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Abstract

We study probe scalar correlation functions in a Solodukhin wormhole corresponding to the
non-rotating BTZ black hole, as a toy model for microstate geometries thereof. Using real-
time holography, we obtain the retarded scalar correlator in the wormhole geometry and
quantitatively compare it to the result of the hybrid WKB method for the same correlator.
We also calculate an off-diagonal correlator ∼ 〈HLLH ′〉 involving two different (heavy)
wormhole states.
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1 Introduction

The quantum nature of the black hole microstructure has remained elusive, most notably
due to the information paradox [1, 2, 3, 4]. The fuzzball proposal in string theory [5, 2, 6,
7, 8] aims to resolve this paradox by replacing the black hole and its horizon entirely by
quantum, stringy, horizon-scale microstructure. The examples of such microstructure that
can be studied in supergravity are called microstate geometries, and are smooth, horizonless
solutions of supergravity. Perhaps the best studied examples of such microstate geometries
are the superstrata geometries [9, 10, 11, 12, 13, 14, 15, 8, 16], which are microstates of
the BMPV black hole [17] in five dimensions (which uplifts to a six-dimensional black
string). The BMPV black hole admits a near-horizon BTZ × S3 decoupling limit metric;
the superstrata geometries effectively replace this by a metric that interpolates between
BTZ× S3 in the UV and a smooth, geometrical cap in the IR. The possible shapes of the
cap, determined by the fluxes in supergravity, represent the different microstates. Using
the AdS/CFT correspondence, one can study these microstates from the point of view
of the dual CFT [18, 19]. The microstates in supergravity correspond to semi-classical,
coherent states in the CFT, created by acting with different heavy operators on the D1/D5
ground state.1

One can probe these microstate geometries with a light field (that does not backreact)
such as a scalar; a quantity of interest is thus the two-point function of such a light field in

1Heavy operators are ones with scaling dimension ∆ ∼ c and light operators are one with scaling
dimension ∆ ∼ O(1), where c is the central charge of the CFT.
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a particular supergravity background. This corresponds in the dual CFT to a four-point
correlation function ∼ 〈HLLH〉 of two light operators L (for the light probe) and two
heavy operators H (for the background state), and can, in some cases, be studied using
CFT methods [20, 21, 22, 23].

To calculate this correlation function in the supergravity solution, one has to solve the
wave equation for the light field propagating in the (heavy) background, and study the
asymptotic behavior of that solution to obtain the two-point function in this background
following the standard rules of the AdS/CFT dictionary. In practice, this can be technically
challenging as the wave equation is not always separable. Even when it is separable,
separating out the growing and decaying modes near the boundary unambiguously (which
is necessary to extract the correlator) seems to require an exact solution [24]. This issue was
addressed in [24] (and developed further for asymptotically flat geometries in [25]) using the
so-called hybrid WKB method. There, they used an exact solution near the UV boundary
(allowing the extraction of the correlator) which was matched to the approximate WKB
solution in the IR through an intermediate point. For the superstrata (in particular, the
(1, 0, n) family), this calculation revealed that the scalar correlator reproduces the initial
black hole correlator fall off. Only after a large amount of time (proportional to the throat
length), do we see echoes due to the reflection of the scalar wave off the smooth cap at the
interior.

The appearance of echoes is a standard feature of many models that introduce structure
at the horizon scale, and are a focus for potential experimental explorations of black hole
microstates and other horizon-scale compact objects (often called ECOs) [26, 27, 28, 29].
Note, however, that at the moment there has been no conclusive evidence of echoes ap-
pearing in current observations [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 26]. It is
also unclear whether one would expect echoes to appear in a typical state; as argued in
our previous work [42], a typical superposition state of many coherent heavy states would
presumably lead to the exponential suppression of any echo structure in the correlator.
Echoes in supersymmetric microstate geometries have been analyzed in [43]; these results
suggest that as the microstructure becomes more compact (making the microstate more
typical), the echoes become more suppressed and washed out (as also argued in [44]). See
also [45, 46] for a discussion of how additional stringy tidal effects can excite heavy string
modes to delay and smear echoes significantly, even in a coherent, atypical microstate.

We have previously argued that a Solodukhin wormhole [47] (see also [48]) can be used
as a toy model of the more complicated superstrata microstate geometries, as it captures
some of its essential features [42]. Such a wormhole connects two asymptotically AdS3

regions through a wormhole throat (which sits at the would-be horizon scale) and behaves
roughly as a “cap” where the boundary conditions on the second AdS3 boundary reflect
back the information. Using this toy model, we obtained a correlator that is qualitatively
very similar to the (1, 0, n) superstratum correlator of [24], containing an initial fall-off
identical to that of the black hole, and with echoes at times of order the wormhole throat
length.

In this paper, we investigate such scalar correlators in the Solodukhin wormhole toy
models in more detail. In particular, we use the Skenderis-van Rees formalism of real-time
holography [49, 50] to calculate this correlator exactly. This allows us to compare the exact
answer to the hybrid WKB answer, which is the first time such an explicit comparison is
made. It also allows us to calculate all possible two-point correlators (Feynman, Wightman,
retarded, advanced), as opposed to only the retarded one, as one calculates using the hybrid
WKB method.

Note also that [24, 25, 42] (mainly) consider microstates of a supersymmetric black hole,
which has an extremal BTZ throat. In this paper, we use the non-rotating (non-extremal)
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BTZ black hole and its corresponding Solodukhin wormhole as the starting point for our
calculations. As such, one can view our toy model as a playground to explore basic features
of correlators of non-extremal microstate geometries.

The real-time holography formalism has the additional benefit that it in principle allows
us to compute correlators in a background that describes off-diagonal correlators in the
CFT such as 〈HLLH ′〉, where the initial and final heavy states are different.2 These no
longer correspond to a scalar correlator in a single geometry, but rather (using the real-
time formalism) can be seen to correspond to a transition between different (Euclidean)
geometries. Such correlators are the first step towards understanding the correlators in
a mixed-state given by a density matrix constructed from several heavy states Hi — one
would hope that the black hole correlator will be arbitrarily well approximated by such a
density matrix correlator using sufficiently many microstate geometry heavy states [24]. We
model this transition in the Solodukhin wormhole toy model and compute this off-diagonal
correlator for an infinitesimal change in heavy state. To our knowledge, this is the first ever
such calculation that explores off-diagonal correlators, albeit in a toy model for microstate
geometries. Our results suggest that the sharp echoes (of diagonal correlators) will get
smoothed out in off-diagonal correlators.

This paper is organized as follows: In section 2 we introduce the BTZ black hole,
its corresponding Solodukhin wormhole modification, as well as discuss the scalar wave
equations in these backgrounds. In section 3, we calculate the scalar correlator using the
real-time holography formalism to successively more complicated geometries: the BTZ
black hole, its Solodukhin wormhole, and the (infinitesimal) transition between two such
wormholes. In section 4, we apply hybrid WKB to obtain the (approximate) retarded
correlator of the wormhole, and compare it to the exact result obtained in section 3.2.
In section 5, we explicitly calculate the appropriate contour integrals on the momentum-
space correlators obtained in section 3 to obtain the position-space correlators of BTZ,
the wormhole and the transitioning wormhole. The appendices A and B contain a brief
overview of the necessary details of the Schwinger-Keldysh real-time correlator formalism
in quantum field theory and Skenderis-van Rees real-time holography.

2 BTZ, Wormhole and Wave Equation

The rest of this paper will use the non-rotating BTZ black hole metric and its corresponding
Solodukhin-type wormhole [47]. In this section, we will review the BTZ black hole and
introduce the wormhole geometry as well as a few of its basic properties. We will also
discuss the wave equation of a minimally coupled scalar in these geometries. Note that
most of this introductory and review material was also presented in [42], which also included
the expressions for the extremal BTZ black hole and corresponding Solodukhin wormhole.

2Note that such a scenario can only be of physical relevance if the timescale of observation is much larger
that timescale of such a transition, and moreover that the probability of transition between neighboring
heavy states is sufficiently high. We will be considering the case where the transition happens between
infinitesimally close states.
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2.1 The Non-Rotating BTZ Black Hole

The non-rotating BTZ black hole [51, 52] has metric:

ds2 = −X(r) dt2 +
dr2

Y (r)
+ r2 dϕ2 ,

X(r) = Y (r) =
(r2 − r2

+)

R2
,


r ∈ [r+,∞) ,
t ∈ (−∞,∞) ,
ϕ ∼ ϕ+ 2π ,

(2.1)

where R is the AdS radius. These coordinates cover the patch outside the horizon (r > r+).
The asymptotic mass of the black hole, in units where 8G3 = 1, reads

M =
r2

+

R2
, (2.2)

while the temperature and the entropy of the black hole are given by

T =
r+

2πR2
, S = 4πr+ . (2.3)

In the holographically dual CFT2, the black hole corresponds to a thermal state with the
same temperature.

r
=
−r+

r
=
r+

r
=
r
+

r
= −

r
+

r
=
−
∞

r
=
∞

r = 0

r = 0

t

t

−r r

|r| =∞

|r| = r+

|r|

τ
−β/2
β/2

Figure 1: The non-rotating BTZ black hole: Lorentzian signature (left) and Euclidean
signature (right). The Euclidean black hole has periodic time τ ∼ τ + β, where β = 1/T .

2.2 The Non-Rotating Wormhole

To modify the non-rotating BTZ metric (2.1) into a wormhole in the style of Solodukhin
[47] (see also [48]), we simply alter by hand one of the metric components, giving:

ds2 = −X(r) dt2 +
dr2

Y (r)
+ r2 dϕ2 ,

X(r) =
r2 − r2

λ

R2
, Y (r) =

r2 − r2
+

R2
, r2

λ ≡ r2
+(1− λ2) ,


r ∈ (−∞,−r+] ∪ [r+,∞) ,
t ∈ (−∞,∞) ,
ϕ ∼ ϕ+ 2π .

(2.4)
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For each value of the (small) dimensionless parameter λ > 0, this gives us a wormhole
geometry. For r � r+, the smallness of λ ensures that the metric looks almost like that of
the original black hole. However, the global structure of spacetime is drastically altered, as
there is no longer a horizon in the spacetime. Instead, we have essentially glued a second
copy of this asymptotic flat spacetime (with r < −r+) to the old horizon position, thus
creating a traversable wormhole.

In [42], we discussed the stress energy tensor of this geometry and show that it requires
the presence of exotic matter, localized roughly where the two throats meet. There, we
also compute the holographic stress energy tensor and show that it differs from the one of
the corresponding black hole at O(λ2).

Further, [42] calculated explicitly the tortoise coordinate of the extended, two-sided
geometry, showing that it has a finite range. This allows us to define the effective length
Lλ of the wormhole as [42]:

Lλ ≡
R2

r+

log
16

λ2
. (2.5)

For completeness, we present figure 2, also appearing in [42], that shows that causal struc-
ture of the space time in r and r∗ coordinates.

2.3 The Scalar Wave Equation

A minimally coupled scalar field Φ on the BTZ metric background (2.1) or the wormhole
metric (2.4) has the general equation of motion:

∇2Φ = m2Φ . (2.6)

We can solve this by a separation of variables:

Φ(t, r, ϕ) = e−iωt+ikϕΦr(r) , (2.7)

where the radial function Φr(r) must satisfy the differential equation:

Φ′′r +

(
1

r
+
X ′

2X
+
Y ′

2Y

)
Φ′r +

(
ω2

XY
− k2

r2Y
− m2

Y

)
Φr = 0 . (2.8)

We are interested in finding the scalar wave solutions to (2.8) in both the black hole and
wormhole metrics. Note that for the BTZ black hole, the solutions to (2.8) are explicitly
known (see (3.4)).

To find the solutions to (2.8) for the wormhole, note that we can introduce appropriate
tortoise coordinates r∗ in both the black hole and wormhole geometries such that for
φ = Φr

√
r/R, the equation (2.8) becomes:

(∂2
r∗ − V (r∗))φ(r∗) = 0. (2.9)

Further, using the relation between the respective black hole and wormhole tortoise coor-
dinates, one finds:

V WH(r∗) = θ(r∗)V
BH(r∗) + (r∗ → −r∗) +O(λ2), (2.10)

so that the wormhole scalar potential is the same as the black hole potential on each side of
the wormhole, up to O(λ2) corrections. This means that the solutions on each side of the
wormhole can be taken to be the black hole ones, φWH(r) = φBH(r) and φWH(−r) = φBH(r).
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r
=
r +

r
= −

r
+

t t

−r r

r
=
−
∞

r
=
∞

r ∗
=

−
L
λ
/2

r ∗
=

0

r ∗
=
L
λ
/2

t

r∗−r∗

Figure 2: Conformal diagrams of the Lorentzian non-rotating wormhole in terms of r (left)
and r∗ (right) coordinates. In the r coordinate we see that the wormhole is created by a
left and a right BTZ wedge glued together (the blue solid line) slightly outside of the BTZ
horizon. The r∗ coordinate, which ranges continuously in [−Lλ/2, Lλ/2], makes the causal
structure more apparent: the glued surfaces r = ±r+ (on the left) both coincide with the
surface r∗ = 0 (on the right). The gluing is smooth and a radial light-ray (yellow) can
explore the entire wormhole by bouncing infinitely many times between the two boundaries.
The diagrams are the same as in [42].

This must then be supplemented with a continuity condition at the center of the wormhole
throat (at r∗ = 0), which gives

Φr(rt) = Φr(−rt) , ∂rΦr(rt) = ∂rΦr(−rt) , (2.11)

where we have defined the “gluing point” radius:

rt = r+

(
1 +

λ2

8

)
+O(λ4) . (2.12)

For more details on this matching, see [42].

3 Correlators via Real Time Holography

In this section, we will use the Skenderis-van Rees formalism of real-time holography [50, 49]
to calculate various two-point correlation functions (Feynman, Wightman, and retarded)
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for a minimally coupled scalar field in various geometries of interest: the (non-rotating)
BTZ black hole, the (non-rotating) Solodukhin wormhole, and a time-dependent geometry
that transitions between two Solodukhin wormholes with different λ.

A brief overview as well as the relevant formulas of real-time holography and its pre-
liminary Schwinger-Keldysh formalism are assembled in appendices A and B.

3.1 Correlators of the BTZ Black Hole

Here, we use the real-time formalism to obtain the two-point functions of a minimally
coupled scalar field in a non-rotating BTZ background. This was first done in the context
of real-time holography in [50] and later expanded and generalized in [53, 54, 55]; earlier
works include [56, 57]. The calculation can also be generalized to consider minimally
coupled gauge fields in this background [58].

