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A R T I C L E I N F O A B S T R A C T

Editor: M. Pierini

Keywords:

BESIII

FCNC process

Hyperon decay

BSM particle

A massless particle beyond the Standard Model is searched for in the two-body decay Σ+ → 𝑝 + invisible using 
(1.0087 ± 0.0044) × 1010 𝐽∕𝜓 events collected at a center-of-mass energy of 

√
𝑠 = 3.097 GeV with the BESIII 

detector at the BEPCII collider. No significant signal is observed, and the upper limit on the branching fraction 
(Σ+ → 𝑝 + invisible) is determined to be 3.2 × 10−5 at the 90% confidence level. This is the first search for a 
flavor-changing neutral current process with missing energy in hyperon decays which plays an important role in 
constraining new physics models.
1. Introduction

In the Standard Model (SM) of particle physics, the flavor-changing 
neutral current (FCNC) decay of a meson or baryon containing strange 
quarks into a final state with missing energy predominantly arises from 
the loop-induced quark transition 𝑠 → 𝑑𝜈𝜈̄ [1,2], which is strongly sup-

pressed by the Glashow-Iliopoulos-Maiani mechanism [3]. The branch-

ing fractions (BFs) of such decays for hyperons are predicted by the SM 
to be less than 10−11 [4]. However, when involving contributions from 
new invisible particles beyond the SM, the BFs of some FCNC hyperon 
decays are allowed to be as high as order 10−4 [5]. The search for this 
category of decays is therefore a sensitive probe for new physics (NP).

This study aims to search for a massless particle beyond the SM, 
such as the massless dark photon (𝛾 ′), which can lead to invisible sig-

natures in FCNC decays. The massless dark photon is a gauge boson 
associated with a new unbroken 𝑈 (1)𝑑 symmetry [6,7]. It does not di-

rectly interact with the SM fermions but could induce FCNC processes 
via higher-dimensional operators [8]. Another example is the QCD ax-

ion (𝑎), a pseudoscalar boson originally predicted as the Peccei-Quinn 
solution to the strong 𝐶𝑃 problem [9,10]. With a weak coupling to 
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fermions, it could induce 𝑠 → 𝑑 quark transitions. The QCD axion is ex-
pected to have a mass less than an eV and a lifetime longer than the age 
of the universe [11], making this study relevant to it as well.

In the meson sector, there are ongoing experimental searches for 
𝑠 → 𝑑𝜈𝜈̄ transition via the kaon decays 𝐾+ → 𝜋+𝜈𝜈̄ and 𝐾𝐿 → 𝜋0𝜈𝜈̄, 
from the NA62 [12] and KOTO [13] Collaborations, respectively. The 
measurements show a slight excess with respect to the SM expectations, 
which has led to various NP interpretations [14]. Studies of rare hy-

peron FCNC transitions offer promising opportunities to test the SM 
and to search for possible NP.

This Letter reports a search for a massless beyond-the-SM ‘invisi-

ble’ particle through a missing-energy signature, in the two-body decay 
Σ+ → 𝑝 +invisible, where the Σ+ candidate is identified by tagging a Σ̄−

decaying to 𝑝̄𝜋0 on its recoiling side [15]. The analysis exploits around 
107 Σ+Σ̄− hyperon pairs produced from (1.0087 ± 0.0044) × 1010 𝐽∕𝜓
decays [16] collected at a center-of-mass energy of 

√
𝑠 = 3.097 GeV

with the BESIII detector at the BEPCII collider. This is the first exper-

imental search for an FCNC process with missing energy in hyperon 
decays. A semi-blind procedure is performed to avoid possible bias, 
where approximately 10% of the full data set is used to validate the 
analysis strategy. The final result is then obtained with the full data set 
only after the analysis strategy has been fixed. Throughout this Letter, 

charge conjugation is always implied unless mentioned otherwise.



