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Abstract

We present a new, model-independent measurement of the clustering amplitude of galaxies and the growth of
cosmic large-scale structures from the Baryon Oscillation Spectroscopic Survey (BOSS) 12th data release. This is
achieved by generalizing harmonic-space power spectra for galaxy clustering to measure separately the magnitudes
of the density and the redshift-space distortion terms, respectively related to the clustering amplitude of structures,
bσ8(z), and their growth, fσ8(z). We adopt a tomographic approach with 15 redshift bins in z ä [0.15, 0.67]. We
restrict our analysis to strictly linear scales, implementing a redshift-dependent maximum multipole for each bin.
The measurements do not appear to suffer from systematic effects, and they show excellent agreement with the
theoretical predictions from the Planck cosmic microwave background analysis assuming a ΛCDM cosmology.
Our results also agree with previous analyses by the BOSS collaboration. Furthermore, our method provides the
community with a new tool for data analyses of the cosmic large-scale structure, complementary to state-of-the-art
approaches in configuration or Fourier space. Among its merits, we list: it being more agnostic with respect to the
underlying cosmological model; its roots in a well-defined and gauge-invariant observable; the possibility to
account naturally for wide-angle effects and even relativistic corrections on ultra-large scales; and the capability to
perform an almost arbitrarily fine redshift binning with little computational effort. These aspects are all the more
relevant for the oncoming generation of cosmological experiments such as Euclid, the Dark Energy Spectroscopic
Instrument, the Legacy Survey of Space and Time, and the SKA Project.

Unified Astronomy Thesaurus concepts: Large-scale structure of the Universe (902); Cosmological parameters
(339); Observational cosmology (1146)

1. Introduction

During the last couple of decades, the physical picture of the
cosmos has been set by the combination of the cosmic
microwave background temperature and polarization measure-
ments (Akrami et al. 2020) and large-scale structure probes.
Among the most widely studied of these probes are the
clustering of galaxies (Beutler et al. 2012; Contreras et al.
2013; Chuang et al. 2017; Mohammad et al. 2018; DES
Collaboration & Abbott et al. 2022; DeRose et al. 2021;
Pandey et al. 2022; Porredon et al. 2021, 2022; Prat et al. 2022)
and cosmic shear (de Jong & Kleijn 2017; Aihara et al. 2019;
Amon et al. 2022; Jeffrey et al. 2021; Secco et al. 2022).

All these data sets have led to a generally consistent picture
summarized by the concordance ΛCDM model, e.g., a Universe
described by the late-time dark energy driving its accelerated
expansion and by nonbaryonic dark matter constituting the
majority of the matter content today. Nonetheless, the nature of
both dark energy and dark matter is far from understood. In
addition, the appearance of tensions between different data sets
(Battye et al. 2015; Spergel et al. 2015; Addison et al. 2016;
Pourtsidou & Tram 2016; Raveri 2016; Charnock et al. 2017;
Joudaki et al. 2017a, 2017b; Camera et al. 2019) hints at possible
cracks in the self-consistency of the ΛCDM model.

One key tool to investigate the dark energy that has been
widely used in the literature is redshift-space distortions (RSD).

These trace the velocity field of matter inhomogeneities via the
peculiar velocities of galaxies. They provide measurements on
the growth rate of cosmic structures on large scales (Kaiser 1987)
and also affect the small (nonlinear) scales due to incoherent
galaxy motions within dark matter halos. The former is known
as the Kaiser effect, described by the squashing of the galaxy
power spectrum perpendicular to the line-of-sight direction,
while the latter phenomenon is dubbed the “Finger of God”
effect, which enhances the power along the line of sight on small
scales. The potential of RSD is excellent in discriminating
between dark energy models, because their growth rate
predictions differ (e.g., Guzzo et al. 2008).
Typical analyses targeting RSD are usually done in Fourier

(Gil-Marín et al. 2016; Zhao et al. 2016) or configuration space
(Pellejero-Ibanez et al. 2016; Chuang et al. 2017; Wang et al.
2017). These methods have to rely on assuming a fiducial
cosmological model for the data, as this is necessary to
transform redshifts to distances. Moreover, these kinds of
approaches are performed over broad redshift bins, which can
potentially hide valuable information on the expansion history
(but see, e.g., Ruggeri et al. 2017, for a different approach).
Instead, in this paper we introduce a new method based on

harmonic-space tomography in thin bins to infer the clustering
and the growth rate as a function of redshift. Contrarily to the
aforementioned approaches, the harmonic-space power spec-
trum is a natural observable for cosmological signals. We
demonstrate that our method is robust against systematic effects
and it also largely independent of the theoretical model.
As a case study, we choose to analyze the clustering of

spectroscopic galaxies in the Baryon Oscillation Spectroscopic
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Survey (BOSS) 12th data release (DR12) (Alam et al. 2015). In
this context, it is worth mentioning Loureiro et al. (2019), who
used tomography in harmonic space using BOSS data but
focusing directly on the cosmological parameters estimation via
model fitting, which is often referred to as full-shape analysis.
On the other hand, we follow a template-fitting approach, since
we are interested in comparing our novel harmonic-space
approach to more standard analyses in Fourier space and
configuration space. Note that a comparison of these two fitting
methods is thoroughly discussed in, e.g., Ivanov (2020) and
Brieden et al. (2021).

This paper is outlined as follows. In Section 2, we first
present our new method and then discuss the data used in our
analysis. In Section 3, we introduce the likelihood, covering
first the construction of the theory and the data vectors, and
later focusing on the data covariance matrix, which we estimate
with three different approaches. The results are presented in
Section 4, while in Section 5 a series of consistency checks are
performed. Finally, our concluding remarks are presented in
Section 6.

2. Methodology

In this section, we shall describe in detail the theoretical
framework of our novel method and justify the specifics of our
modeling. Then, we shall introduce the spectroscopic galaxies
of BOSS DR12 (Alam et al. 2015) that we consider in our
clustering analysis, i.e., the specific data subsamples, the choice
of their binning in redshift space, and the construction of the
final galaxy maps after taking into account various observa-
tional effects.

