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1 Introduction

It is well known that Markov Chain Monte Carlo simulations of lattice gauge theories based
on local updating algorithms are affected by critical slowing down. The integrated auto-
correlation time τ associated with a given lattice observable O diverges as the continuum
limit is approached, in a way that is naturally described in terms of the correlation length
ξ of the system.

While for lattice observables like the elementary plaquette or the Polyakov line τ diverges
as a power law, τ ∼ ξz, with z typically of order 2 or less, for topological quantities such as
the topological charge Q this divergence is much more dramatic, see refs. [1–18]. There is by
now vast numerical evidence that both in 4d SU(N) gauge theories and in two-dimensional
models, the divergence is exponential, τ(Q) ∼ eξ, see refs. [5–7, 15].

Topological critical slowing down can be understood as follows. Sufficiently close to
the continuum limit, a proper definition of topological charge is recovered for lattice gauge
field configurations. This definition can be used to partition configuration space into sectors,
separated by free energy barriers. The height of these barriers diverges with ξ and, as the
continuum limit is approached, the disconnected topological sectors of the continuum theory
emerge. The growth of the energy barriers also suppresses the tunneling rate of a Markov
Chain generated by a local updating algorithm, that thus remains trapped in one fixed
topological sector. This effect, known as topological freezing, leads to a loss of ergodicity and
introduces large systematic effects, especially in the calculation of topological observables
such as the topological susceptibility.

Algorithms that exactly solve the problem of topological freezing are only known for
specific low-dimensional toy models, see for example ref. [14]. Yet, several suggestions have
been made in the last few years to make the growth of τ for topological observables milder,
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namely from exponential to polynomial. Examples are simulations with Open Boundary
Conditions (OBCs) [9, 19], Parallel Tempering on Boundary Conditions (PTBC) [13, 16], meta-
dynamics [10, 20], density of states methods [21, 22], master field simulations [23], machine-
learning based approaches such as Normalizing Flows [24–27], and many others [28–31].

In this study, we propose a novel algorithm aimed at mitigating topological freezing. As
our strategy builds on features of simulations with OBCs as well as on the PTBC algorithm
proposed by M. Hasenbusch in ref. [13], we briefly summarize their main properties below.

In theories defined on a continuum space-time, topological charge is integer valued as
a consequence of Periodic Boundary Conditions (PBCs) in time. Abandonding PBCs in
favour of OBCs corresponds to eliminating the barriers between topological sectors, which
are not disconnected anymore. Performing Monte Carlo simulations with OBCs thus allows
the Markov Chain to switch topological sector more easily, resulting in a dramatic reduction
of topological auto-correlation time. In particular, it was shown in refs. [9, 19] that the
divergence of τ is reduced to a polynomial one, τ ∼ ξ2. Yet, this approach suffers from
some drawbacks. As a matter of fact, OBCs introduce nonphysical effects, which have to
be avoided by only computing correlation functions in the bulk of the lattice. Hence, larger
volumes are required in order to keep finite size effects under control while still avoiding
unwanted systematic errors. In this respect, the PTBC algorithm, proposed for 2d CPN−1

models in ref. [13] and recently implemented also for 4d SU(N) gauge theories in ref. [16]
aims at having the best of both worlds. By combining PBCs and OBCs simulations in
the framework of the parallel tempering idea, it exploits the improved scaling of the auto-
correlation time of the topological charge in systems with OBCs simulations while, at the
same time, avoiding the drawbacks metioned above, as physical quantities are computed with
PBCs. The PTBC algorithm has been recently employed in a variety of cases, demonstrating
a dramatic reduction of the auto-correlation time of the topological charge, and improving
state-of-the-art results for several topological and non-topological quantities [16, 32–37].

The strategy proposed in this study shares its roots with the PTBC algorithm, as it
still combines the use of Open and Periodic boundary conditions. However, it makes use of
out-of-equilibrium evolutions based on the well-known Jarzynski’s equality, see ref. [38]. A
fundamental result of non-equilibrium statistical mechanics, Jarzynski’s equality has been
extensively used in recent years in several contexts in lattice field theories, ranging from
the computation of interface free energies, see ref. [39], of the QCD equation of state, see
ref. [40], of renormalized coupling of SU(N) gauge theories, see ref. [41], and in the study
of the entanglement entropy from the lattice, see ref. [42].

The underlying idea is to sample the configuration space of the system with PBCs using
a previous sampling of the configuration space of the system with OBCs, the latter being used
as a starting point for non-equilibrium evolutions. Using Jarzynski’s equality, the expectation
values of the desired observables can then be obtained for the system with PBCs through
a reweighting procedure. In this approach, the decorrelation of the topological charge still
benefits from the presence of OBCs, while avoiding their pitfalls, with a cost overhead that
will be quantified by the length of the out-of-equilibrium trajectory.

The main motivation behind the present study is a recent development in the field
of machine-learning based on the combination of Jarzynski’s equality with Normalizing
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Flows (NFs). It this new framework, known as Stochastic Normalizing Flows (SNFs), see
refs. [43, 44], out-of-equilibrium Monte Carlo evolutions are combined with discrete coupling
layers (the same building blocks composing NFs) to achieve a substantial improvement of
sampling efficiency with respect to a purely stochastic approach. As our strategy is rooted
on Jarzynski’s equality too, SNFs would be a natural future direction for the application
of our proposal.

