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Abstract 

Bovine mastitis is one of the main inflammatory diseases that can affect the udder during lactation. Somatic cell 
counts and sometimes microbiological tests are routinely adopted during monitoring diagnostics in dairy herds. 
However, subclinical mastitis is challenging to identify, reducing the possibility of early treatments. The main aim 
of this study was to investigate the miRNome profile of extracellular vesicles isolated from milk as potential bio-
markers of subclinical mastitis. Milk samples were collected from a total of 60 dairy cows during routine monitoring 
tests. Small RNA sequencing technology was applied to extracellular vesicles of milk samples collected from cows 
classified according to the somatic cell count to identify differences in the miRNome between mastitic and healthy 
cows. A total of 1997 miRNAs were differentially expressed between both groups. Among them, 68 miRNAs whose 
FDRs were < 0.05 were mostly downregulated, with only one upregulated miRNA (i.e., miR-361). Functional analysis 
revealed that miR-455-3p, miR-503-3p, miR-1301-3p and miR-361-5p are involved in the regulation of several biologi-
cal processes related to mastitis, including immune system-related processes. This study suggests the involvement 
of extracellular vesicle-derived miRNAs in the regulation of mastitis. Moreover, these findings provide evidence 
that miRNAs from milk extracellular vesicles can be used to identify biomarkers of mastitis. However, further studies 
must be conducted to validate these miRNAs, especially for subclinical diagnosis.
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Introduction
Bovine mastitis is the principal cause of economic losses 
in the dairy industry due to milk production and quality 
reduction [1]. In addition, dairy farmers have to address 
increased costs for treatments and the increased culling 
rates caused by mastitis outbreaks [2]. The udder infec-
tion is caused mostly by a variety of microorganisms, 
mainly bacteria (Staphylococcus spp., Streptococcus spp., 
and Enterobacteriaceae), but also by yeast belonging to 
Candida spp. or protozoa of the genus Prototheca [3]. 
The clinical classification of mastitis differentiates the dis-
ease into clinical and subclinical forms according to the 
presence or absence of symptoms and signs, such as visi-
bly abnormal milk, swelling, heat, pain and redness of the 
udder [3]. Subclinical forms are the main challenge for 
mastitis control due to the normal presentation of both 
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the udder and milk, but with increased somatic cell count 
(SCC) and the presence of bacteria in milk [4]. According 
to recent literature on the prevalence of bovine mastitis 
worldwide, subclinical mastitis is the most prevalent and 
causes major economic losses, with an estimated value of 
2 billion USD per year [5–7]. In particular, in Europe, the 
prevalence of subclinical mastitis is ∼37% [5], whereas in 
Italy, it is ∼22.5% [8]. Therefore, the early identification of 
subclinical forms is fundamental for adequate treatment 
and sustainable dairy herd management. Furthermore, 
with Regulation (EU) 2019/6 of the European Parlia-
ment about veterinary medicinal products, the European 
Union introduced strict limitations on the use of anti-
microbials for prophylaxis and metaphylaxis purposes 
to control the rise and spread of resistance phenomena. 
In the past, the preventive use of antimicrobials in dairy 
herds was frequently adopted, especially during the dry 
period [1, 9]. In the new regulatory scenario, veterinary 
practitioners working in the dairy industry require alter-
native solutions for the control of mastitis, including 
genomic selection for resistance [10] and novel diagnos-
tic and therapeutic tools [1].

Monitoring subclinical mastitis is an essential require-
ment in dairy herd management and consists of SCC 
measurements and microbiological tests [3]. Moreover, 
the SCC parameter is also considered to define milk suit-
ability for human consumption and quality for cheese 
processing; therefore, milk pricing strictly depends on 
the SCC [9]. Unanimous agreement considers milk with 
an SCC value greater than 400 000 cells/mL, regardless of 
the presence of clinical symptoms, as mastitic [2, 11]. On 
the other hand, milk from a healthy udder has an SCC 
value lower than 100 000 cells/mL [2, 9]. An SCC meas-
urement between those values should be interpreted: 
it could be typical of subclinical mastitis or a finding 
related to the recovery processes of the mammary gland 
after infection, when inflammation and pathogens could 
still be found [11, 12]. Currently, an SCC value equal to 
200 000 cells/mL has been adopted as a threshold to diag-
nose subclinical mastitis [13]. However, inflammation of 
the mammary gland has also been observed at values of 
∼100 000 cells/mL, especially in primiparous cows [14]. 
Thus, new biomarkers would help to discriminate cows 
with subclinical mastitis.