Schwinger-Keldysh contour To find the BTZ two-point correlation function of a min-
imally coupled scalar field, we start with a thermal Schwinger-Keldysh contour (A.1) with
σa = σb = σc = β/2 and identified endpoints [59, 50]. Then the forward (resp. backward)
running Lorentzian segments are interpreted as segments on the left (resp. right) bound-
ary: γ1 ≡ γL and γ2 ≡ γR; the Euclidean segments are connected to both L and R akin to
a Hartle-Hawking state [60, 61]. Thus, the ranges of the complex Keldysh time θ = t− iτ
are as follows; see figure 3 (left):

γa : θ ∈ [−T + iβ/2,−T ] ,

γb : θ ∈ [T, T − iβ/2] ,

γL : θ ∈ [−T, T ] ,

γR : θ ∈ [−T − iβ/2, T − iβ/2] .
(3.1)

To construct the bulk dual to this field theory contour, we take the upper half of the
thermal circle in Euclidean time, whose time ranges in τ ∈ [−β/2, 0], and we glue it to
the line t = −T in the Lorentzian non-rotating BTZ (see figure 1). Similarly, we glue the
lower half of the thermal circle, whose time ranges in τ ∈ [0, β/2], to the line t = T ; note
that τ = ±β/2 are identified. The resulting bulk contour is depicted in figure 3 (right).
The bulk gluings dictate the following matching conditions that the piecewise bulk fields
must obey:

Φa(0, ϕ, |r|) = ΦL(−T, ϕ,−r) , ∂τΦa(0, ϕ, |r|) = −i∂tΦL(−T, ϕ,−r) ,
ΦL(T, ϕ,−r) = Φb(0, ϕ, |r|) , −i∂tΦL(T, ϕ,−r) = ∂τΦb(0, ϕ, |r|) ,

Φb(β/2, ϕ, |r|) = ΦR(T, ϕ, r) , ∂τΦb(β/2, ϕ, |r|) = −i∂tΦR(T, ϕ, r) ,

ΦR(−T, ϕ, r) = Φa(−β/2, ϕ, |r|) , −i∂tΦR(−T, ϕ, r) = ∂τΦa(−β/2, ϕ, |r|) .

(3.2)

Scalar wave solutions We can use separation of variables as in (2.7) to solve the equa-
tions of motion for the minimally coupled scalar on the different pieces of the Schwinger-
Keldysh contour:

Φi = e−iωteikϕs̃i(ω, k)f(ω, k, r) , ΦI = e−ωτeikϕs̃I(ω, k)f(ω, k, r) , (3.3)

with i = {L,R} for the Lorentzian segments and I = {a, b} for the Euclidean segments.
The radial function f(ω, k, r) is a solution to the radial wave equation (2.8) with the metric
functions given in (2.1) with r− = 0; the general solution is a linear combination of f±

with:

f±(ω, k, r) = N±ωk
(

1− r2
+

r2

)±ir+ω/2
× 2F1

(
i

2

(
±r+ω − k

)
,
i

2

(
±r+ω + k

)
; 1± ir+ω; 1− r2

+

r2

)
, (3.4)
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θ = t− iτ

γa τ

γb τ

γL

t

γR

t

(−T, β/2)

(−T, 0) (T, 0)

(T,−β/2)(−T, β/2)

Figure 3: The thermal Schwinger-Keldysh contour in CFT2 (left) and the mixed-signature
bulk spacetime, corresponding to it (right). On the boundary contour (left), the grey
dots signify gluing between an Euclidean and a Lorentzian segment and the red dots at
(−T,±β/2) are identified and also glued. On the bulk contour (right) the fields are glued
at fixed time slices extending all the way into the bulk until the horizon at r = r+ is
reached.

where we have introduced the rescaled quantities k = Rk/r+ and ω = R2ω/r2
+. At the

horizon, these functions behave as:

f±(ω, k, r) ∼ (r − r+)±
ir+ω

2 ∼ e±iωr∗ , (3.5)

where r∗ is the standard black hole tortoise coordinate, so that f+ (resp. f−) is identified
with outgoing (resp. ingoing) modes.3 We choose the normalization constants:

N±ωk =
Γ
(
1± i

2
(r+ω − k)

)
Γ
(
1± i

2
(r+ω + k)

)
Γ(1± ir+ω)

, (3.6)

such that at the UV boundary r →∞, we have f± → 1; the asymptotic expansion is then:

f±(ω, k, r) = 1 +
r2

+

r2
α(ω, k)

(
β±(ω, k) + log

r2
+

r2

)
+ . . . , (3.7)

α(ω, k) = −1

4

(
r2

+ω
2 − k2

)
,

β±(ω, k) = ψ

(
1 +

i

2

(
±r+ω − k

))
+ ψ

(
1 +

i

2

(
±r+ω + k

))
± 2ir+ω

r2
+ω

2 − k2 ,

where ψ(·) is the digamma function and we have given β± up to constants which do
not affect the poles of αβ±. These poles of f± can be obtained from the poles of the
normalization factors (or equivalently from the poles of αβ±) and are located at

Rω±nk+ = k ± i2r+

R
n , Rω±nk− = −k ± i2r+

R
n , n ∈ {1, 2, 3, . . . } , k ∈ Z . (3.8)

3We do not impose ingoing boundary conditions at the horizon so that we are in principle able to
compute all correlators; imposing ingoing boundary conditions would mean we are computing the retarded
correlator [53, 56, 57].
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The ω−nk± frequencies with negative imaginary part are the poles corresponding to the
ingoing mode f− and thus are the quasinormal modes of the non-rotating BTZ black hole
[62] which are exponentially damped at late times (corresponding to the scalar field leaking
into the black hole horizon). Note that the poles of f± precisely correspond to the poles
of the normalization factors N±ωk in (3.6).

Finally, we define a more convenient basis of modes as

g± =
1

2
(f+ ± f−) , (3.9)

where g+ (resp. g−) is the non-normalizable mode (resp. normalizable mode) as it asymp-
totes to 1 (resp. 0) in the UV (r →∞).

Constructing bulk fields piecewise Our next task is to construct the piecewise bulk
fields. A generic Lorentzian field is expanded as

Φi =
∑
k

eikϕ
∫
Ci

dω e−iωt
(
g+δij + g−Aij

)
s̃j , (3.10)

where Aij are arbitrary meromorphic functions of ω and Ci is an arbitrary contour that
avoids the poles of Aij and g±. Note that (3.10) indeed corresponds to introducing a source
si on the boundary:

lim
r→±∞

Φi =
∑
k

eikϕ
∫
Ci

dω e−iωtδij s̃j ≡ si . (3.11)

The real time formalism fixes both Ci and Aij by the matching conditions. We parametrize
the freedom in Ci as:

Φi =
∑
k

eikϕ
[∫

R
dω e−iωt

(
g+δij + g−Aij

)
s̃j

+

∫
U

dω e−iωtg−Uij s̃j +

∫
L

dω e−iωtg−L−ij s̃j

]
.

(3.12)

Here U is a positively oriented contour around the upper-half-plane and L is a negatively
oriented contour around the lower-half-plane, see figure 4. The coefficients Uij, Lij thus
pick up additional normalizable mode contributions, related to the choice of contour in
(3.10).

The Euclidean fields do not have sources as we are interested in the thermal state
without extra excitations (see [55] for a more general treatment), so they are composed
solely of normalizable modes:

ΦI =
∑
k

eikϕ
[∫
U

dω e−ωτg−UIj s̃j +

∫
L

dω e−ωτg−LIj s̃j

]
. (3.13)

Applying the matching conditions At early times t ∼ −T (resp. late times t ∼ T ),
the sources all lie in the future (resp. past) so we must close the Feynman integral in
the upper (resp. lower) half plane (see also the discussion in appendix B.1 and especially
around (B.29)), so that:

Φi(t ∼ −T ) =
∑
k

eikϕ
[∫
U

dω e−iωtg−(δij + Aij + Uij)s̃j +

∫
L

dω e−iωtg−Lij s̃j

]
,

Φi(t ∼ T ) =
∑
k

eikϕ
[∫
U

dω e−iωtg−Uij s̃j +

∫
L

dω e−iωtg−(−δij + Aij + Lij)s̃j

]
,

(3.14)
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ω

U

L

R

Figure 4: The contours U ,L,R in the complex ω-plane. The crosses in the upper (resp.
lower) half plane are the poles of f+ (resp. f−); each vertical line and its reflection across
the y-axis corresponds to the poles of f± at fixed k. The circles are the poles of Aij (i.e.
the poles of n(ω)), which we discuss in section 5.1.

where we have used that:∫
U

dω e−iωtg+δij s̃j =

∫
U

dω e−iωt
1

2
f+δij s̃j =

∫
U

dω e−iωtg−δij s̃j ,∫
L

dω e−iωtg+δij s̃j =

∫
L

dω e−iωt
1

2
f−δij s̃j =

∫
L

dω e−iωt(−g−)δij s̃j .

(3.15)

Since each of the contours picks up independent pole residues (i.e. normalizable modes),
the two contour integrals U , L must be independently matched, giving:

U : Uaje
−iωT = δLj + ALj + ULj ,

Ubje
iωT = ULj ,

Ubje
iωT = URje

βω/2 ,

Uaje
−iωT = (δRj + ARj + URj)e

−βω/2 ,

L : Laje
−iωT = LLj ,

Lbje
iωT = −δLj + ALj + LLj ,

Lbje
iωT = (−δRj + ARj + LRj)e

βω/2 ,

Laje
−iωT = LRje

−βω/2 .
(3.16)

First, we solve for the Lorentzian functions Uij, Lij in terms of Aij:

ULj = URje
βω/2 = −(δLj + ALj)

eβω

eβω − 1
+ (δRj + ARj)

eβω/2

eβω − 1
,

LLj = LRje
−βω/2 = −(δLj − ALj)

1

eβω − 1
+ (δRj − ARj)

eβω/2

eβω − 1
.

(3.17)

Note that no factors of e±iωT appear in (3.17) (as opposed to (3.16)). Now, regularity at
late times of the U contour integral in (3.14) for ω → i∞ forces us to set Uij = 0; similarly,
regularity of the L integral at early times imposes Lij = 0. These regularity conditions,
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together with (3.16), now fix all unknown functions uniquely:

Aij = 2

(
−(n+ 1/2)

√
n(n+ 1)

−
√
n(n+ 1) (n+ 1/2)

)
ij

, n(ω) =
1

eβω − 1
,

Uaj = 2
(
−n

√
n(n+ 1)

)
j
eiωT , Ubj = 0 ,

Laj = 0 , Lbj = 2
(
−(n+ 1)

√
n(n+ 1)

)
j
e−iωT .

(3.18)

Note that Uaj and Lbj indeed have appropriate exponential tails in R, coming from n(ω),
that ensure regularity of the Euclidean fields when ω → ±∞; moreover, the factors of
e±iωT ensure regularity (at all times) for ω → ±i∞.

Extracting the correlators Finally, having solved the bulk fields entirely, we can ex-
tract the correlation functions from them. For this, we extract the r2

+/r
2 term in the

expansion of the Lorentzian fields (see appendix B):

φ
(2)
i =

1

2

∑
k

eikϕ
∫
R

dω e−iωt
[
αβ+(δij + Aij)s̃j + αβ−(δij − Aij)s̃j

]
. (3.19)

Then, we use the Fourier transform s(t, ϕ) of s̃j(ω, k) defined in (3.11) and perform func-
tional derivatives with respect to sj(t

′, ϕ′) to obtain the black hole correlators:

iGij
BH(x, x′) =

2(−1)δij−δiR+1

i

δφ
(2)
i (x)

δsj(x′)

∣∣∣∣∣
si=0

=
(−1)δij−δiR+1

4π2i

∑
k

eik(ϕ−ϕ′)
∫
R

dω e−iω(t−t′)[(δij + Aij)αβ
+ + (δij − Aij)αβ−

]
.

(3.20)

Explicitly, we can write:

iGLL
BH(x, x′) =

1

2π2i

∑
k

eik(ϕ−ϕ′)
∫
R

dω e−iω(t−t′)[−nαβ+ + (n+ 1)αβ−
]
,

iGLR
BH(x, x′) =

1

2π2i

∑
k

eik(ϕ−ϕ′)
∫
R

dω e−iω(t−t′)
[
−
√
n(n+ 1)αβ+ +

√
n(n+ 1)αβ−

]
,

iGRL
BH(x, x′) =

1

2π2i

∑
k

eik(ϕ−ϕ′)
∫
R

dω e−iω(t−t′)
[
−
√
n(n+ 1)αβ+ +

√
n(n+ 1)αβ−

]
,

iGRR
BH(x, x′) =

1

2π2i

∑
k

eik(ϕ−ϕ′)
∫
R

dω e−iω(t−t′)[−(n+ 1)αβ+ + nαβ−
]
.

(3.21)

These correlators require a careful interpretation. First, we identify the Feynman correlator
as iGF

BH ≡ iGLL
BH and the anti-Feynman correlator as iGF

BH ≡ iGRR
BH =

[
iGLL

BH(x, x′)
]∗

. The
interpretation of this is that the R-region Feynman correlator behaves as a L-region anti-
Feynman correlator, in accordance with the notion that the time in R in the thermofield-
double state runs oppositely to the time in L, see figure 1. Next, we note that iGLR

BH = iGRL
BH;

they are not conjugate and should not be identified with Wightman functions. Instead,
these functions measure correlations between the L and R regions as “propagated through”
the non-traversable Einstein-Rosen bridge that connects them. As for the Wightman func-
tions, our contour (3.1) cannot produce them explicitly; rather, one would first need to
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introduce a ‘doubled’ contour containing also a reverse-L and a reverse-R segments. How-
ever, a simple shortcut to find the Wightman functions without this calculation is to use
(A.8), which gives them in terms of the Feynman correlators.

We are most interested in the retarded propagator (see section A and in particular
(A.10)), which according to (A.9) is given by

iGR
BH(x, x′) = θ(t− t′)[iGLL

BH(x, x′)− iGRR
BH(x, x′)]

=
θ(t− t′)

2π2i

∑
k

eik(ϕ−ϕ′)
∫
R

dω e−iω(t−t′)[αβ+ + αβ−
]

=
θ(t− t′)

2π2i

∑
k

eik(ϕ−ϕ′)
∫
L

dω e−iω(t−t′)αβ− , (3.22)

where we used the pole structure of αβ± to simplify the integral; note that the contour L
simply picks up all of the poles in the complex lower half plane (see figure 4). We will find
the explicit expression for this position-space propagator in section 5.1.

3.2 Correlators of the Solodukhin Wormhole

Here, we will apply the real-time holography formalism to the non-rotating Solodukhin
wormhole with metric (2.4).

