;γ of (A.1);
for this convergence we need a bound on the penalisation term ψε(|∇uε,δ;γ |2γ − (fγ)2). For that we
argue as in [4, Lem. 5.8]. Its proof still holds upon noticing that the last term of [4, Eq. (5.34)] now
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reads

1

2
ξψ′

ε(ζ̄n)
d

∑

i,j=1

ai,j

(

2〈∇0∂xi
wn,∇0∂xj

wn〉+ 2γ〈∇1∂xi
wn,∇1∂xj

wn〉
)

where ζ̄n is the same as in [4] and wn is a proxy for uε,δ;γ . The sum can be bounded from below by

d
∑

i,j=1

aij

(

2〈∇0∂xi
wn,∇0∂xj

wn〉+ 2γ〈∇1∂xi
wn,∇1∂xj

wn〉
)

= 2

d0
∑

k=1

d
∑

i,j=1

aij(∂xixk
wn)(∂xjxk

wn) + 2γ

d
∑

k=d0+1

d
∑

i,j=1

aij(∂xixk
wn)(∂xjxk

wn)

≥ 2

d0
∑

k=1

|∇(∂xk
wn)|2d + 2γ

d
∑

k=d0+1

|∇(∂xk
wn)|2d ≥ 2γ|D2wn|2d×d.

Moreover, the first equation in [4, p. 28] becomes

〈

a∇ξ,∇(Hγ(∇wn)− (fγ)2)
〉

≥ −ξ θγ
4
|D2wn|2d×d −

16

θγ
ā2md

4C0|∇wn|2d

and the first equation in [4, p. 30] becomes

d
∑

k=1

∂xk
wnLxk

wn ≤ θγ
8 |D

2wn|2d×d +
C1

γ
(N1 + 1)2,

where Lxk
is the second order differential operator defined as

(

Lxk
ϕ
)

(x) =
1

2
tr
(

∂xk
a(x)D2ϕ(x)

)

+ 〈∂xk
b(x),∇ϕ(x)〉, for ϕ ∈ C∞(Rd).

The constants C0, C1, N1, ām are independent of ε and δ and they are defined in [4]. The rest of the
proof continues as in the original paper.

From a probabilistic perspective, the solutions of the penalised problems admit representations
in terms of 2-player, zero-sum stochastic differential games. Those games depend on a Hamiltonian
function [4, Eq. (4.4)], which in our setting reads

Hε,γ(t, x, y) := sup
p∈Rd

{

〈y, p〉γ − ψε

(

|p|2γ − (fγ(t))2
)}

.(A.4)

For the problems on bounded domains the results in [4, Prop. 4.1 and 4.3] continue to hold. The
only observation we need is that the first-order condition for Hε,γ is the same as the one for Hε

m

used in the proof of [4, Prop. 4.1], i.e.,

yi = ψ′
ε

(

|p|2γ − (fγ(t))2
)

2pi for i = 1, . . . , d0,

γyi = ψ′
ε

(

|p|2γ − (fγ(t))2
)

2γpi for i = d0 + 1, . . . , d.

In vector notation, we have y = ψ′
ε(|p|2γ−(fγ(t))2)2p, which is precisely the same as in the paragraph

above [4, Eq. (4.15)]. Similarly, [4, Prop. 5.4 and 5.5] continue to hold by the same argument.
Another very small tweak affects [4, Eq. (5.18)] when Hε is replaced by Hε,γ . Taking p = (ε/2)y

in (A.4) and using ψε(z) ≤ z/ε yields

Hε,γ(t, x, y) ≥ ε
2 |y|2γ − ψε

(

| ε2y|2γ − (fγ(t))2
)

≥ ε
2 |y|2γ − ψε

(

| ε2y|2γ
)

≥ εγ
4 |y|2d.

Thus [4, Eq. (5.26)] holds with ε replaced by γε.
All the remaining arguments from [4] remain unaltered. �



28 BOVO, DE ANGELIS, AND PALCZEWSKI

Appendix B.

We give below an extension of the result in [10, Lemma 5.1].

Lemma B.1. Let X be a real valued càdlàg semimartingale with jumps of bounded variation and
let L0

t (X) be its local time at 0 in the time-interval [0, t]. Then, for any ε ∈ (0, 1) we have

E[L0
t (X)] ≤4ε− 2E

[

∫ t

0

(

1{Xs∈[0,ε)} + 1{Xs≥ε}e
1−Xs

ε

)

dXc
s

]

+
1

ε
E

[

∫ t

0
1{Xs>ε}e

1−Xs
ε d〈X〉cs

]

+ 2E
[

∑

0≤s≤t

|∆Xs|
]

,

where Xc
s and 〈X〉cs are the continuous parts of X and of the quadratic variation of X, respectively,

and ∆Xs := Xs −Xs−.

Proof. For ε ∈ (0, 1), let

gε(y) = 0 · 1{y<0} + y1{0≤y<ε} + ε
(

2− e1−
y
ε

)

1{y≥ε}, for y ∈ R.

Following arguments from [10, Lemma 5.1] we have that gε ∈ C1(R \ {0}), it is semi-concave, i.e.,
y 7→ gε(y)− y2 is concave. Moreover, gε is such that

0 ≤ gε(y) ≤ 2ε, for y ∈ R;

g′ε(y) = 1{0≤y≤ε} + e1−
y
ε1{y≥ε}, for y ∈ R;

g′′ε (y) = 0, for y ∈ (−∞, 0) ∪ (0, ε);

g′′ε (y) = −ε−1e1−
y
ε , for y > ε.

Applying [28, Thm. IV.70 and Cor. IV.70.1] to gε(Xt) we get

gε(Xt)− gε(X0) =

∫ t

0
g′ε(Xs−) dX

c
s +

1

2

∫ t

0
g′′ε (Xs)1{Xs 6=0}∩{Xs 6=ε} d〈X〉cs

+
1

2
L0
t (X) +

∑

0≤s≤t

(

gε(Xs)− gε(Xs−)
)

.

Rearranging terms and multiplying by 2, using |gε(Xs) − gε(Xs−)| ≤ |Xs − Xs−| = |∆Xs| by
Lipschitz property of gε and that X has jumps of finite variation, we get

L0
t (X) ≤ 4ε− 2

∫ t

0
g′ε(Xs−) dX

c
s −

∫ t

0
g′′ε (Xs)1{Xs 6=0}∩{Xs 6=ε} d〈X〉cs + 2

∑

0≤s≤t

|∆Xs|.

Using the properties of gε listed above and applying expectation we obtain the desired result. �
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