BESIII Collaboration

2. BESIII detector and Monte Carlo simulation

The BESIII detector [17] records symmetric 𝑒+𝑒− collisions provided 
by the BEPCII storage ring [18] in the center-of-mass energy range from 
2.0 to 4.95 GeV. BESIII has collected large data samples in this en-

ergy region [19]. The cylindrical core of the BESIII detector covers 93% 
of the full solid angle and consists of a helium-based multilayer drift 
chamber (MDC), a plastic scintillator time-of-flight system (TOF), and 
a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in 
a superconducting solenoidal magnet providing a 1.0 T magnetic field. 
The magnetic field was 0.9 T in 2012, which affects 11% of the total 
𝐽∕𝜓 data. The solenoid is supported by an octagonal flux-return yoke 
with resistive plate counter muon identification modules interleaved 
with steel. The charged-particle momentum resolution at 1 GeV∕𝑐 is 
0.5%, and the d𝐸∕d𝑥 resolution is 6% for electrons from Bhabha scat-

tering. The EMC measures photon energies with a resolution of 2.5%
(5%) at 1 GeV in the barrel (end-cap) region. The time resolution in the 
TOF barrel region is 68 ps, while that in the end-cap region is 110 ps. 
The end-cap TOF system was upgraded in 2015 using multigap resistive 
plate chamber technology, providing a time resolution of 60 ps, which 
benefits 87% of the data used in this analysis [20].

Simulation samples produced with a GEANT4-based [21] Monte 
Carlo (MC) package, which includes the geometric description [22]

of the BESIII detector and the detector response, are used to deter-

mine detection efficiencies and to estimate backgrounds. The simulation 
models the beam-energy spread and initial-state radiation in the 𝑒+𝑒−
annihilations with the generator KKMC [23]. The inclusive MC sample 
includes both the production of the 𝐽∕𝜓 resonance and the continuum 
processes incorporated in KKMC. All particle decays are modeled with

EVTGEN [24] using BFs either taken from the Particle Data Group [25], 
when available, or otherwise estimated with LUNDCHARM [26]. Final-

state radiation from charged final-state particles is incorporated us-

ing the PHOTOS package [27]. To study the tagging efficiency of the 
Σ̄− → 𝑝̄𝜋0 decay, the MC sample of 𝐽∕𝜓 → Σ+(→ anything)Σ̄−(→ 𝑝̄𝜋0)
is generated according to its helicity decay amplitudes as detailed in 
Ref. [28]. The background process of 𝐽∕𝜓 →Δ(1232)+Δ̄(1232)− is gen-

erated with the angular distribution of 1 + cos2 𝛼 [24], where 𝛼 is 
the polar angle of Δ(1232)+ in the 𝐽∕𝜓 rest frame. The subsequent 
decays of Δ(1232)+ → anything and Δ̄(1232)− → 𝑝̄𝜋0 are described 
by a uniform phase-space model. The signal process of 𝐽∕𝜓 → Σ+(→
𝑝 + invisible)Σ̄−(→ 𝑝̄𝜋0) is generated according to its helicity decay am-

plitudes, where the decay-asymmetry parameter of Σ+ → 𝑝 + invisible is 
assumed to be the same as that of Σ+ → 𝑝𝛾 decay [28].

3. Event selection

3.1. Analysis method

For the signal process of Σ+ → 𝑝 + invisible, the Σ+ hyperon is in-

ferred by reconstructing the Σ̄− decay in the events of 𝐽∕𝜓 → Σ+Σ̄−

at the center-of-mass energy of 
√
𝑠 = 3.097 GeV. The Σ̄− candidates, 

which constitute the single-tag (ST) sample, are reconstructed with the 
dominant decay Σ̄− → 𝑝̄𝜋0. Then the double-tag (DT) event is formed 
by reconstructing the signal decay Σ+ → 𝑝 + invisible in the system re-

coiling against the Σ̄− hyperon. The absolute BF of the signal decay is 
determined by

sig =
𝑁obs

DT ∕𝜖DT
𝑁obs

ST ∕𝜖ST
, (1)

where 𝑁obs
ST (𝑁obs

DT ) is the observed ST (DT) yield and 𝜖ST
(
𝜖DT

)
is the 

corresponding detection efficiency.

