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Abstract: We use consistent truncations in supergravity to show that the backreaction of
N rotating M5-branes wrapped on a Riemann surface leads to asymptotically AdS5 black
hole solutions of 11d supergravity. We discuss the thermodynamic properties of these
black holes focusing on their supersymmetric limit. The Bekenstein-Hawking entropy of
the supersymmetric black holes scales as N3 and can be reproduced by the superconformal
index of the holographically dual 4d N = 1 SCFTs of class S.
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1 Introduction

String and M-theory provide a consistent framework to describe the quantum physics of
black holes in terms of microscopic ingredients such as strings and branes. The AdS/CFT
correspondence gives an additional vantage point on this venerable research endeavor.
Asymptotically AdS black holes can be viewed through the prism of holography and their
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properties can in principle be delineated using the quantum dynamics of a dual CFT.
This is best understood when the AdS black hole solution is constructed in a consistent
supergravity theory that arises as a low-energy limit of string or M-theory. This allows
to understand the black hole solution in terms of its microscopic ingredients, identify its
dual CFT, and then harness the power of holography to study the black hole itself. Su-
persymmetry can be a very useful crutch in this enterprise. It is often technically easier
to construct explicit supersymmetric AdS black hole solutions in supergravity and explore
their properties. Moreover, the recent advances in supersymmetric localization allow for
the explicit calculation of the path integral of holographic SCFTs, which in turn provides
a host of information about the physics of the black hole. Indeed, recently there has
been a flurry of activity using these methods to study the thermodynamic and microscopic
properties of supersymmetric AdS black holes and their dual QFT description, see [1] and
references therein for a review.

Our goal in this work is to contribute to these developments by studying supersymmet-
ric AdS5 black holes in M-theory that arise from the backreaction of M5-branes wrapped
on a compact Riemann surface, Σg, of genus g. The supergravity solutions describing this
system of branes can be constructed in a two-step procedure that involves supergravity
consistent truncations. As shown in [2], reducing 11d supergravity on S4 leads to the
maximal 7d SO(5) gauged supergravity of [3]. This theory admits an infinite family of
supersymmetric AdS5 vacua first explored in the seminal work of Maldacena-Núñez [4] and
then generalized in [5, 6]. In addition to the number of M5-branes, N , these AdS5 solutions
are characterized by the genus of the Riemann surface, g, and a rational number z. We
show that for each value of (g, z) the 7d gauged supergravity theory admits a consistent
truncation to 5d N = 2 minimal gauged supergravity. This type of consistent truncations
were studied previously in the literature, see [7–14], and our analysis adds several technical
details to these constructions including explicit formulae that allow to uplift any solution
of the 5d supergravity theory to 11d.

It is well-known that 5d N = 2 minimal gauged supergravity admits supersymmetric
asymptotically AdS5 black hole solutions with one electric charge and two independent an-
gular momenta [15, 16]. The sequence of consistent truncations described above provides
an embedding of these supersymmetric black holes in M-theory and associates a family of
black hole solutions to each of the supersymmetric AdS5 vacua found in [5, 6]. As empha-
sized and carefully studied in [17, 18], the thermodynamic properties of these black holes
are somewhat subtle to study since they have finite entropy and on-shell action even in
the zero temperature supersymmetric limit. We build on these results and show how the
entropy, on-shell action, and charges of the black hole solution can be expressed in terms
of the microscopic parameters (N, g, z) that define the underlying M5-brane system. The
black hole solutions admit a somewhat subtle analytic continuation to Euclidean signature
which allows for rigorous calculations of their properties using the tools of holographic
renormalization which we discuss in some detail. The asymptotic boundary of these Eu-
clidean saddles points of the gravitational path integral has S1 × S3 topology and points
to a description of this system in terms of the superconformal index of a dual 4d N = 1
SCFT.
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Indeed, we show that these supersymmetric gravitational solutions can be described
by the large N limit of the 4d N = 1 class S SCFTs constructed in [5, 6, 19, 20]. The
different values of z that label these theories correspond to the family of topological twists
of the 6d N = (2, 0) SCFT living on the worldvolume of the M5-branes that preserve 4d
N = 1 supersymmetry. The superconformal index of the class S theories can be studied at
low values of N using the results in [21–24], however we are not aware of a detailed study
of the index at large N using these methods. Fortunately we can bypass this impasse. It
was realized recently that the superconformal index of general 4d N = 1 SCFTs exhibits
universal properties that prove very useful in a holographic setup like ours. In particular,
it was shown in [25], see also [26], that carefully treating the superconformal index as a
complex function of its fugacities leads to a simple universal formula for it in the so-called
Cardy-like limit where the radius of the S1 is much smaller than that of S3. This universal
expression for the superconformal index is entirely controlled by the ’t Hooft anomalies
of the 4d N = 1 SCFT and as discussed recently in [27, 28] can be reproduced by a
similarly universal supergravity on-shell action for large N holographic SCFTs.1 These
results have important implications for our wrapped M5-brane setup. We use the ’t Hooft
anomalies of the 4d N = 1 class S SCFTs derived in [5, 6, 19, 20] to write the leading
N3 term of the superconformal index on “the second sheet” in terms of the microscopic
parameters (N, g, z). This expression then exactly agrees with the on-shell action of the
supersymmetric CCLP solution computed via holographic renormalization. An appropriate
Legendre transformation of this index then yields an expression for the microscopic entropy
of the dual black hole which perfectly agrees with the Bekenstein-Hawking entropy formula.
This constitutes a precision test of holography and a microscopic account of the wrapped
M5-brane black hole microstates in terms of the dual class S SCFT.

The rest of this paper is organized as follows. In Section 2 we summarize some results
on the dimensional reduction and consistent truncation from 11d supergravity to 7d gauged
supergravity. In Section 3 we derive a family of dimensional reductions on Σg from this
7d theory to 5d N = 2 minimal gauged supergravity. Further details on the reduction
of the supergravity action and BPS equations are given in Appendix A. In Section 4,
supplemented by Appendix B, we provide some details on mostly known results regarding
the thermodynamics of the most general known rotating black hole solution of the 5d
gauged supergravity theory and the calculation of its on-shell action. Section 5 is devoted
to the holographic interpretation of these results and their connection to the superconformal
index of the 4d N = 1 class S SCFTs. In Section 6 we provide some concluding comments,
while in Appendix C we summarize our conventions.

1As discussed below, it is not clear to us why the large N and Cardy-like limit have an overlapping
regime of validity but the results we present here, as well as the ones in [27, 28], point to a more general
regime of validity of the “second sheet” formula for the index derived in [25].
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2 7d gauged supergravity from 11d

The bosonic sector of the 11d supergravity contains the metric with line element ds2
11 and

a three-form A. The bosonic action of the theory is given by

I11 = 1
16πG11

∫ (
?11R−

1
2F ∧ ?11F + 1

6F ∧ F ∧ A
)
, (2.1)

where F = dA. As shown in [2], see also [29] for some more details, a reduction of 11d
supergravity on S4 results in a consistent truncation to the 7d, N = 4, SO(5) gauged
supergravity of [3]. The 7d gauged supergravity can be further consistently truncated to
its U(1) × U(1) invariant sector as described in [30]. The bosonic field content of this 7d
theory, which plays an important role below, consists of the metric with line element ds2

7,
together with a three-form, two Abelian one-forms and two scalars: (S, A1, A2, λ1, λ2).

We now provide some more details on how this sequence of consistent truncations
works. We parametrize the S4 by the four angles: (α, β, φ1, φ2), as

ds2
4 = 1

µ2

(
e−2λ1

[
dν1

2 + ν2
1(Dφ1)2

]
+ e−2λ2

[
dν2

2 + ν2
2(Dφ2)2

]
+ e4λ1+4λ2 dν3

2
)
, (2.2)

where µ is an inverse length scale, ν1,2,3 are alternative (constrained) coordinates for the
two angles (α, β):

ν1 = sinα cosβ , ν2 = sinα sin β , ν3 = cosα ; ν2
1 + ν3

2 + ν2
3 = 1 , (2.3)

and Dφ1,2 = dφ1,2 + µA1,2. The coordinates φ1,2 parametrize the U(1) × U(1) isometry
directions. The 11d fields are expressed in terms of the 7d fields as

ds2
11 = ∆1/3 ds2

7 + ∆−2/3 ds2
4 ,

F = −e−4λ1−4λ2ν3 ?7 S + 1
µ
S ∧ dν3

+ 1
∆µ2

[
− e2λ1ν2

1 Dφ1 ∧ F2 ∧ dν3 − e2λ2ν2
2 Dφ2 ∧ F1 ∧ dν3

+ e−4λ1−4λ2ν1ν3Dφ1 ∧ F2 ∧ dν1 + e−4λ1−4λ2ν2ν3Dφ2 ∧ F1 ∧ dν2

]

+ Uν1ν2
∆2µ3

[
ν1Dφ1 ∧Dφ2 ∧ dν2 ∧ dν3 + ν2Dφ2 ∧Dφ1 ∧ dν1 ∧ dν3

+ ν3Dφ1 ∧Dφ2 ∧ dν1 ∧ dν2

]

+ ν1ν2
∆2µ3

[
2e2λ1+2λ2ν1ν2Dφ1 ∧Dφ2 ∧ d(λ1 − λ2) ∧ dν3

+ 2e−2λ1−4λ2ν1ν3Dφ1 ∧Dφ2 ∧ d(3λ1 − 2λ2) ∧ dν2

+ 2e−4λ1−2λ2ν2ν3Dφ1 ∧Dφ2 ∧ d(3λ1 + 2λ2) ∧ dν1

]
, (2.4)
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where F1,2 = dA1,2 and (∆, U) are functions given by

∆ = e2λ1ν2
1 + e2λ2ν2

2 + e−4λ1−4λ2ν2
3 ,

U = −
(
2e2λ1+2λ2 + e−2λ1−4λ2

)
ν2

1 − (2e2λ1+2λ2 + e−4λ1−2λ2)ν2
2

+
(
e−8λ1−8λ2 − 2e−2λ1−4λ2 − 2e−4λ1−2λ2

)
ν2

3 .

(2.5)

The resulting 7d theory has the following bosonic action

I7 = 1
16πG7

∫ [
?7 (R− V )− 5 dλ+ ∧ ?7 dλ+ − dλ− ∧ ?7 dλ− −

1
2e
−4λ1F1 ∧ ?7F1

− 1
2e
−4λ2F2 ∧ ?7F2 −

1
2e
−4λ+S ∧ ?7S + 1

2µ S ∧ dS

− 1
µ
F1 ∧ F2 ∧ S + 1

4µ(A1 ∧ F1 ∧ F2 ∧ F2 +A2 ∧ F2 ∧ F1 ∧ F1)
]
, (2.6)

where we have defined λ± = λ1 ± λ2 and V is the potential for the scalars, given by

V = µ2

2
(
e−8λ1−8λ2 − 4e−2λ1−4λ2 − 4e−4λ1−2λ2 − 8e2λ1+2λ2

)
. (2.7)

Out of this action we obtain the following equations of motion

dS = µ e−4λ+S + F1 ∧ F2 ,

d
(
e−4λ1,2 ?7 F1,2

)
= 1
µ
F1,2 ∧ F2,1 ∧ F2,1 −

1
µ
F2,1 ∧ dS ,

d ?7 d(3λ1,2 + 2λ2,1) = −1
2e
−4λ1,2F1,2 ∧ ?7F1,2 −

1
2e
−4λ+S ∧ ?7S + 1

4 ?7
∂V

∂λ1,2
,

RMN = 5∂Mλ+∂Nλ− + ∂Mλ−∂Nλ+ + 1
2e
−4λ1F 2

1MN + 1
2e
−4λ2F 2

2MN

+1
4e
−4λ+S2

MN + 1
5gMN

[
V − 1

4e
−4λ1F 2

1 −
1
4e
−4λ2F 2

2 −
1
6e
−4λ+S2

]
,

(2.8)

whereM,N, . . . are curved 7d indices and we have defined F 2
1,2MN = F R

1,2M F1,2NR, S
2
MN =

S RS
M SNRS , F

2
1,2 = FMN

1,2 F1,2MN , S
2 = SMNRSMNR. To ensure that a solution of the

equations of motion of the U(1)×U(1) invariant truncation of the 7d supergravity theory
is supersymmetric one should check that the supersymmetry variations of one spin-3

2 grav-
itino and two spin-1

2 dilatini,
(
ψ̃M , ζ̃1, ζ̃2

)
, vanish. Setting the supersymmetry variations

of these fields to zero gives the following BPS equations for the 32-dimensional 7D spinor
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ε̃⊗ E , which we have split into a purely 7D part ε̃ and an SO(5) part E :

δψ̃M =
[
∂M + 1

4ωMÂB̂
γ̃ÂB̂ ⊗ 14 + µ

2 18 ⊗
(
A1MΓ12 +A2MΓ34

)
+
(
µ

4 e
−4λ+ γ̃M + 1

2 γ̃M γ̃
N∂Nλ+

)
⊗ 14

+ 1
4
(
e−2λ1F1MN γ̃

N ⊗ Γ12 + e−2λ2F2MN γ̃
N ⊗ Γ34

)
− 1

8e
−2λ+SMNP γ̃

NP ⊗ Γ5
]
ε̃⊗ E ,

δζ̃1,2 =
[
µ

4
(
e2λ1,2 − e−4λ+

)
− 1

4 γ̃
M∂M (3λ1,2 + 2λ2,1)⊗ 14

− 1
16e

−2λ1,2F1,2MN γ̃
MN ⊗ Γ12 + 1

48e
−2λ+SMNP γ̃

MNP ⊗ Γ5
]
ε̃⊗ E . (2.9)

Here γ̃M is an 8 × 8 curved 7d spacetime gamma matrix, γ̃Â is a flat 7d Lorentz gamma
matrix, ω

MÂB̂
is the 7d spin connection, Γi, with i = 1, . . . , 5, is a 4×4 flat internal SO(5)

gamma matrix, and finally 1n is an n× n identity matrix.