In recent years, extracellular vesicles (EVs) have been 
widely investigated in human and veterinary medicine. 
EVs are membrane-limited nanoparticles involved in 
intercellular communication, and their presence has been 
proven in several biological fluids, such as blood, urine, 
milk, and saliva [15–17].

Among EVs, three main classes are included: exosomes, 
ectosomes and apoptotic bodies [18]. Classes are defined 
according to the range size of EVs and are divided into 

small-sized EVs (<200 nm) and medium/large-sized EVs 
(>200 nm) [19]. Owing to their biogenesis, exosomes can 
be generated through the endosomal complex required 
for transport (ESCRT) or the ceramide-dependent path-
way. The exosome size is normally lower than 100  nm 
[20]. In contrast, ectosomes originate through exocytosis 
from the cell membrane. In this case, the dimensions are 
larger than those of exosomes, and their size can reach 
1000 nm [21]. Finally, the classification of apoptotic bod-
ies into EVs is still under debate, and they are generated 
during apoptosis and are highly variable in size [19].

The ability of EVs to regulate cellular and organ pro-
cesses is due to the presence of different types of cargo 
inside EVs, such as noncoding RNA, mRNA, DNA, pro-
teins and lipids, which can be delivered to the targeted 
recipient cell [20]. The ability of EVs to regulate cellular 
communication also relies on the presence of several pro-
tein and glycoprote in membrane markers [22]. In the last 
decade, EVs have been largely studied and evaluated as 
innovative biomarkers in human medicine, particularly 
for cancer and neurodegenerative diseases.

In veterinary medicine, the role of microRNAs (miR-
NAs) has been particularly investigated in mastitis 
pathogenesis among domesticated ruminant species (i.e., 
cows, sheep and goats). miRNAs are an extremely impor-
tant group of small noncoding RNAs, ranging in length 
from 20 to 22 nucleotides, that regulate gene expression 
through mRNA silencing at the posttranscriptional level 
[23]. Several studies have been conducted in experimen-
tally infected cows, and several putative miRNAs that 
are differentially regulated, mainly under Staphylococcus 
aureus or Escherichia coli infection, have been identified 
[24–26]. Similar to other infectious diseases, during mas-
titis, miRNAs are involved in the regulation of several 
pathways, such as pathogen response, activation and reg-
ulation of inflammatory processes and regulation of the 
immune response [27]. The identification of early indi-
cators for rapid and accurate detection of mastitis could 
lead to earlier and more effective treatment, allowing the 
animal to recover faster and therefore reducing the asso-
ciated economic losses. In addition, a better understand-
ing of the molecular regulation of the mammary response 
to inflammation would allow the identification of such 
robust indicators. In this context, the main aims of this 
study were to investigate the role of miRNAs carried by 
EVs in the regulation of mastitis and to identify putative 
biomarkers for the early diagnosis of mastitis.

Materials and methods
Study design and sample collection
As previously described [28], a total of 120 primipa-
rous Holstein Friesian cows belonging to 10 dairy farms 
located in the provinces of Cuneo and Turin (Piedmont 
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Region, Northern Italy) were selected without any clini-
cal signs of disease. Animals were managed according to 
local farm production practices. All manipulations were 
performed according to the best animal handling and vet-
erinary practices to avoid animal distress. Before sample 
collection, the teats were disinfected, and the first milk 
ejected was collected in a specific container and then dis-
carded. Individual samples were collected in sterile poly-
propylene tubes (2 aliquots of 50 mL) from all quarters 
of each cow and immediately stored at 4  °C. Before EV 
isolation and sequencing, a total of 60 milk samples were 
randomly selected and further processed for EV isolation. 
Milk sampling was conducted during the winter (Decem-
ber 2020–February 2021, n = 52) and summer (June 
2021–September 2021, n = 8) seasons. Before sequenc-
ing, samples were clustered using an SCC threshold level 
of 200 000 cells/mL, normally considered the SCC level 
of subclinical mastitis, into two groups: high SCC (group 
H, n = 11) and low SCC (group L, n = 49). The milk sam-
ples in the two groups are shown in Table 1.