3.2. ST selection

Charged tracks detected in the MDC are required to be within a 
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polar angle (𝜃) range of |cos𝜃| < 0.93, where 𝜃 is defined with respect 
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to the 𝑧-axis, which is the symmetry axis of the MDC. For each charged 
track, the distance of closest approach to the interaction point (IP) must 
be less than 10 cm along the beam axis, and less than 2 cm in the 
transverse plane [29]. Particle identification (PID) for charged tracks 
combines measurements of the specific ionization energy loss (d𝐸∕dx) 
in the MDC and the flight time in the TOF to form likelihoods (ℎ) (ℎ =
𝑝, 𝐾, 𝜋) for each hadron ℎ hypothesis. Tracks are identified as protons 
when the proton hypothesis has the greatest likelihood ((𝑝) > (𝐾)
and (𝑝) >(𝜋)).

Photon candidates are identified using showers in the EMC. The de-

posited energy of each shower must be more than 25 MeV in the barrel 
region (| cos𝜃| < 0.80) and more than 50 MeV in the end-cap region 
(0.86 < | cos𝜃| < 0.92). To exclude showers that originate from charged 
particles, the angle subtended by the shower in the EMC and the po-

sition of the closest charged track at the EMC must be greater than 10 
degrees (20 degrees for 𝑝̄ candidates since anti-protons interact strongly 
with nuclei) as measured from the IP. To suppress electronic noise and 
showers unrelated to the event, the difference between the EMC time 
and the event start time is required to be within [0, 700] ns. The 𝜋0 can-

didates are reconstructed with a pair of photons whose invariant mass 
is required to lie in the range of (115, 150) MeV∕𝑐2. Candidates with 
both photons from end-cap EMC regions are rejected due to having a 
worse resolution. A kinematic fit constraining the invariant mass of the 
photon pair to the 𝜋0 known mass [25] is performed, and the 𝜒2 value 
must be less than 25 to ensure fit quality.

The Σ̄− candidates are reconstructed with all 𝑝̄𝜋0 combinations, 
and the one with an invariant mass closest to the known Σ̄− mass 
(𝑀Σ̄− ) [25] is retained for further analysis. The invariant mass of 𝑝̄𝜋0

is required to satisfy |||𝑀𝑝̄𝜋0 −𝑀Σ̄−
||| < 15 MeV∕𝑐2, which corresponds 

to approximately three times its resolution around 𝑀Σ̄− . The yield of 
ST Σ̄− hyperons is obtained by examining the distribution of the beam-

constrained mass of 𝑝̄𝜋0, defined as

𝑀BC =
√

𝐸2
beam∕𝑐

4 − |||𝑃𝑝̄𝜋0
|||2 ∕𝑐2, (2)

where 𝐸beam is the beam energy and 𝑃𝑝̄𝜋0 is the momentum of the re-

constructed 𝑝̄𝜋0 combination in the 𝑒+𝑒− center-of-mass system.

Fig. 1 shows the 𝑀BC distributions of the ST candidates. The charge-

conjugated ST candidates are reconstructed individually for each event. 
A binned maximum-likelihood fit is performed to the 𝑀BC distribution 
to obtain the ST yield. In the fit, the signal and 𝐽∕𝜓 → Δ(1232)+(→
anything)Δ̄(1232)−(→ 𝑝̄𝜋0) background, denoted as Δ(1232)+Δ̄(1232)−, 
are described by their MC-simulated shapes convolved with a Gaus-

sian function to account for the resolution difference between data 
and MC simulation. The background of the continuum processes is 
estimated using the data sample taken at 

√
𝑠 = 3.080 GeV with an inte-

grated luminosity of 168.30 pb−1 [16]. The yield is normalized to the 
𝐽∕𝜓 data sample, taking into account the integrated luminosities and 
center-of-mass energies [16]. Other nonpeaking contamination, includ-

ing combinatorial background, is described by a third-order Chebyshev 
polynomial function. The fit results are also shown in Fig. 1. The sig-

nal region is defined as (1.163, 1.213) GeV∕𝑐2 in the 𝑀BC distributions, 
and the ST yields of Σ̄− and Σ+ are found to be (2.077 ± 0.002) × 106
and (2.356 ± 0.003) × 106, respectively.