The aim of the present study is thus to probe the use of the out-of-equilibrium methods
in the computation of the topological observables in order to set the stage for this future
development. Its technical feasibility will be explored, and its performance compared with
that of the PTBC algorithm. We will focus on the 2d CPN−1 models, see refs. [45–48], which
are a very popular test bed for new numerical approaches, see refs. [6, 13, 15, 32, 49–55]. They
are generally simpler to study on the lattice compared to QCD while still exhibiting non-trivial
topological features, which they share with 4d SU(N) gauge theories. A preliminary version
of the results discussed in this manuscript was presented at the 2023 Lattice Conference,
and can be found in ref. [56].

This paper is organized as follows. In section 2 we introduce the numerical setup used in
this study, with a heavy focus on the features of out-of-equilibrium evolutions. The numerical
results obtained with this method are presented and discussed in section 3. Finally, in
section 4 we draw our conclusions and point to the future directions of this investigation.

2 Numerical setup

In this section, the numerical setup used in this study is introduced. The 2d CPN−1 models
are defined, along with the local updating algorithm used to generate their configurations.
Out-of-equilibrium methods are also introduced, along with a detailed explanation on how
they are used to carry out the program sketched above.

2.1 Lattice discretization of 2d CPN−1 models

Consider the following continuum Euclidean action of 2d CPN−1 models [45, 46]:

S[z, z, A] =
∫

d2x

[
N

g
Dµz(x)Dµz(x)

]
, (2.1)

where g is the ’t Hooft coupling, z = (z1, . . . , zN ) is a N -component complex scalar satisfying
zz = 1, and Dµ ≡ ∂µ+ iAµ is the U(1) covariant derivative, where Aµ(x) is a non-propagating
U(1) gauge field.1 An integer-valued topological charge can be conveniently expressed in
terms of the gauge field according to refs. [45, 46] as follows,

Q = 1
2π

ϵµν

∫
d2x ∂µAν(x) ∈ Z, (2.2)

while the topological susceptibility, which is our main observable of interest, is defined as
usual as (here V is the space-time volume):

χ = lim
V →∞

⟨Q2⟩
V

. (2.3)

1The non-propagating gauge field Aµ(x) could be integrated out and expressed in terms of z(x) [46, 47].
However, this formulation is more convenient for the purpose of lattice simulations.
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Figure 1. Figure taken from ref. [32]. The dashed line represents the defect D, while the solid arrows
represent links or product of links crossing the defect orthogonally, and thus getting suppressed by
factor(s) of c(n) according to the definition of k

(n)
µ (x) in eq. (2.5). In this case the defect is placed on

the space boundary (i.e., along the µ = 1 direction), so that only temporal links U0 will cross it.

We discretize the action, eq. (2.1), on a square lattice of size L, using the O(a) tree-level
Symanzik-improved lattice action defined in ref. [50]. A crucial ingredient in this study is
the choice of boundary conditions. They are imposed as periodic in every direction and for
every point of the boundary of the lattice, except for a segment of length Ld along the spatial
boundary. In the following, this segment will be known as defect and will be denoted by
D. Along the defect we impose OBCs. Our purpose is to gradually evolve these to PBCs
using the out-of-equilibrium evolutions described in section 2.2. This choice of boundary
conditions can be encoded directly into the dynamics by considering the following family
of lattice actions, each labeled by an integer n,

S
(n)
L [z, z,U ] =−2Nβ

∑
x,µ

{
k(n)

µ (x)c1ℜ
[
Uµ(x)z(x+ µ̂)z(x)

]
+k(n)

µ (x+ µ̂)k(r)
µ (x)c2ℜ

[
Uµ(x+ µ̂)Uµ(x)z(x+2µ̂)z(x)

]}
,

(2.4)

where β is the inverse bare ’t Hooft coupling, c1 = 4/3 and c2 = −1/12 are Symanzik-
improvement coefficients, and Uµ(x) = exp{iAµ(x)} are the U(1) gauge link variables. The
factors k

(n)
µ (x) appearing in eq. (2.4) are used to implement different boundary conditions for

the link variables crossing the defect D. They are defined as follows,

k(n)
µ (x) ≡

c(n) , x ∈ D ∧ µ = 0 ,

1 , otherwise,
(2.5)

with 0 ≤ c(n) ≤ 1 a function that interpolates between c = 0 and c = 1 corresponding,
respectively, to OBCs and PBCs. The setup described above is sketched in figure 1.

The behaviour of the model defined above can be clarified as follows. When c = 1,
the factors k

(n)
µ (x) are everywhere equal to 1. Then, the action in eq. (2.4) reduces to the

standard Symanzik-improved action of 2d CPN−1 models with PBCs. When 0 ≤ c < 1, the
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coupling β on the links crossing D get suppressed by a factor of c each. This corresponds
to a suppression of the force entering the updating procedure for those specific links and of
the corresponding site variables, and to its vanishing when c = 0. This condition realizes
OBCs, as the vanishing of the force implies no update of the involved variable. In this work
we chose a simple linear interpolation between OBCs and PBCs, namely, c(n) = n/nstep,
with c(n = 0) = 0 (OBCs case) and c(nstep) = 1 (PBCs case).