2.1. Theory

Up to linear order in cosmological perturbation theory, we
can write the observed galaxy number count fluctuations in
configuration space and in the longitudinal gauge as
(Yoo 2010; Bonvin & Durrer 2011; Challinor & Lewis 2011)

dD = -
¶

+ D + D ( )


b
V

. 1
2

loc int

The first term represents matter density fluctuations, with δ

being the density contrast in the longitudinal gauge, modulated
by the linear galaxy bias b. The second term is linear RSD, with
∂∥ being the spatial derivative along the line-of-sight direction,
r̂, V the peculiar velocity potential, and  the conformal
Hubble factor. The remaining two terms respectively collect all
local and integrated contributions to the signal. Such terms are
mostly subdominant and affect only the largest cosmic scales,
ergo we neglect them hereafter.4

Since measurements from a galaxy survey corresponds to
angular positions of galaxies on the sky, we can naturally
decompose the observed D(ˆ)r on the celestial sphere into its
spherical harmonic coefficients, Δℓm. If additional information
on the galaxies’ redshift is available—as in the case of a
spectroscopic galaxy survey—we can subdivide the data
D(ˆ )r z, , which is now also a function of redshift, into
concentrical redshift shells. This effectively corresponds to

dealing with a set of Δi,ℓm= ∫dz ni(z)Δℓm(z), where the index i
runs over the number of redshift bins and ni(z)dz is the number
of sources per steradian in the ith redshift bin between z and
z+ dz. Note that n(z)dz= n(r)dr holds true, with r(z) being the
radial comoving distance to redshift z.
Then, the harmonic-space tomographic power spectrum of

galaxy number density fluctuations is

= áD D ñDD ( )*S : 2ij ℓ i ℓm j ℓm, , ,

òp
= D D( ) ( ) ( ) ( )dk k P k k k

2
, 3i ℓ j ℓ

2
lin , ,

where k= |k| is the Fourier mode corresponding to the physical
separation between a pair of galaxies, Plin(k) := Plin(k, z= 0) is
the present-day linear matter power spectrum, and

òD = - ( ) ( ) ( )[ ( ) ( ) ( ) ( )] ( )k dr n r D r b r j kr f r j kr . 4i ℓ i ℓ ℓ,

In the equation above, D (normalized such that D= 1 at z= 0)
is the growth factor of density perturbations, = -f d: ln

+( )D d zln 1 is the growth rate, jℓ is the ℓth-order spherical
Bessel function, and primes denote derivation with respect to
the argument of the function.
Here, we are interested in developing a new analysis

framework for the harmonic-space power spectrum of galaxy
clustering, which can allow for a direct comparison to the
results obtained with standard analyses of the three-dimen-
sional Fourier-space power spectrum and real-space two-point
correlation function. To do so, we adopt the common approach
followed in these studies, in which constraints are obtained
primarily on the bias, the growth, and the so-called distortion
parameters related to the Alcock–Paczynski test (see, e.g.,
Euclid Collaboration et al. 2020; Section 3.2.1). However, it
should be noted that, in a harmonic-space analysis, we do not
have the need to translate angles and redshifts into physical
distances; we therefore are insensitive to the Alcock–Paczynski
effect. Let us hence focus on expressing Equation (3) in terms
of bias and growth.
First of all, it is useful to introduce the following two derived

quantities:

s s=( ) ( ) ( ) ( )b z b z D z: , 58 8

s s=( ) ( ) ( ) ( )f z f z D z: , 68 8

where s8
2 is the rms variance of matter density fluctuations on

spheres of 8 h−1 Mpc radius; it effectively acts as a normal-
ization of Plin(k) at redshift zero. The definitions of
Equations (5) and 6 come from the consideration that, in a
given redshift bin centered on z̄ , the three quantities b, f, and σ8
are indistinguishable from each other in a measurement of the
observed Fourier-space galaxy power spectrum

m m+DD( ¯) [ ( ¯) ( ¯) ] ( ¯) ( ) ( )P k z b z f z D z P k, ; , 72 2 2
lin

where m = ˆ ·r k k .
To recast Equation (3) in terms of bσ8 and fσ8, we require

that these two quantities vary slowly across the redshift bin.
Such a condition can be easily satisfied when dealing with
spectroscopic redshift accuracy, which allows (in theory) for
almost arbitrarily narrow redshift bins. Then, we factorize bσ8

4 The weak gravitational lensing effect of cosmic magnification, factorized
here in Δint, represents a notable exception to what was just said. However, it
matters mostly at high redshift and for large redshift bins, and because both
conditions are not met in the present analysis, we can safely ignore it.
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and fσ8 out of the integral in Equation (4) and thus write

 s s s s s s+ -dd dDD ( )( )S b b T f f T b f T2 , 8ij ℓ
i j

ij ℓ
i j

ij ℓ
VV i j

ij ℓ
V

, 8 8 , 8 8 , 8 8 ,

where, for a generic quantity X(z), we call X i the value at the
central redshift of the ith bin, round brackets around indices
denote symmetrization, and we define the templates
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Operatively, to compute the spectra defined above, we assume a
Planck cosmology with parameters (Ade et al. 2016):Ωc= 0.2603,
Ωb= 0.0484, H0= 67.74 km s−1Mpc−1, σ8= 0.8301, τ= 0.667,
and ns= 0.9667, which are, respectively, the cold dark matter
abundance today, the baryon abundance today, the Hubble
constant, the clustering amplitude, the optical depth to reionization,
and the slope of the primordial power spectrum of curvature
perturbations.

Moreover, we also need to specify the input redshift
distribution of sources. For this, we consider both the LOWZ
and CMASS spectroscopic galaxy samples of BOSS DR12 (for
details, see Section 2.2). Top panel of Figure 1 shows the two
observed values of n(z) and the binning we adopt for LOWZ
(blue hues) and CMASS (pink hues). We construct the top-hat
bins as

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥s

= ´ -
- - D

D
( ) ( ) ∣ ¯ ∣ ( )n z n z

z z z

z

1

2
1 tanh

2
, 12i

i i

i

where Δzi is the bin width, z̄i the ith bin center, and σ a
smearing for the bin edges necessary to ensure numerical
stability of the integration. For this, we choose σ= 0.002, and
we have checked that the specific choice does not impact the
results.