The ST detection efficiencies are evaluated using the signal MC 
sample, and are found to be (37.62 ± 0.04)% and (42.65 ± 0.04)% for 
Σ̄− → 𝑝̄𝜋0 and Σ+ → 𝑝𝜋0, respectively. The BF of 𝐽∕𝜓 → Σ+Σ̄− is cal-

culated according to the observed ST yield and the corresponding ST 
efficiency for the two charge-conjugated channels individually, and is 
found to be compatible with the previous BESIII measurement [29]
within uncertainties.



BESIII Collaboration

Fig. 1. The 𝑀BC distributions of ST candidates for (a) Σ̄− → 𝑝̄𝜋0 and (b) Σ+ →
𝑝𝜋0. The red arrows indicate the ST signal windows.

3.3. DT selection

The signal process of Σ+ → 𝑝 + invisible is searched for using the 
remaining tracks recoiling against the ST Σ̄− candidates. The follow-

ing criteria are applied to select the signal candidates and suppress 
the backgrounds from 𝐽∕𝜓 → Σ+(→ 𝑝𝜋0)Σ̄−(→ 𝑝̄𝜋0) (denoted as Σ+ →
𝑝𝜋0), 𝐽∕𝜓 → Σ+(→ 𝑝𝛾)Σ̄−(→ 𝑝̄𝜋0) (denoted as Σ+ → 𝑝𝛾) and 𝐽∕𝜓 →
Δ(1232)+Δ̄(1232)− (denoted as Δ(1232)+Δ̄(1232)−). Exactly one addi-

tional charged particle has to be reconstructed for the DT candidate 
events and it must be identified as a proton. A two-constraint (2C) kine-

matic fit is performed under the hypothesis of 𝐽∕𝜓 → 𝑝𝑝̄𝜋0 + invisible. 
The fit constrains the invariant mass of two photons to the 𝜋0 nomi-

nal mass and the mass of the invisible particle to zero. The 𝜒2 value 
of the 2C kinematic fit (𝜒2

2C) must be less than 20 with 13 degrees of 
freedom. To suppress the Σ+ → 𝑝𝜋0 background, another 2C kinematic 
fit is performed by constraining the mass of the invisible particle to 
the known 𝜋0 mass. The obtained 𝜒2 value (𝜒2

2C, 𝜋0
) is required to be 

larger than 𝜒2
2C. If there are three or more photon candidates available, 

a five-constraint (5C) kinematic fit is performed under the hypothesis of 
𝐽∕𝜓 → 𝑝𝑝̄𝜋0𝛾 with one of all remaining photon candidates combined 
to the DT side, corresponding to the Σ+ decay process. To suppress the 
Σ+ → 𝑝𝛾 background, each 𝜒2 value of the 5C kinematic fit (𝜒2

5C) is re-

quired to be larger than 200 with 10 degrees of freedom. If there are 
four or more photon candidates available, a six-constraint (6C) kine-

matic fit is performed under the hypothesis of 𝐽∕𝜓 → 𝑝𝑝̄𝜋0𝛾𝛾 with all 
two-photon combinations on the DT side, where the mass of the pho-

ton pair is restricted to the known 𝜋0 mass. To further suppress the 
Σ+ → 𝑝𝜋0 background, each 𝜒2 value of the 6C kinematic fit (𝜒2

6C) is 
required to be larger than 200 with 12 degrees of freedom. The four-

momentum of the DT proton and the invisible particle is obtained from 
the 2C kinematic fit that constrains the mass of the invisible particle 
to zero. The invariant mass of the proton and the invisible particle 
(𝑀𝑝+inv) is required to be in the range of (1.18, 1.20) GeV∕𝑐2. For the 
𝐽∕𝜓 → Δ(1232)+Δ̄(1232)− background, the final-state particles decay 
6

near the IP since the Δ(1232)+ has a negligible lifetime compared with 
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Fig. 2. The 𝐸other
extra distribution for the 𝐽∕𝜓 → Σ+(→ 𝑝𝜋0)Σ̄−(→ 𝑝̄𝜋0) control sam-

ple.