3 Dimensional reduction to 5d N = 2 minimal gauged supergravity

As shown in [4–6] the 7d U(1)×U(1) invariant truncation discussed above admits an infinite
family of supersymmetric AdS5 vacua. This suggests that there is a further consistent
truncation of this model to 5d N = 2 minimal gauged supergravity. Indeed, it is possible
to construct such a consistent truncation for each of the supersymmetric vacua studied
in [5, 6]. This type of consistent truncations arising from wrapped M5-branes have been
discussed in various level of detail in [7–14]. Our goal here is to rederive some of these
results in a way tailored to our goal of discussing asymptotically AdS5 black hole solutions
and where needed fill in small gaps in the literature.

More concretely, our aim is to reduce the 7d U(1)×U(1) gauged supergravity truncation
on a smooth Riemann surface Σg with genus g to arrive at 5d N = 2 minimal gauged
supergravity, with bosonic field content given by the metric with line element ds2

5 and
a single one-form gauge field A. For concreteness, we take the Riemann surface to be
hyperbolic, i.e. g > 1,2 and parametrize it with coordinates (x1, x2) as:3

ds2
2 =

(
dx1

2 + dx2
2
)
/x2

2 . (3.1)

We also define the one-form ω = dx1 /x2, such that the volume form on Σg is given by
dω. We take the 7d scalars to assume constant values λ1,2 = Λ1,2 as dictated by the AdS5

2Our results can be adapted to the AdS5 vacua of [5, 6] with g = 0, 1 in a straightforward way.
3To have a compact Riemann surface we have to mod out the upper half plane with an appropriate

discrete group. From now on we will assume that this discrete identification has been performed and will
work with local coordinates on the Riemann surface.
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vacua of [5, 6] and define two new constants, (g0, f0), in terms of them

Λ1 = 1
10 ln

(
1 + 7z + 7z2 + 33z3 − (1 + 4z + 19z2)

√
1 + 3z2

4z(1− z)2

)
,

Λ2 = Λ1 −
1
2 ln

( 1 + z

2z +
√

1 + 3z2

)
,

f0 = 4Λ+ ,

g0 = 1
2 ln

(1
8e

2Λ+
[
(1− z)e2Λ1 + (1 + z)e2Λ2

])
,

(3.2)

where Λ± = Λ1 ±Λ2 and z is a rational number obeying z(g− 1) ∈ Z. In this way we will
obtain a family of dimensional reductions labelled by (z, g). For the remaining 7d fields we
take the following reduction Ansatz

ds2
7 = e2f0 ds2

5 + e2g0L2 ds2
2 ,

S = c ef0+2g0+2Λ+L2 ?7 (F ∧ dω) ,
A1,2 = a (1± z)Lω + b ef0+2Λ1,2 A ,

(3.3)

where F = dA, L = 2/µ is the AdS5 radius, and (a, b, c) are z-independent constants that
we will fix below. We present the details of the dimensional reduction based on this Ansatz
in Appendix A.1. The upshot is that to have a 5d theory with z-independent cosmological
constant one has to fix a = ±1/4. To retain the normalization of the 5d Maxwell field
such that F = dA we need to take c = b and we also found it convenient to rescale b as
b = x /

√
3. As shown in Appendix A.1, integrating over the Riemann surface we obtain

the bosonic action of 5d N = 2 minimal gauged supergravity

I5 = 1
16πG5

∫ [
?5

(
R+ 12

L2

)
− x 2

2 F ∧ ?5F + x 3

3
√

3
A ∧ F ∧ F

]
, (3.4)

where x can be viewed as a normalization constant associated with the freedom4 to rescale
the gauge filed A. Importantly, the 5d Newton constant is given in terms of the 7d one by

G7 = e3f0+2g0L2 4π(g− 1)G5 . (3.5)

The equations of motion of the 5d supergravity can be derived from the action above and
read

d ?5 F = x√
3
F ∧ F ,

Rµν = − 4
L2 gµν + x 2

2 F
α

µ Fνα −
x 2

12gµνF
αβFαβ ,

(3.6)

where we have denoted the 5d curved indices with Greek letters. The only fermionic field in
the 5d supergravity theory is the spin-3

2 gravitino ψµ. Setting its supersymmetry variation
to zero we obtain the following BPS equation for the 4-dimensional 5d spinor ε:

δψµ =
[
∂µ + 1

4ωµα̂β̂γ
α̂β̂ − i x

8
√

3

(
γµαβF

αβ − 4Fµαγα
)
− 1

2L
(
γµ + i

√
3 xAµ

)]
ε , (3.7)

4Some common choices include: [16, 31]: x = 1, [15]: x = −2, [17]: x = 2/(
√

3 g).
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where γµ is a 4 × 4 curved 5d spacetime gamma matrix, γα̂ is a flat 5d Lorentz gamma
matrix and ω

µα̂β̂
is the 5d spin connection. In Appendix A.2 we show that the three 7d

supersymmetry variations in (2.9) reduce to (3.7) provided we identify

γ̃µ = −χ7 γµ ⊗ σ1 , γ̃x̂1
= χ7 14 ⊗ σ2 , γ̃x̂2

= χ7 14 ⊗ σ3 , ε̃ = ε⊗
(

1
χ7

)
, (3.8)

which in turn also implies that γ̃x̂1x̂2
= i 14 ⊗ σ1, use the projectors(

γ̃x̂1x̂2
⊗ Γ12

)
(ε̃⊗ E) = χ7 ε̃⊗ E ,

(
18 ⊗ Γ5

)
(ε̃⊗ E) = ε̃⊗ E , (3.9)

and set

a = −χ7
4 , c = b = x√

3
, ∂x1(ε̃⊗ E) = ∂x2(ε̃⊗ E) = 0 , (3.10)

where χ7 = ±1 is the chirality of the highest rank 7d Clifford algebra element. Note
that the choice of sign leftover in a from reducing the action is dictating which of the two
inequivalent representation of the 7d Clifford algebra one should use.

4 Thermodynamics of the 5d black hole

After showing that to each of the supersymmetric AdS5 vacua constructed in [5, 6] one
can associate a distinct truncation of 11d supergravity to 5d N = 2 minimal gauged
supergravity we now proceed to discuss a family of rotating asymptotically AdS5 black
hole solutions of this theory. Although our discussion will be in five dimensions we stress
that these solutions can be explicitly uplifted to 11d using the formulae in Section 2 and
Section 3 above. Many of the results presented below have appeared before in the literature,
in particular in [16–18, 32]. Our goal is to collect them here for completeness and clarify
some aspects of the calculations.5

4.1 CCLP solution

The 5d N = 2 gauged supergravity with bosonic action (3.4) admits a general non-
supersymmetric black hole solution found in [16] which we will refer to as CCLP. The
solution is specified by four real parameters (a, b, q,m) which determine its two angular
momentum, electric charge and mass. For the Lorentzian black hole solutions these pa-
rameters are further constrained as

−1 < ag < 1 , −1 < bg < 1 , 0 ≤ q ≤ m

1 + ag + bg
, (4.1)

where g = 1/L is the inverse of the AdS scale. The first two conditions arise from requiring
that the black hole is not over-rotating and the last condition constitutes the BPS bound.

5Most of the supergravity, holographic renormalization, and black hole thermodynamics calculations
were performed with the help of a new Mathematica package we developed which is based on xAct and can
be found at https://github.com/waskou/SolutionsX.
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The solution is specified by the following metric and gauge field

ds2
CCLP = −∆η[(1 + g2r2)ρ2 dt+ 2qν] dt

ΞaΞbρ2 + 2qνω
ρ2 + f

ρ4

(∆η dt
ΞaΞb

− ω
)2

+ ρ2 dr2

∆r
+ ρ2 dη2

∆η
+ r2 + a2

Ξa
sin2 η dξ1

2 + r2 + b2

Ξb
cos2 η dξ2

2 ,

ACCLP =
√

3 q
x ρ2

(∆η dt
ΞaΞb

− ω
)

+ α dt ,

(4.2)

where we have defined the one-forms

ν = b sin2 η dξ1 + a cos2 η dξ2 , ω = a sin2 η

Ξa
dξ1 + b cos2 η

Ξb
dξ2 , (4.3)

the functions

∆r(r) = (r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq
r2 − 2m,

∆η(η) = 1− a2g2 cos2 η − b2g2 sin2 η ,

ρ2(r, η) = r2 + a2 cos2 η + b2 sin2 η ,

f(r, η) = 2
(
m+ abqg2

)
ρ2(r, η)− q2 ,

(4.4)

and the constants

Ξa = 1− a2g2 , Ξb = 1− b2g2 . (4.5)

We have also included a pure gauge term, α dt, in ACCLP, which is important to guarantee
regularity of AµAµ on the horizon. These coordinates cover the region outside of the black
hole and have the following ranges and identifications

−∞ < t <∞ , r+ < r <∞ , 0 < η <
π

2 , ξ1 ∼ ξ1 + 2π , ξ2 ∼ ξ2 + 2π , (4.6)

where r+ is the largest positive root of ∆r(r). The surface r = r+ is the event horizon
of the Lorentzian black hole, see Appendix B.4 for further details. Sometimes, it will be
convenient to trade the parameter m for r+. The explicit relation, which is obtained by
solving ∆r(r+) = 0, reads

m = (r2
+ + a2)(r2

+ + b2)(1 + g2r2
+) + q2 + 2abq

2r2
+

. (4.7)

As emphasized in [17] the Lorentzian CCLP black hole can be analytically continued
to a Euclidean “black saddle”, which solves the equations of motion of the Euclidean theory
(B.10)6. The Euclidean metric and gauge field are given by

ds2
CCLP,E = ds2

CCLP

∣∣∣∣
t→−i τ

, ACCLP,E = ACCLP

∣∣∣∣
t→−i τ

. (4.8)

6The term “black saddle” was coined in [33] and refers to the fact that, in general, there exist Euclidean
saddle points of the supergravity path integral that do not admit analytic continuation to sensible Lorentzian
field configurations. The CCLP black saddle is an example of an Euclidean solution that does admit
continuation to the Lorentzian black hole of [16] for some values of the parameters. We refer to this black
saddle also as CCLP and the meaning is to be inferred from the context.
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Note that these metric and gauge field are both complex. One might want to work with
a real Euclidean section by, in addition to Wick rotation, also analytically continuing the
rotation parameters as: a → i a, b → i b. Once this is done the Euclidean metric is purely
real and the Euclidean gauge field is purely imaginary. In the context of evaluating the on-
shell action of this solution it is useful to work with this real Euclidean section. To interpret
the result holographically as a Lorentzian partition function the rotation parameters have
to be analytically continued back to their original values: a→ −i a, b→ −i b. It turns out
that this procedure gives the same final answer as simply working with the complex Wick
rotated metric and gauge field (4.8), without continuing the rotation parameters back and
forth.