In the bottom panel of Figure 1, we present the three
factorized spectra of Equation (9)–(11), modulated by their
corresponding parameters as in the right-hand side of
Equation (8), thus accounting for the density, RSD, and
density–RSD contributions to the total signal (left-hand side of
Equation (8)). As a benchmark, we choose the CMASS auto-
bin correlation with i= j= 5, and we plot the ratio between the
factorized spectra and the total of DDSij ℓ, . As expected, the main
contribution comes from matter density fluctuations, with RSD
being important only on very large scales. However, the cross-
correlation between density and RSD is a significantly non-
negligible term, especially at ℓ� 50, where it contributes to the
total signal between 20% and 40%.

To test the validity of our factorization, in Figure 2 we
demonstrate the performance of the approximated expansion
described in Equation (8) against the correct output of
Equation (3), for LOWZ in the top panel and CMASS in the
bottom panel. (Redshift-bin ranges can be found in the second

column of Table 1). The factorized spectra are calculated by
modifying the publicly available code CLASS (Lesgourgues 2011).
It is evident that our approximation is in excellent agreement with
the exact output at the subpercent level.
Finally, we emphasize that Equations (3) and (4) follow

directly from Equation (1) and are therefore correct only at first
order in cosmological perturbation theory. Therefore, we restrict
our analysis to strictly linear scales and fix the maximum
wavenumber valid for linear theory to = -k h0.1 Mpcmax

1,
independent of redshift. Then, we implement a conservative
redshift-dependent maximum multipole ℓfor each bin given by

= ( ¯ )ℓ k r zi
imax max . As for the minimum multipole, we define it

as p= ( )ℓ f2min sky , where fsky is the survey sky coverage. In our
specific case of fsky= 0.2081 for LOWZ and fsky= 0.2416 (see
Section 2.2), this corresponds to a common =ℓ 7min .

2.2. Data

As already mentioned, in this study we use LOWZ and
CMASS spectroscopic galaxies from the DR12 of BOSS. The
LOWZ sample consists of Luminous Red Galaxies (LRGs) in
the redshift range 0.1< z< 0.45, while CMASS galaxies are
LRGs at higher redshift, 0.45< z< 0.8. Then, we have applied
further redshift cuts on both samples, namely 0.15� z� 0.43

Figure 1. Top: redshift distributions and binning for the LOWZ (blue hues) and
CMASS (pink hues) galaxy samples of BOSS DR12. The highest-redshift bins
of LOWZ and CMASS will not be included in the analysis (see Section 2.2)
and are thus rendered here with dashed lines. Bottom: contributions to the total
signal from the density (blue), RSD (yellow), and density–RSD (green) terms,
for the i = j = 5 auto-bin spectrum of CMASS.
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for LOWZ and 0.45� z� 0.67 for CMASS. This choice is
justified as follows. First, we ensure that the redshift ranges of
the two samples do not overlap. Second, we make sure that the
available mock catalogs from BOSS DR12 cover the same
redshift range with our data selection. These mocks, as we will

explain in detail in Section 3.2.3, are essential for the
investigation of systematic effects and for checking the
pipeline’s internal consistency. Finally, we avoid the inclusion
of sources at z> 0.67 for CMASS so that we can ignore the
small number of sources at that redshift range, which would
introduce a considerable Poisson noise far surpassing the
measured signal.
Let us now describe the procedure followed to construct the

masks and the galaxy overdensity maps for LOWZ and
CMASS. All details are summarized in Table 1.
Besides the galaxy catalogs, the BOSS collaboration has

made publicly available random catalogs that are 50 times
denser than the galaxy ones. Those were constructed after
taking into account the completeness and the veto masks. The
completeness masks indicate to what extent the observations
under consideration are complete, while the veto masks
account for observational effects such as bright objects and
stars, extinction and seeing cuts, fiber collisions, fiber center-
posts, and others. We built the final binary mask based on the
random catalogs, assigning zero where there are no observa-
tions and one otherwise, using the HEALPix pixelization
scheme (Gorski et al. 2005) with Nside= 1024. We deem this
resolution more than sufficient for the scales of interest in this
work (last column of Table 1), given that the largest scale that
can be safely resolved by a HEALPix map is =ℓ N2max side
(Ando et al. 2017).
Then, we proceed with the the construction of the galaxy

overdensity maps (where the mask has a value of one) for the
seven redshift bins of LOWZ and the eight bins of CMASS as

D =
- á ñ

á ñ
( )

n n

n
, 13p

p p

p

g, g

g

where ng,p is the number of weighted galaxies in a given pixel p
and 〈ng〉p is the mean number of weighted galaxies per pixel.
We should note that the BOSS systematic weights (Reid et al.
2015) are not included in our analysis because we checked that
they do not impact our final results.
The resulting maps are shown in Figure 3, where for

simplicity we present only the cumulative galaxy angular
distribution for each sample. As previously stated, the total sky
areas correspond to fsky= 0.2081 for LOWZ and fsky= 0.2416
for CMASS, excluding the masked regions (shown in gray).

3. Analysis

We shall now describe the procedure we follow to construct
the likelihood function for our data, which is in turn used to
derive measurements and constraints on the model parameters.
Unless otherwise stated, we shall assume a Gaussian likelihood
for the data. Because we are not interested in the overall
normalization of the posterior distribution, we can recast the
analysis in terms of the minimization of the chi-squared
function,

c q q q= - -a a a
-({ }) [ ({ })] [ ({ })] ( )d t d t , 142 1CT

where q s s=a{ } { }b f,i i
8 8 is the set of model parameters, which

our theoretical prediction t({θα}) depends upon, d = {da} is
the data vector, and C= {Cab} is the data covariance matrix.
Here, i= 1KNz runs over the number of redshift bins, Nz, and
a, b= 1KNd label the Nd available data points.
We start from the definition of the data and theory vectors,

and then move to the estimation of the covariance matrix. In

Figure 2. Fractional error difference between the correct output of Equation (3)
and our approximation of Equation (8), for LOWZ (top) and CMASS (bottom)
auto-bin correlations.