EVs isolation
Milk aliquots were processed with consecutive cen-
trifugations, whose steps were as follows: 3000 ×  g for 
10 min at 4  °C to remove milk fat and somatic cells, an 
additional step of 3000 × g for 10 min at 4 °C to remove 
additional fat and cell residuals, 5000 ×  g for 30  min at 
4 °C to remove larger cell debris and finally 10 000 × g for 
30 min at 4 °C to remove smaller cell debris. After these 
centrifugation steps, the skim milk was stored at −80 °C 
until further analyses.

Then, the skim milk samples were thawed gradually on 
ice. EVs isolation was performed by size exclusion chro-
matography (SEC), in detail, with the original 70 mm col-
umns of qEV (Izon Science, Lyon, France). Before loading 
milk samples on the SEC column, the starting volume 
of 4 mL was reduced using a centrifugation filter tube 
(AMICON ULTRA-4 50 kDa, Merck Millipore, Burling-
ton, MA, USA) to reach a volume of 500 µL, the maxi-
mal loadable capacity of the SEC column. Centrifugation 
was performed at 4000 × g at 4 °C for 40 min to 60 min, 

depending on the viscosity of the sample. To avoid pro-
tein precipitation at the filter level, during centrifugation, 
samples were gently mixed by slow pipetting on ice every 
5–10  min pausing the centrifugation. Once the volume 
reached 500 µL, milk samples were loaded on the SEC 
column, which was previously mounted on its automatic 
fraction collector (qEV AFC system, Izon Science). Fol-
lowing the manufacturer’s instructions, the first five 
aliquots (50 µL each) were separately collected in 2 mL 
tubes corresponding to the most rich and pure EVs frac-
tions. The five EVs fractions (250 µL) were subsequently 
mixed, and the volume was reduced to reach 50 µL, the 
minimal useful volume for downstream applications, 
via a centrifugation filter tube (AMICON ULTRA-4 50 
kDa, Merck Millipore). Centrifugation was performed 
at 4000 × g at 4  °C with a variable time from 15 min to 
30 min depending on the sample viscosity. To avoid pro-
tein precipitation at the filter level, during centrifugation, 
samples were gently mixed by slow pipetting on ice every 
5–10 min pausing the centrifugation. Finally, the concen-
trated EVs were stored at -80 °C until further analyses.

EVs validation
Nanoparticle tracking analysis (NTA)
EV concentrations were calculated via nanoparticle 
tracking analysis (NTA) using the Nanosight LS300 sys-
tem (Malvern Panalytical, Malvern, UK) equipped with a 
488 nm laser. EVs were diluted (1:200) in 0.1 μm filtered 
saline solution and analysed via NTA 3.2 Analytical Soft-
ware. Three videos of 60 s at camera level 15 and thresh-
old 5 were captured via a syringe pump 50. The settings 
were kept constant between samples.

Transmission electron microscopy (TEM)
Transmission electron microscopy (TEM) was performed 
to evaluate EV integrity and size. EVs were fixed on 200 
mesh nickel formvar carbon-coated grids (Electron 
Microscopy Science, Hatfield, PA, USA) as reported by 
Bruno et al. [29]. EVs were negatively stained using Nano-
Van™ and Nano-W™ (Nanoprobes, Yaphank, NY, USA) 

Table 1 Milk parameters of the high (H) and low (L) somatic cell count (SCC) groups 

DIM: days in milk, sd: standard deviation.

Group H (n = 11) Group L (n = 49)

SCC (mean cells/mL ± sd) 1.75 ×  10+6 ± 2.13 ×  10+6 4.35 ×  10+4 ± 4.71 ×  10+4

DIM (mean days ± sd) 197.27 ±  119.29 124.43 ± 74.45

Staphylococcus spp. positivity 2 17

Streptococcus uberis positivity 2 Not detected

Negative for bacteriology 7 32

Age (mean years ±  sd) 2.77 ± 0.41 2.68 ± 0.41
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and observed using a Jeol JEM 1010 electron microscope 
(Jeol, Tokyo, Japan).