In the holographic context it will be useful also to work with the conformally rescaled
boundary metric

ds2
CCLP,B = lim

r→∞
g−2r−2 ds2

CCLP

= − ∆η

ΞaΞb
dt2 + 1

g2∆η
dη2 + sin2 η

g2Ξa
dξ1

2 + cos2 η

g2Ξb
dξ2

2 . (4.9)

This metric, with certain identifications of the coordinates that are discussed in detail in
[17], determines the background on which the 4d N = 1 dual SCFT is placed.

4.2 Thermodynamic properties CCLP

In Appendix B.4 we show that to the CCLP black hole we can associate the following
thermodynamic potentials:

β = 2πr+
[
(r2

+ + a2)(r2
+ + b2) + abq

]
r4

+
[
1 + g2(2r2

+ + a2 + b2)
]
− (ab+ q)2 ,

Ω1 = a(r2
+ + b2)(1 + g2r2

+) + bq

(r2
+ + a2)(r2

+ + b2) + abq
, Ω2 = b(r2

+ + a2)(1 + g2r2
+) + aq

(r2
+ + a2)(r2

+ + b2) + abq
,

Φ =
√

3qr2
+

x
[
(r2

+ + a2)(r2
+ + b2) + abq

] ,
(4.10)

physically corresponding to: inverse temperature, angular velocities measured in a non-
rotating frame at infinity, and electrostatic potential. To obtain the entropy, via the
Bekenstein-Hawking area formula S = Area/4G5, one has to integrate the square root
determinant, √gH, of the induced metric on the horizon, which has topology of S3 and
metric given by

ds2
H = ds2

CCLP

∣∣∣∣
dt→0,dr→0, r→r+

. (4.11)

Performing this integral we obtain

S = π2[(r2
+ + a2)(r2

+ + b2) + abq
]

2ΞaΞbr+G5
. (4.12)
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In Appendices B.5 and B.7 we calculate the following charges of the CCLP black hole

E =
(
EAdS − ζ̃ ′

)
+ mπ(2Ξa + 2Ξb − ΞaΞb) + 2abq2π(Ξa + Ξb)

4Ξ2
aΞ2

bG5
,

J1 = π
[
2am+ bq(1 + a2g2)

]
4Ξ2

aΞbG5
, J2 = π

[
2bm+ aq(1 + b2g2)

]
4ΞaΞ2

bG5
,

Q = x
√

3πq
4ΞaΞbG5

,

(4.13)

physically corresponding to: energy, angular momenta and electric charge. Above we have
defined the constants

EAdS = 3π
32g2G5

(
1 + (Ξa − Ξb)2

9ΞaΞb

)
, ζ̃ ′ = 9gπβ

(
Ξ2
a − ΞaΞb + Ξ2

b

)
ΞaΞbG5

ζ ′ , (4.14)

where ζ ′ is the coefficient of a certain finite counterterm that we introduce to the boundary
action in the process of holographic renormalization, see Appendix B.6. In a similar cal-
culation [32] obtains the energy of the Kerr-AdS5 black hole — the special case q = 0, in a
renormalization scheme where ζ̃ ′ = 0. For the quantity EAdS, which physically corresponds
to the Casimir energy of empty AdS5, we find agreement with [32]. The Euclidean on-shell
action is obtained by evaluating (B.9), on-shell, on a surface r = R0, where R0 � r+.
Naively, one obtains divergences, scaling as R4

0 and R2
0. They can be cancelled by sub-

tracting the on-shell action of AdS5, written in suitable coordinates, in a background
subtraction procedure. The final answer reads

Ibs = πβ

4ΞaΞbG5

[
m− g2(a2 + r2

+)(b2 + r2
+)− q2r2

+
(a2 + r2

+)(b2 + r2
+) + abq

]
. (4.15)

To obtain this answer, crucially, one has to include the gauge parameter α in (4.2) and
then set it to −Φ to ensure that the gauge field is regular on the horizon. This important
aspect of the calculation was not explicitly stated in the original derivation presented in
[34]. Alternatively, in Appendix B.6 we employ holographic renormalization to obtain the
following Euclidean on-shell action

I = β
(
EAdS − ζ̃ ′

)
+ Ibs , (4.16)

where precisely the constants (4.14) appear. We can interpret this discrepancy between the
two on-shell action results as follows. In a non-supersymmetric setting there is no preferred
mechanism to fix the coefficient ζ ′ of the finite counterterm, i.e. the value of the constant
ζ̃ ′ defines a choice of renormalization scheme. In particular, the “background subtraction
renormalization scheme” corresponds to setting ζ̃ ′ = EAdS. In a different scheme the en-
ergy acquires an additive constant factor and the on-shell action acquires the same additive
factor times β.

Having collected the potentials, charges, entropy and on-shell action of CCLP we have
verified explicitly that, in any renormalization scheme, the quantum statistical relation
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holds

I = βE − S − βΩ1J1 − βΩ2J2 − βΦQ . (4.17)

Naively, the first law of thermodynamics

dE = 1
β

dS + Ω1 dJ1 + Ω2 dJ2 + Φ dQ , (4.18)

where the variations are taken with respect to the “bare” black hole parameters (a, b, r+, q),
is only satisfied in the renormalization scheme ζ̃ ′ = EAdS. Insisting on using the “bare”
parameters, it was argued in [32] that in a renormalization scheme where ζ̃ ′ 6= EAdS one
should use the following generalized first law

dE = δσE + 1
β

dS + Ω1 dJ1 + Ω2 dJ2 + Φ dQ , (4.19)

where δσE is the variation of the energy with respect to a Weyl transformation that keeps
representative of the conformal class of boundary metrics fixed. They go further to prove
that the variation of the on-shell action under this Weyl transformation is7

δσI = β d
(
EAdS − ζ̃ ′

)
= β δσE . (4.20)

Using this result, we see that the generalized first law takes the form

d
(
E −

(
EAdS − ζ̃ ′

))
= 1
β

dS + Ω1 dJ1 + Ω2 dJ2 + Φ dQ , (4.21)

which is now trivially satisfied in any renormalization scheme, when the variation is taken
with respect to the parameters (a, b, r+, q).

The Euclidean on-shell action can be though of as minus the logarithm of the grand
canonical partition function

I(β,Ω1,Ω2,Φ) = − logZ(β,Ω1,Ω2,Φ) , (4.22)

where the grand canonical ensemble is the one in which the thermodynamic potentials
(β, Ω1, Ω2, Φ) are held fixed, while the charges are allowed to fluctuate. In this setup each
state is assigned a probability

Pi = 1
Z
e−β(Ei−Ω1J1,i−Ω2J2,i−ΦQi) , Z =

∑
i

e−β(Ei−Ω1J1,i−Ω2J2,i−ΦQi) . (4.23)

Then the average charges are given by

E =
∑
i

PiEi = ∂I
∂β

+ Ω1J1 + Ω2J2 + ΦQ ,

J1 =
∑
i

PiJ1,i = − 1
β

∂I
∂Ω1

, J2 =
∑
i

PiJ2,i = − 1
β

∂I
∂Ω2

,

Q =
∑
i

PiQi = − 1
β

∂I
∂Φ .

(4.24)

7Technically, they only prove this in the renormalization scheme ζ̃′ = 0, but their result trivially gener-
alizes.
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The above relations can be readily seen from the quantum statistical relation (4.17) and
indicate that the potentials (β, Ω1, Ω2, Φ) are conjugate to the charges (E, J1, J2, Q),
respectively. We can verify these relations on the CCLP solution as follows. First, we
express the Euclidean on-shell action and the potentials solely in terms of the black hole
parameters (a, b, r+, q). Then we solve the following system of four equations

∂I
∂(a, b, r+, q)

= ∂I
∂β

∂β

∂(a, b, r+, q)

+ ∂I
∂Ω1

∂Ω1
∂(a, b, r+, q)

+ ∂I
∂Ω2

∂Ω2
∂(a, b, r+, q)

+ ∂I
∂Φ

∂Φ
∂(a, b, r+, q)

(4.25)

for the four unknowns
(
∂I
∂β ,

∂I
∂Ω1

, ∂I
∂Ω2

, ∂I∂Φ

)
. Plugging the results in (4.24) we get perfect

agreement with the charges obtained in Appendices B.5 and B.7 via holographic renormal-
ization and Komar integrals. Finally, one can view the entropy as a function of the charges
(E, J1, J2, Q) and write the quantum statistical relation as

S(E, J1, J2, Q) = βE − βΩ1J1 − βΩ2J2 − βΦQ− I(β,Ω1,Ω2,Φ) , (4.26)

where the following relations should hold

β = ∂S

∂E
, Ω1 = − 1

β

∂S

∂J1
, Ω2 = − 1

β

∂S

∂J2
, Φ = − 1

β

∂S

∂Q
. (4.27)

Again, we establish their validity on the CCLP solution by solving the following system of
four equations

∂S

∂(a, b, r+, q)
= ∂S

∂E

∂E

∂(a, b, r+, q)

+ ∂S

∂J1

∂J1
∂(a, b, r+, q)

+ ∂S

∂J2

∂J2
∂(a, b, r+, q)

+ ∂S

∂Q

∂Q

∂(a, b, r+, q)
, (4.28)

for the four unknowns
(
∂S
∂E ,

∂S
∂J1

, ∂S
∂J2

, ∂S∂Q

)
and plugging the results in (4.27). This analysis

shows that the entropy is the Legendre transform of the Euclidean on-shell action, in which
the charges (E, J1, J2, Q) replace the potentials (β, Ω1,Ω2,Φ) as independent variables.

4.3 Thermodynamics in the supersymmetric and BPS limits of CCLP

One can make the CCLP solution supersymmetric by saturating the BPS bound

q = m

1 + ag + bg
. (4.29)

In what follows it is convenient to also exchange the parameter m for

m̃ = mg

(a+ b)(1 + ag)(1 + bg)(1 + ag + bg) − 1 . (4.30)

We show that the resulting three-parameter family of solutions, i.e. (a, b, m̃), is super-
symmetric in Appendix B.8 by explicitly solving the Killing spinor equations. This three
parameter family of Euclidean supersymmetric solutions can be analytically continued to
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Lorentzian signature resulting in a family of supersymmetric black holes. These black hole
solutions are however not regular and causal outside their horizon which is manifested by
the generically complex roots of ∆r(r) = 0. Setting m̃ = 0 one obtains a two-parameter
family, i.e. (a, b), of supersymmetric and extremal black holes that do not suffer from such
problems and have vanishing temperature, i.e. β → ∞. This was called the BPS limit in
[17] and one can show that in this BPS limit ∆r(r) = 0 has a real double root given by

r2
∗ = 1

g
(a+ b+ abg) , (4.31)

and the surface r = r∗ constitutes the event horizon of the BPS black hole.
To have better control over the IR divergence associated with the fact that β → ∞

in the BPS limit, we provide an alternative description of the supersymmetric black hole.
Using (4.30) and (4.7), the supersymmetry condition (4.29) can be rewritten as

q = −ab+ r2
+(1 + ag + bg)±

√
−r2

+(r2
∗ − r2

+) . (4.32)

Insisting that q is real, we see that we are forced to take the extremal limit r+ → r∗
alongside the supersymmetric limit. In general however q is complex and leads to the
following (complex) supersymmetric thermodynamic quantities

β = − 2π(a− ir+)(b− ir+)(gr2
∗ + ir+)

g(r2
∗ − r2

+)
[
2r+(1 + ag + bg) + ig(r2

∗ − 3r2
+)
] ,

Ω1 = g(r2
∗ + iar+)(1− igr+)

(gr2
∗ + ir+)(a− ir+) , Ω2 = Ω1

∣∣∣∣
a↔b

,

Φ =
√

3 ir+(1− igr+)
x (gr2

∗ + ir+) ,

Ẽ = π
[
3− g2(a2(1 + bg) + b2(1 + ag)− ab

)][
−ab+ r2

+(1 + ag + bg) + igr+
(
r2
∗ − r2

+
)]

4ΞaΞb(1− ag)(1− bg)G5
,

J1 = π[2a+ b(1 + ag)]
[
−ab+ r2

+(1 + ag + bg) + igr+
(
r2
∗ − r2

+
)]

4ΞaΞb(1− ag)G5
, J2 = J1

∣∣∣∣
a↔b

, (4.33)

Q = x
√

3π
[
−ab+ r2

+(1 + ag + bg) + igr+
(
r2
∗ − r2

+
)]

4ΞaΞbG5
,

S = π2[r+
(
r2

+ + a2(1 + bg) + b2(1 + ag) + ab
)

+ iabg(r2
∗ − r2

+)
]

2ΞaΞbG5

Ĩ = π2(a− ir+)2(b− ir+)2(1 + g2r2
∗)

2ΞaΞb
[
2r+(1 + ag + bg) + ig(r∗ − 3r2

+)
]
G5

,

where we have defined Ẽ = E −
(
EAdS − ζ̃ ′

)
and Ĩ = I − β

(
EAdS − ζ̃ ′

)
. As expected, the

quantum statistical relation (4.17) and the generalized first law (4.21) continue to hold in
the supersymmetric limit. We also find that the charges obey the following linear relation

E − gJ1 − gJ2 −
√

3
x
Q = EAdS − ζ̃ ′ . (4.34)

If the right hand side of this equation vanishes it will look like the familiar BPS constraint
of the charges obeyed by supersymmetric black holes. As explained in Appendix B the
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parameter ζ̃ ′ is the coefficient of a finite counterterm in the holographic renormalization
procedure used to compute the gravitational charges. We can therefore make the right hand
side of (4.34) vanish if we choose a scheme in which ζ̃ ′ = EAdS. This choice is implemented
by the background subtraction scheme discussed above (4.15). We note that since there is
no preferred holographic renormalization scheme for 5d minimal gauged supergravity that
is compatible with covariance, gauge invariance, and supersymmetry, see for example [35],
one is in principle free to choose any other value of the finite counterterm coefficient ζ̃ ′.
From now on we will work in the ζ̃ ′ = EAdS scheme which implies that E = Ẽ and I = Ĩ.