Schwinger-Keldysh contour Since the wormhole is a pure state, we take a pure state
(zero temperature) Schwinger-Keldysh contour, similar to that in empty AdS in appendix
A. This consists of two Euclidean (γI , I = a, b) and two Lorentzian (γi, i = 1, 2) segments,
whose Keldysh time θ = t− iτ runs as

γa : θ ∈ [−T + i∞,−T ] ,

γb : θ ∈ [−T,−T − i∞] ,

γ1 : θ ∈ [−T, T ] ,

γ2 : θ ∈ [−T, T ] .
(3.23)

To construct the bulk dual to this contour, we follow the same strategy as for empty AdS
(see appendix B.1). We have two Lorentzian pieces and one Euclidean piece, which is split
in two and glued to the the ends of the Lorentzian pieces — see figure 5. These gluings
dictate the matching conditions that the piecewise bulk fields obey:

Φa(0, ϕ, r) = Φ1(−T, ϕ, r) , ∂τΦa(0, ϕ, r) = −i∂tΦ1(−T, ϕ, r) ,
Φ1(T, ϕ, r) = Φ2(T, ϕ, r) , ∂tΦ1(T, ϕ, r) = ∂tΦ2(T, ϕ, r) ,

Φb(0, ϕ, r) = Φ2(−T, ϕ, r) , ∂τΦb(0, ϕ, r) = −i∂tΦ2(−T, ϕ, r) .
(3.24)

Scalar wave solutions As discussed in section 2.3, the solutions of the scalar wave
equation to O(λ2) on each side of the wormhole are those of the BTZ black hole itself,
i.e. the modes f± in (3.4). These need to be supplemented with the continuity condition
(2.11) at rt = r+(1 + λ2/8). Note that at the gluing point ±rt, the modes f± behave as:

f+(ω, k,±rt) = N+
ωk

(
λ

2

)ir+ω
, f−(ω, k,±rt) = N−ωk

(
λ

2

)−ir+ω
,

∂rf
+(ω, k,±rt) = ±4iω

λ2
N+
ωk

(
λ

2

)ir+ω
, ∂rf

−(ω, k,±rt) = ∓4iω

λ2
N−ωk

(
λ

2

)−ir+ω
,

(3.25)

where we remember that the normalization factors N±ωk are given by (3.6).
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θ = t− iτ

γa τ

γb τ

γ1

t

γ2

t

(−T,∞)

(−T, 0) (T, 0)

(T, 0)(−T, 0)

(−T,−∞)

Figure 5: The pure-state Schwinger-Keldysh contour in CFT2 (left) and the mixed-
signature bulk spacetime, corresponding to it (right). On the boundary contour (left)
the grey dots signify gluing between an Euclidean and a Lorentzian segment and the red
dots are identified and also glued. On the bulk contour (right) the fields are glued on a
fixed time slices extending all the way into the bulk. The blue line is the suface r∗ = 0.
On this mixed-signature diagram we have included only the right side of the wormhole,
but the reader should envision that the left side is glued to the blue line as in figure 2.

We are interested in the holographic correlators for the CFT that sits on the boundary
on one side — say, the right, i.e. r > rt — of the wormhole. Thus, the holographic sources
live here, at r → ∞. It is then natural to impose that there are no sources present on
the other, i.e. left, boundary at r → −∞. This means that the only allowed mode must
be proportional to f+ − f− for r ≤ −rt, which, using (3.25), means the allowed mode for
r > rt is:4

fλ ≡ 1

1− κ2
λ

(f+ − κ2
λf
−) , κλ(ω, k) ≡ N

+
ωk

N−ωk

(
λ

2

)i 2r+ω
, (3.26)

which has been normalized so that limr→∞ fλ = 1. Note that imposing the condition of no
sources on the left boundary is the analogue of the IR regularity condition in empty AdS
(see appendix B.1) that also eliminates one linear combination of the scalar wave solutions.

In principle, we are free to choose different, fixed boundary conditions on the left
boundary (including a non-normalizable piece). Alternatively, we could have performed a
holographic analysis on the direct product of the CFTs on the right and left boundaries,
introducing sources on both boundaries. This allows us to also compute the “mixed”
left-right correlation functions (similar to the LR and RL correlators of the eternal black
hole in (3.21)); the correlators we are calculating here are then simply the “right-right”

4The expression for fλ on the left side of the wormhole can be inferred from (3.26), (3.25), and the
matching conditions (2.11). Note that specifying the wavefunction on (only) the right side uniquely
determines the wavefunction on the left side (and vice versa). In particular, the mode (3.26) is well-
defined and well-behaved on the right side, and from symmetry it will then also be so on the left side.
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correlators (where functional derivatives are taken with respect to the right sources and
the left sources are set to zero).

While the BTZ black hole modes f+ (resp. f−) have poles in the upper (resp. lower)
complex ω plane, a careful analysis shows that fλ does not have these (or other) poles with
non-zero imaginary part. Instead, fλ only has poles on the real line, at locations where
κλ = ±1. Explicitly, these normal modes are the solutions to the transcendental equation:

Γ
(
1 + i

2
(r+ω − k)

)
Γ
(
1 + i

2
(r+ω + k)

)
Γ(1− ir+ω)

Γ
(
1− i

2
(r+ω − k)

)
Γ
(
1− i

2
(r+ω + k)

)
Γ(1 + ir+ω)

(
λ

2

)i 2r+ω
= ±1 . (3.27)

This equation cannot be solved analytically in general; however, there are two frequency
regimes where the (approximate) solution is simple. First of all, in the “low-frequency”
regime:

ω ∼ 1

Lλ
, (3.28)

where we used the wormhole throat length definition (2.5); note that Lλ = R2/r+ log(16λ−2)�
R, r+ (i.e. it is the largest scale in the solution). Then, we have the solutions:

ωn ≈ n
π

Lλ
, n ∈ Z . (3.29)

Second, in the “high-frequency” regime:5

ω � r+

R2
, (3.30)

or equivalently ω � r−1
+ ; note that then automatically ω � L−1

λ . In this limit, we find:

ωn ≈
(
n± 1

2

)
π

Lλ
, n ∈ Z , (3.31)

Curiously, these differ only from the low frequency normal modes (3.29) by a shift of
π/(2Lλ). The intermediate frequency regime must then interpolate between the solutions
(3.29) and (3.31). In any case, we can conclude that the modes are (approximately)
equally spaced with a spacing inversely proportional to the wormhole length. Note that
the wormhole thus only has normal modes and no quasinormal modes, as appropriate for
a pure state in AdS,6 such as also empty AdS as discussed in appendix B.1.

Constructing bulk fields piecewise Our next task is to construct the piecewise bulk
fields; this construction is analogous to the construction of the fields in empty AdS in
appendix B.1. The Lorentzian fields are expanded as

Φi =
∑
k

eikϕ
∫
Ci

dω e−iωtfλδij s̃j , (3.32)

where in this notation i, j = {1, 2} specify whether we are on the forward or the backward
Lorentzian bulk piece. This ansatz has the correct UV asymptotics since:

lim
r→∞

Φi =
∑
k

eikϕ
∫
Ci

dω e−iωtfλδij s̃j ≡ si ,

lim
r→−∞

Φi =
∑
k

eikϕ
∫
Ci

dω e−iωtfλδij s̃j ≡ 0 .

(3.33)

5In this limit, we will also always assume r+ω � k.
6Without a horizon and in AdS asymptotics, there is nowhere that the scalar field can “leak” out to, so

the amplitude of an eigenfunction cannot decrease. This is in contrast to Damour-Solodukhin wormholes in
flat space, which have quasinormal modes (with a very small imaginary part) since the scalar wavefunction
can “leak” out to flat infinity [63].
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We parametrize the freedom in choosing the contour Ci by writing (again, precisely analo-
gous to empty AdS in appendix B.1):

Φi =
∑
k

eikϕ
[∫
F

dω e−iωtfλδij s̃j +

∫
W<

dω e−iωtfλVij s̃j +

∫
W>

dω e−iωtfλWij s̃j

]
.

(3.34)

Here, Vij and Wij are arbitrary analytic functions of ω, F is a Feynman contour, W> is
a negatively oriented contour around R>0 and W< is a positively oriented contour around
R<0, see figure 6. Note that, as opposed to the black hole field ansatz (3.12), we do not

ω

W>W<

FF

Figure 6: The contours F ,F ,W>,W< in the complex ω-plane. The crosses on the real
line are the poles of f̃ .

include a term with an upper or lower complex plane contour U or L as fλ (and Vij and
Wij) have no poles there. The Euclidean fields, since there are no Euclidean sources, are
decomposed as

ΦI =
∑
k

eikϕ
[∫
W<

dω e−ωτfλVIj s̃j +

∫
W>

dω e−ωτfλWIj s̃j

]
. (3.35)

Regularity on γa (τ < 0) as ω → +∞ further fixes Waj = 0, and regularity on γb (τ > 0)
as ω → −∞ fixes Vbj = 0.

Applying matching conditions The Schwinger-Keldysh contour (3.23), the piecewise
bulk fields (3.34) and (3.35), and the matching conditions (3.24) are precisely the same as
those of empty AdS discussed in appendix B.1 after substituting the AdS scalar mode f
with the wormhole mode fλ used here. Thus, applying and solving the matching conditions
proceeds precisely the same way as in appendix B.1, and the results are:

Vij =

(
0 −1
0 −1

)
, Wij =

(
0 0
1 −1

)
,

Vaj =
(
1 −1

)
eiωT , Wbj =

(
1 −1

)
eiωT .

(3.36)

The Euclidean and Lorentzian fields are thus completely determined in terms of the sources
s̃i.

Extracting the correlators Extracting the correlators of the wormhole happens en-
tirely analogous to empty AdS in appendix B.1 (again, with the substitution of the AdS
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mode f by fλ). The result for the retarded correlator is then:

iGR
WH(x, x′) =

θ(t− t′)
2π2i

∑
k

eik(ϕ−ϕ′)
∫
F−F

dω e−iω(t−t′)αβλ ,

=
θ(t− t′)

2π2i

∑
k

eik(ϕ−ϕ′)
∫
R+iε

dω e−iω(t−t′)αβλ ,

=
θ(t− t′)

2π2i

∑
k

eik(ϕ−ϕ′)
∫
W>−W<

dω e−iω(t−t′)αβλ , (3.37)

where in the second line we have used the relation F − F = R + iε, with ε > 0 a small,
real, and positive parameter, and in the third line we have used that θ(t − t′) forces the
contour of R + iε to close in the lower half plane, see figure 6. Note that

βλ =
1

1− κ2
λ

(
β+ − κ2

λβ
−) , (3.38)

and α is the same as for the BTZ black hole, see (3.7).

3.3 Feynman Correlator of a Wormhole Transition

The real-time holography formalism can also be used to calculate “off-diagonal” correlators
such as 〈λ′|OO|λ〉, where we denote the light scalar operator dual to the probe scalar field
Φ by O. To calculate such a correlator, one must prepare Euclidean states with wormhole
parameter λ, resp. λ′ on γa, resp. γb (using the notation of (3.23)). The Lorentzian piece
on γ1,2 is then in principle completely determined by the boundary conditions obtained by
“gluing” the two Euclidean sections to the Lorentzian piece appropriately.

In this way, the Lorentzian piece must become time-dependent, as it interpolates be-
tween a geometry with wormhole parameter λ at (Lorentzian) time t = −T and a geometry
with parameter λ′ at t = +T . We will model this time-dependence as a “sudden” transition
at time t = t0 between the two wormhole states |λ〉 , |λ′〉. We will demand that |λ−λ′| � λ
so that this procedure can provide a meaningful approximation.7

Having set up the problem in this simplified way, we will now show that it is relatively
straightforward to obtain the explicit results for the “off-diagonal” momentum space cor-
relator to O(λ−λ′). We will consider (only) the Feynman correlator, as this is the natural
one to consider when the (heavy) initial and final states are not the same.

Schwinger-Keldysh contour We take an in-out Schwinger-Keldysh contour consisting
of two Euclidean (γI , I = a, b) and two Lorentzian (γi, i = 1, 2) segments, whose Keldysh
time θ = t− iτ runs as

γa : θ ∈ [−T + i∞,−T ] ,

γb : θ ∈ [T, T − i∞] ,

γ1 : θ ∈ [−T, t0] ,

γ2 : θ ∈ [t0, T ] .
(3.39)

As mentioned above, we imagine that at time t = t0, there is an instantaneous change
in the wormhole state from |λ〉 to |λ′〉. We depict this contour in figure 7; note that
this contour is set up to calculate the Feynman correlator as mentioned above. The bulk

7Note that the Solodukhin wormhole does not satisfy the (vacuum) Einstein equations in any case,
and that we have never specified explicitly what matter would be necessary to support it. As long as
|λ − λ′| � λ, then the time-dependent Lorentzian “transition” geometry will actually have the same
approximate energy-momentum tensor supporting it as the original (time-independent) wormhole.
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θ = t− iτ

γa τ

γb τ

γ1

t

γ2

t

(−T,∞)

(−T, 0) (t0, 0)

(T, 0)

(T,−∞)

Figure 7: The in-out Schwinger-Keldysh contour appropriate for a transition between
wormhole states. On the segments γa and γ1 the state is |λ〉. Then at Lorentzian time
t = t0 a “heavy” operator is suddenly applied (red bullet on the diagram) that changes the
state to |λ′〉. This new state then forms that background on the segments γ2 and γb.

version of this Schwinger-Keldysh contour follows analogously to the bulk versions that we
previously considered and essentially fills in the bulk in such a way that the bulk fields
obey smoothness conditions (in r) at the two different throat positions. Thus, we have the
(temporal) matching conditions:

Φa(0, ϕ, r) = Φ1(−T, ϕ, r) , ∂τΦa(0, ϕ, r) = −i∂tΦ1(−T, ϕ, r) ,
Φ1(t0, ϕ, r) = Φ2(t0, ϕ, r) , ∂tΦ1(t0, ϕ, r) = ∂tΦ2(t0, ϕ, r) ,

Φb(0, ϕ, r) = Φ2(T, ϕ, r) , ∂τΦb(0, ϕ, r) = −i∂tΦ2(T, ϕ, r) .

(3.40)

These matching equations are valid at all r from the throat position at rt to infinity;
however, note that the throat position is now dependent on the time (i.e. whether t < t0
or t > t0). For t = t0 we can take the lower bound on r as min(rt,λ, rt,λ′).