Western blot
To validate the EV isolation method and confirm the 
presence of EVs in the samples, western blot analysis was 
conducted. In particular, three EV markers were selected 
as suggested by the MISEV guidelines: TSG101, CD9 
and calnexin [19]. Total proteins were extracted from EV 
lysates using RIPA buffer supplemented with a protease 
inhibitor cocktail (Sigma‒Aldrich, St. Louis, MO, USA) 
and quantified via a DC protein assay (Bio-Rad, Hercu-
les, CA, USA). Equal amounts of protein (300  µg/lane) 
were resolved with 4–20% MP TGX Stain-Free Gel (Bio-
Rad) under reducing conditions for only TSG101 and 
Calnexin. Proteins were blotted onto PVDF membranes 
(Trans-Blot Turbo Mini PVDF, Bio-Rad) using Mini 
Trans-Blot cells (Bio-Rad). The blotted membranes were 
blocked with a 10% BSA solution (Merck Millipore) for 
1 h at room temperature, followed by an overnight incu-
bation at 4  °C with a mouse monoclonal anti-TSG101 
primary antibody (1:200; sc-7964, Santa Cruz Biotech-
nology, Dallas, TX, USA), a mouse monoclonal anti-CD9 
primary antibody (1:500; MCA469GT, Bio-Rad) and a 
rabbit polyclonal anti-calnexin antibody (1:200, sc-11397, 
Santa Cruz Biotechnology). The membranes were subse-
quently incubated with secondary horseradish peroxidase 
(HRP)-conjugated anti-mouse (1:10 000) and anti-rabbit 
(1:40 000) antibodies and developed with Clarity Western 
ECL Substrate (Bio-Rad). The immunoblot bands were 
visualized via the ChemiDoc MP System (Bio-Rad). For 
western blot analysis, a ready-to-use protein extract from 
A-431 cell lysate (sc-2201, Santa Cruz Biotechnology) 
was used as a positive control for calnexin.

Small RNAs extraction
Total small RNAs were extracted from EV samples via 
a Maxwell RSC miRNA Blood Kit (Promega, Madison, 
WI, USA) following the manufacturer’s instructions. The 
input miRNAs were subsequently quantified using the 
Qubit microRNA Assay Kit. Finally, the small RNA pro-
files of the input RNA samples were investigated via the 
Agilent small RNA kit for the Bioanalyzer 2100 instru-
ment (Agilent Technologies, Santa Clara, CA, USA).

Small RNA sequencing
Library preparation for next-generation sequencing was 
performed using SMARTer smRNA-seq kit for Illumina 
(Cat. no. #635031; Clontech Laboratories Inc., Kusatsu, 
Japan) according to the manufacturer’s protocol. Fol-
lowing PCR amplification, purification, and valida-
tion, the size selection of the sequencing libraries was 
performed using SPRIselect beads (Cat. no. #B23318, 

Beckman Coulter Life Science, Brea, CA, USA). Qual-
ity controls were performed on a Bioanalyzer 2100 
(Agilent Technologies) and Qubit V4 (Thermo Fisher 
Scientific). Next-generation sequencing was performed 
on a NextSeq500 (Illumina, San Diego, CA, USA) with 
the reagents kit V2 (75 cycles; Illumina). The samples 
were processed starting from single-ended 75  bp-long 
sequencing reads.

Bioinformatic analysis
The FASTQ files were trimmed using cutadapt (cuta-
dapt 3.5 with Python 3.7.7) following the manufactur-
er’s instructions (parameters: -m 15 -u 3 -a AAA AAA 
AAAA). Trimmed fastq files were processed using the 
miRNAseq workflow implemented in Docker4seq [30–
32]. Briefly, quality control of trimmed reads was per-
formed using the FastQC software v. 0.11.9 [33]. The 
quality of the trimmed reads was checked to evaluate 
the overall distribution of sequenced fragment length. 
The trimmed reads were subsequently mapped onto 
bovine miRNA precursors (miRbase 22) using the BWA 
aligner (v. 0.7.12) [34], and mature 5p and 3p miRNAs 
were counted using an R script embedded in the dock-
er4seq workflow.

Count filtering, data normalization, and differential 
expression analysis were performed in RStudio. We first 
normalized the miRNA count matrix with the sequenc-
ing depth for each sample by calculating counts per 
million (CPM). Then, we filtered out genes expressed 
in fewer than 10 samples with CPM < 0.5 via the cpm() 
function from the edgeR package (v. 3.36.0) [35]. miR-
NAs failing these criteria were removed from the count 
matrix before exploration and differential expression 
analyses.