For the updating procedure, we relied on the standard 4:1 combination of Over-
Relaxation (OR) and over-Heat-Bath (HB) local update algorithms, see ref. [50] for more
details. The full lattice update sweeps were supplemented with hierarchical updates of
sub-regions of the lattice centered on the defect. These allow to update the links and sites
close to D, where the creation/annihilation of new topological excitations occurs most likely,
thereby improving the evolution of the Markov Chain between topological sectors. These
hierarchical updates were designed along the same lines of ref. [13], where more details
may be found. Hierarchical updates were alternated with translations in randomly-chosen
directions by one lattice spacing of the position of the defect on the periodic replica (which
is translation-invariant), so that topological excitations are created/annihilated in different
places around the lattice. Such translations are effectively achieved by simply translating
the site/link variables of the periodic field configurations.

As discussed in the Introduction, the measurement of lattice out-of-equilibrium evolutions
happens on systems with PBCs. In the case of PBCs, no unphysical effects coming from
the fixed boundaries are present and we can safely rely on several different discretizations of
the global topological charge defined in eq. (2.2) for the 2d CPN−1 models on a torus. In
this study, we will adopt the so called geometric definition as in ref. [50], which is known
to be integer valued for every lattice configuration,

Qgeo[U ] = 1
2π

∑
x

ℑ{log [Π01(x)]} ∈ Z, (2.6)

where Πµν(x) ≡ Uµ(x)Uν(x + aµ̂)Uµ(x + aν̂)Uν(x) is the elementary plaquette.
The geometric lattice topological charge in eq. (2.6) is computed on configurations that

have undergone a small amount of smoothing of the gauge and matter fields. This is done in
order to remove the effects of ultraviolet (UV) fluctuations at the scale of the lattice spacing.
Several different smoothing methods have been proposed in the literature, such as cooling,
see refs. [57–63], stout smearing, see refs. [64, 65] or gradient flow, see refs. [66, 67]. From
the numerical standpoint, all these methods have been shown to give consistent results when
properly matched to one another, see refs. [63, 68, 69]. In this study, we adopt cooling for its
simplicity and for its limited numerical cost. A single cooling step consists in aligning, site
by site and link by link, each variable z(x) and Uµ(x) to their corresponding local forces. As
shown in ref. [69], the specific action from which the local force is computed does not need to
be the one used for the Monte Carlo evolution. Thus, we rely on the non-improved action,
i.e., the action in eq. (2.4) with c1 = 1 and c2 = 0. The topological charge was evaluated
using the geometric definition after a fixed number of 20 cooling steps, as its value was
systematically observed to stabilize after 10 steps. In the end, the topological susceptibility
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will then be defined on a finite lattice as follows,

a2χ = ⟨Q2⟩
L2 , (2.7)

where Q ≡ Q
(cool)
geo ∈ Z is the integer-valued lattice geometric topological charge computed

after cooling, and where the meaning of the mean over the ensemble in our out-of-equilibrium
setup will be clarified in the next section.

2.2 Out-of-equilibrium evolutions and Jarzynski’s equality

In this subsection, we explain in detail how Jarzynski’s equality enables us to compute
vacuum expectation values in the system with PBCs (the target distribution), starting from
a sampling of the system with OBCs (the prior distribution).

Consider the following family of partition functions,

Zc(n) ≡
∫
[dzdzdU ]e−S

(n)
L [z,z,U ] . (2.8)

Each one corresponds to a system described by action in eq. (2.4) with boundary conditions
specified by the parameter c. The prior system with OBCs will then correspond to c(n =
0) = 0, with partition function Z0, while the target system with PBCs will instead correspond
to c(n = nstep) = 1, with partition function Z1 ≡ Z.

A sampling of the target distribution is obtained from a sampling of the prior distribution
through out-of-equilibrium evolutions. Along the evolution, the boundary condition parameter
is gradually changed from c = 0 to c = 1. The change is effected in nstep steps. At each step
n, the change from c(n) to c(n + 1) is followed by a number of configuration updates.2 These
combined operations allow us to define a transition probability distribution Pn(ϕn−1 → ϕn)
where ϕn−1 and ϕn collectively denote the elementary degrees of freedom z and U at step
n − 1 and n, respectively. As just a few updates are performed after every change in c, the
system with elementary degrees of freedom ϕn can be considered to be out of equilibrium.

Jarzynski’s equality allows to compute the ratio between the partition functions of the
target and prior distributions,

Z
Z0

= ⟨exp{−W}⟩f , (2.9)

where

W [ϕ0, . . . , ϕnstep−1] ≡
nstep−1∑

n=0

{
S

(n+1)
L [ϕn]− S

(n)
L [ϕn]

}
(2.10)

is known as generalized work. The out-of-equilibrium average ⟨A⟩f is defined as follows,

⟨A⟩f =
∫
[dϕ0 . . . dϕ]q0[ϕ0]Pf [ϕ0, . . . , ϕ]A[ϕ0, . . . , ϕ] , (2.11)

where ϕ ≡ ϕnstep denotes the configuration reached at the end of the out-of-equilibrium evolu-
tion. In the above, Pf [ϕ0, . . . , ϕ] ≡

∏nstep
n=1 Pn(ϕn−1 → ϕn) is the total transition probability of

2The update algorithm must satisfy detailed balance.
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the out-of-equilibrium evolution, and q0[ϕ0] ≡ Z−1
0 exp{−S

(0)
L [ϕ0]} the probability of drawing

the field configuration ϕ0 from the prior distribution.
Using eq. (2.9) and eq. (2.11), one can show that the expectation value of an observable

O with respect to the target distribution can be expressed as follows,

⟨O⟩NE =
〈
O[ϕ] exp{−W [ϕ0, . . . , ϕnstep−1]}

〉
f

⟨exp{−W [ϕ0, . . . , ϕnstep−1]}⟩f
(2.12)

where the NE denotes the fact that a Non-Equilibrium method has been used for the
computation.