Scalar wave solutions We follow the same reasoning as in section 3.2. In particular,
we choose to only put sources on the right side of the wormhole. Since for t < t0, resp.
t > t0, the wormhole geometry is given by the time-independent geometry with wormhole
parameter λ, resp. λ′, it follows that the scalar solutions are simply fλ, resp. fλ

′
, given

by (3.26). Note that these functions have normal mode poles specified by (3.27) with λ,
resp. λ′.

Constructing bulk fields piecewise We express the Lorentzian fields as

Φ1 =
∑
k

eikϕ
[∫
F

dω e−iωtfλδ1j s̃j +

∫
W<

dω e−iωtfλV1j s̃j +

∫
W>

dω e−iωtfλW1j s̃j

]
,

Φ2 =
∑
k

eikϕ
[∫
F

dω e−iωtfλ
′
δ2j s̃j +

∫
W<

dω e−iωtfλ
′
V2j s̃j +

∫
W>

dω e−iωtfλ
′
W2j s̃j

]
,

(3.41)

where, for convenience, we have split the Lorentzian source into two parts s1, s2, where the
source s1(t, ϕ) is defined to vanish for t ≥ t0 and the source s2(t, ϕ) is defined to vanish for
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t ≤ t0. As before, we also express the regulated, sourceless Euclidean fields as

Φa =
∑
k

eikϕ
∫
W<

dω e−ωτfλVaj s̃j ,

Φb =
∑
k

eikϕ
∫
W>

dω e−ωτfλ
′
Wbj s̃j .

(3.42)

Near the matching points, the Lorentzian fields behave as (closing the contours appropri-
ately):

Φ1(t ∼ −T ) =
∑
k

eikϕ
[∫
W<

dω e−iωtfλ(δ1j + V1j)s̃j +

∫
W>

dω e−iωtfλW1j s̃j

]
,

Φ1(t ∼ t0) =
∑
k

eikϕ
[∫
W<

dω e−iωtfλV1j s̃j +

∫
W>

dω e−iωtfλ(δ1j +W1j)s̃j

]
,

Φ2(t ∼ t0) =
∑
k

eikϕ
[∫
W<

dω e−iωtfλ
′
(δ2j + V2j)s̃j +

∫
W>

dω e−iωtfλ
′
W2j s̃j

]
,

Φ2(t ∼ T ) =
∑
k

eikϕ
[∫
W<

dω e−iωtfλ
′
V2j s̃j +

∫
W>

dω e−iωtfλ
′
(δ2j +W2j)s̃j

]
.

(3.43)

Applying matching conditions The matching (3.40) conditions at t = ±T give:

W1j = 0 , V2j = 0 . (3.44)

The matching condition (3.40) at t = t0 in principle give a matching of sums over the
residus of the different poles of fλ and fλ

′
. However, working to first order in δλ = λ′−λ,

we can write:

fλ
′
= fλ +

R2

r+

4iω

λ

κ2
λ

(1− κ2
λ)

2

(
f+ − f−

)
δλ+O(δλ2) . (3.45)

Thus, at this order, it follows that the normal mode poles of fλ and fλ
′

are the same (i.e.
the solutions to κ2

λ = 1). We can denote ω+
nk to be the positive normal mode solutions

of (3.27), where n = 1, 2, . . . labels successively larger solutions and k ∈ Z. Similarly, we
denote ω−nk to be the negative solutions of (3.27). Note that the O((δλ)n) term in this
expansion goes as ∼ (ω δλ)n, so that the expansion breaks down for sufficiently large ω.

We define the following residues:∮
ω±nk

dω
1

1− κ2
λ

= ±2π
1

qλ(ω
±
nk, k)

,∮
ω±nk

dω
1

(1− κ2
λ)

2
= ±2π

Aλ(ω
±
nk, k)

qλ(ω
±
nk, k)

,

(3.46)

where the circular integral around ω+
nk (resp. ω−nk) is defined to have negative (resp. posi-

tive) direction to conform with our definition of W≷. The quantity qλ(ω, k) is given by:

qλ(ω, k) =
R2

r+

[
4 log

(
λ

2

)
+ ψ

(
1 +

i

2
(r+ω − k)

)
+ ψ

(
1− i

2
(r+ω − k)

)
− 2ψ(1− ir+ω)

+ψ

(
1 +

i

2
(r+ω + k)

)
+ ψ

(
1− i

2
(r+ω + k)

)
− 2ψ(1 + ir+ω)

]
. (3.47)

The quantity Aλ(ω, k) has a similar (but lengthier) expression in terms of polygamma
functions.
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Using the residues (3.46), the basis functions (to first order in δλ) (3.26) and (3.45),
together with the Euclidean matching results (3.44), the behaviour of the fields (3.43) near
t ∼ t0 can be rewritten as:

Φ1(t ∼ t0) = 2π
∑
k

eikϕ

[
−
∑
n

e−iω
−
nkt
g−(ω−nk, k, r)

qλ(ω
−
nk, k)

V1j(ω
−
nk)s̃j(ω

−
nk, k)

+
∑
n

e−iω
+
nkt
g−(ω+

nk, k, r)

qλ(ω
+
nk, k)

δ1j s̃j(ω
+
nk, k)

]
,

Φ2(t ∼ t0) = 2π
∑
k

eikϕ

[
−
∑
n

e−iω
−
nkt
g−(ω−nk, k, r)

qλ(ω
−
nk, k)

(
1 +

R2

r+

4iω−nk
λ

Aλ(ω
−
nk, k)δλ

)
δ2j s̃j(ω

−
nk, k)

+
∑
n

e−iω
+
nkt
g−(ω+

nk, k, r)

qλ(ω
+
nk, k)

(
1 +

R2

r+

4iω+
nk

λ
Aλ(ω

+
nk, k)δλ

)
W2j(ω

+
nk)s̃j(ω

+
nk, k)

]
,

(3.48)

where we used the definition (3.9) for g−. Using these expressions, the matching condition
(3.40) can now be performed separately for each of the (linearly independent) residue terms
in the sum. This gives us the remaining contour-correcting functions (to first order in δλ):

V1j(ω, k) =

(
1 +

R2

r+

4iω

λ
Aλ(ω, k)δλ

)
δ2j , ω < 0 ,

W2j(ω, k) =

(
1− R2

r+

4iω

λ
Aλ(ω, k)δλ

)
δ1j , ω > 0 .

(3.49)

Extracting the correlator Without loss of generality, we take one operator insertion
to be at time t < t0; then, as we slide the other operator insertion between t′ ∈ [−T, T ],
we obtain for the Feynman correlator:

iGF
λ→λ′(x, x

′) = θ(t0 − t′)iG11(x, x′) + θ(t′ − t0)iG12(x, x′)

=
1

2π2i

∑
k

eik(ϕ−ϕ′)
[
θ(t0 − t′)

∫
F

dω e−iω(t−t′)αβλ

+θ(t′ − t0)

∫
W<

dω e−iω(t−t′)αβλ
(

1 +
R2

r+

4iω

λ
Aλδλ

)]
.

(3.50)

We can recast this result as

iGF
λ→λ′(x, x

′) = iGF
λ→λ(x, x

′) +
θ(t′ − t0)

2π2i

∑
k

eik(ϕ−ϕ′)
∫
W<

dω e−iω(t−t′)αβλ
(
R2

r+

4iω

λ
Aλδλ

)
= iGF

λ→λ(x, x
′)− 4R2θ(t′ − t0)

πr+

δλ

λ

∑
n,k

eik(ϕ−ϕ′)
(
e−iω(t−t′)α(β+ − β−)

ωAλ
qλ

)∣∣∣∣
ω=ω−nk

,

(3.51)

where iGF
λ→λ(x, x

′) is the Feynman propagator of a wormhole that retains the same param-
eter λ throughout the whole Lorentzian (and Euclidean) evolution, i.e. the propagator as
follows from (3.37) and section 3.2. Note that this expression is in principle only valid where
the expansion (3.45) is valid, so (as mentioned above after (3.45)), it cannot be trusted at
arbitrary high frequencies. We will discuss the position-space propagator following from
(3.51) in section 5.3.
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4 Retarded Wormhole Correlator via Hybrid WKB

In this section we aim to apply the hybrid WKB technique, developed by Bena-Heidmann-
Monten-Warner (BHMW) in [24], to the wormhole toy model.8 Our goal is to obtain the
free scalar retarded correlator for the non-rotating wormhole and compare this WKB result
to the real-time holography result we obtained above in (3.37). We will write this retarded
propagator as:

iGR(∆t,∆ϕ) =
θ(∆t)

2π2i

∑
k

∫
R+iε

dω e−iω∆t+ik∆ϕR(ω, k) , (4.1)

with ∆t = t− t′ and ∆ϕ = ϕ− ϕ′. The hybrid WKB technique will then give us R(ω, k).
The BHMW WKB approximation works in a number of steps. First, we apply the

traditional WKB method to find an approximate solution to the wave equation. In order
to proceed with finding the WKB approximation to the propagator, one needs to ana-
lyze the asymptotic structure of the approximate solution around the boundary. This is
generally a hard task as the WKB solution is not written in a basis that is conducive to
asymptotic analysis. Thus, in the second step of the method, one finds a new potential
that asymptotically approaches the original potential and for which the wave equation can
be solved exactly. Then, the WKB solutions can be matched to the asymptotic solutions,
which finally allows one to efficiently analyze the asymptotic structure of the approximate
solutions to the wave equation and ultimately extract the propagator.

4.1 Calculation of the WKB Propagator

We will now apply the BHMW WKB method step-by-step to a free scalar in the (non-
rotating) wormhole background with metric (2.4).

Setting up the radial equation and potential We wish to split the radial part of
the scalar as:

Φr(r) = h(r)φ(r) , (4.2)

and we perform a coordinate transformation r → x(r) to write the radial wave equation
(2.8) for φ in the Schrödinger form:

∂2

∂x2
φ(x)− V (x)φ(x) = 0 . (4.3)

The absence of a term proportional to ∂xφ leads to the condition:

h(r) =
1(

r2X(r)Y (r)
(
∂x(r)
∂r

)2
)1/4

. (4.4)

We are still free to choose x(r), which will affect the form of the potential V (x). To align
with the analysis in BHMW [24], we choose x(r) such that the potential approaches a
particular constant in the UV:

lim
x→∞

V (x) = 1 +m2R2 ≡ µ2 . (4.5)

8This method was used in [25] in an asymptotically flat setting; we also used this method in our previous
paper [42] to calculate correlators for the extremal BTZ wormhole.
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Figure 8: The potential V (x) plotted as a function of x with for µ = 1, k = 1, ω = 2, rλ = 1,
and λ = {10−1, 10−2, 10−3}. As λ decreases, the width of the potential becomes larger and
larger. The black hole potential is also depicted, shifted to line up with the λ = 10−3 graph
for x > 0.

where we have defined the dimensionless parameter µ. This can be achieved by fixing the
function x(r) such that:

h(r) =
R

r
. (4.6)

A choice of x(r) that satisfies (4.4) and (4.6) is:

x(r) = log

(√
r2 − r2

λ

r2
λ

+

√
r2 − r2

+

r2
λ

)
− log λ , (4.7)

Note that x(r+) = 0 + O(λ2).9 The x coordinate spans the whole wormhole and ranges
from −∞ to ∞. The relation between x(r) and r can be inverted to find

r2 = r2
λ

(
1 +

λ2

4(1− λ2)2
(e−x + ex(1− λ2))2

)
= r2

+

(
1 + λ2 sinh2 x

)
+O(λ4) . (4.8)

The potential now takes a relatively simple form in terms of the radial coordinate x:

V (r(x)) = µ2 +
R2

r2

(
k2 −m2r2

λ −R2ω2
)
− r2

λ

r4

(
k2R2 + r2

+

)
. (4.9)

Figure 8 is a plot of the potential for different values of λ. The potential approaches µ2 in
the UV and at the throat position10 x = 0 we find:

V (x = 0) = −ω
2R4

r2
+

+O
(
λ2
)
, (4.10)

9We could have also chosen e.g. x(rt) = 0 + O(λ2); this would introduce an extra constant term
− log 1/2(1 +

√
5) in (4.7). Such a constant does not change the derivation of the end result (4.26).

10We saw above that at the throat position r = r+, we actually have x = O(λ2) instead of x = 0;
however (4.10) will still be the value of the potential at the throat position to O(λ2).
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The following condition needs to be met in order for the WKB approximation to be
valid ∣∣∣∣(V (x))−

3
2
∂V (x)

∂x

∣∣∣∣� 1 . (4.11)

This quantity should be evaluated away from the turning points, defined by V (xturn) = 0,
where the left side diverges. Expanding the left hand side of (4.11) for small λ, we find:∣∣∣∣(V (x))−

3
2
∂V (x)

∂x

∣∣∣∣ = λ2
∣∣∣ r+

R6ω3
(k2R2 + r2

+(1 + µ2) + ω2R4) sinh 2x
∣∣∣+O(λ4) . (4.12)

The prefactor of λ2 ensures that (4.11) is satisfied around the throat position (as long as
the frequency is sufficiently high (e.g. ωR� λ).

Asymptotic solutions Applying the same procedure outlined above to the non-rotating
BTZ black hole metric (2.1) gives as black hole x coordinate:

xBH(r) = log

√
r2

r2
+

− 1, (4.13)

and potential:

Vasymp(x) =
e2x

(1 + e2x)2

(
1 +

k2R2

r2
+

− ω2R4 (1 + e−2x)

r2
+

+ µ2
(
1 + e2x

))
. (4.14)

Now, the wormhole potential is well approximated by:

V (x) = θ(x)Vasymp(x+ log(λ/2)) + (x→ −x) +O(λ2) , (4.15)

where the shift in argument by log(λ/2) comes from comparing the wormhole xWH coor-
dinate (4.7) and the black hole xBH coordinate (4.13) at the matching radius r = rt =
r+(1 + λ2/8) (see (2.12)); i.e. we have xWH = O(λ2) and xBH = log(λ/2). Physically, this
shift in (4.15) for the x coordinate arises from the wormhole of length Lλ opening up. The
expression (4.15) thus nicely encapsulates that for small λ, we get two copies of the BTZ
potential connected by a wormhole of length Lλ.

The exact solutions φasymp(x) are the well-known solutions to the BTZ wave equation
(3.4), which we repeat here in the x coordinate:

φasymp(x) =
∑
±
c±
(
1 + e2x

) 1
2
− ikR

2r+ e
± iωR2x

r+

2F1

(
1− µ

2
− iRk ∓ ωR

2r+

,
1 + µ

2
− iRk ∓ ωR

2r+

; 1± iωR2

r+

;−e2x

)
.