Table 1
Redshift Range, Number of Sources, Shot Noise, and Maximum Multipole for

the Redshift Bins Considered in the Analysis

Bin ID ( )z z,min max # of Gals Shot Noise (sr) ℓ i
max

LOWZ-1 [0.150, 0.190] 33, 906 8.08 × 10−5 49
LOWZ-2 [0.190, 0.230] 38, 728 7.07 × 10−5 60
LOWZ-3 [0.230, 0.270] 44, 291 6.18 × 10−5 71
LOWZ-4 [0.270, 0.310] 51, 781 5.27 × 10−5 81
LOWZ-5 [0.310, 0.350] 70, 879 3.86 × 10−5 91
LOWZ-6 [0.350, 0.390] 68, 701 3.98 × 10−5 101
LOWZ-7 [0.390, 0.430] 53, 191 5.15 × 10−5 111
CMASS-1 [0.450, 0.477] 81, 836 3.71 × 10−5 123
CMASS-2 [0.477, 0.504] 112, 589 2.67 × 10−5 129
CMASS-3 [0.504, 0.531] 118, 915 2.55 × 10−5 135
CMASS-4 [0.531, 0.558] 113, 139 2.68 × 10−5 141
CMASS-5 [0.558, 0.585] 99, 672 3.04 × 10−5 147
CMASS-6 [0.585, 0.612] 80, 914 3.75 × 10−5 153
CMASS-7 [0.612, 0.639] 61, 551 4.93 × 10−5 159
CMASS-8 [0.639, 0.670] 44, 057 6.89 × 10−5 164
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our analysis, we adopt a pseudo-power-spectrum approach
(also pseudo-Cℓ; Huterer et al. 2001; Blake et al. 2004; Ho et al.
2012; Balaguera-Antolínez et al. 2018), consisting of project-
ing the observed field onto the celestial sphere, decomposing it
into spherical harmonics, and then analyzing statistically the
coefficients of this decomposition after taking into account the
incomplete sky coverage.

3.1. Data and Theory Vectors

The harmonic-space tomographic power spectrum can be
estimated from the galaxy overdensity maps as5

 å
d

=
+

D D -DD

=- ¯
( )

( )

S
ℓ n

1

2 1
, 15ij ℓ

m ℓ

ℓ

i ℓm j ℓm
ij

i, , ,

K

g

where Δi,ℓm are the harmonic coefficients of the pixelized
overdensity map of Equation (13), and we have subtracted the
shot-noise term (fourth column of Table 1), which is diagonal
in i− j, with δ(K) being the Kronecker symbol.

To relate the estimated power spectrum to the underlying
one, we need to account for the mask, which introduces a
coupling between different multipoles. Because the unmasked

field is statistically isotropic, it is related to the measured one
via

 åá ñ =
¢

DD
¢ ¢

DD ( )S
ℓ

S , 16ij ℓ ℓℓ ij ℓ, ,R

where ¢ℓℓR is the coupling matrix. It is defined as

⎛
⎝

⎞
⎠

åp
=

¢ +
 + ¢ 

¢


( ) ( )ℓ
ℓ W ℓ ℓ ℓ2 1

4
2 1

0 0 0
, 17ℓℓ

ℓ
ℓ

2

R

with the matrix in square parentheses being the Wigner 3-j
symbol and Wℓ″ the harmonic-space power spectrum of the
mask. The latter reads

å=
+ =-

∣ ∣ ( )W
ℓ

v
1

2 1
, 18ℓ

m ℓ

ℓ

ℓm
2

where vℓm are the coefficients of the harmonic decomposition of
the binary mask (ˆ)rv . The coupling matrices for the LOWZ and
CMASS masks are shown in the two panels of Figure 4.
Generally, the direct inversion of the coupling matrix is not

possible, because the loss of information due to the mask
makes the coupling matrix singular and therefore the inversion
is ill-conditioned. One way to overcome this problem is to
introduce bandpowers, which we do by utilizing the public

Figure 3. LOWZ (left) and CMASS (right) galaxy overdensity maps in Celestial coordinates with Nside = 1024.

Figure 4. The coupling matrices for LOWZ (left) and CMASS (right). The diagonal terms are dominant, and the coupling between the different modes is given by the
off-diagonal terms.

5 Throughout the text, estimators will be denoted by a wide hat, and
pseudo-Cℓs with slashed letters.
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code pymaster (Alonso et al. 2019). Our bandpowers, s, are
a set of eight multipoles with weights ws

ℓ normalized such that
å =Î w 1ℓ s s

ℓ . Now, for the coupled pseudo-Cℓ in the sth
bandpower, we define

 å= á ñDD

Î

DD ( )S w S , 19ij s
ℓ s

s
ℓ

ij ℓ, ,

whose expectation value is then

 å åá ñ =
¢

DD

Î
¢ ¢

DD ( )S w
ℓ

S . 20ij s
ℓ s

s
ℓ

ℓℓ ij ℓ, ,R

By doing so, we implicitly assume that the true power spectrum
is also a stepwise function, which is related to the bandpowers
via

 å= Q ÎDD DD ( ) ( )S S ℓ s , 21ij ℓ
s

ij s, ,

with Θ the Heaviside step function.
Finally, after inserting the above relation in Equation (19),

we can derive the unbiased estimator

å=
¢

DD
¢

-
¢

DD ( )S
s

S , 22ij s ss ij s,
1

,M

where M is the binned coupling matrix, i.e.,

å å=
¢ Î ¢

¢
Î

¢ ( )
ℓ s

w . 23ss
ℓ s
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ℓ

ℓℓM R

Finally, the theory spectra DDSij ℓ, should also be binned
according to the bandpower choice in order to be compared
with the data (for in general the theory curve is not a stepwise
function). This translates into constructing

å å=
¢ ¢ Î ¢

¢
- ¢

¢
¢

DD ( )S
s ℓ s

w S , 24ij s ss s
ℓ

ℓ ℓ ij ℓ,
gg,th 1

,M R

where we remind the reader that our theoretical model for DDSij ℓ,
is defined in Equation (8).

3.2. Covariance Matrix

Here, we shall describe the various approaches we have
followed to estimate the data covariance matrix.