In the following, our strategy will thus be to start from an ensemble of configurations
{ϕ0}, sampled from the prior distribution q0, i.e., using action eq. (2.4) with c(0) = 0, and to
perform, for each configuration, the out-of-equilibrium evolution defined above. Of course,
there is no unique way to interpolate from c = 0 to c = 1. Hence, we supplement the
above procedure with a protocol,

ϕ0 −→
c(0)→ c(1)

ϕ1 −→
c(1)→ c(2)

ϕ2 . . . ϕnstep−1 −→ ϕnstep ≡ ϕ
c(nstep−1)→ c(nstep)

, (2.13)

that is, with a choice for the value of c(n) for each step.
While it is necessary to perform a measurement of the action at each step in order to

obtain the generalized work from eq. (2.10), the measurement of the observable of interest O is
only performed at the end of the out-of-equilibrium evolution. In other words, the observable
is only measured when the system has reached PBCs, thus avoiding unphysical effects
introduced by OBCs. A sketch of our overall algorithmic procedure is displayed in figure 2.

As is also evident from eq. (2.12), the technique laid out above has conceptual similarities
with common reweighting techniques. It is natural to expect the quality of sampling of the
target distribution to depend on the overlap between the successive distributions in Zc, which
is expected to be smaller for evolutions that are farther from equilibrium. Since too far
out-of-equilibrium evolutions could lead to a small signal-to-noise ratio and/or to a possibly
large bias in the computation of ⟨O⟩NE through eq. (2.12), it is important to quantify the
distance of the chosen evolution from equilibrium.

A figure of merit designed to fit that purpose is the reverse Kullback-Leibler divergence
D̃KL, which is a measure of the similarity between two probability distributions and it is
defined to be always larger or equal to zero. In general, the simplest choice would be to
compute the overlap between the target distribution and the one that has been generated at
the end of an out-of-equilibrium evolution. The corresponding Kullback-Leibler divergence is:

D̃KL(q∥p) =
∫

dϕ q(ϕ) log
(

q(ϕ)
p(ϕ)

)
, (2.14)

where p ≡ Z−1 exp{S
(nstep)
L } is the probability of drawing a configuration from the target

distribution, while q is a (generally intractable) distribution of the form

q(ϕ) =
∫
[dϕ0 . . . dϕnstep−1]q0[ϕ0]Pf [ϕ0, . . . , ϕ]. (2.15)

For out-of-equilibrium evolutions we have no direct access to q and this prevents us
from computing the quantity in eq. (2.14). However, another, different, Kullback-Leibler
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nstep

nrelax

nstep

nrelax

nstep

nrelax

nstep

nrelax

nstep

nrelax

nstep

Open Boundary Conditions (OBCs)

Periodic Boundary Conditions (PBCs)

At equilibrium

Out-of-equilibrium

Figure 2. Sketch of the out-of-equilibrium setup. The horizontal axis represents the Monte Carlo
time, where a new configuration is generated at equilibrium every nrelax updating steps according to
the prior distribution, i.e., with OBCs. The vertical arrows instead stand for the nev out-of-equilibrium
evolutions used to gradually switch on PBCs, each of these nstep steps long. The bullets correspond to
the states of the system. Observables are computed only at the end of the out-of-equilibrium evolution,
while the work is computed all along.

divergence can be defined by comparing the forward and reverse transition probabilities
between ϕ0 and ϕ. Labeling the former by f, see eq. (2.13), and the latter by r, we have:

D̃KL(q0Pf∥pPr) =
∫
[dϕ0 . . . dϕ]q0[ϕ0]Pf [ϕ0, . . . , ϕ] log

(
q0[ϕ0]Pf [ϕ0, . . . , ϕ]
p[ϕ]Pr[ϕ, . . . , ϕ0]

)
. (2.16)

This quantity is directly related to thermodynamic quantities: if ∆F ≡ − log Z
Z0

is the
variation of the free energy along the out-of-equilibrium evolution and W the corresponding
(generalized) work from eq. (2.10), then it is easy to derive (using detailed balance) that

D̃KL(q0Pf∥pPr) = ⟨W ⟩f + log Z
Z0

= ⟨W ⟩f −∆F ≥ 0. (2.17)

For an equilibrium process, for which D̃KL = 0, we have that ⟨W ⟩f = ∆F , i.e., all of the
work spent in the out-of-equilibrium evolution is transferred into the free energy difference
between the prior and the target distributions; this is exactly the expectation for a reversible
evolution through equilibrium states, for which there is no difference between forward and
reverse. For a generic out-of-equilibrium process we have instead D̃KL > 0, that corresponds
to evolutions for which the probabilities of the forward and reverse evolutions are different.
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From a thermodynamic perspective this implies, instead, ⟨W ⟩f > ∆F , i.e., part of the work
is dissipated. It is then clear that eq. (2.17) is a restatement of the Second Principle of
Thermodynamics. Finally, it is easy to prove that:

D̃KL(q∥p) ≤ D̃KL(q0Pf∥pPr). (2.18)

Thus, the value of the divergence of eq. (2.16) also puts a constraint on how far the actual
generated distribution q is from the target distribution p.