that of the Σ+ hyperon. To reduce such background, vertex fits [30] are 
performed to the 𝑝 and 𝑝̄ combination. The primary vertex fit constrains 
the tracks to originate from a common vertex, while the secondary ver-

tex fit constrains the momentum of the 𝑝𝑝̄ combination to point back 
to the IP. For the events passing the vertex fits, the length (𝐿) from the 
reconstructed vertex to the IP is required to be more than twice the res-

olution (𝜎𝐿). The region where the polar angle of the invisible particle 
(𝜃inv) in the 𝐽∕𝜓 rest frame satisfies | cos𝜃inv| > 0.8 is eliminated be-

cause the Σ+ → 𝑝𝛾 background predominantly lies in this region with 
other requirements applied according to the MC simulation. The re-

quirements of 𝜒2
2C, 𝑀𝑝+inv and 𝐿∕𝜎𝐿 are optimized according to the 

Punzi significance [31], defined as 𝜀∕(1.5 +
√
𝐵), where 𝜀 denotes the 

signal efficiency obtained from signal MC sample and 𝐵 is the number 
of background events obtained from background MC samples.

4. DT signal extraction

After applying all the selection criteria, MC studies with a generic 
event type analysis tool [32] indicate that the dominant background 
events are from the Σ+ → 𝑝𝜋0, Δ(1232)+Δ̄(1232)− and Σ+ → 𝑝𝛾 pro-

cesses. There are additional backgrounds from other sources in the 
inclusive MC sample, but there is no event left from the continuum 
data. Since the invisible particle on the DT side does not deposit any 
energy in the EMC, the energy sum of all the showers in the EMC ex-

cept for the ST 𝜋0, 𝐸extra, can be utilized as a discriminator to extract 
the DT yield. The 𝐸extra is divided into two parts

𝐸extra =𝐸
DT𝜋0∕𝛾
extra +𝐸other

extra , (3)

where 𝐸DT𝜋0∕𝛾
extra denotes the energy of the 𝜋0 or 𝛾 on the DT side, 

which is expected to be zero for signal events. The value of 𝐸DT𝜋0∕𝛾
extra

in background events is obtained through the MC simulation, as the 
interactions of photons or electrons with the material are described 
in the simulation with a sufficient accuracy. The contribution 𝐸other

extra
originates from other sources, including noise unrelated to the event. 
It is estimated that the interaction between the 𝑝̄ track and detector 
contributes to approximately 93% of this, under the condition that the 
induced showers are already suppressed through the isolation angle cri-

teria. Due to difficulties in accurately modeling anti-proton interactions 
with the detector material using the GEANT4 package, the raw simu-

lation of 𝐸other
extra deviates from the data, as illustrated in Fig. 2. The 

shape of 𝐸other
extra is corrected using a data-driven approach [33] based 

on a 𝐽∕𝜓 → Σ+(→ 𝑝𝜋0)Σ̄−(→ 𝑝̄𝜋0) control sample. The contribution of 
𝐸other
extra is assigned with a random value from the shape template ob-

tained from the data control sample, according to the momentum and 
polar angle of the anti-proton. The corrected shape of 𝐸other

extra is found to 
have a good agreement with the control-sample data as shown in Fig. 2.

The corrected distribution of 𝐸extra is used as input in a binned 

maximum-likelihood fit to determine the DT signal yield, performed 
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Fig. 3. The post-fit distributions of 𝐸extra for (a) Σ+ → 𝑝 + invisible and (b) 
Σ̄− → 𝑝̄+ invisible DT signal channels. The signal shape is normalized to a BF of 
3.0 × 10−4. The bottom panel shows the fit residuals.