In addition to the linear relation in (4.34), supersymmetry implies a linear relation
between the corresponding potentials that reads

β
(
g + Ω1 + Ω2 − gx

√
3 Φ
)

= 2πi . (4.35)

In Appendix B.8 we show how this constraint arises from a periodicity condition on the
Killing spinor on the horizon. It is useful to define new chemical potentials which are
convenient for taking the β →∞ supersymmetric black hole limit

ω1 = β(Ω1 − g) , ω2 = β(Ω2 − g) , ϕ = β

(
Φ−

√
3

x

)
. (4.36)

In terms of them the supersymmetric Euclidean on-shell action takes the remarkably simple
form

I = πx 3

12
√

3G5

ϕ3

ω1ω2
. (4.37)

The quantum statistical relation (4.17) and the linear constraint (4.35) can also be written
in a manifestly β-independent way

I = −S − ω1J1 − ω2J2 − ϕQ ; ω1 + ω2 − gx
√

3ϕ = 2πi , (4.38)

where the energy has been eliminated using (4.34).
This presentation of the supersymmetric CCLP black hole is adapted to taking the

limit to extremality: r+ → r∗. Even though β diverges in this limit, the newly defined
chemical potentials assume the following finite (and complex) BPS values

ω1 = − π(1− ag)(b− i r∗)
r∗[1 + g(a+ b− i r∗)]

, ω2 = ω1

∣∣∣∣
a↔b

, ϕ =
√

3π(a− i r∗)(b− i r∗)
x r∗[1 + g(a+ b− i r∗)]

, (4.39)

where we adopted the convention to denote BPS quantities in the β →∞ limit with bold
letters. The BPS charges and the entropy become real in this limit and read

E = π(a+ b)
[
3− g2(a2(1 + bg) + b2(1 + ag)− ab

)]
4g(1− ag)2(1− bg)2G5

, Q = x
√

3π(a+ b)
4(1− ag)(1− bg)G5

,

J1 = π(a+ b)[2a+ b(1 + ag)]
4g(1− ag)2(1− bg)G5

, J2 = J1

∣∣∣∣
a↔b

, S = π2(a+ b)r∗
2g(1− ag)(1− bg)G5

,

(4.40)
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while the BPS Euclidean on-shell action remains complex and is naturally expressed in
terms of the new BPS potentials

I = µ
ϕ3

ω1ω2
, (4.41)

where we have extracted the constant pre-factor µ = πx 3/(12
√

3G5). The quantum statis-
tical relation and linear constraint between the potentials take precisely the same form as
in the supersymmetric case

I = −S − ω1J1 − ω2J2 −ϕQ ; ω1 + ω2 − νϕ = 2πi , (4.42)

where we have defined ν = gx
√

3. We again work in the grand canonical ensemble where
the potentials are held fixed and the charges allowed to fluctuate and write the entropy as

S(J1,J2,Q) = −I(ω1,ω2,ϕ)− ω1J1 − ω2J2 −ϕQ− λ(ω1 + ω2 − νϕ− 2πi) , (4.43)

where we have included a Lagrange multiplier λ multiplying the linear constraint. Taking
partial derivatives of the above with respect to the potentials one obtains three extremiza-
tion equations

− ∂I
∂ω1

= J1 + λ , − ∂I
∂ω2

= J2 + λ , −∂I
∂ϕ

= Q− νλ

⇓

µ
ϕ3

ω2
1ω2

= J1 + λ , µ
ϕ3

ω1ω2
2

= J2 + λ , −µ 3ϕ2

ω1ω2
2

= Q− νλ .

(4.44)

In principle, to perform the Legendre transform one has to invert the bottom line above (to-
gether with the linear constraint) to express (ω1,ω2,ϕ, λ) in terms of the charges (J1,J2,Q)
and then plug the results in (4.43) to obtain the entropy. However, due to I being a homo-
geneous function of degree 1, from Euler’s theorem one has I = ω1∂ω1I +ω2∂ω2I +ϕ∂ϕI,
and the expression for the entropy simplifies to

S = 2πiλ . (4.45)

This provides a shortcut to obtaining the entropy: by inspection we see that

0 = 1
ν3

[(
∂I
∂ϕ

)3
− 27µ ∂I

∂ω1

∂I
∂ω2

]
=⇒ 0 = p0 + p1λ+ p2λ

2 + λ3 , (4.46)

where after the implies sign we have used the extremization equations and extracted the
coefficients in front of the λ terms

p0 = − 1
ν3 Q3 − 27µ

ν3 J1J2 , p1 = 3
ν2 Q2 − 27µ

ν3 (J1 + J2) , p2 = −3
ν

Q− 27µ
ν3 . (4.47)

We seek a purely real entropy in the BPS limit, so we should have a purely imaginary
root of the cubic (4.46). This is possible if p0 = p1p2, which translates to the following
non-linear relation between the BPS charges:(

2
gx
√

3
Q

)3

+ 2π
g3G5

J1J2 =
(

2
√

3
gx

Q + π

2g3G5

)[( 2
gx

Q

)2
− π

g3G5
(J1 + J2)

]
. (4.48)
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Then the purely imaginary roots are λ = ±i√p1. Picking the minus sign in order to have
positive entropy we obtain

S = π

g

√
4

x 2 Q2 − π

gG5
(J1 + J2) . (4.49)

While we have shown how to obtain the supersymmetric black hole entropy as a Legendre
transformation of the on-shell action it is also possible to verify the validity of (4.49) and
(4.48) using the explicit expression of the BPS charges and entropy in terms of the black
hole parameters given in (4.40).

5 Holography and the superconformal index

The results for the on-shell action and entropy of the supersymmetric CCLP solution
presented above can be understood from a holographic viewpoint in terms of an appropriate
supersymmetric partition function on S1 × S3 called the superconformal index IQFT, see
[36] for a review. Here we discuss how this can be done in some detail.

5.1 Anomalies and the index on the second sheet

The superconformal index of class S SCFTs has been studied for low values of N in [21–24].
We are not aware of an extension of these results valid in the large N limit relevant to our
holographic setup. Recently, building on previous results in [17, 37], it was shown in [25],
see also [26], that the superconformal index of general 4d N = 1 SCFTs is given by the
following compact expression

log IQFT = ϕ3
R

48ω1ω2
kRRR −

ϕR(ω2
1 + ω2

2 − 4π2)
48ω1ω2

kR + log |G| , (5.1)

where, ω1,2 are the fugacities for the two angular momenta on S3, ϕR is the U(1) R-
symmetry fugacity, G is the order of the Abelian 1-form symmetry in the theory (if any),
and (kRRR, kR) are the cubic and linear ’t Hooft anomalies. Supersymmetry imposes the
following linear relation between the fugacities

ϕR = (ω1 + ω2 + 2πin0) , (5.2)

and the expression in (5.1) is valid for n0 = ±1, i.e. on the “second sheet” of the complexi-
fied fugacities. This result for the index includes the contribution from the supersymmetric
Casimir energy [38, 39] and is valid up to exponentially suppressed terms of the form e−`3/β

where `3 is the radius of the S3 and β is the circumference of the S1. It is not immediately
clear that this Cardy-like limit of the index is useful for studying its large N properties.
However, it was shown in [17, 27, 28, 37] that the kRRR and kR terms in (5.1) are in perfect
agreement with the regularized on-shell action of the supersymmetric CCLP solution in 5d
N = 2 minimal gauged supergravity and its four-derivative extension. This in turn implies
that the on-shell action and entropy of the wrapped M5-brane black holes we constructed
above can be reproduced by using the index in (5.1). This is indeed possible as we show
below.
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To use the expression in (5.1) we need the ’t Hooft anomalies for the R-symmetry of
the SCFT at hand. The 4d N = 1 class S SCFTs of interest here have a U(1)F flavor
symmetry in addition to the U(1)R R-symmetry. The ’t Hooft anomalies for these global
symmetries can be computed as in [5, 6, 19, 20, 40] either with field theory methods or by
integrating the anomaly polynomial of the 6d N = (2, 0) SCFT over Σg. For concreteness
here we focus on the type AN−1 class S theories and take g > 18 for which the ’t Hooft
anomalies read

kRRR = 2(g− 1)
27z2

[
9z2 − 1 + (3z2 + 1)

3
2
]
N3 , kRRF = (g− 1)

9 z N ,

kRFF = −(g− 1)
3

√
3z2 + 1N3 , kFFF = (g− 1) z N3 ,

kR = g− 1
3

[
4−

√
3z2 + 1

]
N , kF = (g− 1) z N .

(5.3)

We have presented the results for the leading term in the largeN expansion of the anomalies
which is all we need for our holographic discussion. The exact finite N values can be easily
found using the results in [5, 6]. To obtain these results for the ’t Hooft anomalies, as ex-
plained in [5, 6], one has to employ a-maximization [41]. As expected from a-maximization
we find that kRFF is negative and that the superconformal Ward identity kF = 9kRRF
is obeyed. In addition, one can use superconformal Ward identities to find the following
conformal anomalies

a = 1
32(9kRRR − 3kR) = (g− 1)

(
9z2 − 1 + (1 + 3z2) 3

2
)

48z2 N3 ,

c = 1
32(9kRRR − 5kR) = (g− 1)

(
9z2 − 1 + (1 + 3z2) 3

2
)

48z2 N3 .

(5.4)

Again we have presented the conformal anomalies only to leading order in the large N limit
and as expected for a holographic SCFT we find that a = c to this order.

Plugging the results for kRRR and kR presented above in the formula for the super-
conformal index (5.1) we obtain an explicit expression for IQFT valid in the Cardy-like
limit and to leading order in the large N limit. To compare IQFT with the regularized
on-shell action of the supersymmetric CCLP solution we need to employ the holographic
dictionary. As shown in [27, 42] the cubic ’t Hooft anomaly is related to the 5d AdS radius
and Newton constant as

kRRR = 4πL3

9G5
, (5.5)

while kR is related to the coefficients of the four-derivative corrections to the 5d supergravity
theory. To relate this 5d supergravity expression for kRRR to the microscopic parameters
(N, g, z) one should use the relation between the 5d and 7d Newton constants in (3.5), the
expressions that define the AdS5 supersymmetric vacua in (3.2), as well as the uplift of this
solution to 11d using the formulae in Section 2. As shown in [27, 42], and can be checked
explicitly using the formulae above, this supergravity calculation leads to exactly the same
result for kRRR as the one in (5.3).

8The results below have a straightforward generalization to arbitrary genus and to the type DN theories.
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Another entry from the holographic dictionary we need is the relation between the
fugacities specifying the index and the gravitational potentials of the CCLP solution. This
was also discussed in some detail recently in [27] where it was shown that the supergravity
BPS potentials in (4.39) can be related to the field theory fugacities as follows

ω1,2 ←→ ω1,2 , ϕR ←→
x
√

3
L

ϕ . (5.6)

Comparing the supergravity BPS relation in (4.42) with the field theory one in (5.2) we
see that we must set n0 = −1 in order to find agreement. This choice for the sign of n0 is
related to a conventional choice in the sign of the electric field in the CCLP solution.