Another figure of merit that can be used to quantify the distance from equilibrium is the
so-called Effective Sample Size (ESS). This quantity is customarily employed in the context
of (Stochastic) Normalizing Flows as it encapsulates the relationship between the variance of
an observable sampled directly from the target distribution p and the variance of the same
observable obtained using eq. (2.12). Ignoring auto-correlations, it is easy to show that

Var(O)NE
n

= Var(O)p

nESS , (2.19)

which also motivates the name Effective Sample Size. The variance of an observable O,
obtained through eq. (2.12), is equal to the variance obtained from the target distribution
p with a smaller sample of size neff = ESS × n ≤ n.

In this study, we employ the following estimator:

ˆESS ≡ ⟨e−W ⟩2
f

⟨e−2W ⟩f
= 1

⟨e−2(W−∆F )⟩f
, (2.20)

and we refer to ref. [70] for a discussion on how ˆESS is related to the true Effective Sample
Size of eq. (2.19). The estimator ˆESS can be easily related to the variance of the weights
e−W appearing in eq. (2.12). Indeed, since Var(e−W ) = ⟨e−2W ⟩f − ⟨e−W ⟩2

f ≥ 0, then

Var(e−W ) =
( 1

ˆESS
− 1

)
⟨e−W ⟩2

f =
( 1

ˆESS
− 1

)
e−2∆F ≥ 0 , (2.21)

and, as a consequence,

0 < ˆESS ≤ 1 . (2.22)

From the above we see that ˆESS = 1 implies Var(e−W ) = 0, which is only possible if the
weights e−W are all equal. In this case, it is apparent from eq. (2.12) that no reweighting is
being done at all, and we are at equilibrium. On the other hand, a value of ˆESS approaching
zero signals sizeable fluctuations in the weights e−W , corresponding to a noisy reweighting
and to out-of-equilibrium evolutions.

3 Numerical results

This section is devoted to the discussion of the numerical results concerning the efficiency
of the use of out-of-equilibrium evolutions, which will be measured in terms of the auto-
correlation time of χ.

In ref. [13], the PTBC algorithm was shown to outperform standard local algorithms both
in the presence of PBCs and OBCs. Moreover, it was shown to enjoy smaller auto-correlation
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N β L Ld nstep nrelax
21 0.7 114 [6,114] [200,2000] [50,250]
41 0.65 132 [10,30] [500,2000] [50,250]

Table 1. Setup of the numerical simulations. The model is specified by N , β and the size of the
square lattice L. Non-equilibrium evolutions are characterized by the choice of the length Ld of the
line defect, the length of the evolution nstep and the intermediate number of updating steps between
each out-of-equilibrium evolution nrelax.

times with respect to other setups, such as metadynamics simulations, see ref. [10]. Hence,
in the following, a direct comparison between the performance of the out-of-equilibrium
protocol and of parallel tempering will be performed.

Since our goal is to test the robustness of the method, we have chosen to probe a wide
array of different combinations of Ld, nstep and nrelax in independent simulations, rather than
obtaining larger samples for a smaller number of setups.

Thus, simulations for two different values of the parameter N specifying the model
were performed, and we focused, for each value of these, on a single value of β and L, see
table 1. These simulation setups were chosen to enable direct comparison with previous
results from refs. [32, 33]. However, for a few choices of Ld and nstep we will also present
results for the auto-correlation time obtained with our out-of-equilibrium setup varying the
lattice spacing and/or the volume.

3.1 Effective Sample Size and Kullback-Leibler divergence

As a first step in the investigation of the performance of our new proposal, we study how
both the Kullback-Leibler divergence D̃KL and the Effective Sample Size ˆESS depend on
nstep and on the defect length Ld.

The aim of this section is, in particular, to quantify the distance of Jarzynski evolutions
from equilibrium as the parameters nstep and Ld are varied. This is a crucial step in order
to assess the reliability of the exponential Jarzynski reweighting.

On general grounds, we expect the Kullback-Leibler divergence to approach zero, its
expected value at equilibrium, when either nstep is increased at fixed Ld or Ld is decreased
at fixed nstep. The expectation explained above is clearly confirmed in figure 3, where D̃KL
is displayed as a function of 1/Ld and nstep for fixed nrelax.

The behaviour of ˆESS reflects the same picture. The evolution towards the target
distribution is expected to approach equilibrium as nstep is increased and to recede from
it as Ld is increased at fixed nstep. Accordingly, ˆESS is expected to approach 1 in the
former case, and to recede from it in the latter. This is indeed what can be observed in
figure 4, where ˆESS is displayed as a function of 1/Ld and of nstep, in the left and right
panels, respectively, for fixed nrelax.

For sufficiently small defects, Ld < 20, the value of ˆESS is seen to become greater than
0.5 already for nstep ≃ 500. For larger defects, Ld > 20, a value of nstep of order 1000–2000
is required for ˆESS to be greater than 0.5. While ˆESS = 0.5 can be considered as a lower
safety threshold, we will see below that the Monte Carlo ensembles that were employed
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Figure 3. Behavior of the D̃KL as a function of nstep (lower panels) and of the inverse of the defect
size Ld (upper panels), for N = 21 (left panels) and N = 41 (right panels).

were large enough to allow an acceptable computation of the topological susceptibility with
even smaller values.