(4.16)

This general solution (4.16) has the structure:

φasymp(x) = c1φ
grow
asymp(x) + c2φ

dec
asymp(x) , (4.17)

where in the UV we have defined the two linearly independent solutions as those that
behave at large x as:11

φgrow
asymp(x) = eµx (1 + . . . )

φdec
asymp(x) = e−µx (1 + . . . ) ,

(4.18)

where the omitted terms are subleading in x at large x. When µ is an integer, there are
also pieces proportional to x in the UV expansion; we will assume µ not to be an integer
and analytically continue the final result to integer µ (as we are interested in µ = 1). Note
that both φgrow

asymp and φdec
asymp are real functions of x (for real r+, k, ω, µ,R).

11Note that the full radial function Φr in (2.7) is still given by Φr(r) = φ(x)R/r.
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Calculation of the WKB propagator Now we have all ingredients to evaluate the
propagator that follows from the hybrid WKB technique. According to [24] the propagator
is given by

RWKB =

(
A+

√
3

2

)
e−2I+ − φgrow

asymp(x+)

φdec
asymp(x+)

. (4.19)

where

I+ = −µx+ +

∫ ∞
x+

(√
|V (z)| − µ

)
dz , (4.20)

and the turning points x± are defined such that V (x±) = 0. The expression for A depends
on the number of turning points. For a single turning point, we have

A = sign(ω)
i

2
. (4.21)

For two turning points x− and x+, we have

A =
1

2
tan(Θ) ,

Θ =

∫ x+

x−

√
|V (z)|dz .

(4.22)

This will be the formula we will need to evaluate to find the wormhole propagator. The
general expression for A for more than two turning points can be found in an appendix of
[24].

It is useful to first apply the WKB approximation to the (non-rotating) BTZ black hole
itself. The BTZ potential has only one turning point, so one finds

RBH
WKB ≈

(
i

2
sign(ω) +

√
3

2

)
e−2I+ − φgrow

asymp(x+)

φdec
asymp(x+)

. (4.23)

As noted earlier, the exact solutions φgrow,dec
asymp are real and so is I+. This allows us to write

Re
(
RBH

WKB

)
≈
√

3

2
e−2I+ − φgrow

asymp(x+)

φdec
asymp(x+)

,

Im
(
RBH

WKB

)
≈ 1

2
sign(ω)e−2I+ .

(4.24)

The wormhole potential is essentially two copies of the black hole potential, leading to
two turning points, so A will differ with respect to the BTZ propagator (4.23). However,
due to (4.15) we can see that Iwormhole

+ = IBH
+ +O(λ2), and thus we can write

RWH
WKB ≈ Re

(
RBH

)
+ 2 sign(ω)A Im

(
RBH

)
, (4.25)

where ≈ now denotes both inaccuracy due to the WKB approximation and corrections of
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order λ2. Now, we need to evaluate A or equivalently Θ:

Θ =

∫ x+

x−

√
|Vasymp(z)|dz +O(λ2)

=

∣∣∣∣∣log

[
e−

1
2

(πµ)

(
16ω2R2

λ2

)ωR2/r+ (
−r

2
+ (µ2 + 1) + 2ir+µωR

2 + k2R2 − ω2R4

r2
+ (µ2 + 1)− 2ir+µωR2 + k2R2 − ω2R4

)iµ/2
(
−2ω2

(
k2R2 − r2

+

(
µ2 − 1

))
+

(
r2

+

R2

(
µ2 + 1

)
+ k2

)2

+ ω4R4

)√r2++k2R2−ωR2

2r+

(
ω

(
2
√
r2

+ + k2R2 + ωR2

)
+
r2

+

R2

(
µ2 + 1

)
+ k2

)−√r2++k2R2

r+


∣∣∣∣∣∣∣+O(λ2) . (4.26)

This expression simplifies in the “low-frequency” limit (3.28), ω ∼ L−1
λ (where wormhole

throat length Lλ is defined in (2.5)), and in the “high-frequency” limit (3.30), ω � r+/R
2.

In both cases, the expression that we get is (for µ = 1, and subtracting integer multiples
of π):

Θ = |ω Lλ| . (4.27)

We discarded terms of O(λ2) as well as terms of O(λ0ω) as they will always be subleading.
We can understand this expression for Θ as follows: when Lλ becomes very large (λ is
exponentially small), the wormhole throat contribution dominates the integral in (4.26).
Since the potential is very flat for (almost) the entire wormhole, as can be seen from (4.15)
and figure 8, we can approximate the integral by:

Θ ≈
√
|V (0)|Lλ +O(λ0)

= |ω Lλ|+O(λ0) ,
(4.28)

where we used the value of V (0) in (4.10). The result is indeed in agreement with the
direct evaluation (4.27).

4.2 Hybrid WKB vs. Real Time Holography

For the non-rotating BTZ black hole, we calculated the black hole retarded scalar correlator
using real-time holography in section 3.1 as:

RBH = αβ− , (4.29)

Using the fact that (αβ±)∗ = αβ∓, we note that:

Re
(
RBH

)
=

1

2
(αβ+ + αβ−) , Im

(
RBH

)
=
i

2
(αβ+ − αβ−) . (4.30)

For the corresponding non-rotating Solodukhin wormhole, in section 3.2 we calculated:

RWH =
1

1− κ2
αβ+ − κ2

1− κ2
αβ− = Re

(
RBH

)
− i 1 + κ2

1− κ2
Im
(
RBH

)
, (4.31)

where κ is given by (3.26) (and (3.6)). Noting that |κ| = 1, we can define the angle η
through:

κ ≡ ie−iη , (4.32)
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so that (4.31) becomes:

RWH = Re
(
RBH

)
+ tan η Im

(
RBH

)
, (4.33)

As an aside, we note that, curiously, there is a simple way to go from the black hole
to wormhole correlator in the large frequency limit: one simply does an “analytic con-
tinuation” of the inverse temperature β to the travel time ∆t, where ∆t = 2Lλ in the
wormhole. Then e−βω → e−i∆tω, so the “information losing” factor becomes an oscillatory
factor which shows the recovery of information in a time ∆t.

The real-time holography result (4.33) is to be compared to the full WKB answer for
the propagator (where we set µ = 1), which we derived in the previous section:

RWH
WKB ≈ Re

(
RBH

)
+ (sign(ω) tan Θ) Im

(
RBH

)
, (4.34)

where Θ is given by (4.26).

Comparison Comparing (4.34 to (4.33), we see that the WKB approximation does a
good job of capturing the propagator when Θ ≈ η (for ω > 0).

In the low-frequency regime (3.28), we have:

η ≈ ωLλ +
π

2
, Θ ≈ ωLλ , (4.35)

so that the mismatch is maximal at low frequencies.12 On the other hand, in the high-
frequency regime (3.30), expanding upon (4.27):

η ≈ ωLλ+
1

2

(
R2

r+

ω

)−1

− 5

864

(
R2

r+

ω

)−3

+O(ω−5) , Θ ≈ ωLλ+
2

3

(
R2

r+

ω

)−3

+O(ω−7) .

(4.36)
Thus, we see that the the propagators start differing in the high-frequency regime at
O(ω−1). We give an example of the difference between η and Θ in figure 9; for large
wormhole throat lengths Lλ, we see that the (large) mismatch is only at very low frequencies
so that Θ asymptotes to η rather quickly. Thus, we can conclude that the BHMW hybrid
WKB approximation captures the wormhole propagator quantitatively very well.

5 Position-Space Correlators

In this section, we will integrate explicitly the frequency-space propagators found in section
3 to obtain the position-space propagators for both the (non-rotating) BTZ black hole and
the corresponding Solodukhin wormhole. We will also present the position-space correlator
and interpretation thereof for the “wormhole transition” correlator of section 3.3.

We repeat the general relation (4.1) between the frequency space retarded propagator
R and the position-space one, valid for all of the correlators we are considering:

iGR(∆t,∆ϕ) =
θ(∆t)

2π2i

∑
k

∫
R+iε

dω e−iω∆t+ik∆ϕR(ω, k) . (5.1)

Note that compared to (3.22) or (3.37), we have set ∆t = t− t′ and ∆ϕ = ϕ− ϕ′.
12Note that we must actually take the entire WKB approximation with a grain of salt for small ω, as

mentioned above around (4.12). Small frequencies should be treated separately, see [24].
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Figure 9: A plot of (2/π) |(η −Θ) mod π| as a function of ω. We take R = r+ = 1,
and λ = 10−20 (Lλ ≈ 94.88). The blue, red, and green lines respectively correspond
to k = 0, 5, 10. The mismatch starts out maximally at π/2 (see (4.35)) but asymptotes
(quickly) to zero (see (4.36)).

5.1 Black Hole Correlator

To calculate the position-space retarded propagator for the BTZ black hole, we need to
consider the contributions from GLL and GRR separately. We refer to appendix A of [54]
for details of this calculation; here, we review this derivation briefly.

Starting with GLL in (3.21), we take t > t′ and thus close the ω integral in the lower
half plane. The functions α and β+ have no poles here, while we pick up the residues of
the poles ω−nk± given in (3.8) of β−. Note that nω = (eβω−1)−1 also has (purely imaginary)
poles at ω = 2πβ−1in for n ∈ Z (depicted by circles on figure 4). As discussed in [54], in
principle one needs to take the residues of these poles into account as well, but since they
end up giving a zero contribution in the final result, we will omit them here. Then we get:

iGLL(∆t,∆ϕ) = − 2

πi

r+

R2

∑
k∈Z

∞∑
n=1

∑
±
eik(∆ϕ∓∆t

R
)e−2

r+

R2 n∆tα(ω−nk±)
eβω

−
nk±

eβω
−
nk± − 1

. (5.2)

26



To evaluate the k sum, we use the Poisson resummation formula:13∑
k

f(k) =
∑
m

∫
dkf(k)e2πkmi , (5.6)

to rewrite the sum over k in (5.2) as an integral over k and a “sum over images” m:

iGLL(∆t,∆ϕ) = − 2

πi

r+

R2

∑
m∈Z

∞∑
n=1

∑
±

∫
dk eik(∆ϕ∓∆t

R
+2πm)e−2

r+

R2 n∆tα(ω−nk±)
e
±2π R

r+
k

e
±2π R

r+
k − 1

,

(5.7)
where we used β = 2πR2/r+. To regulate this integral as k → ±∞, we must send
∆t → ∆t(1 − iε) with ε > 0; this regulates both ends of the integral for both the terms
with ± in (5.7). Then, for ∆ϕ ∓∆t/R < 0, we can close this k integral in the lower half
plane. Only the factors (e±2πR/r+k − 1)−1 have poles (when k = −i l r+/R for l ∈ Z), and
so we pick up the residus:

iGLL(∆t,∆ϕ) =
2

π

r2
+

R3

∑
m∈Z

∞∑
n=1

∞∑
l=1

∑
±
±el

r+
R

(∆ϕ∓∆t
R

(1−iε)+2πm)e−2
r+

R2 n∆t(1−iε)n(n± l) . (5.8)

We can explicitly perform the sum over the two terms with ± as well as the infinite sums
over n, l, resulting in:

iGLL(∆t,∆ϕ) =
1

2π

r2
+

R3

∑
m∈Z

1(
cosh

[
r+
R2 ∆t(1− iε)

]
− cosh

[
r+
R

(∆ϕ+ 2mπ)
])2 , (5.9)

which agrees with [54]. Even though (5.9) was derived for ∆ϕ ∓ ∆t/R < 0, it can be
analytically continued outside of this region.

To calculate GRR, we again start with (3.21) and proceed analogously. The only differ-
ence is that to regulate the resulting k integral, we will need to send ∆t → ∆t(1 + iε).14

Thus, we indeed find iGRR = [iGLL]∗. The retarded propagator is then given by (3.22),
i.e.:

iGR
BH(∆t,∆ϕ) =

θ(∆t)

2π

r2
+

R3

∑
m∈Z

[
1(

cosh
[
r+
R2 ∆t(1− iε)

]
− cosh

[
r+
R

(∆ϕ+ 2mπ)
])2

− 1(
cosh

[
r+
R2 ∆t(1 + iε)

]
− cosh

[
r+
R

(∆ϕ+ 2mπ)
])2

]
. (5.10)

A plot of this correlator is given in figure 10.

13For a periodic function f̃(x) = f̃(x+ 2πn), we can write the two expansions:

f̃(x) =
∑
n∈Z

Cne
inx, f̃(x) =

1

2π

∫
dkf(k)eikx , (5.3)

and one finds the relation between the two expansions:

f(k) =

∫
dxf̃(x)e−ikx =

∑
n

Cnδ(n− k) , (5.4)

so that, using
∑
k δ(k − n) =

∑
m e

2πmni:∑
k

f(k) =
∑
n

Cn
∑
m

e2πmni =
∑
m

f̃(2πm) =
∑
m

∫
dk′f(k′)e2πkmi . (5.5)

14The origin of this difference in regulator is that in GRR in (3.21), β− is multiplied by n instead of
(n+ 1) as it is in GLL.
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Figure 10: The black hole correlator GR
BH(∆t,∆ϕ = 0.1) as given in (5.10). We take

R = r+ = 1 and ε = 10−10. The correlator decays exponentially for t > 0; note that each
subsequent (small) peak at t > 0 come from the contribution of an “image” m > 0. The
“double-peak” structure (apparent from the close-up on the right) is typical for ∆ϕ 6= 0.

5.2 Three Ways to the Wormhole Correlator

For the wormhole position-space propagator (4.33), we will first illustrate its basic prop-
erties using a quick and dirty, “naive” calculation. We will show the expressions for the
actual wormhole propagator and attempt a numerical evaluation of this. Finally, we will
simplify the wormhole by altering its matching condition to be frequency-dependent, which
will allow us to integrate the propagator analytically.