Combining all these ingredients together we find that regularized supergravity on-shell
action I in (4.41) precisely agrees with the kRRR term in the logarithm of the superconfor-
mal index log IQFT in (5.1). If one would like to obtain the entropy of the supersymmetric
CCLP black hole in (4.49) one can simply take log IQFT and repeat the Legendre trans-
formation procedure discussed above (4.49). These results constitute a precision test of
holography for the wrapped M5-brane black holes we constructed above and a microscopic
understanding of their Bekenstein-Hawking entropy in terms of the superconformal index
of the dual 4d N = 1 class S SCFTs.

5.2 More general black holes?

The 4d N = 1 SCFTs in [5, 6] have a U(1)F flavor symmetry in addition to the U(1)R
R-symmetry. This means that the superconformal index can be additionally refined with
a flavor fugacity ϕF . The explicit form of this refined index in the Cardy-like or large
N limit has not been studied in the literature. From the supergravity point of view the
U(1)F ×U(1)R global symmetry is realized by the two Killing vectors in the 11d metric in
(2.2) or alternatively by the two Abelian gauge fields in the 7d gauged supergravity (2.6).
The asymptotically AdS5 black hole solutions we studied above have only one electric
charge associated with the U(1)R gauge field. Both the QFT and supergravity setups
therefore suggest that there may be more general black hole solutions with two electric
charges and two angular momenta with entropy and on-shell action that can be accounted
for by the large N limit of the refined superconformal index. While we have not calculated
the refined index or constructed these supergravity solutions we present some speculations
and educated guesses about their properties.

We begin with the following proposal for the generalized version of the “second sheet”
formula for the index of a general 4d N = 1 SCFT with a U(1) flavor symmetry

log IQFT = kRRR ϕ
3
R + kRRF ϕ

2
RϕF + kRFF ϕRϕ

2
F + kFFF ϕ

3
F

48ω1ω2
, (5.7)

where ϕR obeys the linear constraint (5.2) and we have only presented terms that involve
the cubic ’t Hooft anomalies since these should be the leading contributions to the large
N limit of the index of a holographic SCFT. This proposed formula for the index is based
on the form of the supersymmetric Casimir energy for general 4d N = 1 SCFTs in [38] as
well as the holographic results for the index of N = 4 SYM in [37].

– 19 –



Then, we propose the following identification between the field theory fugacities and
the supergravity BPS potentials

ω1,2 ←→ ω1,2 , ϕR ←→ νϕR , ϕF ←→ ρϕF , (5.8)

where, the constants ν and ρ should be determined by using the holographic dictionary
using the explicit putative black hole solutions.To be consistent with the form of the on-shell
action in (4.41) we expect that ν = x

√
3 g, such that ϕ ≡ ϕR.

In the dual supergravity there should be a supersymmetric Euclidean solution with
two angular momenta and two electric charges that has the following on-shell action

I = µ1 ϕ3
R + µ2 ϕ2

RϕF + µ3 ϕRϕ2
F + µ4 ϕ3

F

ω1ω2
, (5.9)

where the real parameters µ1,2,3,4 should be determined by the coupling constants of the
particular supergravity theory hosting the proposed new black hole. One should then de-
rive, via the holographic dictionary, explicitly how they are related to the ’t Hooft anomalies
kRRR, kRRF , kRFF and kFFF . In order to have a holographic match between I and log IQFT
we need the following relations to hold

µ1 = kRRRν
3

48 , µ2 = kRRF ν
2ρ

48 , µ3 = kRFF νρ
2

48 , µ4 = kFFFρ
3

48 , (5.10)

Establishing this equivalence is of course non-trivial and hinges on the explicit construction
of the black hole solution with two electric charges, the details of the holographic map, and
the validity of the formula for the index in (5.7).

If all our educated guesses (5.7)-(5.10) are correct and such a non-trivial agreement
can indeed be established one can try to proceed and perform a Legendre transform of the
on-shell action, or equivalently the large N index in order to derive the entropy of the black
hole. This proves to be a non-trivial calculation as we now outline. First let us rewrite the
on-shell action as

I = π

24ω1ω2
κIJKϕIϕJϕK , (5.11)

where κIJK is totally symmetric with its independent components given by

κ111 = 24µ1
π

, κ112 = 8µ2
π

, κ122 = 8µ3
π

, κ222 = 24µ4
π

, (5.12)

and ϕI = (ϕR,ϕF ). This rewriting of the on-shell action is inspired by the on-shell action
of supersymmetric black holes in 5d gauged supergravity coupled to two vector multiplets
studied in [18]. The only difference here is that we use a basis of supergravity BPS potentials
that explicitly singles out the superconformal R-symmetry. To find the entropy we now
follow the familiar procedure of extremizing

S = −I −ϕIQI − ω1J1 − ω2J2 − λ(ω1 + ω2 − νϕR − 2πi) , (5.13)

– 20 –



where QI = (QR,QF ) and, crucially, only ϕR is on the “second sheet”. The extremization
equations read

− ∂I
∂ω1

= J1 + λ , − ∂I
∂ω2

= J2 + λ , − ∂I
∂ϕR

= QR − νλ , − ∂I
∂ϕF

= QF . (5.14)

Together with the linear constraint ω1 + ω2 − νϕR = 2πi, this amounts to a system of 5
non-linear equations that need to be solved for (ω1,ω2,ϕR,ϕF , λ) in terms of the charges
(J1,J2,QR,QF ). We have not been able to solve this system of equations analytically and
have only found numerical solutions. To proceed further we resort to the shortcut outlined
in Section 4.3. We note that I is again homogeneous of degree 1 and the extremized
entropy is therefore given by S = 2πiλ.

We note that the relation

0 = 1
6κ

IJK ∂I
∂ϕI

∂I
∂ϕJ

∂I
∂ϕK

− π

4
∂I
∂ω1

∂I
∂ω2

, (5.15)

holds provided that κIJK obeys

κIJKκJ ′(LMκPQ)K′g
JJ ′gKK

′ = 4
3gI(LκMPQ) , (5.16)

where the metric and the inverse metric read

gIJ = 6
(
π

2µ1

)−2/3
δIJ , gIJ = 1

6

(
π

2µ1

)2/3
δIJ , (5.17)

and consequently, the non-zero components of κIJK are given by

κ111 = π

18µ1
, κ112 = πµ2

54µ2
1
, κ122 = πµ3

54µ2
1
, κ222 = πµ4

18µ2
1
. (5.18)

In the symmetric fugacity basis used in the supergravity analysis in [18] the relation (5.16)
holds since it ensures that the scalars residing in the two vector multiplets parametrize a
symmetric coset space. If we take this requirement imposed by gauged supergravity as a
given and use the extremization equations (5.14) together with (5.15) we find that λ has
to obey the following cubic equation:

0 = p0 + p1λ+ p2λ
2 + λ3 ,

p0 = − 1
ν3 Q3

R −
27µ1
ν3 J1J2 −

µ2
µ1ν3 Q2

RQF −
µ4
µ1ν3 Q3

F ,

p1 = −27µ1
ν3 (J1 + J2) + 3

ν2 Q2
R + 2µ2

µ1ν2 QRQF + µ3
µ1ν2 Q2

F ,

p2 = −27µ1
ν3 −

3
ν

QR −
µ2
µ1ν

QF .

(5.19)

Then the non-linear relation between the charges and the entropy read

p0 = p1p2 , S = 2π√p1 . (5.20)
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Note that these expression nicely reduce to our results in Section 4.3 when QF = 0 and

µ1 = kRRRν
3

48 = 1
48

4πL3

9G5

(
x
√

3
L

)3

= πx 3

12
√

3G5
= µ , (5.21)

where we have used our educated guess for the relation between the supergravity constant
µ1 and the SCFT anomaly kRRR. More importantly, this expression for the entropy and the
non-linear constraint between the black hole charges are only valid when (5.16) is satisfied.
From the point of view of the dual SCFT the origin of this relation is far from clear. We
assume that µ2 is subleading in large N , which is indeed realized by the concrete example
of the class S theories studied above, see (5.10) and (5.3) where ρ is assumed not to scale
with N . Using this we find that the only way to satisfy the constraint in (5.16) is if the
following relations hold

µ3 = −3
2µ1 , µ4 = 1√

2
µ1 . (5.22)

We are not aware of any QFT reason why such a relation should be obeyed by the super-
gravity constants µ1, µ3 and µ4. Indeed, using our educated guess (5.10), in terms of the
QFT anomalies these relations read

kRFFρ
2 = −3

2kRRRν
2 , kFFFρ

3 = 1√
2
kRRRν

3 (5.23)

Clearly, these relations cannot hold for the explicit anomalies (5.3) for any value of ρ , even
if we allow it to be z-dependent.

Based on the discussion above we conclude that for general holographic SCFTs with a
U(1)F flavor symmetry, including the particular example of the S SCFTs discussed above,
one cannot find a simple compact expression for the black hole entropy in terms of the two
electric charges and two angular momenta. This points to the fact that perhaps the sought
more general wrapped M5-brane black holes with an additional flavor electric charge cannot
be constructed using a 5d N = 2 gauged supergravity theory coupled to a finite number
of vector multiplets. Indeed, based on the consistent truncation classification results in
[12, 14] there are no candidates for such a gauged supergravity theory.

The situation is different for N = 4 SYM. One can show that for this theory the ’t
Hooft anomalies for the U(1)3 Cartan subalgebra of the SO(6) global symmetry obey the
constraints in (5.22) and indeed, as shown in [43], there is a simple compact expression for
the entropy of the supersymmetric black hole with two angular momenta and three electric
charges constructed in [44] using the STU model of 5d N = 2 gauged supergravity.

6 Discussion

The results presented above leave several open questions and interesting possibilities for
generalizations. Here we discuss some of them.

• As discussed in Section 5.2 it is very likely that there are more general supersymmet-
ric black holes with an additional electric charge corresponding to the U(1)F flavor
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symmetry of the class S SCFTs. It will be very interesting to construct these solu-
tions, either by using an appropriate 5d matter-coupled supergravity theory arising
as a consistent truncation of 11d supergravity, or by a judicious Ansatz for the fields
of the 7d maximal gauged supergravity. Of course it should in principle be possible
to construct such solutions directly in 11d supergravity but we expect that to be pro-
hibitively difficult since the corresponding BPS equations should reduce to a system
of coupled nonlinear PDEs.

• There are two other generalizations of the black hole solutions discussed above that
one can contemplate. For concreteness here we have focused the discussion on the
class S SCFTs associated to the 6d N = (2, 0) SCFT of type AN−1 compactified on
a smooth Σg with g > 1. Using the results in [5, 6] it is straightforward to generalize
this setup to the DN type class S SCFTs and to g = 0, 1. On the supergravity
side this corresponds to modifying the 11d supergravity solutions discussed above
to have an internal RP4 space instead of the S4 used in (2.2) and to modify the
metric in (3.1) to that of the torus or the two-sphere. More non-trivially, one can
attempt to find a larger class of black hole solutions arising from wrapped branes on
punctured Riemann surfaces. While it is known how to construct such AdS5 vacua
with N = 2 and N = 1 supersymmetry, see [19, 45, 46], it is not entirely clear how
to generalize these supergravity solutions to include a black hole. Perhaps the 7d
gauged supergravity method developed in [47] to treat some special punctures on the
Riemann surface will prove useful in this regard.

• As already emphasized in Section 5.1 it is not entirely clear to us why the Cardy-like
limit of the index used to derive the “second sheet” formula for the index in [25] has a
larger regime of validity that captures the behavior of the large N limit of the index
relevant for holography. It will be most interesting to understand this better and also
to generalize the “second sheet” formula for the index to include fugacities associated
with flavor symmetries. We have proposed such a generalization in (5.7) and it will
be interesting to check our educated guess more rigorously. Finally, it is important
to study logN corrections to the large N class S superconformal index which should
correspond to the 1-loop contributions to the gravitational path integral of the KK
modes of 11d supergravity around the AdS5 black hole solutions. Establishing this
relation rigorously will provide a stringent precision test of holography. We also
note in passing that subleading terms in the large N power law expansion of the
superconformal index are also captured by “second sheet” formula. These correspond
to higher-derivative corrections to the CCLP solution in gauged supergravity. This
was studied recently in [27, 28] where a precise agreement between the holographic
and QFT results was established. In particular a discussion on higher-derivative
corrections to AdS5 black holes arising from wrapped branes was presented in [27]
based on the assumptions that such solutions indeed exist. Our results here indeed
show that this is true.