3.2.1. Theory Covariance

The simplest scenario is to assume that the data covariance
matrix is Gaussian, which then reads

d
=

+ D
+¢

¢ DD DD DD DD

( )
( ) ( )

( )

s s f
C C C C

2 1
, 25

ss
ij kl ss

ik s jl s il s jk s
,

K
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, , , ,C

with Δs= 1 being the multipole range in our bandwidth
binning and

d
= +DD DD

¯
( )

( )

C S
n

. 26ij s ij s
ij

i, ,

K

g

3.2.2. PolSpice Covariance

The Gaussian covariance is, by construction, diagonal in
multipoles, which is then reflected by the structure of
Equation (25)—i.e., by the presence of the Kronecker symbol.
However, as we have described above when introducing

pseudo-Cℓs, convolution with the survey mask induces a
coupling between modes. This, in turn, reflects onto the
covariance matrix, and a way to estimate it is provided by the
PolSpice package (Chon et al. 2004). This is described in
detail in Efstathiou (2004), and the corresponding covariance
matrix has following form:

=¢ ¢
- ¢ - ¢[( ) ] ( ), 27ss ss ss ss

1 1C M V M T

with

=
¢ +

¢
¢ ¢ ( )d d

s

2

2 1
. 28ss

s s ssV
M

We remind the reader that ¢ssM is the binned coupling matrix,
given in Equation (23), and ds is the data vector corresponding
to bandpower s.

3.2.3. Mocks Covariance

The most realistic way to obtain a realistic data covariance
matrix is through simulating the data themselves and extracting
their covariances from the sample. The BOSS collaboration
provides us with simulated galaxy catalogs, namely the
PATCHY (Kitaura et al. 2016) and the QPM (White et al.
2013; Wang et al. 2017) mocks. They are constructed assuming
a fixed cosmological model and can be used to estimate
accurate covariance matrices because they include various
observational and systematic effects. In this work, we have
selected the QPM mocks to calculate the covariance matrix for
the LOWZ sample and the PATCHY mocks for the CMASS
sample. This decision is made due to the different redshift
ranges covered by the simulated catalogs. Indeed, the PATCHY
mocks contain galaxies at redshifts 0.2< z< 0.75, while our
selected LOWZ sample starts from z> 0.15. The selection of
two different sets of mocks is a further test to validate our
analysis on top of the consistency checks that we make in
Appendix 5.
The resulting covariance matrix is then

å=
-

- -¢
=

¢ ¢( ¯ )( ¯ ) ( )d d d d
N

1

1
, 29ss

m

N

s
m

s s
m

s
m 1

m

C T

with m= 1KNm running through the Nm= 1000(2048) avail-
able QPM(PATCHY) mocks, with = DD{ }d Ss

m
ij s

m
,

, being the
mock data vector, and

å=
=

¯ ( )d d
N

1
. 30s

m

m

N

s
m

m 1

m

Some extra care has to be taken when the covariance matrix
is estimated using simulations, and the final likelihood should
be corrected accordingly. This is because the inverse of the
covariance matrix derived from simulations can be a biased
estimator of the inverse of the true covariance matrix (Hartlap
et al. 2007). Here, we present two methods that account for this
correction:

1. The former was first proposed by Hartlap et al. (2007),
and it is based on the following reasoning. While the
covariance matrix inferred from simulations can be an
unbiased estimator of the true covariance C, its inverse
(entering the χ2 in Equation (14)) is not, and therefore
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should be rescaled according to Parvin (2004)


- -

-
- - ( )N N

N

2

2
. 311 m d

m

1C C

By doing so, the assumption of a Gaussian likelihood can
be maintained.

2. The latter has been proposed by Sellentin & Heavens
(2015), where the authors state that the Gaussian
likelihood should be replaced by the Student’s t-
distribution,

⎡
⎣⎢

⎤
⎦⎥

c
µ +

-

-

( )
N

1
1

, 32
N2

m

2m

replacing as well the Gaussian covariance in the χ2 of
Equation (14) with Equation (29). The proportionality in
Equation (33) is set by

p
G
- G -

-( )[ ( )]
[ ( )] [( ) ]

( )N

N N N

2 det

1 2
, 33

N
m

1 2

m
2

m dd

C

where Γ is the Euler Gamma function, and assuming
Nm> Nd.

We note that the results after implementing both methods are
equivalent, and therefore we present results of the latter
correction alone.

4. Results

For the parameter estimation in this work, we use the
Bayesian-based sampler emcee (Foreman-Mackey et al.
2013). Before we proceed with the presentation of our results,
we should note that, throughout our analysis, we consider in the
data vector and the covariance matrix only the equal bin
correlations. In other words, in the data vector, we only include
auto-bin spectra, DDS ;ii s, and in the covariance matrix, we keep
only auto-bin-pair ({i− i, i− i} and {j− j, j− j}) and cross-
bin-pair ({i− i, j− j} and {j− j, i− i}) terms—thus ignoring
combinations like {i− j, i− j} or {i− j, j− j}. We do so
because these contributions are not expected to encode much
information on the growth rate of structures. This is due to the
fact that the redshift bins do not overlap, as shown in the top
panel of Figure 1. Although it is true that RSD effectively
induce cross-bin correlations (see Tanidis & Camera 2019, for
a heuristic explanation using not the exact solution as in this
paper but rather the Limber approximation), we can safely
neglect its effect in the analysis, as it will be shown later (see
Section 5). We should note that this choice is similar to
Fourier-space analyses, where cross-correlations among red-
shift bins are not considered.

In Figure 5, we show the constraints on the parameter set
q s s=a{ } { }b f,i i

8 8 for the three covariance estimates described
in Sections 3.2.1, 3.2.2, and 3.2.3. In particular, means along
with their 68% confidence level (C.L.) intervals are presented
for each case in Table 2. This is the main result of this paper,
and we shall now discuss it in detail.

First, the results assuming the Gaussian covariance are
shown in blue for LOWZ and red for CMASS for the b
σ8 parameters in the top panel of Figure 5 and the fσ8
parameters in the central panel of Figure 5. Note that we
validate these results against potential systematic effects after
performing a series of consistency tests, as described in
Section 5.