simultaneously on the two charge-conjugated channels, assuming the 
same BF of the signal in both. In the fit, the signal, backgrounds 
of Σ+ → 𝑝𝜋0, Δ(1232)+Δ̄(1232)−, Σ+ → 𝑝𝛾 , and other backgrounds 
in the inclusive MC sample are described by their MC-simulated 
shapes after the data-driven correction. The Gaussian process regres-

sion method [34] is utilized to smooth the MC shapes of Σ+ → 𝑝𝜋0

and Δ(1232)+Δ̄(1232)− backgrounds. The relative ratio of the yields 
for the two background components is determined with a control 
sample of 𝐽∕𝜓 → 𝑝𝑝̄𝜋0𝜋0 [28]. The background yield of Σ+ → 𝑝𝛾 is 
estimated using the MC sample and normalized according to the BF 
of Σ+ → 𝑝𝛾 [28]. A kernel density estimation method [35] is used to 
smooth the MC shape of other backgrounds in the inclusive MC sample, 
with its yield normalized to the total number of 𝐽∕𝜓 events [16]. Fig. 3

shows the post-fit distributions of 𝐸extra. No significant signal contri-

bution is observed. The BF of Σ+ → 𝑝 + invisible is determined to be 
(0.6 ± 1.5) × 10−5, where the uncertainty is only statistical.

5. Systematic uncertainty

The use of the DT technique in the analysis means that most of the 
systematic uncertainties related to the ST selection cancel out. The re-

maining systematic uncertainties are divided into two types: additive 
and multiplicative. The additive uncertainties are related to the specific 
fit methods, while the multiplicative uncertainties are associated with 
the knowledge of the signal efficiency.

When performing the binned maximum-likelihood fit to the 𝐸extra
7

distribution, the uncertainty arising from the choice of bin width is 
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Table 1

The multiplicative systematic uncertainties.

Source Uncertainty (%)

ST yield 0.4

Tracking and PID 0.4

𝜒2
2C requirement 0.3

𝜒2
2C < 𝜒2

2C, 𝜋0 0.1

𝜒2
5C and 𝜒2

6C requirements 0.1

𝑀𝑝+inv requirement 0.4

Decay length requirement 0.6

cos𝜃inv requirement 0.3

Signal model 3.6

Total (multiplicative) 3.7

considered by using alternative bin widths of 40 MeV and 33 MeV. 
The uncertainty due to the signal shape is assigned by considering al-

ternative signal models in which the decay asymmetry parameter of 
the Σ+ → 𝑝 + invisible decay is varied between -1 and 1. The uncer-

tainty due to the background shape of Σ+ → 𝑝𝜋0 and Σ+ → 𝑝𝛾 de-

cays is accounted for by varying the corresponding decay parameters 
within 1𝜎 [25,28]. The uncertainty arising from the background shape 
of Δ(1232)+Δ̄(1232)− is assessed by using an alternative phase-space 
model to describe the 𝐽∕𝜓 → Δ(1232)+Δ̄(1232)− process. The uncer-

tainty arising from the shape of other sources of contamination in the 
inclusive MC sample is estimated by varying the bandwidth of the ker-

nel function within a reasonable range. The fit is performed fourteen 
times in total with different methods, and the minimum significance 
value and the maximum upper limit are recorded. The uncertainties of 
the relative ratio of the background Σ+ → 𝑝𝜋0 and Δ(1232)+Δ̄(1232)−, 
the yield of the background Σ+ → 𝑝𝛾 , and the yield of other back-

grounds in the inclusive MC sample are incorporated into the general 
likelihood assuming a Gaussian distribution.

The multiplicative systematic uncertainties are listed in Table 1. The 
uncertainty due to the ST yield (0.4%) is evaluated by approximating 
all background contributions with a third-order Chebyshev polynomial 
function. The uncertainty due to proton tracking and particle identi-

fication (0.4%) is studied with a 𝐽∕𝜓 → 𝑝𝑝̄𝜋+𝜋− control sample. The 
uncertainty associated with the 𝜒2