• The superconformal index for the class S SCFTs discussed above was studied in [21]
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for low values of N . It will be most interesting to understand how to extend the
results of this work to larger values of N . For gauge theories coupled to matter a
useful approach to studying the large N limit of the index is to employ the Bethe
Ansatz re-formulation, see [48, 49]. If such a formulation is possible for class S SCFTs
it will provide a concrete calculational tool to gain valuable insights into the quantum
gravity corrections to the properties of the black holes constructed in this work.

Acknowledgments

We are grateful to Chris Beem, Davide Cassani, Friðrik Freyr Gautason, Junho Hong,
Kiril Hristov, Emanuel Malek, Dario Martelli, and especially Valentin Reys for valuable
discussions. We are supported in part by an Odysseus grant G0F9516N from the FWO
and by the KU Leuven C1 grant ZKD1118 C16/16/005. VD and AV are also supported by
doctoral fellowships with numbers 11C8422N (VD) and 1102722N (AV) from the Research
Foundation - Flanders (FWO).

– 24 –



A Details on the dimensional reduction from 7d to 5d

A.1 Reducing the action

We begin with the 7d action (2.6) and set the parameter µ = 2/L, where L is eventually
going to be the AdS5 radius. We define the respective volume forms

ε(7) = ?71 , ε(5) = ?51 , ε(2) = ?21 = dω , (A.1)

and use the Ansatz in (3.3) to calculate

ε(7) = e5f0+2g0L2 ε(5) ∧ dω . (A.2)

Then we express the constituents of the 7d action purely in terms of the 5d fields and 5d
Hodge star

S = c e2f0+2Λ+ ?5 F ,

?7S = −c ef0+2g0+2Λ+L2 F ∧ dω ,

F1,2 = a (1± z)L dω + b ef0+2Λ1,2 F ,

?7F1,2 = a e5f0−2g0(1± z)L−1 ε(5) + b e2f0+2g0+2Λ1,2L2 ?5 F ∧ dω .

(A.3)

Finally, we evaluate the 7d Ricci scalar in terms of the 5d Ricci scalar

R(7) = e−2f0R(5) + e−2g0L−2R(2) , R(2) = −2 . (A.4)

These expressions allow us to write down all the terms in the 7d action as

?7R = −2 e5f0 ε(5) ∧ dω + L2
0 ?5 R ∧ dω ,

− ?7 V = −e5f0+2g0L2 V ε(5) ∧ dω ,

−1
2e
−4Λ1,2F1,2 ∧ ?7F1,2 = −a2

2 e5f0−2g0−4Λ1,2(1± z)2 ε(5) ∧ dω − b2

2 L2
0 F ∧ ?5F ∧ dω ,

−1
2e
−4Λ+S ∧ ?7S = c2

2 L2
0 F ∧ ?5F ∧ dω ,

L

4 S ∧ dS = 0 ,

−L2 F1 ∧ F2 ∧ S = −4abc L2
0 F ∧ ?5F ∧ dω ,

L

8 [A1 ∧ F1 ∧ F2 ∧ F2 + (1↔ 2)] = 4ab3 L2
0A ∧ F ∧ F ∧ dω .

Here we have defined L2
0 ≡ e3f0+2g0L2 and in the last expression we integrated by parts.

The terms on the right hand side proportional to L2
0 ε(5) ∧ dω sum to

− 1
2L2 e

2f0−2g0−2Λ+
(
2e2g0+4Λ+

(
2 + e2g0L2V

)
+ a2

(
e4Λ1(1− z)2 + e4Λ2(1 + z)2

))
, (A.5)

where V is the scalar potential (2.7) evaluated on the constant scalars λ1,2 = Λ1,2, and
all the constants are given in terms of z as in (3.2). This combination should evaluate to
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12L2
0/L

2 if one is to find the expected z-independent 5D cosmological constant term with
the correct coefficient relative to R. Remarkably, setting

a = ±1
4 (A.6)

achieves precisely that, where the leftover sign choice will be important later on when we
dimensionally reduce the BPS equations. Then the 7d action simplifies to

I7 = L2
0

16πG7

∫ [
?5

(
R+ 12

L2

)
− 1

2
(
2b2 + 2bc − c2

)
F ∧ ?5F + b3A ∧ F ∧ F

]
∧ dω . (A.7)

To retain F = dA when the 5d equation of motion for F is derived we demand
(
2b2 + 2bc − c2) =

3b2, which fixes c = b. We integrate over Σg:
∫

dω = 4π(g − 1), and rescale the last re-
maining constant to b = x /

√
3. Then expressions (3.4) and (3.5) readily follow.

A.2 Reducing the BPS equations

In this section we dimensionally reduce the 7d BPS equations (2.9) to the 5d BPS equation
(3.7). We introduce the following notation: 7d curved indices are labelled by M,N, . . . ,
5d curved indices are labelled by µ, ν, . . . , 2d curved indices (on the Riemann surface) are
labelled by m,n, · · · = x1, x2, and flat indices in any dimension carry hats. The 7d metric
decomposes as

gMN = e2f0 gµν ⊕ e2g0L−2 gmn , (A.8)

where gµν and gmn are the metrics originating from ds2
5 and ds2

2 respectively (without the
scaling factors). Then the 7D vielbeins decompose as

e M̂
M = ef0 e µ̂

µ ⊕ eg0Le m̂
m . (A.9)

From the reduction ansatz (3.3) we see that the 7D gauge fields decompose as

SMNR = c e2f0+2Λ+ 1
2!F

αβεαβµνρ ,

F1,2MN = b ef0+2Λ1,2 Fµν ⊕ a (1± z)L (dω)mn ,
A1,2M = b ef0+2Λ1,2 Aµ ⊕ a (1± z)Lωm .

(A.10)

The 7d gamma matrices decompose as

γ̃MN = e−2f0 γ̃µν ⊕ e−2g0L−2 γ̃mn , γ̃M = e−f0 γ̃µ ⊕ e−g0L−1 γ̃m . (A.11)

The 7d spin connection decomposes trivially

ω
MÂB̂

= ω
µα̂β̂
⊕ ω

mâ b̂
, (A.12)

and we note that the 2d spin connection has only one non-zero component given by

ωx1x̂1x̂2
= −x−1

2 . (A.13)
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We also need the following relations between 7d gamma matrices

γ̃MNR = χ7
1
4!ε

MNRABCDγ̃ABCD , γ̃MN = χ7
1
5!ε

MNABCDE γ̃ABCDE (A.14)

where χ7 = ±1 dictates which of the two conventions one uses for the 1-index 7d gamma
matrices, where the sign choice appears in the relation γ̃6 = χ7γ̃

0γ̃1 . . . γ̃5. Using our metric
Ansatz we obtain

γ̃µνρ = χ7
1
2!e
−3f0εµνραβ γ̃αβ γ̃x̂1x̂2

, γ̃µν = χ7
1
3!e
−2f0εµναβγ γ̃αβγ γ̃x̂1x̂2

. (A.15)

Finally, we note that dω, being the volume form on the Riemann surface, acts to lower 7d
gamma matrix index, restricted to the Riemann surface, as

γ̃m(dω)mn = −γ̃nγ̃x1x2 . (A.16)

With this setup in mind, in (2.9) we set µ = 2/L and take constant scalars: λ1,2 = Λ1,2.
Then, the first dilatini variation reduces to

δζ̃1 = L−1

2

[(
e2Λ1 − e−4Λ+

)
− a

4(1 + z)e−2g0−2Λ1 γ̃x̂1x̂2
⊗ Γ12

]
ε̃⊗ E

− e−f0

16 γ̃µνFµν
[
b 18 ⊗ Γ12 + χ7 c γ̃x̂1x̂2

⊗ Γ5
]
ε̃⊗ E . (A.17)

We find that the following projectors:(
γ̃x̂1x̂2

⊗ 14
)
(ε̃⊗ E) = p2

(
18 ⊗ Γ12

)
(ε̃⊗ E) ,

(
18 ⊗ Γ5

)
(ε̃⊗ E) = p5 ε̃⊗ E , (A.18)

together with the identities
(
γ̃x̂1x̂2

)2
= −18 and

(
Γ12)2 = −14, imply that the two brackets

in (A.17) vanish when:

p2 = sa , p5 = −χ7 sa ; a = sa
4 , c = b = x√

3
, (A.19)

where sa = ±1 and the latter two conditions come from consistency of the reduced action
as discussed around (A.7). The second dilatini variation automatically vanishes upon using
(A.18) and (A.19) giving no new constraints. Next, we manipulate the gravitini variation
when M = m, keeping in mind that

(
18 ⊗ Γ5)(ε̃⊗ E) = p5 ε̃⊗ E =⇒

(
18 ⊗ Γ34)(ε̃⊗ E) =

p5
(
18 ⊗ Γ12)(ε̃⊗ E):

δψ̃m
p5=1=

[
∂m −

1
2x
−1
2 δmx1

(
γ̃x̂1x̂2

⊗ 14 − 4a 18 ⊗ Γ12
)

+ 1
2e
−f0+g0 γ̃m

(
18 ⊗ 14 + 4a γ̃x̂1x̂2

⊗ Γ12
)]
ε̃⊗ E , (A.20)

where we have set p5 = 1, since otherwise the terms in the bracket are z-dependent, and
no projector can make them vanish. Upon using (A.18) and (A.19), with p5 = 1, the two
brackets above vanish. For the whole equation to vanish we find that the spinor should be
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independent of the Riemann surface coordinates. We thus find the following constraints
between the constants defined above

p2 = −χ7 , p5 = 1 ; a = −χ7
4 , c = b = x√

3
; ∂m(ε̃⊗ E) = 0 . (A.21)

Finally, we manipulate the gravitini variation for M = µ to find:

δψ̃µ =
([
∂µ + 1

4ωµα̂β̂ γ̃
α̂β̂ + χ7

x
8
√

3

(
γ̃µαβF

αβ − 4Fµαγ̃α
)
γ̃x̂1x̂2

+ 1
2L
(
γ̃µ − χ7

√
3 x Aµγ̃x̂1x̂2

)]
ε̃

)
⊗ E ,

where we have already imposed (A.18) and (A.21). To complete the reduction we further
split the 7d gamma matrices and spinor as

γ̃µ = γµ ⊗ g1 , γ̃x̂1x̂2
= 14 ⊗ g2 , ε̃ = ε⊗ η , (A.22)

where γµ and ε are 5d gamma matrices and spinor, η is a 2d spinor and (g1, g2) are (yet
undetermined) matrices in the 2d Clifford algebra. Then the round bracket in the gravitini
variation above becomes[

∂µ + 1
4ωµα̂β̂γ

α̂β̂ ⊗ g2
1 + χ7

x
8
√

3

(
γµαβF

αβ ⊗ g3
1g2 − 4Fµαγα ⊗ g1g2

)
− 1

2L
(
−γµ ⊗ g1 + χ7

√
3 x Aµ 14 ⊗ g2

)]
ε⊗ η .

This equation reduces to (3.7) if we are able to find matrices (g1, g2) in the 2d Clifford
algebra that satisfy

g1η = −η , g2η = iχ7 η . (A.23)

Upon using (A.21), we find consistency of (A.23) with the projectors (A.18) if

Γ12E = −i E , Γ5E = E : =⇒ E1 = E2 = E3 = 0 . (A.24)

In turn, upon using the projectors again, the latter condition demands η ∝ (1, c7)T . Thus,
we fix the matrices (g1, g2) as

g1 = −χ7 σ1 , g2 = iσ1 . (A.25)

This completes the reduction of the 7d supersymmetry variations to the 5d ones.