Regarding the constraints on clustering bias in the top panel,
we see the bσ8(z) measurements to be around 1.3 for LOWZ
and 1.2 for CMASS, in agreement with the literature on
measurements from BOSS DR12. For example, our findings
are consistent with those obtained by Salazar-Albornoz et al.
(2017, see Figure 7), where they have assumed tomography not
in harmonic space but using the two-point correlation function.
The solid, gray curve represents the galaxy bias functional form
described in Salazar-Albornoz et al. (2017), further multiplied
by σ8(z), against which our measurements show a good
qualitative agreement.

Figure 5. Estimated means and 68% C.L. intervals on sb i
8 (top panel) and sf i

8
(central panel) as a function of redshift, for the bin choices of LOWZ and
CMASS. Results for LOWZ with the Gaussian covariance, the PolSpice
covariance, and the mock covariance are respectively shown with blue, cyan,
and green, while for CMASS they instead are rendered in red, gold, and purple.
In light green (top panel), we show the sb i

8 results for LOWZ and the mocks
covariance neglecting the RSD (see text for details). Note that constraints on
each redshift bin from the different covariance estimations are plotted with a
slight shift of 0.003 from one another, to enhance readability. The solid gray
curves are the bσ8(z) (top panel) and fσ8(z) (central panel) prediction for our
reference cosmology (Ade et al. 2016). The bottom panel shows the residuals
on fσ8(z).
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Now, we turn our attention to the results of fσ8(z) in the
central panel. Here, we also show the theoretical prediction for
the concordance ΛCDM model from Planck as a solid, gray
curve. Our measurements are randomly scattered around it and
are close to this prediction, indicating that they are in excellent
agreement. This can be easily appreciated by looking at the
residuals, shown in the bottom panel of Figure 5.

At this point, it is worth commenting on the fact that our
method provides measured errors on fσ8 larger than those
estimated from traditional methods in Fourier space and
configuration space. The main point to raise is that we are
here presenting a proof-of-concept analysis, for which we
prefer to be conservative and stick to strictly linear scales. In
the aforementioned Salazar-Albornoz et al. (2017), for
example, the authors instead follow previous BOSS analysis
setups like Sánchez et al. (2017) or Grieb et al. (2017) and
implement a perturbation theory approach including up to one-
loop corrections.

Moreover, our thinner-binning tomographic approach allows
us to track more finely the growth rate as a function of redshift.
Finally, we note that forthcoming experiments such as the

European Space Agency’s Euclid mission (Laureijs et al. 2011;
Amendola et al. 2013, 2018), the Dark Energy Spectroscopic
Instrument (Aghamousa et al. 2016), and SKA Observatory’s
radio telescopes (Abdalla et al. 2015; Maartens et al. 2015;
Bacon et al. 2020) will push to much deeper redshift, where the
reach of linear theory is larger, thus allowing for a significant
improvement in the precision on the measurements with the
method we have presented here.
Now, let us focus on the clustering and growth rate results

using the PolSpice covariance. These measurements are
shown in Figure 5 with cyan for LOWZ and gold for CMASS.
We can appreciate that these measurements are very consistent
with and similar to those obtained with the Gaussian
covariance, meaning that the mode coupling induced by the
mask does not significantly increase the noise.
Finally, we calculate the constraints on bσ8 and fσ8 with the

mock covariance as estimated from QPM mocks for LOWZ
shown with green, and from PATCHY mocks for CMASS
shown with purple, in Figure 5. It should be noted that, in the
absence of a reliable theoretical model for the data covariance,
using mock data to estimate the covariance represents the most
agnostic approach to the analysis of the data (see also Percival
et al. 2022). Again, we can appreciate that the agreement of
data from the mock covariance with those form the PolSpice
and the Gaussian ones is quite good. Interestingly, the
agreement worsens at lower redshift, where we do in fact
expect non-Gaussian terms in the covariance matrix to be more
important.
At this point, it is instructive to note that some slight changes

between the results from the three covariance matrices
(although the overall agreement is quite good and we therefore
decide to present all of them) are expected due to the
differences, which are by construction, from their definitions
(see Sections 3.2.1, 3.2.2, and 3.2.3). The Gaussian covariance
is an approximation of the true covariance that is not precise in
the presence of nonlinearities and also does not account for the
mode coupling due to mixing matrix. Nevertheless, it is worth
noting that it shows a good agreement with the other, more
sophisticated method. This confirms the finding of Loureiro
et al. (2019).
The PolSpice covariance, on the other hand, incorporates

the mode coupling but does not take into account the cross-bin-
pair combinations in the covariance ({i− i, j− j} and {j− j,
i− i}). Summarizing, we stress that the covariance of the mock
data is expected to give the precise estimate for the true
covariance matrix, as it reaches an infinite number of
simulations.
To conclude, we quote in Table 3 the values of the reduced

χ2 for the two samples and the three covariance matrices.
These numbers, all on the order of a few, give us a qualitative
confirmation that the fitting template and the estimated
covariance matrices correctly capture the data. In addition to
that, the more sophisticated methods for the covariance matrix

Table 2
Means and Corresponding 68% C.L.

Gaussian cov. mat. PolSpicecov. mat. Mock cov. mat.