A careful inspection of the available data suggest that, in fact, both ˆESS and D̃KL are,
to a good approximation, only functions of the ratio nstep/Ld. That this is a sensible idea
can be immediately appreciated from figure 5, where ˆESS and D̃KL are shown to collapse
on two different single nstep/Ld dependent curves at two different values of N . A semi-
quantitative justification can instead be obtained from the definition of work in eq. (2.10).
Indeed, the calculation of W involves the sum of the variations of the action induced by the
change c(n) −→ c(n + 1). Focusing for simplicity on only the nearest-neighbors interaction
terms, we can write:

S
(n+1)
L [ϕn]− S

(n)
L [ϕn] ∝

Ld−1∑
x1=0

x0=L−1
µ=0

∆c(n)ℜ [Uµ(x)z(x + µ̂)z(x)] , (3.1)

with
∆c(n) = c(n + 1)− c(n) = 1

nstep
, (3.2)

and where we have assumed that the defect lies on the x0 = L − 1 boundary from x1 = 0
to x1 = Ld − 1. Since a difference of actions is an extensive quantity and is, in the case
at hand, localized on the defect, then the average of the quantity in eq. (3.1) is of order
Ld. Then, as a consequence of our choice of interpolating function, c(n) = n/nstep, it is
clear that eq. (3.1) is, on average, only a function of Ld × ∆c(n) = Ld/nstep. The same
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Figure 4. Behavior of the ˆESS as a function of nstep (lower panels) and of the inverse of the defect
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0 100 200 300
nstep/Ld

0.0

0.2

0.4

0.6

0.8

1.0

ˆ
E

S
S

N = 21, Ld = 6

N = 21, Ld = 12

N = 21, Ld = 18

N = 21, Ld = 24

N = 21, Ld = 60

N = 21, Ld = 114

N = 41, Ld = 10

N = 41, Ld = 15

N = 41, Ld = 20

N = 41, Ld = 25

N = 41, Ld = 30

0 100 200 300
nstep/Ld

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D̃
K

L

N = 21, Ld = 6

N = 21, Ld = 12

N = 21, Ld = 18

N = 21, Ld = 24

N = 21, Ld = 60

N = 21, Ld = 114

N = 41, Ld = 10

N = 41, Ld = 15

N = 41, Ld = 20

N = 41, Ld = 25

N = 41, Ld = 30

Figure 5. Behavior of the ˆESS (left panel) and of D̃KL (right panel) as a function of nstep/Ld at
fixed value of nrelax.

considerations can be made on the next-to-nearest-neighbors interaction term. Hence, the
work W will on average only depend on nstep/Ld and it is natural to think that the same
holds true for ˆESS and D̃KL as well.

Further insight on ˆESS and D̃KL can be obtained from figure 6 where the frequency
histograms of the out-of-equilibrium evolution are displayed as functions of W and of the
normalized3 weight w = exp{−W + ∆F} that appears in eq. (2.12).

Three different cases are represented, corresponding to evolutions that are far from
(nstep = 50), moderately far from (nstep = 500) and close (nstep = 2000) to equilibrium.
The left-hand panel of the figure shows how the peak in the distribution of the evolutions

3The weight w is normalized so that ⟨w⟩f = 1 by virtue of Jarnzyski’s equality.
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Figure 6. Distribution of the work W (left panel) and of exp{−(W −∆F )} (right panel) for Ld = 6
for various values of nstep. In the left panel the vertical bar represents the value of ∆F for these
particular evolutions.

in W approaches the value of ∆F , represented as the vertical black line, as nstep grows,
i.e. as the evolution approaches equilibrium. This corresponds, in the right-hand panel, to
the distribution of evolutions in w becoming progressively more peaked around 1, where
W = ∆F , with the variance in w approaching zero.

The right-hand panel also enables us to better understand the reliability of the statistical
reweighting procedure in eq. (2.12). When the protocol is relatively far from equilibrium
(nstep = 50), the distribution in W has a larger support and, correspondigly, the support
of the distribution in w then extends exponentially to smaller values. In this case, large
statistics would be necessary to provide an unbiased sampling of w. To the opposite, a more
peaked distribution in W is obtained as nstep is incrased, corresponding to a smaller support
in the distribution of w, and to an easier sampling. This is completely analogous to how
the reliability of the re-weighting technique in classical statistical mechanics depends on the
overlap between the supports of the source and target distributions.

In conclusion, both the ˆESS and D̃KL behave as expected on theoretical grounds and
according to the general discussion in section 2.2. This means, in practice, that we are able to
control the magnitude of systematic effects originated from the reweighting step in eq. (2.12),
and we can fully trust the expectation values obtained for the target distribution. In the next
section, we will present a practical application of the strategy laid out above. Further details
on the mutual relation between ˆESS and D̃KL can be found in appendix B.

3.2 Extracting the topological susceptibility

A necessary condition for the viability of the non-equilibrium methods must of course rely on
the comparison between its results and the results obtained with equilibrium methods. In
figure 7 the values of the topological susceptibility χ obtained using eq. (2.12) and several
combinations of Ld, nstep and N are displayed, along with the values obtained in ref. [32],
using the PTBC algorithm.