B Details on the analysis of the 5d CCLP solution

Here we collect some calculational details related to the analysis of the 5d CCLP solution
discussed in Section 4.
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B.1 Derivation of the Euclidean 5d action

We define the ε-pseudo-tensor as

ε01234 =
√
−g , ε01234 = s√

−g
, (B.1)

where s = −1 denotes the signature of the Lorentzian spacetime and g = det(gµν) (not to
be confused with the inverse AdS scale parameter g used in Section 4). In our conventions,
described in Appendix C, we write the action (3.4) in component form as

I = 1
16πG5

∫
d5x
√
−g
(
R+ 12

L2 −
x 2

4 F
µνFµν + sx 3

12
√

3
εναβγδAνFαβFγδ

)
, (B.2)

The Euclidean theory is obtained from the Lorentzian one by performing Wick rotation

t→ −i τ . (B.3)

Under Wick rotation the components of a generic tensor transform as

T0ij... → iT0ij... , T 0ij... → −iT 0ij... , (B.4)

where i, j, · · · = 1, 2, . . . label coordinates distinct from t or τ , in the respective coordinates
systems. In particular, we have

d5x→ −i d5x ,
√
−g → √g , R→ R , FµνFµν → FµνFµν . (B.5)

The components of a pseudo-tensor transform involving also the sign of the coordinate
transformation. In particular, the ε-pseudo-tensor transforms as

ε0ijkl → (−i) · i ε0ijkl = ε0ijkl , ε0ijkl → i · (−i) · s ε0ijkl = s ε0ijkl , (B.6)

where we have included a factor of s = −1 in the upper components to ensure that the
Euclidean ε-pseudo-tensor is adapted to the positive Euclidean signature

ε01234 = √g , ε01234 = 1
√
g
. (B.7)

Thus, the Chern-Simons term transforms as

εναβγδAνFαβFγδ =
(
ε0ijklA0FijFkl − ε0ijklAiF0jFkl + . . .

)
→ i s

(
ε0ijklA0FijFkl − ε0ijklAiF0jFkl + . . .

)
= i s εναβγδAνFαβFγδ , (B.8)

and the Euclidean action takes the form

IE = − 1
16πG5

∫
d5x
√
g

(
R+ 12

L2 −
x 2

4 F
µνFµν + i x 3

12
√

3
εναβγδAνFαβFγδ

)
, (B.9)

Using this action one can derive the following Euclidean equations of motion

Rµν + 4
L2 gµν −

x 2

2 F
α

µ Fνα + x 2

12gµνF
αβFαβ = 0 ,

∇µFµν + i x
4
√

3
εναβγδFαβFγδ = 0 .

(B.10)
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B.2 Near horizon Lorentzian geometry

In the near horizon region we first perform the coordinate transformation

r = r+ + %2 , (B.11)

then we expand the Lorentzian metric (4.2) for small % to obtain

ds2
CCLP,H = g̃%%

(
d%2 −

( 2π
βH

)2
%2 dt2

)
+ g̃ηη dη2 + 2 g̃12

(
dξ1 − ΩH

1 dt
)(

dξ2 − ΩH
2 dt

)
+ g̃11

(
dξ1 − ΩH

1 dt
)2

+ g̃22
(
dξ2 − ΩH

2 dt
)2
. (B.12)

Here we defined the constants

βH = 2πr+
[
(r2

+ + a2)(r2
+ + b2) + abq

]
r4

+
[
1 + g2(2r2

+ + a2 + b2)
]
− (ab+ q)2 ,

ΩH
1 = a(r2

+ + b2)(1 + g2r2
+) + bq

(r2
+ + a2)(r2

+ + b2) + abq
, ΩH

2 = ΩH
1

∣∣∣∣
a↔b

, (B.13)

and (g̃%%, g̃ηη, g̃11, g̃22, g̃12) are functions of (%, η) expanded to the relevant orders in the
small variable %:

g̃%% = 4ρ2
+

∆′r,+
, g̃ηη = ρ2

+
∆η

,

g̃11
S2
η

= −(∆η − Ξa)
(
a2f+ + 2abqΞaρ2

+
)
− (a2 + r2

+)Ξa(Ξa − Ξb)ρ4
+

Ξ2
a(Ξa − Ξb)ρ4

+

−
(∆η − Ξa)

[
a2f ′+ρ

2
+ − 2a

(
af+ + bqΞaρ2

+
)(
ρ2

+
)′]− 2r+Ξa(Ξa − Ξb)ρ6

+

Ξ2
a(Ξa − Ξb)ρ6

+
%2 ,

g̃12
S2
ηC 2

η

= abf+ + (b2Ξa + a2Ξb)qρ2
+

ΞaΞbρ4
+

+
ab
[
f ′+ρ

2
+ − 2f+

(
ρ2

+
)′]− (b2Ξa + a2Ξb)ρ2

+
(
ρ2

+
)′

ΞaΞbρ6
+

%2 ,

g̃22
C 2
η

= (∆η − Ξb)
(
b2f+ + 2abqΞbρ2

+
)

+ (b2 + r2
+)Ξb(Ξa − Ξb)ρ4

+
Ξ2
b(Ξa − Ξb)ρ4

+

+
(∆η − Ξb)

[
b2f ′+ρ

2
+ − 2b

(
bf+ + aqΞbρ2

+
)(
ρ2

+
)′]+ 2r+Ξb(Ξa − Ξb)ρ6

+

Ξ2
b(Ξa − Ξb)ρ6

+
%2 ,

(B.14)

where we have defined the shorthands

f+ = f(r+, η) , ρ2
+ = ρ2(r+, η) , Sη = sin η , Cη = cos η ,

f ′+ = ∂f

∂r
(r+, η) ,

(
ρ2

+

)′
= ∂ρ2

∂r
(r+, η) , ∆′r,+ = ∂∆r

∂r
(r+) .
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B.3 Asymptotic Lorentzian geometry

To obtain the Lorentzian metric in the asymptotic region we perform the coordinate trans-
formation

r = r̂

(
1 + 1

r̂2 f1(η̂) + 1
r̂4 f2(η̂)

)
, η = η̂ + 1

r̂4h1(η̂) + 1
r̂6h2(η̂) , (B.15)

where (f1,2, h1,2) are functions of η̂ that will be fixed by demanding that the asymptotic
metric takes the Fefferman-Graham form. We expand the components of the transformed
metric to (and including) the following orders:

ĝtt ĝt1 ĝt2 ĝr̂r̂ ĝr̂η̂ ĝη̂η̂ ĝ11 ĝ12 ĝ22

O
(
r̂−2) O(r̂−2) O(r̂−2) O(r̂−6) O(r̂−5) O(r̂−2) O(r̂−2) O(r̂−2) O(r̂−2) .

Putting the metric in Fefferman-Graham form amounts to having ĝr̂r̂ = g−2r̂−2 and ĝr̂η̂ = 0.
Demanding that the O

(
r̂−4) and O(r̂−6) terms of ĝr̂r̂ and the O

(
r̂−3) and O(r̂−5) terms

of ĝr̂η̂ vanish achieves that and uniquely fixes

f1(η̂) = − 1
4g2 [2− Ξa − Ξb + ∆η(η̂)] ,

f2(η̂) = 1
8g4

[
1− 2g2m− Ξa sin2 η̂ − Ξb cos2 η̂ − cos2 η̂ sin2 η̂(Ξa − Ξb)2

]
,

h1(η̂) = −Ξa − Ξb
8g4 cos η̂ sin2 η̂∆η(η̂) ,

h2(η̂) = −Ξa − Ξb
16g6 cos η̂ sin2 η̂

[
2Ξ2

a cos2 η̂ − ΞaΞb + 2Ξ2
b sin2 η̂ − 3 cos2 η̂ sin2 η̂(Ξa − Ξb)2

]
.

The resulting Fefferman-Graham asymptotic Lorentzian metric reads

ds2
CCLP,A = 1

g2r̂2 dr̂2 + ĝtt dt2 + 2 ĝt1 dtdξ1 + 2 ĝt2 dt dξ2 + ĝη̂η̂ dη̂2

+ ĝ11 dξ1
2 + 2 ĝ12 dξ1 dξ2 + ĝ22 dξ2

2 . (B.16)
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In the equation above (ĝtt, ĝt1, ĝt2, ĝη̂η̂, ĝ11, ĝ12, g22) are function of (r̂, η̂), expanded to
the relevant orders in the large variable r̂:

ĝtt = −g
2∆̂η r̂

2

ΞaΞb
−

∆̂η

(
Ξa + Ξb − ∆̂η

)
2ΞaΞb

+
2∆̂2

η

(
abg2q +m

)
− ΞaΞb∆̂η

(
−2∆̂η(Ξa+Ξb)+(Ξa+Ξb)2+∆̂2

η+8g2m
)

16g2

Ξ2
aΞ2

b r̂
2 ,

ĝt1

Ŝ2
η

= −∆̂η
(
a2bg2q + 2am+ bq

)
Ξ2
aΞb r̂2 ,

ĝt2

Ĉ 2
η

= −∆̂η
(
ab2g2q + aq + 2bm

)
ΞaΞ2

b r̂
2 ,

ĝη̂η̂ = r̂2

∆̂η

+ Ξa + Ξb − 3∆̂η

2g2∆̂η

+
−6∆̂η (Ξa + Ξb) + (Ξa + Ξb)2 + 9∆̂2

η + 8g2m

16g4∆̂η r̂2
,

ĝ11

Ŝ2
η

= r̂2

Ξa
− Ξa − Ξb + ∆̂η

2g2Ξa

−
8g2
(
4a2g2m∆̂η+4abg2q

(
∆̂η−Ξa

)
+mΞa(3Ξa+Ξb−4)

)
Ξa−Ξb − Ξa

(
Ξa − Ξb + ∆̂η

)2

16g4Ξ2
a r̂

2 ,

ĝ12

Ŝ2
η Ĉ 2

η

= a2q + 2abm+ b2q

ΞaΞb r̂2 ,

ĝ22

Ĉ 2
η

= r̂2

Ξb
+ Ξa − Ξb − ∆̂η

2g2Ξb

+
8g2
(
4b2g2m∆̂η+4abg2q

(
∆̂η−Ξb

)
+mΞb(Ξa+3Ξb−4)

)
Ξa−Ξb + Ξb

(
−Ξa + Ξb + ∆̂η

)2

16g4Ξ2
b r̂

2 ,

(B.17)

where we have defined the shorthands

∆̂η ≡ ∆η(η̂) , Ŝη = sin η̂ , Ĉη = cos η̂ .

B.4 Potentials: (Ω1, Ω2, β, Φ)

The thermodynamic potentials associated with the two angular momentum parameters of
the CCLP black hole are defined as

Ωi = ΩHi − ΩBi , ΩHi = dξi
dt

∣∣∣∣
r→r+

, ΩBi = dξi
dt

∣∣∣∣
r→∞

, i = 1, 2 . (B.18)

From (B.12) and (4.9) it is easy to see that ΩHi = ΩH
i and ΩBi = 0, or explicitly

Ω1 = a(r2
+ + b2)(1 + g2r2

+) + bq

(r2
+ + a2)(r2

+ + b2) + abq
, Ω2 = b(r2

+ + a2)(1 + g2r2
+) + aq

(r2
+ + a2)(r2

+ + b2) + abq
. (B.19)
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The inverse temperature of the CCLP black hole can be obtained from the Wick rotated
near horizon metric

ds2
CCLP,H ,E = g̃%%

(
d%2 +

( 2π
βH

)2
%2 dτ2

)
+ g̃ηη dη2 + 2 g̃12(dξ1 + i Ω1 dt)(dξ2 + i Ω2 dt)

+ g̃11(dξ1 + i Ω1 dt)2 + g̃22(dξ2 + i Ω2 dt)2 , (B.20)

where we have already implemented the relations ΩH
i = Ωi. The above metric is a warped

fibration of S3 over R2. Demanding absence of conical singularity at the origin of the R2

fixes

τ ∼ τ + βH . (B.21)

Demanding that the S3 fibration is also well defined at the origin of the R2 shows that
going around the Euclidean time circle once should be accompanied by the identifications

(τ, ξ1, ξ2) ∼
(
τ + βH , ξ1 − i Ω1β

H , ξ2 − i Ω2β
H
)
. (B.22)

From (4.9) we see that the Wick rotated conformal boundary metric is regular for any
length of the Euclidean time circle (also regular for non-compact τ for that matter). For
consistency, we translate the IR imposed periodicity on τ to the boundary. Back in the
Lorentzian picture, the periodicity in the Euclidean time has the interpretation of inverse
temperature so we define β = βH , or explicitly

β = 2πr+
[
(r2

+ + a2)(r2
+ + b2) + abq

]
r4

+
[
1 + g2(2r2

+ + a2 + b2)
]
− (ab+ q)2 . (B.23)

The inverse temperature can also be obtained directly from the Lorentzian description as
follows. First, note the surface r = r+ is an event horizon as it is generated by a Killing
vector

V = V µ∂µ = ∂

∂t
+ Ω1

∂

∂ξ1
+ Ω2

∂

∂ξ2
; ∇µVν +∇νVµ = 0 , (B.24)

that becomes null on that surface

VµV
µ

∣∣∣∣
r=r+

= 0 . (B.25)