5.2.1 Naive high-frequency calculation

In the high-frequency limit (4.36), η ≈ ωLλ thus the correlator (4.33) simplifies to:

RWH ≈ Re
(
RBH

)
+ tan(ωLλ)Im

(
RBH

)
, (5.11)

Note that the poles of tanωLλ indeed correspond to the normal modes (3.31) in this
regime.15

A naive way to evaluate the wormhole propagator approximately would then be to use
the distributional identity:

tanx =
∞∑
n=1

2(−1)n−1 sin(2nx) , (5.12)

and its Fourier transform:

F(t) ≡ 1

2π

∫
dωe−iωt tanωLλ = i

∞∑
n=1

(−1)n−1 (δ(t+ 2nLλ)− δ(t− 2nLλ)) , (5.13)

Then, using the convolution theorem for Fourier transforms on the high-frequency retarded

15Note that if one tries to calculate the position-space retarded propagator using (5.1) and (5.11), in
addition to the contributions from residus around the (approximated) normal modes of the wormhole
coming from the poles of tan(ωLλ), there are also contributions from the residus of poles of αβ− (i.e.
the quasinormal modes of the original BTZ black hole). This is an artifact of the approximation used to
obtain (5.11), which is only valid in a particular regime for real ω. The exact result (4.33) does not have
any poles off the real axis; (5.11) is not valid in the entire complex plane.
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propagator (5.11):

GR
WH(∆t,∆ϕ) ≈ G0(∆t,∆ϕ) + (G1 ∗ F)(∆t,∆ϕ) , (5.14)

G0(∆x) ≡ −θ(∆t)
2π2

∑
k

eik∆ϕ

∫
dωe−iω∆tRe(RBH) , (5.15)

G1(∆x) ≡ −θ(∆t)
2π2

∑
k

eik∆ϕ

∫
dωe−iω∆tIm(RBH) , (5.16)

so that GR
BH(∆t,∆ϕ) = G0(∆t,∆ϕ) + iG1(∆t,∆ϕ), and the convolution gives:

(G1 ∗ F)(∆t,∆ϕ) = i
∞∑
n=1

(−1)n−1

∫
dt′G1(∆t− t′,∆ϕ) (δ(t′ + 2nLλ)− δ(t′ − 2nLλ))

= i
∞∑
n=1

(−1)n−1
(
G1(∆t+ 2nLλ)−G1(∆t− 2nLλ)

)
, (5.17)

so that we have the relation:

GR
WH(∆t,∆ϕ) ≈ G0(∆t,∆ϕ) + i

∑
n∈Z

(−1)nsgn(n)G1(∆t− 2nLλ) , (5.18)

where we define the n = 0 term of the sum to be G1(∆t) — although note that the Fourier
transform of the tan, as naively calculated above, does not contain this n = 0 term.

From the expression (5.18), we can clearly see the appearance of “echoes” in the prop-
agator, i.e. recurrences at periodic intervals 2Lλ of the correlator. Thus, at early times
0 < ∆t � Lλ, the propagator will mimic the BTZ one (5.10) and decay exponentially;
only at a time ∆t ∼ Lλ will the propagator start to differ qualitatively from the black
hole one due to the appearance of the first echo. This is the most important property of
the wormhole propagator that we wish to highlight; we will confirm this qualitative echo
behavior of (5.18) below in a (numerical) calculation of the full propagator (4.33), and also
(analytically) in a frequency-dependent wormhole alteration.

5.2.2 Full propagator

The derivation of (5.18) was rather imprecise; for example, we did not take care of the
correct contour for the ω integration in (5.1), and we resorted to the approximation of the
full propagator (4.33) by the high-frequency regime expression (5.11).

Calculating the full retarded propagator (4.33) is difficult as we do not have an analytic
expression for the propagator’s poles. As discussed in section 4.2, these poles are only
located on the real axis (i.e. they are normal modes) and are given at the location where
κ = ±1 with κ given in (3.26) and (3.6). Note that κ satisfies the following properties:

|κ| = 1 , [κ(ω, k)]∗ = κ(−ω, k) , κ(ω, k) = κ(ω,−k) . (5.19)

For a fixed k ∈ Z, we can denote the positive normal modes as ω+
nk with n = 1, 2, · · · and

n = 1 corresponding to the first (strictly) positive normal mode. Similarly, ω−nk are the
negative normal modes. From the properties (5.19), it follows that ω−nk = −ω+

nk and also
ω±n(−k) = ω±nk, for any n, k. Therefore, we can choose to express everything in terms of
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k ≥ 0 and ω+
nk. Evaluating the ω integral by closing in the lower half plane then gives:

iGR
WH(∆t,∆ϕ) =

θ(∆t)

2π2i

[ ∞∑
k=0

∞∑
n=1

e−iω
+
nk∆t+ik∆ϕG(k, ω+

kn)−
∞∑
k=0

∞∑
n=1

e+iω+
nk∆t+ik∆ϕG(k, ω+

kn)

+
∞∑
k=1

∞∑
n=1

e−iω
+
nk∆t−ik∆ϕG(k, ω+

kn)−
∞∑
k=1

∞∑
n=1

e+iω+
nk∆t−ik∆ϕG(k, ω+

kn)

]
,

(5.20)

G(k, ω) ≡ iπ2

2r+

(k2 −R2ω2)
∑
±± coth

(
π R

2r+
(k ±Rω)

)
∑
±

[
−2ψ

(
±iR2

r+
ω
)

+ ψ
(
i R

2r+
(k ±Rω)

)
+ ψ

(
i R

2r+
(−k ±Rω)

)] ,
(5.21)

where we used that G(k, ω) = G(−k, ω) = −G(k,−ω). We split the k, n sums (each) into
positive and negative frequency parts. Then, to evaluate these four sums directly, we put
regulators by changing:

e∓iω
+
nk∆t → e∓iω

+
nk∆t(1∓iε) , e±ik∆ϕ → e±ik∆ϕ(1±iε) , (5.22)

which gives the correct regulation of all four sums for ∆t,∆ϕ > 0. Then, we can nu-
merically evaluate the four sums in (5.20) to a given cut-off value nmax, kmax, see figure
11. Although the result clearly suffers from numerical noise (brought on by incomplete
sums),16 we can already clearly see the recurrences or “echoes” in the correlator occurring
at ∆t ≈ 2nLλ.
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Figure 11: The wormhole correlator GR
WH(∆t,∆ϕ = 0.1) as given in (5.20). We take

R = r+ = 1, λ = 2 · 10−20 and ε = 10−1, and evaluate each of the four sums in (5.20)
up to nmax = 500, kmax = 50. The red line is the computed value and the blue line is a
smoothed out average. We can clearly see the first recurrence or “echo”, which occur at
∆t ≈ 2nLλ ≈ 186.98n.

16For example, note that we do not see images appearing, nor the “double-peak” structure, as was
obtained for the black hole correlator (see figure 10).
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5.2.3 Low- and high-frequency approximation

The main obstacle to being able to explicitly find the wormhole correlator, and in particular
evaluate the infinite sums in (5.20), is that we do not have an analytic expression for the
normal modes ω±nk. These normal modes are solutions to the transcendental equation
κ2 = 1 with κ given by (3.26).

However, in the low- and high-frequency limits (see (3.28) and (3.30)), κ simplifies
considerably and we can find the normal modes explicitly. Therefore, let us consider
replacing κ entirely by either its low- or high-frequency limit:

κ̃(low) = exp (−iLλω) , κ̃(high) = exp
(
−iLλω + i

π

2

)
, (5.23)

Physically, we can interpret replacing κ by one of the κ̃’s as introducing a frequency-
dependent boundary condition at the middle of the wormhole throat (replacing (2.11)).

Replacing κ by either one of the κ̃’s in the wormhole modes fλ given in (3.26), it is
immediately clear that the normal modes of this altered wormhole satisfy κ̃2 = 1 and are
thus now given by:

ω̃(low)
n = n

π

Lλ
, ω̃(high)

n =

(
n+

1

2

)
π

Lλ
, (5.24)

with n ∈ Z. We will choose to work with the low-frequency limit in the rest of this section
(as opposed to the high-frequency limit that we chose in section 5.2.1); the high-frequency
case proceeds entirely analogously and moreover gives very similar end-results (such as
figure 12).

We consider the retarded propagator (3.37) and close the ω integral in the lower half
plane:

iGR
W̃H(low)

(∆t,∆ϕ) =
R2θ(∆t)

8L3
λr

2
+

∑
k∈Z

∑
n∈Z

∑
±
e
ik∆ϕ−i nπ

Lλ
∆t

(n2π2R2−k2L2
λ) coth

(
nπ2R2

2r+Lλ
± πR

2r+

k

)
.

(5.25)
We use the same Poisson resummation trick as we in the calculation of the black hole prop-
agator, which converts the sum over k into an integral and a sum over images, introducing
a factor ei2πkm, with m ∈ Z:

iGR
W̃H(low)

(∆t,∆ϕ) =
R2θ(∆t)

8L3
λr

2
+

∑
m∈Z

∑
n∈Z

∑
±

∫
dk e

ik(∆ϕ+2πm)−i nπ
Lλ

∆t
(n2π2R2 − k2L2

λ)

× coth

(
nπ2R2

2r+Lλ
± πR

2r+

k

)
. (5.26)

For ∆ϕ > 0, we can close the k contour in the upper half plane; note that the integrand
is already well-behaved as k → ±∞ so there is no need for introducing an extra regulator
(as there was in the black hole case). The coth factors have poles when:

k = ±nπR
Lλ

+ 2il
r+

R
, (5.27)

for l ∈ Z, so we obtain:

iGR
W̃H(low)

(∆t,∆ϕ) =− 2θ(∆t)

RL2
λ

∑
m∈Z

∑
n∈Z

∞∑
l=1

∑
±
l(nπR2 ± ilLλr+) (5.28)

× exp

(
−2l

r+

R
(∆ϕ+ 2mπ) + inπ

(
± R

Lλ
(∆ϕ+ 2mπ)− t

Lλ

))
.
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We can now perform the sums over l and n explicitly; just as for the empty AdS correlator
(see (B.35)), we need to regulate the sum over negative n by taking ∆t→ ∆t(1 + iε) and
the sum over positive n by taking ∆t→ ∆t(1− iε). Using the shorthand notation:

t̃ε ≡
π

Lλ
∆t(1 + iε), ϕ̃m ≡

πR

Lλ
(∆ϕ+ 2πm) , (5.29)

we can express the final result as:

iGR
W̃H(low)

(∆t,∆ϕ) =
θ(∆t)

2RL2
λ

∑
m∈Z

(
G̃(t̃ε, ϕ̃m)− G̃(t̃−ε, ϕ̃m)

)
, (5.30)

G̃(t̃ε, ϕ̃m) ≡ πR2
(
cos t̃ε cos ϕ̃m − 1

)
+ Lλr+ sin ϕ̃m coth r+Lλϕ̃m

πR2

(
cos ϕ̃m − cos t̃ε

)
sinh2 r+Lλϕ̃m

πR2

(
cos t̃ε − cos ϕ̃m

)2 .

From the final correlator expression (5.30), it is immediately clear that:

GR
W̃H(low)

(∆t+ 2nLλ,∆ϕ) = GR
W̃H(low)

(∆t,∆ϕ), (5.31)

for any n ∈ Z;, so that this correlator has exact, periodic echoes (as anticipated above in
section 5.2.1). We plot this correlator in figure 12; we can clearly see the the first echo at
∆t = 2Lλ. Note that there is also a “dip” in the correlator at ∆t = Lλ. It is interesting
to note that, as opposed to the black hole correlator (see figure 10), the contribution from
the images m ≥ 2 is exponentially suppressed compared to the m = 0 term as we can
see figure 12d (i.e. the red line for m = 0 is above the m > 2 peaks). Another difference
with the black hole correlator is that this correlator does not die off (exponentially) as
fast as the black hole one; note additionally that the Lλ → ∞ limit does not reproduce
the black hole correlator. These differences with the black hole correlator are artifacts of
extrapolating the low-frequency limit of the original wormhole to all frequencies, which
(as mentioned above) can be interpreted as a frequency-dependent modification of the

wormhole boundary condition. In particular, the normal modes ω̃
(low)
n in (5.24) differ

significantly from the actual normal modes of the original wormhole at high frequencies
(3.31); of course, the original wormhole has a correlator that (by construction) must have
the correct exponential fall-off for 0 < ∆t� Lλ.

17

5.3 Wormhole Transition Feynman Correlator

We would like to calculate the position-space correlator for the “off-diagonal” Feynman
correlator 〈λ|OO|λ′〉 in (3.51) that we discussed in section 3.3. The calculation of this
correlator suffers from the same problems we encountered in section 5.2.2, namely that
we cannot explicitly perform the relevant infinite sums over normal modes as we do not
have an analytic expression for these modes. Instead, we will calculate the off-diagonal
correlator given by (3.51) in the low-frequency approximation introduced above in section
5.2.3, which we will be able to find analytically.18

Recall that the low-frequency approximation of section 5.2.3 is obtained by replacing
κ in the scalar wave solutions (3.26) by κ̃(low) given in (5.23). The normal modes are then

17Note that the result for the correlator is very similar if we had selected instead the high-frequency
limit κ(high) in (5.23) as basis for our calculation. This is somewhat curious, since in this case it is of course
at low frequencies where this approximation and extrapolation diverges from the actual wormhole results.

18Just as for the diagonal correlator discussed in section 5.2.3, the calculation for the off-diagonal correla-
tor using instead the high-frequency approximation κ̃(high) is completely analogous, and gives qualitatively
the same result as the low-frequency approximation described here.
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(c) The wormhole correlator around ∆t = 2Lλ
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Figure 12: The altered wormhole correlator GR
W̃H(low)

(∆t,∆ϕ = 0.1) as given in (5.30). We

take R = r+ = 1, ε = 10−10, and Lλ = 100. We see the clear onset of the first echo at
∆t = 2Lλ.

given by ω̃
(low)
n in (5.24), which are the solutions to (κ̃(low))2 = 1. It is then a straightforward

exercise to calculate the residus of (1 − (κ̃(low))2)−1 and (1 − (κ̃(low))2)−2 at these normal
modes, to find the modified expressions that replace q, A in (3.46). We find the simple
expressions:

q̃ = 2Lλ, Ã = 1. (5.32)

The off-diagonal Feynman correlator then follows from (3.51), after replacing the normal

modes ω±nk by their modified versions ω̃
(low)
n and replacing the functions A, q by Ã, q̃. Note

that we can also replace δλ by δLλ using the following relation:

δLλ = −2
R2

r+

δλ

λ
. (5.33)

The actual calculation of the Feynman correlator proceeds precisely analogously as in
section 5.2.3 for the diagonal (retarded) correlator, although we note that the sum over n
is only over the negative poles (n < 0) as indicated in (3.51). As usual, we trade the sum
over k for an integral over k and sum over images m; after performing the integrals over ω
and k, we obtain (using ∆t = t− t′, ∆ϕ = ϕ− ϕ′ and assuming t′ > t0 > t):

iGF
W̃H(low),λ→λ′

(∆t,∆ϕ) = − 2

RL2
λ

∑
m∈Z

∑
n<0

∞∑
l=1

∑
±
l(nπR2 ± ilLλr+)×

(
1− 2nπi

δLλ
Lλ

)
× exp

(
−2l

r+

R
(∆ϕ+ 2mπ) + inπ

(
± R

Lλ
(∆ϕ+ 2mπ)− ∆t

Lλ

))
. (5.34)