Once a filtered miRNA matrix was obtained, explora-
tory analysis of the expressed miRNAs was performed 
via unsupervised principal component analysis (PCA) 
and nonparametric multidimensional similarity (NMDS) 
analysis with the ggplot2 (v. 3.3.5) R package [36]. Differ-
entially expressed (DE) miRNA analysis was performed 
pairwise via the edgeR (v. 3.36.0) package [35]. Differ-
ential analysis was performed by comparing samples 
according to their SCC threshold level of 200 000 cells/
mL. Counts from expressed genes were first normalized 
with the calcNormFactors() function [37]. The voom() 
function from the limma R package (v. 3.50.0) was subse-
quently used to fit a generalized linear regression model 
to correct the data with the group as a fixed effect [38]. 
The p values were adjusted for multiple testing via the 
Benjamini and Hochberg procedure [39]. Only DE miR-
NAs with an adjusted P value < 0.05 were used for down-
stream pathway analysis.
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In silico functional analysis
Using only DE miRNAs, a predictive functional analy-
sis was performed to evaluate the influence of the DE 
miRNAs on biological processes and pathways. In silico 
analyses were performed using human orthologues (hsa-
), instead of bovine orthologues (bta-), since information 
about miRNA activity is more detailed and extensive in 
humans than in bovines. In this particular step, we used 
miRWalk 2.0 [40], OmicsNet 2.0 [41] and Cytoscape 
v.3.9.1 with the ClueGO plugin v.2.5.9 [42] software. 
First, the most deposited mature forms (-3p or -5p) of 
DE miRNAs were checked in the miRBase database and 
modified accordingly in the DE miRNA list with the aim 
of retrieving the most relevant results via functional anal-
ysis. The partially modified DE miRNA list was subse-
quently used in miRWalk to retrieve all the miRNA-gene 
interactions. In particular, only validated interactions 
deposited in the miRTarBase database and with biding 
position data (related to the 3’UTR, 5’UTR and CDS) 
were selected. In parallel, to identify functional biologi-
cal categories related to DE miRNAs, Panther biologi-
cal process analysis was performed via OmicsNet. Then, 
the categorization of biological processes was manu-
ally performed. Biological processes were clustered into 
two main macro-categories: cell life processes (including  
cell cycle, regulation of the cell cycle, cell proliferation 
and apoptotic process) and gene expression machin-
ery processes (including regulation of transcription by 
RNA polymerase II, transcription DNA templating, 
mRNA processing, mRNA splicing via the spliceosome, 
and regulation of translation and protein phosphoryla-
tion). In addition, target genes involved in the regulation 
of immune processes were obtained with the ClueGO 
plugin in Cytoscape via the function GO-ImmuneSys-
temProcess. These gene lists were filtered by select-
ing only validated miRNA-gene interactions previously 
obtained via miRWalk. The miRNAs-genes network was 
visualized via Cytoscape, which was subsequently used to 
identify potential networks.

Results
EV validation by NTA, TEM and Western blot analyses
To validate the presence of EVs in the samples, 
NTA revealed an average size distribution of EVs of 
171.87 ± 33.93  nm (Figure  1A), and TEM analysis (Fig-
ure 1B) confirmed that the EVs had a homogeneous pat-
tern of nanosized membrane vesicles. Moreover, western 
blot analysis was performed on representative samples 
randomly selected from the collected samples. Both EV 
markers, TSG101 and CD9, were positive in the samples 
analysed, whereas calnexin was negative in the EV sam-
ples. The specific bands of the two targets are reported in 
Figure 1C.

Differential analyses of miRNAs
In total, 2127 Bos taurus-annotated miRNAs (bta-miR-
NAs) were detected. A PCA table was generated to inves-
tigate the sample distribution (Additional file 1). Using a 
cut-off value for the SCC parameter of 200 000 cells/mL, 
a total of 68 miRNAs were differentially expressed (DE) 
with a false discovery rate (FDR) < 0.05 between group H 
and group L (miRNAs were up-/downregulated in group 
H in comparison to group L). These genes were mostly 
downregulated. Intriguingly, only 1 miRNA, bta-miR-
361-3p, was upregulated, with a 2.7-fold change (FC) 
value. Among the downregulated miRNAs, 15 had a FC 
< −2. A volcano plot of the DE miRNAs is shown in Fig-
ure 2. The list of the 68 DE miRNAs is reported in Addi-
tional file 2.