5C and 𝜒2
6C requirements (0.1%) is as-

sessed using a control sample of 𝐽∕𝜓 → Σ+(→ 𝑝𝛾)Σ̄−(→ 𝑝̄𝜋0) decays. 
The uncertainty of the signal model (3.6%) is studied by varying the 
signal shape obtained from signal MC samples with different decay pa-

rameters. The uncertainties arising from the 𝜒2
2C (0.3%), 𝜒2

2C < 𝜒2
2C, 𝜋0

(0.1%), 𝑀𝑝+inv (0.4%), decay length (0.6%) and cos𝜃inv (0.3%) require-

ments are assigned from studies of a control sample of 𝐽∕𝜓 → Σ+(→
𝑝𝜋0)Σ̄−(→ 𝑝̄𝜋0) decays. By assuming all the sources to be independent, 
the total multiplicative systematic uncertainty (3.7%) is included in the 
overall likelihood as a Gaussian nuisance parameter with a width equal 
to the uncertainty.

6. Result

Since no significant signal is observed in data, a Bayesian method 
is used to set the upper limit on the branching fraction (Σ+ →
𝑝 + invisible). A series of maximum-likelihood fits are performed to 
the 𝐸extra distribution with (Σ+ → 𝑝 + invisible) fixed to a nonneg-

ative scanning value. A likelihood curve  is constructed with these 
values of (Σ+ → 𝑝 + invisible) as input. The normalized likelihood 
curves ∕max with and without considering systematic uncertainties 
are shown in Fig. 4 and the 90% confidence level (CL) upper limit on 
(Σ+ → 𝑝 + invisible) is found to be 3.2 × 10−5, with the expected limit 
of 2.7+1.1−0.7 × 10−5.

Under the hypothesis of a massless dark photon, the maximum BF 
allowed for Σ+ → 𝑝𝛾 ′ in certain scenarios is 3.8 × 10−5 [5], which lies 
above our upper limit. For the QCD axion, the vectorial part (𝐹𝑉

𝑠𝑑
) of 
the axion-fermion effective decay constant [36] is highly constrained by 
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Fig. 4. The normalized likelihood curve versus (Σ+ → 𝑝 + invisible). The red 
arrow indicates the 90% CL upper limit.

Fig. 5. The 90% CL exclusion limits of 𝑠 → 𝑑 axion-fermion effective decay 
constant obtained from this analysis, where the hatched region is excluded. The 
𝐹𝑉
𝑠𝑑

and 𝐹𝐴
𝑠𝑑

represent the vectorial and axial-vectorial parts of the decay con-

stant, respectively. The constraints from 𝐾+ → 𝜋+𝑎 [37], 𝐾+ → 𝜋+𝜋0𝑎 [38], 
𝐾 − 𝐾̄(Δ𝑚𝐾 ) [25], 𝐾 − 𝐾̄(𝜖𝐾 ) [39] are also shown. When obtaining constraints 
from 𝐾 − 𝐾̄ mixing, the unknown low-energy constants are assumed to be 
zero [36].

searches for 𝐾+ → 𝜋+𝑎 [37] as shown in Fig. 5. However, for the axial-

vectorial part (𝐹𝐴
𝑠𝑑

), a lower bound of 𝐹𝐴
𝑠𝑑

> 2.8 × 107 GeV is set using 
the upper limit obtained in this study, which is significantly better than 
the constraint from 𝐾 − 𝐾̄ mixing (Δ𝑚𝐾 ) [25] and competitive with 
that from searches for 𝐾+ → 𝜋+𝜋0𝑎 [38] and measurements of the 𝐶𝑃 -

violating parameter 𝜖𝐾 in the kaon system [39].

7. Summary

The first search for a massless particle beyond the SM in the two-

body hyperon FCNC transition Σ+ → 𝑝 + invisible is presented using 
(1.0087 ± 0.0044) × 1010 𝐽∕𝜓 events collected at a center-of-mass en-

ergy of 
√
𝑠 = 3.097 GeV with the BESIII detector at the BEPCII collider. 

No significant signal is observed and the upper limit on the branching 
fraction (Σ+ → 𝑝 + invisible) is set to be 3.2 ×10−5 at the 90% CL. This 
result imposes stringent limit for the NP models with a massless particle 
beyond the SM.
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