33



This is the analogue of (5.28); note that compared to (5.28), the only difference in the
expression to be summed over is in the last factor on the first line. We can then again
perform the l, n sums explicitly, obtaining:

iGF
W̃H(low),λ→λ′

(∆t,∆ϕ)) =
1

2RL2
λ

∑
m∈Z

(
G̃(t̃ε, ϕ̃m) +

πδLλ
Lλ

∆G̃(t̃ε, ϕ̃m)

)
, (5.35)

∆G̃(t̃ε, ϕ̃m) ≡ sin t̃ε
πR2

(
−3 + 2 cos ϕ̃m cos t̃ε + cos 2ϕ̃m

)
+ 2Lλr+ coth r+Lλϕ̃m

πR2 sin ϕ̃m
(
cos ϕ̃m − cos t̃ε

)
sinh2 r+Lλϕ̃m

πR2

(
cos t̃ε − cos ϕ̃m

)3 ,

and G̃(t̃ε, ϕ̃m) is the expression from the original (diagonal) correlator we found in (5.30).
We plot the correlator (5.35) and compare it to the diagonal correlator (when δLλ = 0)

in figure 13. We can clearly see that the off-diagonal correlator has a wider echo peak than
the diagonal correlator, suggesting that sharp features of the (diagonal) correlators (like
the echoes at ∆t ∼ 2nLλ) become less pronounced in off-diagonal correlators. Note that in
obtaining the off-diagonal correlator (5.35), we have integrated over all modes ω, including
those that do not satisfy ω � (δLλ)

−1; for such high-frequency modes, it can easily be seen
that the expansion (3.45) (with κ replaced by κ̃(low)) breaks down. Therefore, the obtained
correlator (and in particular any spurious short-time behaviour) should be taken with a
grain of salt.
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Figure 13: The altered, off-diagonal wormhole correlator GF
W̃H(low),λ→λ′

(∆t,∆ϕ = 0.1) (in

red) from (5.35) together with the diagonal correlator GF
W̃H(low),λ→λ

(∆t,∆ϕ = 0.1) (in blue,

dashed) (which is (5.35) with δLλ = 0). We take R = r+ = 1, ε = 10−10, Lλ = 100 and
δLλ = 5.
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A Schwinger-Keldysh Formalism in Field Theory

In this appendix, we briefly review the Schwinger-Keldysh formalism [64, 65, 66, 59] for d-
dimensional QFTs in Lorentzian signature. This formalism was developed for cases where
the in state and the out state are not both eigenstates of the Hamiltonian and as such
it is particularly useful for studying non-equilibrium phenomena. It provides a natural
definition of the various two-point correlation functions in Lorentzian signature (Feynman,
anti-Feynman, retarded, advanced, etc.) in a pure or a thermal state, which is relevant for
the discussions in this paper. We begin by defining a Keldysh contour, γ, in the complex

θ = t− iτ

γa τ

γb τ

γ1

γc

t

γ2

t

τ

(−T, σa)

(−T, 0) (T, 0)

(T,−σb)(−T,−σb)

(−T,−σc)

Figure 14: General Keldysh contour given by (A.1)

time plane θ = t−iτ . Without loss of generality, we can take γ to consist of three Euclidean
segments γI , where I = {a, b, c}, and two Lorentzian segments γi, where i = {1, 2}, whose
complex times run as (see figure 14)19

γa : θ ∈ [−T + iσa,−T ] ,

γb : θ ∈ [T, T − iσb] ,
γc : θ ∈ [−T − iσb,−T − iσc] ,

γ1 : θ ∈ [−T, T ] ,

γ2 : θ ∈ [−T − iσb, T − iσb] .
(A.1)

The Euclidean segments prepare the state ρ. When ρ is the vacuum or some other pure
state, we set σb → 0 and σa = σc → ∞. When ρ is a thermal state of temperature β we
set σa = σb = σc = β/2 and identify the end points of the contour. The partition function,
evaluated in the state ρ, in the presence of a source s coupled to some operator O, is given
by

ZQFT
ρ [s] =

∫
ρ

Dχ exp

(
i

∫
γ

dθ

∫
d~x [LQFT[χ, ∂µχ] + s(θ, ~x)O(θ, ~x)]

)
, (A.2)

19This type of Schwinger-Keldysh contour is known as an in-in contour, since the Euclidean pieces
that prepare the state are both glued at Lorentzian time t = −T . For particle scattering problems it
is customary to instead work with an in-out contour whose Euclidean pieces are glued at times t = −T
and t = T , since both the in and out states are eigenstates of the Hamiltonian. The downside of this
other configuration is that it can only produce the Feynman correlator explicitly. We will work with such
an in-out contour when we calculate the Feynman correlator for a time dependent geometry dual to a
wormhole transitioning state in section 3.3.
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where χ collectively describes the QFT degrees of freedom. Omitting the spatial ~x integral
in what follows, the source term in the partition function reads∫

γ

dθ s(θ)O(θ) =

∫ 0

−σa
dτ s(−T − iτ)O(−T − iτ) + i

∫ T

−T
dt s(t)O(t)

+

∫ σb

0

dτ s(T − iτ)O(T − iτ) + i

∫ −T
T

dt s(t− iσb)O(t− iσb)

+

∫ σc

σb

dτ s(−T − iτ)O(−T − iτ)

≡
∫ 0

−σa
dτ sa(τ)Oa(τ) + i

∫ T

−T
dt s1(t)O1(t) +

∫ σb

0

dτ sb(τ)Ob(τ)

− i
∫ T

−T
dt s2(t)O2(t) +

∫ σc

σb

dτ sc(τ)Oc(τ) , (A.3)

where we have defined

sa(τ) = s(−T − iτ) , τ ∈ [−σa, 0] ,

sb(τ) = s(T − iτ) , τ ∈ [0, σb] ,

sc(τ) = s(−T − iτ) , τ ∈ [σb, σc] ,

s1(t) = s(t) , t ∈ [−T, T ] ,

s2(t) = s(t− iσb) , t ∈ [−T, T ] ,
(A.4)

and analogously for Oi and OI . The vev of Oi, in the state ρ, and in the presence of the
source s, is given by

〈Oi(x)〉ρ,s =
(−1)δi2

i

δ lnZCFT
ρ [s]

δsi(x)
, (A.5)

where x = (t, ~x). The Keldysh propagator, in the state ρ, is

iGij
ρ (x, x′) =

(−1)δij−δi2+1

i

δ 〈Oi(x)〉ρ,s
δsj(x′)

∣∣∣∣
s=0

= 〈TγOi(x)Oj(x′)〉ρ , (A.6)

where Tγ stands for time ordering along the Keldysh contour. In our conventions the Feyn-

man (iGF
ρ ), Wightman (iG>

ρ ), anti-Wightman (iG<
ρ ), and anti-Feynman (iGF

ρ ) correlators
are defined as

〈TγO1(x)O1(x′)〉ρ ≡ 〈TO(x)O(x′)〉ρ = iGF
ρ (x, x′) ,

〈TγO1(x)O2(x′)〉ρ ≡ 〈O(x′)O(x)〉ρ = iG<
ρ (x, x′) ,

〈TγO2(x)O1(x′)〉ρ ≡ 〈O(x)O(x′)〉ρ = iG>
ρ (x, x′) ,

〈TγO2(x)O2(x′)〉ρ ≡
〈
TO(x)O(x′)

〉
ρ

= iGF
ρ (x, x′) ,

(A.7)

where the equivalences stem from the fact that any operator that appears on the backwards
piece, γ2, by construction has larger Keldysh time than any operator appearing on the
forwards contour, γ1, and we have dropped the subscripts (1, 2) from the operators. It is
easy to see that

iG>(x, x′) = θ(t− t′)iGF (x, x′) + θ(t′ − t)iGF (x, x′) ,

iG<(x, x′) = θ(t′ − t)iGF (x, x′) + θ(t− t′)iGF (x, x′) .
(A.8)

Out of the components of the Keldysh propagator one can build the retarded (iGR
ρ ) and

advanced (iGA
ρ ) propagators

iGR
ρ (x, x′) = iGF

ρ (x, x′)− iG<
ρ (x, x′) = θ(t− t′)

[
iGF

ρ (x, x′)− iGF
ρ (x, x′)

]
,

iGA
ρ (x, x′) = iGF

ρ (x, x′)− iG>
ρ (x, x′) = −θ(t′ − t)

[
iGF

ρ (x, x′)− iGF
ρ (x, x′)

]
.

(A.9)
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Of particular physical interest is the retarded correlator; this appears as the causal linear
response of the system due to external perturbations. We can see this when calculating
the variation of the one-point function on γ1, in state ρ and in the presence of the same
external source s1 = s2 on γ1 and γ2:

δ 〈O1(x′)〉ρ,s =

∫
dx

[
δs1(x)

δ 〈O1(x′)〉ρ,s
δs1(x)

+ δs2(x)
δ 〈O1(x′)〉ρ,s
δs1′(x)

]
= i

∫
dx δs1(x)

[
〈TO(x)O(x′)〉ρ − 〈O(x)O(x′)〉ρ

]
= −

∫
dx δs1(x)GR

ρ (x, x′) . (A.10)

A good consistency check is that the correlators we obtain should obey the identities:

[iG>(x, x′)]
∗

= iG<(x, x′) ,
[
iGF (x, x′)

]∗
= iGF (x, x′) ,

iG>(x′, x) = iG<(x, x′) , iGF,F (x′, x) = iGF,F (x, x′) .
(A.11)

B SvR Real-Time Holography

In this appendix, we briefly review the parts of the Skenderis-van Rees (SvR) formalism for
real-time AdSd+1/CFTd holography [49, 50] which are most relevant for our discussion in
section 3, see [50] for a much more complete discussion and derivation. The SvR formalism
can be seen as the holographic dual of the Schwinger-Keldysh formalism in field theory,
which we briefly review in appendix A.

We will focus on a scalar field Φ(θ, ~x, r) with mass m dual to the operator O(θ, ~x) of
conformal dimension ∆, which satisfies:

R2m2 = ∆(∆− 2) , (B.1)

usingR as the AdS scale. The bulk dual to a field theory state ρ can be prepared by allowing
Φ to fluctuate on top of a mixed-signature spacetimeM with fixed background metric gE,Lµν ,
which is Euclidean or Lorentzian depending on the segment. The bulk partition function,
as a functional of the boundary value of the field20 Φ

∣∣
∂M (θ, ~x) ≡ s(θ, ~x), is given by

Zbulk
gµν [s] =

∫
Φ|
∂M

=s

DΦ eiSbulk[Φ] ≈ eiS
on-shell
bulk [s] . (B.2)

The bulk action along the contour γ is

iSbulk[Φ] =

∫
γ

dθ L(θ) =

∫ 0

−σa
dτ L(−T − iτ) + i

∫ T

−T
dt L(t) +

∫ σb

0

dτ L(T − iτ)

+ i

∫ −T
T

dt L(t− iσb) +

∫ σc

σb

dτ L(−T − iτ)

≡ −
∫ 0

−σa
dτ LEa (τ) + i

∫ T

−T
dt LL1 (t)−

∫ σb

0

dτ LEb (τ)

− i
∫ T

−T
dt LL2 (t)−

∫ σc

σb

dτ LEc (τ) , (B.3)

20Here, we do not yet specify the precise meaning of Φ
∣∣
∂M; the correct interpretation of this equation

can be found in (B.10).
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where the Lorentzian and Euclidean Lagrangians are given by

LLi (t) =
1

2

∫
d~x dr

√
−gL

[
−gL,µν∂µΦi(t, ~x, r)∂νΦi(t, ~x, r)−m2Φ2

i (t, ~x, r)
]
,

LEI (τ) =
1

2

∫
d~x dr

√
gE
[
gE,µν∂µΦI(τ, ~x, r)∂νΦI(τ, ~x, r) +m2Φ2

I(τ, ~x, r)
]
,

(B.4)

and the fields Φi and ΦI are defined analogously to (A.4). Further, in (B.2) we have
approximated the path integral using the saddle point approximation around the mixed-
signature classical solution Φcl(θ, ~x, r). We build this by first solving for the two Lorentzian
(Φcl

i (t, ~x, r)) and the three Euclidean pieces (Φcl
I (τ, ~x, r)) separately, which satisfy the re-

spective equations of motion

1√
−gL

∂µ

(√
−gLgL,µν∂νΦcl

i

)
−m2Φcl

i = 0 ,

1√
gE
∂µ

(√
gEgE,µν∂νΦ

cl
I

)
−m2Φcl

I = 0 .
(B.5)

Then, the properly extremized mixed-signature classical solution is such that, at the spatial
hypersurfaces where Euclidean and Lorentzian segments meet, the piecewise fields obey the
matching conditions21

Φcl
i = Φcl

I , −i∂tΦcl
i = ∂τΦ

cl
I . (B.6)

The classical solution puts the bulk action on-shell: iSbulk

[
Φcl
]

= iSon-shell
bulk [s], and renders

it a functional of the boundary value of the field Φ
∣∣
∂M (θ, ~x) ≡ s(θ, ~x). We assume we can

solve the Lorentzian and Euclidean equations of motion by separation of variables:

Φcl
i =

∑
l, ~m

∫
dωe−iωtYl ~m(~x)fi(ω, l, ~m, r) , Φcl

I =
∑
l, ~m

∫
dωe−ωτYl ~m(~x)fI(ω, l, ~m, r) . (B.7)

The radial parts fi, fI then obey the same second-order ODE,22 which needs to be supplied
with two boundary conditions. If the geometry in question has only one boundary (e.g.
empty AdS), then one boundary condition comes from demanding regularity in the IR
(e.g. at the origin of AdS) and another from demanding that the field asymptotes to the
source in the UV (e.g. at the boundary of AdS). If the geometry has two boundaries (e.g.
the the eternal black hole, then we have two UV boundary conditions. To implement UV
boundary condition(s), we expand the fields in powers of r near the boundary23

Φcl
i,I(x, r) =

(a
r

)d−∆

φ
(d−∆)
i,I (x) + . . . +

(a
r

)∆
(
φ

(∆)
i,I (x) + ψ

(∆)
i,I (x) log

a2

r2

)
+ . . . , (B.9)

21In equation (4.1.15) of [50], the matching conditions have different signs. The difference stems from
the fact that they parametrize the time on γ2 to run in the opposite direction. In our convention the minus
appearing in front of the action on γ2 cancels with the minus coming from the fact that the derivation −∂τ
on γb runs in the opposite direction compared to the derivation i∂t on γ2, thus (B.6) applies universally
at all meeting hypersurfaces.