The non-equilibrium results are found to be in excellent agreement with those from the
PTBC algorithm for the whole range of values of ˆESS. Notably, no bias seems to arise even
when ˆESS ∼ 0.1 or smaller, while for nearly vanishing ˆESS, an increase in the magnitude of
the error seems to occur for Ld = 114 at N = 21. This remarkable fact can be understood in
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Figure 7. Results for the topological susceptibility in lattice units a2χ obtained with non-equilibrium
evolutions as a function of the Effective Sample Size, for N = 21 and β = 0.7 (left panel) and for
N = 41 and β = 0.65 (right panel). The results obtained with the PTBC algorithm in ref. [32] is
reported as a black horizontal line.

terms of the computational effort spent to obtain each estimate of a2χ. The computational
effort is of course proportional to nstat = nev × (nstep + nrelax), and this is roughly the
same for each point on the plot in figure 7. Hence, the data on the lower range of ˆESS, for
which nstep/Ld is small, is characterized by a correspondingly larger factor nev. This is in
agreement with the previous observation that a comparatively larger statistics is needed
to avoid bias in expectation values computed from eq. (2.12), when using evolutions that
are farther from equilibrium.

3.3 Integrated auto-correlation time of χ

A quantitative study of the non-equilibrium method crucially revolves around the computation
of the integrated auto-correlation time of the topological susceptibility. The auto-correlation
function for χ, from which the integrated auto-correlation time will be calculated, has been
computed as follows,

Γ(t) ≡ ⟨(Q2
i+t/L2 − a2χ)(Q2

i /L2 − a2χ)⟩NE (3.3)

where Q2
i denotes the cooled squared geometric lattice topological charge at the end of the

ith out-of-equilibrium evolution, i.e., when the system is subject to PBCs, and

a2χ = ⟨Q2⟩NE
L2 , (3.4)

is the topological susceptibility computed from out-of-equilibrium evolutions.
For convenience, it is useful to define normalized auto-correlation function ρ(t) ≡

Γ(t)/Γ(0), which is displayed in figure 8 for various combinations of nstep and nrelax at fixed
Ld. The integrated auto-correlation time is defined in terms of ρ(t) as follows,

τint =
1
2 +

W̃∑
t=1

ρ(t), (3.5)

where W̃ is the window computed using the Γ-method, see refs. [71, 72].
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1000 and several values of nrelax, for the N = 21 and the N = 41 ensembles.

The value of τint computed for several combinations of nrelax, Ld are reported in table 2,
and displayed as a function of 1/Ld, for nstep = 1000, in figure 9. As one could expect,
smaller values of τint are generally observed for larger values of nrelax, Ld and nstep, the latter
corresponding to evolutions closer to equilibrium.

In the following, we will focus on the data obtained for combinations of parameters Ld,
nrelax, nstep for which τint is of order 1, as such small values of τint afford a reliable estimate
of the error on a2χ. No investigation of the full dependence of τint on nstep will be attempted,
as table 2 shows that its value does not seem to change appreciably, even when nstep is
doubled. Instead, we will focus on the regime nrelax ≥ 50, nstep ≥ 500, Ld ≥ 6 for the N = 21
ensemble and Ld ≥ 10 for the N = 41 ensemble.

The values of τint are provided in table 3 for N = 21 at different values of the coupling
and of the lattice volume. Remarkably, no significant variation is observed in either τint or
ˆESS as the coupling or the lattice volumes are varied at fixed (Ld, nstep, nrelax). This is a
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Ld nstep nrelax τint
6 500 50 5.3(8)
6 500 100 3.6(5)
6 500 250 1.9(2)
6 1000 100 2.8(4)
12 1000 50 1.9(3)
12 1000 100 1.3(1)
12 1000 250 1.2(1)
24 1000 50 0.64(4)
24 1000 100 1.2(1)
24 1000 250 0.81(4)
36 1000 100 0.54(3)

Ld nstep nrelax τint
10 500 100 3.4(4)
10 500 250 2.1(2)
10 1000 100 3.9(6)
10 1000 250 2.5(3)
15 500 100 1.8(2)
15 500 250 1.1(1)
15 1000 100 2.0(2)
15 1000 250 1.2(2)
20 1000 100 1.7(3)
30 1000 100 1.1(1)

Table 2. Values of the integrated auto-correlation time extracted with the Γ-method for several
combinations of Ld, nstep and nrelax, for the N = 21 ensembles (left table) and the N = 41 ensembles
(right table). According to the results of ref. [15], where the joint dependence of the auto-correlation
time of χ on β and N was studied using the same lattice volumes, lattice discretization and over-
relaxation/heat-bath updating algorithms employed in the present investigation, for N = 21 and
β = 0.7 we expect τ

(PBCs)
int ∼ 104 − 105 standard updating steps using PBCs, while for N = 41 and

β = 0.65 an even larger auto-correlation time. For a fair comparison, the quantity τ
(PBCs)
int has to be

compared with τint × (nstep + nrelax).