sb 8
1 1.162 ± 0.052 1.133 ± 0.049 1.142 ± 0.091

sb 8
2 1.309 ± 0.057 1.264 ± 0.060 1.271 ± 0.075

sb 8
3 1.232 ± 0.066 1.206 ± 0.066 1.258 ± 0.066

sb 8
4 1.407 ± 0.052 1.331 ± 0.055 1.379 ± 0.055

sb 8
5 1.297 ± 0.043 1.299 ± 0.039 1.256 ± 0.055

sb 8
6 1.275 ± 0.049 1.302 ± 0.044 1.303 ± 0.051

sb 8
7 1.292 ± 0.037 1.235 ± 0.045 1.275 ± 0.048

sf 8
1 0.308 ± 0.233 0.298 ± 0.231 0.667 ± 0.459

sf 8
2 0.454 ± 0.307 0.354 ± 0.305 0.398 ± 0.332

sf 8
3 1.055 ± 0.499 1.123 ± 0.420 0.744 ± 0.401

sf 8
4 0.484 ± 0.345 0.553 ± 0.319 0.414 ± 0.290

sf 8
5 0.445 ± 0.266 0.406 ± 0.207 0.564 ± 0.294

sf 8
6 0.866 ± 0.301 0.668 ± 0.260 0.610 ± 0.288

sf 8
7 0.504 ± 0.228 0.901 ± 0.253 0.866 ± 0.263

sb 8
1 1.258 ± 0.045 1.238 ± 0.054 1.212 ± 0.047

sb 8
2 1.182 ± 0.038 1.167 ± 0.046 1.166 ± 0.040

sb 8
3 1.226 ± 0.033 1.229 ± 0.039 1.215 ± 0.035

sb 8
4 1.258 ± 0.036 1.265 ± 0.039 1.230 ± 0.036

sb 8
5 1.207 ± 0.038 1.219 ± 0.041 1.182 ± 0.038

sb 8
6 1.148 ± 0.039 1.121 ± 0.045 1.159 ± 0.037

sb 8
7 1.271 ± 0.034 1.279 ± 0.038 1.270 ± 0.037

sb 8
8 1.261 ± 0.040 1.271 ± 0.046 1.302 ± 0.036

sf 8
1 0.564 ± 0.222 0.531 ± 0.237 0.665 ± 0.181

sf 8
2 0.448 ± 0.173 0.527 ± 0.213 0.631 ± 0.170

sf 8
3 0.256 ± 0.144 0.346 ± 0.163 0.334 ± 0.150

sf 8
4 0.346 ± 0.152 0.351 ± 0.177 0.420 ± 0.156

sf 8
5 0.490 ± 0.166 0.398 ± 0.172 0.680 ± 0.147

sf 8
6 0.682 ± 0.162 0.730 ± 0.172 0.633 ± 0.144

sf 8
7 0.282 ± 0.134 0.389 ± 0.159 0.364 ± 0.144

sf 8
8 0.363 ± 0.168 0.437 ± 0.185 0.281 ± 0.141

Note. Intervals on sb i
8 and sf i

8 in the ith Redshift Bin for the LOWZ (Upper
Table with i = 1K7) and CMASS (Lower Table with i = 1K8) Sample Using
the Gaussian, the PolSpice, and the Mock Covariance Matrix (see Figure 5).

Table 3
The Reduced χ2 (χ2/d. o. f.) for LOWZ and CMASS Using the Three

Covariance Matrices

Gaussian cov. mat. PolSpice cov. mat. Mock cov. mat.

LOWZ 2.980 2.225 2.218
CMASS 2.060 1.244 1.620

8

The Astrophysical Journal, 948:6 (12pp), 2023 May 1 Tanidis & Camera



(PolSpice and mocks) perform better, as expected, com-
pared to the Gaussian estimate for both LOWZ and CMASS.

However, we note there is a trend for a higher reduced χ2 value
for LOWZ compared to CMASS. This, in fact, could be due to
the lesser constraining power of LOWZ (see Figure 5), which is
impacting the goodness of fit in the following sense. Low-redshift
measurements, like LOWZ, are much more sensitive to nonlinear
evolution, and since our method works only on linear scales, it
might be that the constraining power in the data is not enough to
put competitive constraints on the growth rate and it would rather
prefer a simpler model, w/o RSD.

Thus, we set up a run for LOWZ and the mock data
covariance matrix in which we neglect altogether the growth
rate contribution, removing the second and the third terms of
Equation (8), and put constraints only on the bσ8 parameters.
To account for the loss of information on the fσ8 parameters,
we also add a global nuisance parameter in the form of an
Alcock–Paczyński parameter, α⊥. The formulation of this
parameter in a template fitting relation like Equation (8) is
simple and is presented in Camera (2022). Now the reduced
χ2 is lowered to the satisfactory value of 1.586. These
bσ8 measurements, shown with light green color in Figure 5,
are consistent within 1σ with the other scenarios. Last, we point
the reader to what follows for more detailed consistency tests in
which we also present the fσ8 constraints with LOWZ for the
sake of complicity and comparison with CMASS.

5. Consistency Tests

In this section, we run a battery of tests to validate our
pipeline and to check for possible systematic effects. For these
tests, we use the Gaussian covariance described in
Section 3.2.1 unless otherwise stated. All the results are
presented in Figures 6, 7, and 8.

5.1. Mock Data Vector

As a first test, we want to replace the data vector ds with a
mock data vector ds

m randomly chosen from the QPM or
PATCHY sets of available mocks for LOWZ or CMASS. If our
pipeline does not suffer from systematic effects, the analysis
using the mock vector is expected to produce results with
constraining power comparable to that of the same samples
using the real data vector, but the points will be scattered
differently around the theory prediction. As shown in Figure 6,
this is indeed the case, with the mock data vector performing
similarly to the real data. In particular, values with the real data
results for the bσ8 (blue for mock data in Figure 6 and blue for
real data in the right panel of Figure 7) and for fσ8 (red for
mock data in Figure 6 and red for real data in the right panel of
Figure 7) all randomly scattered around the ΛCDM prediction
(solid gray line).

5.2. Dependence on Fiducial Cosmology

As discussed in Section 2, our method allows for almost model-
independent measurements of the bias and growth of galaxies
directly in harmonic space. However, we still have to assume a
cosmology to compute the various ingredients of
Equation (9)–(11).

In order to validate our working hypothesis, we here change
the underlying fiducial cosmology that is assumed for the

theory spectra ddTij ℓ, , Tij ℓ
VV
, , and dTij ℓ

V
, calculated in CLASS. In

particular, we first vary the cosmological parameters at the edge
of their 95% C.L. for Planck ΛCDM best-fit values of
Ade et al. (2016), namely Ωb= 0.0621, Ωc= 0.2718, and
H0= 68.67 km s−1Mpc−1. Furthermore, we perform the analysis
assuming the best-fit values of the Planck wCDM cosmology
of Ade et al. (2016) with Ωb= 0.04802, Ωc= 0.2568,
H0= 68.1 km s−1Mpc−1, and w=−1.019. Finally, we consider
a more significantly different cosmology: the ΛCDM best-fit from
WMAP7 (Komatsu et al. 2011), withΩb= 0.045,Ωc= 0.227, and
H0= 70.4 km s−1Mpc−1.
Constraints for these three cosmologies are respectively

shown in the left panel of Figure 7 in cyan, green, and brown
for LOWZ, and in gold, purple, and pink for CMASS. The
reconstructed values of sb i

8 and sf i
8 are well within the 68% C.