22A Euclidean mode will satisfy exactly the same radial equation as a Lorentzian one, since e.g.
eiωtgL,tt∂2t e

−iωt = eωτgE,ττ∂2τe
−ωτ (similar relations hold involving off-diagonal time-space components

of the metric). As such, there is no need to distinguish between the Lorentzian and Euclidean radial
functions.

23We use coordinates where the boundary is at r →∞ and looks like:

ds2|r→∞ =
r2

R2

(
−dθ2 + d~x2

)
+
R2

r2
dr2 , (B.8)

where dθ2 = dt2 or dθ2 = −dτ2, depending on if we are in Lorentzian or Euclidean signature.
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where x = (t, ~x) or x = (τ, ~x) depending on whether we are on an Euclidean or a Lorentzian
segment, and a is some distance scale of the geometry in question. The first set of dots
in (B.9) contains terms between orders d−∆ + 2 and ∆− 2, while the second set of dots
contains terms of orders beyond ∆, which all might have log pieces to them. These log
pieces only appear when d is even and when ∆ ∈ Z, and are related to the conformal
anomaly in the CFT. From these expansions, we read off the sources as:

si,I(x) = lim
r→∞

(r
a

)d−∆

Φi,I(x, r) ≡ φ
(d−∆)
i,I (x) . (B.10)

We can also define the Fourier transformed sources s̃i,I through:

si(x) =
∑
l, ~m

∫
dωe−iωtYl ~m(~x)s̃i(ω, l, ~m)f(ω, l, ~m, r) , (B.11)

sI(x) =
∑
l, ~m

∫
dωe−ωτYl ~m(~x)s̃I(ω, l, ~m)f(ω, l, ~m, r) , (B.12)

which can alternatively be seen as fixing the normalization of the radial functions f . Having
obtained the piecewise bulk fields Φi,I that solve the equations of motion with the correct
boundary conditions and obey the matching conditions, we build up the mixed-signature
bulk field Φ using the analogous expression to (A.4) and express the on-shell action as

iSon-shell
bulk [s] = lim

r→∞
i

2

(r
a

)∆
∫
γ

dθ

∫
d~x s(θ, ~x)r∂rΦ(θ, ~x, r). (B.13)

It is clear that all terms beyond order ∆ in (B.9) decay when the limit is taken, while
all terms between orders d−∆ and ∆− 2 diverge. We can cancel these divergences with
appropriate counterterms; this procedure is called holographic renormalization [67]. The
final, renormalized result is:

iSon-shell
bulk [s] = i(2∆− d)

∫
γ

dθ

∫
d~x s(θ, ~x)φ(∆)(θ, ~x) . (B.14)

With this setup one can extend the Gubser-Klebanov-Polyakov-Witten dictionary [68, 69],
originally developed only for Euclidean AdS/CFT, to these mixed-signature bulks and
boundaries. The dictionary states that the boundary value of the field, Φ

∣∣
∂M, acts as

a source for the operator O. Further the boundary partition function in the state ρ is
equivalent to the bulk partition function on the background gµν , which in the large N limit
can be approximated by the classical on-shell action

ZCFT
ρ [s] = Zbulk

gµν [s] ≈ eiS
on-shell
bulk [s] . (B.15)

Thus, in the large N limit, we can compute correlation functions holographically as

〈Oi(x)〉ρ,s =
(−1)δi2

i

δiSon-shell
bulk [s]

δsi(x)
= (2∆− d)φ

(∆)
i (x) ,

iGij
ρ (x, x′) =

(−1)δij−δi2+1

i

δ 〈Oi(x)〉ρ,s
δsj(x′)

∣∣∣∣
s=0

=
(−1)δij−δi2+1(2∆− d)

i

δφ
(∆)
i (x)

δsj(x′)

∣∣∣∣∣
s=0

.

(B.16)

B.1 Correlators of Empty AdS

In this section, we briefly review the real-time holography calculation that obtains the
two-point function of a minimally coupled scalar field in empty AdS3. This calculation can
be found in section 4.1 of [50].
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The metric of global (Lorentzian) AdS3 is:

ds2 = −
(

1 +
r2

R2

)
dt2 +

(
1 +

r2

R2

)−1

dr2 + r2 dϕ2 ,


r ∈ [0,∞) ,
t ∈ (−∞,∞) ,
ϕ ∈ [0, 2π) .

(B.17)

The Euclidean metric is obtained by taking t→ iτ . A conformal diagram of empty AdS3

is given in figure 15.

r
=

0

r
=

∞
t

r

Figure 15: Empty AdS3 with a radial light ray (depicted in yellow). The light ray appears
discontinuous on the diagram because we have suppressed the angle ϕ: after reaching the
center of AdS the light ray continues propagating in the antipodal part of the spacetime,
reflects from the antipodal point on the boundary and re-emerges at r = 0 after time πR.

Schwinger-Keldysh contour We take the following Schwinger-Keldysh consisting of
two Euclidean (γI , I = a, b) and two Lorentzian (γi, i = 1, 2) segments, whose Keldysh
time θ = t− iτ runs as

γa : θ ∈ [−T + i∞,−T ] ,

γb : θ ∈ [T, T − i∞] ,

γ1 : θ ∈ [−T, T ] ,

γ2 : θ ∈ [−T, T ] .
(B.18)

The bulk dual to this contour is made out of two Lorentzian pieces and one Euclidean
piece, which is split in two at t = 0. The two Euclidean sub-pieces are then glued to the
Lorentzian pieces as depicted in figure 5. Note that the boundary contours of empty AdS
and the Solodukhin wormhole are the same; however, the blue line in the bulk contour
has a different interpretation: for the wormhole, it is the center of the wormhole throat,
whereas for empty AdS it is the center of AdS at r = 0. These gluings dictate the matching
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conditions that the piecewise bulk fields obey24

Φa(0, ϕ, r) = Φ1(−T, ϕ, r) , ∂τΦa(0, ϕ, r) = −i∂tΦ1(−T, φ, r) ,
Φ1(T, ϕ, r) = Φ2(T, ϕ, r) , ∂tΦ1(T, ϕ, r) = ∂tΦ2(T, ϕ, r) ,

Φb(0, ϕ, r) = Φ2(−T, ϕ, r) , ∂τΦb(0, ϕ, r) = −i∂tΦ2(−T, ϕ, r) .
(B.19)

Scalar wave solutions We can use separation of variables as in (2.7) to solve the equa-
tions of motion for the minimally coupled scalar on the different pieces of the Schwinger-
Keldysh contour:

Φi = e−iωteikϕs̃i(ω, k)f(ω, k, r) , ΦI = e−ωτeikϕs̃I(ω, k)f(ω, k, r) , (B.20)

with i = {1, 2} for the Lorentzian segments and I = {a, b} for the Euclidean segments.
The solutions to the wave equation (2.8) for the AdS metric (B.17) are

f±(ω, k, r) =
( r
R

)±k(
1 +

r2

R2

)Rω
2

2F1

(
1

2
(Rω ± k), 1 +

1

2
(Rω ± k); 1± k;− r

2

R2

)
. (B.21)

Demanding regularity in the IR (near the origin r = 0) necessitates that the only allowed
solution is the linear combination:

f(ω, k, r) = Nωk
[
θ(k)f+(ω, k, r) + θ(−k)f−(ω, k, r)

]
= Nωkf+(ω, |k|, r) , (B.22)

where Nωk is a constant of normalization

Nωk =
Γ
(
1 + 1

2
(Rω + |k|)

)
Γ
(
1− 1

2
(Rω − |k|)

)
Γ(1 + |k|) , (B.23)

which is chosen such that the leading behavior at the UV (near the boundary r = ∞) is
normalized to unity. Then the asymptotic expansion of the modes near the boundary is:

f(ω, k, r) = 1 +
R2

r2
α(ω, k)

(
β(ω, k) + log

R2

r2

)
+ . . . , (B.24)

α(ω, k) = −1

4

(
R2ω2 − |k|2

)
,

β(ω, k) = ψ

(
1− 1

2
(Rω − |k|)

)
+ ψ

(
1 +

1

2
(Rω + |k|)

)
+

2(Rω + |k|)
R2ω2 − |k|2

,

where ψ(·) = Γ′(·)/Γ(·) is the diagamma function and we have given β(ω, k) modulo
constants which do not affect the poles of αβ. The poles of f are given by

Rω±nk = ±(2n+ |k|) , n = 1, 2, . . . , k ∈ Z . (B.25)

These (real) poles constitute the normal modes of empty AdS.

Construction of the piecewise bulk fields Our next task is to construct the piecewise
bulk fields. A generic Lorentzian field is expanded as

Φi =
∑
k

eikϕ
∫
Ci

dω e−iωtfδij s̃j

=
∑
k

eikϕ
[∫
F

dω e−iωtfδij s̃j +

∫
W<

dω e−iωtfVij s̃j +

∫
W>

dω e−iωtfWij s̃j

]
, (B.26)

24The matching condition between the two Lorentzian fields is the σb → 0 limit of the matching condi-
tions of the general contour (A.1) in appendix A.
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where in the first line Ci is an arbitrary contour that avoids the poles of f . In the second
line we have parametrized the freedom in choosing the contour Ci by taking a Feynman
contour and adding “contour-correcting” functions Vij and Wij to it. These contours are
depicted in figure 4. The Feynman contour corresponds to the non-normalizable modes
while the Wightman contours pick up normalizable mode contributions. Note that our
ansatz has the correct UV asymptotics since:

lim
r→∞

Φi =
∑
k

eikϕ
∫
R

dω e−iωtδij s̃j = si . (B.27)

We do not allow sources on the Euclidean pieces as we are preparing empty AdS without
excitations, so the Euclidean fields are composed of normalizable pieces alone:25

ΦI =
∑
k

eikϕ
[∫
W<

dω e−ωτfVIj s̃j +

∫
W>

dω e−ωτfWIj s̃j

]
. (B.28)

Regularity imposes a further restriction on the allowed Euclidean pieces. On γa, τ < 0 so
regularity as ω → +∞ demands that Waj = 0. Similarly, regularity for τ > 0 on γb as
ω → −∞ is enforced by Vbj = 0.

Applying matching conditions Now, we wish to apply the matching conditions (B.19).
First of all, the Fourier transform of s̃i in (B.26) is given by (B.27). Noting that the source
must only have support for −T < t′ < T , at t ∼ −T , the factor e−iω(t−t′) = eiω|t−t

′| blows
up in the lower half plane so that we must close the Feynman integral in (B.26) in the
upper half plane. Similarly, when t ∼ T , we close the F integral in the lower half plane.
This results in the expressions:

Φi(t ∼ −T ) =
∑
k

eikϕ
[∫
W<

dω e−iωtf(δij + Vij)s̃j +

∫
W>

dω e−iωtfWij s̃j

]
,

Φi(t ∼ T ) =
∑
k

eikϕ
[∫
W<

dω e−iωtfVij s̃j +

∫
W>

dω e−iωtf(δij +Wij)s̃j

]
.

(B.29)

Now, we can apply the matching conditions (B.19); since each pole is independent we must
apply them separately to the W< and W> integrals:

W< : Vaje
−iωT = δ1j + V1j ,

V1j = V2j ,

0 = δ2j + V2j ,

W> : 0 = W1j ,

δ1j +W1j = δ2j +W2j ,

Wbje
−iωT = W2j .

(B.30)

The solution to these matching conditions is given by:

Vij =

(
0 −1
0 −1

)
ij

, Wij =

(
0 0
1 −1

)
ij

,

Vaj =
(
1 −1

)
j
eiωT , Wbj =

(
1 −1

)
j
eiωT ,

(B.31)

so that the Euclidean and Lorentzian fields are now completely determined in terms of the
sources s̃i.

25Note that we have already assumed no sources on the Euclidean segments when we constrained the
generic linear combinations of the sources Vij s̃j and Wij s̃j to run only along the Lorentzian sources.
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Extracting the correlators Finally, having solved the bulk fields entirely, we can ex-
tract the correlation functions from them. For this, we extract the r2

+/r
2 term in the

expansion of the Lorentzian fields (see appendix B):

φ
(2)
i =

∑
k

eikϕ
[∫
F

dω e−iωt(αβ)δij s̃j +

∫
W<

dω e−iωt(αβ)Vij s̃j +

∫
W>

dω e−iωt(αβ)Wij s̃j

]
.

(B.32)

Then, we use the Fourier transform s(t, ϕ) of s̃j(ω, k) defined in (B.27) and perform func-
tional derivatives with respect to sj(t

′, ϕ′) to obtain the correlators:

iGij
AdS(x, x′) =

2(−1)δij−δi2+1

i

δφ
(2)
i (x)

δsj(x′)

∣∣∣∣∣
si=0

=
(−1)δij−δi2+1

2π2i

∑
k

eik(ϕ−ϕ′)
[∫
F

dω e−iω(t−t′)δijαβ

+

∫
W<

dω e−iω(t−t′)Vijαβ +

∫
W>

dω e−iω(t−t′)Wijαβ

]
. (B.33)

For example, the retarded correlator is given by:

iGR
AdS(x, x′) = θ(t− t′)

[
iGF

AdS(x, x′)− iGF
AdS(x, x′)

]
= θ(t− t′)

[
iG11

AdS(x, x′)− iG22
AdS(x, x′)

]
=
θ(t− t′)

2π2i

∑
k

eik(ϕ−ϕ′)
∫
F−F

dω e−iω(t−t′)αβ

=
θ(t− t′)

2π2i

∑
k

eik(ϕ−ϕ′)
∫
R+iε

dω e−iω(t−t′)αβ

=
θ(t− t′)

2π2i

∑
k

eik(ϕ−ϕ′)
∫
W>−W<

dω e−iω(t−t′)αβ , (B.34)

where we have used the relation F = −F +W> +W<, as well as F −F = R+ iε with ε a
small positive number. In the last line we have employed the fact that the θ(t− t′) function
demands to close R+ iε in the lower half plane, see figure 6 (where now the crosses should
be considered to be poles of the empty AdS mode f). Finally, we compute this integral as
a sum over the residues of β. We obtain (with ∆t = t− t′ and ∆ϕ = ϕ− ϕ′):

iGR
AdS(x, x′) =

2θ(∆t)

πR

[∑
n,k

e−iω
+
nk∆t+ik∆ϕα(ω+

nk)−
∑
n,k

e−iω
−
nk∆t+ik∆ϕα(ω−nk)

]

= −θ(∆t)
2πR

 1(
cos
(

∆t(1−iε)
R

)
− cos(∆ϕ)

)2 −
1(

cos
(

∆t(1+iε)
R

)
− cos(∆ϕ)

)2

 ,
(B.35)

where the iε prescription appears with a minus sign to regulate the ω+
nk sum and with a

plus sign to regulate the ω−nk sum.
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