Note that contrary to the familiar similar expressions from spacetimes with flat asymp-
totics, VµV µ is not normalized to unity at infinity. Using this Killing vector we calculate
the surface gravity on the horizon from

κH =
√
−1

2∇
µV ν∇µVν

∣∣∣∣∣
r→r+

. (B.26)

The inverse temperature is then given by β = 2π/κH . Simplifying this expression we obtain
precisely (B.23). The electrostatic potential is defined as

Φ = V µAµ

∣∣∣∣
r=r+

− V µAµ

∣∣∣∣
r→∞

. (B.27)
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It is instructive to look at the above terms separately:

V µAµ

∣∣∣∣
r=r+

=
√

3qr2
+

x
[
(r2

+ + a2)(r2
+ + b2) + abq

] + α , V µAµ

∣∣∣∣
r→∞

= α . (B.28)

We see that the definition of Φ given above is independent of the choice of gauge parameter
α. The final expression reads

Φ =
√

3qr2
+

x
[
(r2

+ + a2)(r2
+ + b2) + abq

] . (B.29)

For consistency, one needs to ensure that AµAµ is regular on the horizon. However,
AµAµ|r=r+

diverges as O
(
(r − r+)−1). Demanding that the coefficient of the divergent

term vanishes fixes the gauge parameter α to

α = −Φ . (B.30)

With this at hand we find that the following relations hold

AµAµ

∣∣∣∣
r=r+

= 0 , V µAµ

∣∣∣∣
r=r+

= 0 . (B.31)

B.5 Charges: (J1, J2, Q), via boundary integrals

To obtain the two conserved angular momenta (J1, J2) we first note that the boundary
metric (4.9) has three independent Killing vectors

K(t) = ∂

∂t
, K(ξ1) = ∂

∂ξ1
, K(ξ2) = ∂

∂ξ2
. (B.32)

To each of them we associate a Killing form as

K̃(·) = Kµ
(·)gµν dxν . (B.33)

Then, the angular momenta of the black hole are defined via the following Komar integrals

Ji = lim
r→∞

1
16πG5

∫
S3
?5 dK̃(ξi) , i = 1, 2 . (B.34)

The final results read

J1 = π
[
2am+ bq(1 + a2g2)

]
4Ξ2

aΞbG5
, J2 = π

[
2bm+ aq(1 + b2g2)

]
4ΞaΞ2

bG5
. (B.35)

To calculate the electric charge Q one needs a conserved current arising from the Maxwell
equation. The following manipulation identifies such current

0 = σ

[
d ?5 F −

1√
3
F ∧ F

]
= σ

[
d ?5 F −

1√
3

d(F ∧A)
]

= d
[
σ

(
?5F −

1√
3
F ∧A

)]
,

where we have included an arbitrary multiplicative parameter σ. The asymptotic electric
charge is then given by

Q = lim
r→∞

σ

16πG5

∫
S3

(
?5F −

1√
3
F ∧A

)
= − σ

√
3πq

4x ΞaΞbG5
. (B.36)

Consistency with the quantum statistical relation (4.17) fixes σ = −x 2. Thus, the electric
charge is given by

Q = x
√

3πq
4ΞaΞbG5

. (B.37)
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B.6 Euclidean on-shell action

The on-shell action can be calculated using holographic renormalization. In the Lorentzian
setting one begins by augmenting the action (B.2) with the following boundary terms

IGH = 1
8πG5

∫
d4x
√
−γ K ,

Ict = 1
8πG5

∫
d4x
√
−γ
(
−3g − 1

4gR
)
,

Ifct = 1
8πG5

∫
d4x
√
−γ
(
ζ ′R2 − ζ ′′FijF ij

)
,

(B.38)

where the integrations are most easily performed over a spacelike hypersurface r̂ = R̂0
in Fefferman-Graham coordinates (t, r̂, η̂, ξ1, ξ2). The induced metric on this hypersurface
is obtained from (B.16). We denote it by γij with indices i, j = t, η̂, ξ1, ξ2 running over
the boundary coordinates. The extrinsic curvature and its trace are given, in Fefferman-
Graham coordinates, by

Kij = gr̂

2
∂

∂r̂
γij , K = γijKij . (B.39)

Finally, R is the Ricci scalar calculated from the induced metric γij . The meaning of
these boundary terms is as follows: IGH is the usual Gibbons-Hawking boundary term, Ict
includes the counterterms needed to cancel the divergences of the bulk on-shell action9, Ifct
includes the allowed diffeomorphism invariant finite counterterms with arbitrary coefficients
ζ ′ and ζ ′′. In 5d one also needs to include a non-diffeomorphism invariant conformal
anomaly term given by

Ian = 1
8πG5

∫
d4x
√
−γ 1

16g3

(
RijRij −

1
3R

2 − 4FijF ij
)

log e−2R̂0 . (B.40)

If the integrated conformal anomaly is non-vanishing, generically there is a logarithmic
divergence left over that cannot be cancelled. However, on the CCLP solution it is easy to
see that, although the un-integrated anomaly does not vanish, its integral does, so Ian does
not contribute at all. Overall, the holographically renormalized Euclidean on-shell action
is given by

Ihr = IE + IE
GH + IE

ct + IE
fct , (B.41)

where IE is given by (B.9) and the superscripts E on the boundary terms signify that we
are working with the Euclideanized versions of (B.38). Performing the above integrals is
arduous and was done with the help of Mathematica. The final answer for the Euclidean
on-shell action is given in (4.16).

9Strictly speaking the quoted coefficients of the g and R terms are only valid in Fefferman-Graham
coordinates, in other coordinate systems these coefficients might change.
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B.7 Charges: (E, J1, J2), via holographic renormalization

In the Lorentzian description, we can harness holographic renormalization, see [50] for a
review, to obtain the energy of the CCLP black hole. First, we construct the renormalized
holographic stress energy tensor as, see [32] for more details,

Tij = − 2√
−γ

δ

δγij
(LGH + Lct + Lfct)

= 1
8πG5

[
Kij − γijK + 3gγij −

1
2gRij + 1

4gRγij

+ 4ζ ′
(
RijR−

1
4γijR

2 −∇i∇jR+ γij∇k∇kR
)]

, (B.42)

where we have already set the ζ ′′ contribution to zero since FijF ij vanishes sufficiently
fast near the boundary of the CCLP solution. Then, the conserved charge associated to a
boundary conformal Killing vector K can be obtained from

Q[K] =
∫ 2π

0
dξ1

∫ 2π

0
dξ2

∫ π/2

0
dη̂
√
−γ T ijKj . (B.43)

In particular, for the two angular momenta we obtain

J1 = Q[∂ξ1 ] = π
(
2am+ bq(1 + a2g2)

)
4Ξ2

aΞbG5
, J2 = Q[∂ξ2 ] = J1

∣∣∣∣
b↔a

(B.44)

in agreement with our previous Komar integral results (B.35). For the energy we obtain

E = Q[∂t] =
(
EAdS − ζ̃ ′

)
+ mπ(2Ξa + 2Ξb − ΞaΞb) + 2abq2π(Ξa + Ξb)

4Ξ2
aΞ2

bG5
, (B.45)

where EAdS and ζ̃ ′ are the constants given in (4.14).

B.8 Killing spinor in CCLP coordinates

Here we show that the three parameter, i.e. (a, b, m̃), CCLP solution, described in Sec-
tion 4.3, is supersymmetric by explicitly verifying that the following spinor

ε = exp
{ i

2
[
g
(
1 +
√

3xα
)
t+ ξ1 + ξ2

]}1
ρ

[
m̃ρ2 − (1 + m̃)

(
r2 − r2

∗

)]1/2
ε0 , (B.46)

solves (3.7). Here ε0 is a constant spinor that satisfies the projection condition

i
2
(
γ12 − γ34

)
ε0 = ε0 , (B.47)

which reduces the number of independent (complex) spinor components from four to one.
We use the explicit realization of the Clifford algebra described in [51] and the following
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frames

e0 = −g
2∆η

ΞaΞb

[
(a+ b)(1 + m̃)(1 + g2r2

∗)
g3ρ2 −

(
g−2 + r2

∗

)
− ρ2

1 + m̃

(
1− m̃ρ

h

)]
dt

+ g sin2 η

Ξa

[
a(a+ b)(1 + m̃)(1 + g2r2

∗)
g2ρ2 −

(
a2 + r2

∗

)
− ρ2

1 + m̃

(
1− m̃ρ

h

)]
dξ1

+ g cos2 η

Ξb

[
b(a+ b)(1 + m̃)(1 + g2r2

∗)
g2ρ2 −

(
b2 + r2

∗

)
− ρ2

1 + m̃

(
1− m̃ρ

h

)]
dξ1 ,

e1 =
√
ρ2

∆r
dr ,

e2 = r
√

∆rρ2

h

(
− g∆η

ΞaΞb
dt+ sin2 η

Ξa
dξ2 + cos2 η

Ξb
dξ1

)
,

e3 = −
√
ρ2

∆η
dη ,

e4 =
sin η cos η

√
∆ηρ2

h

{
− g(Ξa − Ξb)

ΞaΞb

(
g−2 + (1 + m̃)r2

∗ − r2
)

dt

+ 1
Ξa

(a2 + (1 + m̃)r2
∗ − r2) dξ1 + 1

Ξb
(b2 + (1 + m̃)r2

∗ − r2) dξ2

}
.

(B.48)

In [17] a much simpler expressions for the frames in the so called orthotoric coordinates were
presented. Our expressions are merely coordinate transformed versions of their (A.4). In
these orthotoric coordinates the frame is degenerate in the interesting limits to extremality,
m̃ → 0, and equal rotation parameters, b → a. In [31] it was explained how to take these
limits sensibly by performing accompanying field redefinitions. The benefit of working
directly in the CCLP coordinates presented here is that the frame is perfectly valid in
both the extremal and the equal rotation parameter limits. One can use the explicit
expressions for the spinor and frame to understand the linear constraint (4.35). It arises
from evaluating the Lie derivative along the Killing vector V , described in Appendix B.5,
on ε, at the horizon

LV ε = V µ
(
∂µε+ ωµabγ

abε
)
− 1

4∇µVνγ
µνε

= i
2

(
g + Ω1 + Ω2 + gx

√
3α+ 2 V µAµ

∣∣∣∣
r=r+

)
ε . (B.49)

We implement the regularity condition AµAµ <∞, by setting α = −Φ. This removes the
V µAµ|r=r+

term. Now we want to ensure that

LV ε = π

β
ε =⇒ etLV ε

∣∣∣∣t=t0−iβ

t=t0
= e−iβLV ε = −ε , (B.50)

which implies that the Killing spinor has the correct antiperiodic behavior in the vicinity
of the horizon. This is compatible with the Lorentzian signature identification in (B.22).
This results in precisely the linear constraint (4.35) between the potentials (β,Ω1,Ω2,Φ),
where Φ appears through −α.
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C Conventions

We define forms with explicit factorial factors, for example a p-form ω reads

ω = 1
p!ωµ1...µp dxµ1 ∧ · · · ∧ dxµp . (C.1)

In particular, we have

A = Aµ dxµ , F = 1
2!Fµν dxµ ∧ dxν , F = dA = ∂[µAν] dxµ ∧ dxν , (C.2)

where antisymmetrization is also defined with explicit factorial factors as

T[µ1...µp] = 1
p!
∑
σ∈Sp

sign(σ)Tµσ(1)...µσ(p) . (C.3)

Thus, the components of the field strength are

Fµν = 2!∂[µAν] = ∂µAν − ∂νAµ . (C.4)

The Hodge star in our conventions is defined to act on a p-form ω as

?ω = 1
p!(D − p)!ωµ1...µpε

µ1...µp
ν1...νD−p dxν1 ∧ · · · ∧ dxνD−p , (C.5)

where ε is the epsilon pseudo tensor, related to the totally antisymmetric symbol η as

εµ1...µD =
√
|g| ηµ1...µD , εµ1...µD = sgn(g)√

|g|
ηµ1...µD . (C.6)

We define the Riemann curvature tensor as

R ρ
µν σ = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ , (C.7)

and the Ricci tensor and Ricci scalar as

Rµν = R ρ
µ νρ = Rρµρν , R = Rµµ . (C.8)

For the gamma matrices in arbitrary dimensions we use the conventions of [51], in partic-
ular, for the S4 and Σg, described in the main text, we use Euclidean gamma matrices,
while for the 7d and the 5d spacetimes we use the Lorentzian ones.
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