Functional analysis of DE miRNAs
The functional analysis was conducted using human 
orthologues (hsa-) instead of bovine orthologues (bta-) 
since human databases are more complete and more 
informative regarding miRNA function. The targets of 17 
known miRNAs were obtained from OmicsNet via the 
Panther database. In addition, the regulation of immune 
system processes was investigated via the ClueGO plugin 
in Cytoscape. The main immune processes significantly 
influenced by the DE miRNAs were related mainly to 
mediated immunity, including immunoglobulin produc-
tion and lymphocyte regulation. Therefore, the miRNA-
gene networks were visualized via Cytoscape, and three 
separate reactomes were generated considering cell life 
(Figure 2), gene expression (Figure  3) and immune pro-
cesses (Figure 4). Two large nodes involved in the regu-
lation of miRNA-gene interactions are miR-503-5p and 
miR-455-3p, which are involved in both cell life and gene 
expression processes. The third network related to immu-
nity is less complex than the other two networks are. 
However, 4 main highlighted miRNAs (miR-455-3p, miR-
503-3p, miR-1301-3p and miR-361-5p) were involved in 
the regulation of immunity (Figure 5).

Discussion
Bovine mastitis is one of the main challenges that farm-
ers and veterinarians routinely face in dairy farming. 
Moreover, the spread of antimicrobial resistance and the 
recent enactment of the new European Regulation about 
the use of veterinary medicinal products have increased 
the need for the implementation of diagnostic tools to 
detect subclinical mastitis early to reduce/avoid antimi-
crobial treatments [43]. Among the different parameters 
of mammary gland infection, an increase in the SCC in 
milk is considered to have prognostic value. Therefore, to 
compare healthy subjects with cows potentially affected 
by subclinical mastitis, the milk samples were classified 
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according to the SCC measurement, setting the 200 000 
cell/mL value as a threshold [9]. In this study, the miR-
Nome profile of dairy cows affected by subclinical mas-
titis was investigated and compared with that of healthy 
control samples. EVs were obtained from milk samples 
to better understand the role of miRNAs in the regula-
tion of mastitis and to identify new potential biomarkers 
of the disease. EVs and miRNAs have been largely stud-
ied in human and veterinary medicine for their evalua-
tion as potential biomarkers of different diseases, such as 
cancer and neurodegenerative and infectious diseases. In 
this study, individual milk samples were collected from 
a total of 60 Holstein Friesian cows during routine mas-
titis screening tests and subjected to EV small RNA-seq 
analysis to detect miRNome profiles suggestive of the 

subclinical form of the disease. Indeed, bovine masti-
tis can modify the milk miRNome, and several miRNAs 
have been reported to be differentially expressed during 
mammary gland inflammation [23].

The results of the EV miRNome profiling revealed sta-
tistically significant differences between samples with 
high SCC levels (>200  000 cell/mL, group H, consid-
ered a group with subclinical mastitis) and samples with 
low SCC levels (<200  000 cell/mL, group L, considered 
a healthy control group). In particular, 68 miRNAs were 
DE, most of which were downregulated in group H com-
pared with group L. Among these 68 DE miRNAs, 15 
miRNAs were downregulated, with FC values < -2. Many 
of these DE miRNAs were specifically related to bovine 
species, and no relevant information could be retrieved 