Figure 6. Similar to Figure 5, but for the mock data vector. Results on bσ8 (left
panel) and fσ8 (right panel) are shown for LOWZ and CMASS in blue and red,
respectively.
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L. intervals among all cosmologies (shown with blue and red),
implying that the majority of the cosmological information is
contained in bσ8(z) and fσ8(z) themselves.

5.3. Including All Correlations in the Covariance Matrix and
Data Vector

A further test for our pipeline is to check the effect of
neglecting cross-bin terms in the data vector, i.e., DDS ij s, with
i≠ j, and the corresponding entries in the covariance matrix—
namely, terms like {i− j, i− j}, {i− j, j− j}, {j− i, i− j}, etc.
Basically, we use the full covariance matrix as defined in
Equation (25). Marginalized constraints presented in the right

panel of Figure 7, illustrated in brown for LOWZ and pink for
CMASS, respectively, show a satisfactory consistency with the
default case where we do not consider the cross-bin-no-pair
correlations at all.

5.4. Residual Distribution

Finally, we perform the following test to validate our derived
cosmological measurements (see also Loureiro et al. 2019).
This test is described as follows. In the case that we have a
diagonal covariance matrix, we are able to construct a vector

= -- [ ] ( )R d t , 341O

Figure 7. Left: same as Figure 5, but for the different fiducial cosmologies considered in Section 5. We show the 68% C.L. intervals (error bars) and the means
(circles) for bσ8 (top panel) and fσ8 (bottom panel) as a function of redshift for the bin choices of LOWZ and CMASS. Results for LOWZ with the original analysis
assuming the Planck best-fit ΛCDM cosmology, the Planck ΛCDM cosmology at the 95% C.L of the best-fit, the Planck best-fit wCDM cosmology, and the WMAP7
ΛCDM cosmology are respectively rendered in blue, cyan, green, and brown, while for CMASS they are in red, gold, purple, and pink. Again, the constraints on each
redshift bin from the different tests are overplotted by 0.003 for clarity, and the solid gray curves are the ΛCDM (Ade et al. 2016). Right: in the same spirit as the left
panel, but now for the cross-terms test that we have made (see Section 5). Results for LOWZ with the original analysis and all the bin correlations (including all the
cross-terms) are respectively rendered in blue and cyan, while for CMASS they are in red and gold.
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which is the normalized residuals, where O is the diagonal
matrix constituted of the square root of the variances, d is the
data vector, and t is the theory vector. Following, e.g., Andrae
et al. (2010), we note that the residuals are described by a
standard normal distribution if the model given by t represents
the data and the errors are known exactly. Nonetheless, the
errors are usually estimated from the limited number of samples
provided by the experiments, and the residual distribution is
therefore given by the Student’s t-distribution, which
approaches the standardized Gaussian as the number of
samples increases. Hence, if the residuals are described by a
standard distribution, we can either infer that either we found
the correct model or that the data are not good enough to show
any model preference. On the other hand, is the residual
distribution deviates from Gaussianity, then the model is
ruled out.

In the realistic scenario, we know that the errors are
correlated and the covariance matrix is no longer diagonal.
However, we can diagonalize it as

= - ( ), 351C Q Y Q

where Q is the eigenvector matrix and Y is a diagonal matrix
constructed from the eigenvalues of the original covariance
matrix, C. By treating the new diagonal covariance matrix as Y,
the residual distribution now reads

= -- - [ ] ( )R d t , 361 1O Q

where O contains the square roots of the eigenvalues.
In Figure 8, we show the normalized residuals for LOWZ

(left) and CMASS (right) after we input the mean values of the
constrained parameter set q s s=a{ } { }b f,i i

8 8 . By considering a
Kolmogorov–Smirnov test, we accept the null hypothesis that
both histograms are consistent with being derived from a
standard normal distribution, since the p-values are 0.18 and
0.13, respectively, at the 95% significance level, and we
conclude that our model represents the data well.

6. Conclusions

In this paper, we have introduced a novel method to estimate
the amplitude of the galaxy clustering and the growth rate of
the cosmic structures with harmonic-space (tomographic)
power spectra. We have tested it against synthetic data sets
and simulations, and we have finally applied it to the LOWZ
and CMASS galaxy samples of the 12th data release of BOSS.
We have derived constraints on the bσ8 and fσ8 parameters

for each redshift bin after taking into account the observational
effects of the survey in a pseudo-power-spectrum approach. In
addition, we have constructed the data covariance with three
different implementations (Gaussian, PolSpice, and Mock
covariance matrix), all of them yielding consistent results. On
top of that, our method shows considerable independence from
the fiducial theory model, and it successfully passes a series of
internal consistency and systematics checks. Constraints on bσ8
and fσ8 agree very well with the findings in the literature. In
particular, our new method can be compared easily to the
recently proposed angular redshift fluctuations (Hernández-
Monteagudo et al. 2020), and we find similar results. It could
also, in principle, be extended to the follow-up forecast papers,
such as, e.g., Fonseca et al. (2019).
Despite the fact that the estimated errors on our measure-

ments are generally larger than those obtained with traditional
analyses targeting the detection of RSD in Fourier or
configuration space, the method described here provides
complementary results and allows us to track the evolution of
these fundamental cosmological quantities with time. The
overwhelming wealth of data provided by forthcoming
experiments is expected to improve these constraints and we
hope it will shed some more light on the physics of the history
of our Universe.
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Figure 8. The distribution of residuals (green histograms), for LOWZ (left panel) and CMASS (right panel), and the standard normal distribution (red curve). With the
Kolmogorov–Smirnov test, we validate that both histograms are consistent with being derived from a standard normal distribution.
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