Figure 1 EV validation. Representative graphs of the results of nanoparticle tracking analysis (NTA) showing EV size distribution (A). 
Representative TEM images of EVs showing intact and heterogeneous EVs; top and bottom scale bars, 200 nm and 100 nm, respectively (B). Western 
blot analysis of EV samples. 1: isotype control antibody on EVs, 2: EVs, 3: cell lysate (A-431 cell line) (C). The EV markers used for analysis were TSG-101 
(∼45 kDa), CD9 (∼24 kDa) and calnexin (∼90 kDa).
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from the scientific literature. However, three miRNAs 
can be highlighted: miR-223, miR-124 and miR-568. The 
first one, i.e., miR-223, is largely described in the litera-
ture as regulating the inflammatory response in bovine 
mastitis [44–48]. All these studies reported the upregu-
lation of miR-223 in response to S. aureus and S. uberis. 
or S. agalactiae experimental infections. Therefore, the 
finding of miR-223 downregulation in the present study 
is not consistent with what has been reported in the sci-
entific literature. One possible explanation for this con-
troversial result may be related to the different matrices 
used for miRNA extraction. The abovementioned stud-
ies investigated the role of miRNAs in different mastitis 
models involving mammary gland biopsies [44, 46, 47], 
cultured Mac-T cells [24] or blood [45]. Therefore, an 
adequate comparison is not possible. Moreover, in the 
dataset of this study, only two samples were positive for S. 
uberis, which may not be enough to highlight differences 
between the groups. In contrast, Tzelos and colleagues 
investigated the expression of miR-223 during mastitis, 
but a statistically significant difference in expression was 
not detected between mastitic and healthy cows [49]. In 
addition, in Tzelos’s study, miR-223 was investigated both 
in whole and skim milk samples and not in milk EVs, 
affecting the possibility of an adequate comparison. How-
ever, according to the human medical literature, miR-223 
is either expressed almost exclusively or highly enriched 
in several subsets of white blood cells, including T- and 
B-lymphocytes, neutrophils, mast cells and monocytes 
[50]. It is well known that miRNAs that can be detected 
in milk can have different origins according to the dif-
ferent cells composing and characterizing the mammary 
gland during mastitis, i.e., mammary epithelial cells, 

inflammatory cells, adipocytes, fibroblasts or myoepithe-
lial cells [36]. On the other hand, miR-124 and miR-568 
were also significantly downregulated in this study and, 
for the first time, were reported to be related to bovine 
mastitis. According to the literature, miR-124 has been 
described to regulate the parasitic pathogenesis of Schis-
tosoma japonicum and Fasciola gigantica in both bovines 
and buffaloes [51–53]. Intriguingly, the inhibitory effect 
of miR-568 on CD4+  T cells was previously demon-
strated, suggesting a role in the modulation of lympho-
cyte activity [54].

According to the functional analysis, four miRNAs 
(namely, miR-455, miR-361, miR-1301, and miR-503) 
were found to be involved in the regulation of the bio-
logical processes of gene expression, cell life and the 
immune response. As mentioned previously, the func-
tional analysis was conducted using human orthologues 
(hsa-) rather than bovine orthologues (bta-). Given this 
possible bias, the functional results obtained in this 
study may be considered predictive, and further studies 
must be conducted to validate these predictions. How-
ever, the results can be compared with the scientific lit-
erature to contextualize and explain the roles of these 
four miRNAs. MiR-455 has already been reported in 
dairy cows subjected to dietary regulation. For exam-
ple, Webb and colleagues reported a downregulation of 
miR-455 in the period after calving in cows fed a highly 
balanced diet [55]. Our results are consistent with those 
of this study since both the downregulation of miR-455 
and its involvement in the regulation of the inflamma-
tory response have been reported. According to the lit-
erature in humans, miR-455 downregulation is associated 
with the activation of inflammatory pathways in multiple 
sclerosis [56]. Moreover, the anti-inflammatory activity 
of miR-455 was also described by recent studies report-
ing an efficient therapeutic role of this miRNA in acute 
liver injury and cerebral ischemia/reperfusion injury [57, 
58]. Another interesting result is miR-361 upregulation, 
which seems to be involved in the regulation of biologi-
cal processes related to the immune response. In bovine, 
the level of miR-361 has been reported to be lower in the 
serum of grazing cows than in that of housed cattle [59]. 
This study may suggest a role for miR-361 in the regula-
tion of metabolism in cows. It is well known that mas-
titis affects cow metabolism by altering lipolysis and the 
milk proteome [60, 61]. Therefore, the upregulation of 
miR-361 in our samples may depend on metabolic factors 
modified by mastitis. In addition, in humans, miR-361 is 
reported to be a promising biomarker for tuberculosis 
diagnosis and is most likely involved in the regulation 
of host‒pathogen interactions [62, 63]. The downregu-
lation of miR-1301 was first reported in mastitis in this 
study. Luoreng and colleagues reported the upregulation 

Figure 2 Differentially expressed miRNAs between group 
H and group L. The regulation of expression is intended to be 
downregulated/upregulated in group H in comparison with that in 
group L.
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of miR-1301 in the blood of dairy cows experimentally 
infected with a Staphylococcus aureus strain [64]. This 
controversial result may be partially explained by the 
different biological fluids analysed, the milk used in the 
present study and the blood used in the previous study. 
Furthermore, S. aureus was never identified in the milk 
samples of this study. It is well known that etiological 
agents can influence mastitis pathogenesis differently 
[26, 64], and differences in the milk miRNome between 
mastitis caused by either Escherichia coli or S. aureus 

have already been reported [65]. Therefore, the differ-
ential regulation of miR-1301 depending on the specific 
pathogen could not be excluded. Finally, miR-503 repre-
sents another important node of regulation according to 
the functional analysis. Most information regarding miR-
503 is related to human diseases. This miRNA seems to 
be involved in the pathogenesis of diabetes and lipopol-
ysaccharide injury [66, 67], but more intriguingly, its 
downregulation has been reported to be involved in the 
activation of NF-kB signalling and the PPARγ pathway 

Figure 3 Networks of the differentially abundant miRNAs identified via Cytoscape. These results are related to miRNA-gene interactions 
involved in cell life processes.
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[68, 69]. In veterinary medicine, the downregulation of 
miR-503 has also been reported in dog blood mononu-
clear cells infected with Leishmania infantum, suggesting 
a role in the modulation of the host‒response [70].

One innovative aspect of this study is the selection of 
dairy cows naturally affected by mastitis. Studies with 
an in-field scenario allow the evaluation of pathological 
conditions while taking into account the actual environ-
mental variability. Moreover, some studies, even if con-
ducted on naturally infected cows, considered a very 
low sample size [71, 72] in comparison with the sample 
size in this study (60 Holstein Friesian cows). Consider-
ing the method applied, another important consideration 
can be made. Small RNA-seq allows the investigation of 
the wide and complete panorama of miRNA expression 
and activity. On the other hand, studies applying qPCR 
or microarrays can focus only on selected and limited 

miRNAs and do not allow the identification of novel 
bovine miRNAs [49, 73, 74]. Finally, the other two stud-
ies, from Bagnicka et al. and Özdemir, represent the most 
comparable studies with the present study [75, 76]. Sim-
ilar methods for small RNA-seq and a smaller (but still 
well representative) sample size have been applied. How-
ever, the main DE miRNAs reported are different from 
those identified in the present study. The main reason is 
likely related to the animal selection modality, which ana-
lysed only dairy cows positive for coagulase +/-Staphylo-
cocci or M. bovis. Instead, the present study focused on 
the selection of cows on SCC and not on bacteriological 
results. Furthermore, as already mentioned, the different 
biological matrices could influence the results. In fact, 
the origin of miRNAs can affect the miRNA profile. For 
example, whole milk has a different miRNA profile than 

Figure 4 Networks of the differentially abundant miRNAs identified via Cytoscape. These results are related to the miRNA-gene interactions 
involved in the gene expression machinery.
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skim milk, somatic cells, milk fat globules, or mammary 
gland biopsies [77–79].

In conclusion, the results obtained from this study 
could be a promising starting point for the investigation 
of miRNA and EV regulation in bovine subclinical mas-
titis. The functional analysis revealed a panel of four 
miRNAs that are promising putative biomarkers of sub-
clinical mastitis: miR-455, miR-361, miR-1301 and miR-
503. Notably, these results were validated via predictive 
analysis using human orthologues; therefore, their 
role may not be the same in bovines. To clarify the DE 
miRNA results, future validation via qPCR or ddPCR 
may be performed on other dairy cows. Furthermore, 
to define the role of DE miRNAs in the regulation of 
genes identified by functional analysis and therefore in 

inflammation, an in vitro luciferase reporter gene assay 
to validate miRNA target sites in bovines may also be 
performed. Nevertheless, the poor presence of masti-
dogen bacteria observed in the dataset may represent a 
limitation of this study, and an additional validation of 
the obtained results may involve the inclusion of gram-
negative or Mycoplasma spp. mastitis forms. Further 
studies must be conducted to identify and validate miR-
NAs used for mastitis detection, especially subclinical 
forms. These methods can be considered integrative 
approaches among clinical evaluation, SCC, microbiol-
ogy and miRNAs, which will always constitute the opti-
mal strategy for early detection of bovine mastitis.

Figure 5 Networks of the differentially abundant miRNAs identified via Cytoscape. These results are related to miRNA-gene interactions 
involved in immune system processes.
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