β L Ld nstep nrelax τint ˆESS
0.65 114 24 1000 50 0.52(4) 0.72(1)
0.7 114 24 1000 50 0.64(4) 0.731(6)
0.7 161 24 1000 50 0.68(5) 0.73(1)
0.75 114 24 1000 50 0.56(3) 0.71(1)

Table 3. Comparison of τint and ˆESS for different values of the coupling β and the size of the
lattice L.

further confirmation of the previous observation that ˆESS seems to only depend on Ld and
nstep, and provides evidence of the robustness of the non-equilibrium method.

3.4 Efficiency of the method

In this section, we assess the efficiency of the non-equilibrium method, using the product
between the variance χ and the cost of each evolution, Var(χ)NE × (nstep + nrelax), as a
figure of merit. Note that this is the quantity to minimize in order to reach the maximum
efficiency in evaluating χ, and this is the quantity on which a comparison with the PTBC
approach will be based.

The quantity Var(χ)NE is computed directly from the sample of values of χ obtained after
reweighting according to eq. (2.12). Some insight into this figure of merit can be gained from
using eq. (2.19), and taking into account the effects of auto-correlation. It then follows that

Var(χ)NE × (nstep + nrelax) ≃ Var(χ)p
2τint
ˆESS

× (nstep + nrelax), (3.6)
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Figure 10. Behavior of the variance of the topological susceptibility, multiplied by the cost per
evolution (in units of the Monte Carlo update), as a function of nstep for several values of nrelax and
Ld, for N = 21, β = 0.7 (left panel) and N = 41, β = 0.65 (right panel). The black line is the same
quantity for the PTBC algorithm, from refs. [32, 33].
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Figure 11. Variance of the topological susceptibility, multiplied by the cost per evolution (in units of
Monte Carlo updates), as a function of (nstep + nrelax)/ ˆESS for several values of nrelax and Ld, for
N = 21, β = 0.7 (left panel) and N = 41, β = 0.65 (right panel). The black line is the same quantity
for the PTBC algorithm, from refs. [32, 33].

where Var(χ)p would be the variance of the topological susceptibility when sampled directly
from the target distribution p (i.e., with PBCs). Note that in principle, this is a quantity
which is only dependent on the latter distribution, and independent from the parameters of the
non-equilibrium algorithm. Indeed, the effect of the auto-correlations and of using eq. (2.12)
to estimate observables are accounted for, respectively, by the presence of τint and ˆESS.

This figure of merit is displayed in figure 10 as a function of nstep, for several combinations
of Ld and nrelax. The values obtained for the non-equilibrium estimations do not seem to
have any definite behaviour as nstep is increased. However, they cluster around a value that
is larger, but within 1.5× 10−3, of those obtained with the PTBC approach, see refs. [32, 33].

Further insight into the efficiency of the non-equilibrium method can be gained by
separating the effects of the reweighting step in eq. (2.12) from the rest of the non-equilibrium
procedure. This can be achieved simply by displaying the figure of merit in eq. (3.6) as a
function of (nstep + nrelax)/ ˆESS. This is done in figure 11, from which it can be inferred that
Var(χ)NE is not a function of ˆESS alone. The reason is twofold. First, the quantity we are
using, ˆESS is but an estimator of the “true” effective sample size. We refer to appendix A
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for further discussion. Second, a quantitative characterization of the behaviour of τint as a
function of nrelax, Ld and nstep is not attempted in this work. Although this would be needed
to unravel the full dependence of the figure of merit on the specific parameters used in the
non-equilibrium evolution, we believe that the above analysis is a solid step in that direction,
as it provides the region in which the optimal values of Ld, nrelax and nstep may be found.

4 Conclusions

In this work, we have presented a first exploration of an non-equilibrium Monte Carlo setup
designed to mitigate the problem known as topological freezing. We have carried out our
analysis using the 2d CPN−1 model as test bed, owing to their combination of numerical
simplicity and physical non-triviality. The new approach outlined in this manuscript has
some features in common with the PTBC algorithm originally proposed by M. Hasenbusch.
It consists in starting from a thermalized ensemble generated with OBCs, and gradually
switching to PBCs along a non-equilibrium Monte Carlo evolution. At the end of the latter,
expectation values with PBCs can be computed through a reweighting-like formula which
is tightly related to Jarzynski’s equality.

This method is able to reproduce the expected value of the topological susceptibility of
the CPN−1 models. Moreover, it is possible to gauge the reliability of the said reweighting-like
formula using two different figures of merit: the Effective Sample Size and the Kullback-Leibler
divergence, which provide consistent results. The efficiency of the method, quantified in
terms of the product of the variance of the final result with the computational effort of one
measurement is also shown to be comparable to the one found in the PTBC approach.

Put in perspective, the above study provides a broad framework for the application of
non-equilibrium methods to address the issue of critical slowing down in lattice simulations.
It can be thought as a different kind of Monte Carlo simulation, and could be implemented,
for instance, by varying the value of β rather than of some parameter controlling the type
of boundary conditions. In principle, one could start by an equilibrium sampling of the
configuration space of the system for values of the inverse coupling characterized by small
auto-correlations. Then, the coupling could be gradually increased through non-equilibrium
evolutions, to values at which the system would be strongly auto-correlated at equilibrium.
The meaning of nstep and nrelax would then be the same as above, while Ld would be replaced
by a new parameter ∆β describing the non-equilibrium changes in β. We highlight that
this approach has already been implemented in the 4d SU(3) pure-gauge theory in ref. [40],
although not with the aim of mitigating the effects of critical slowing down.

Another relevant possible future application of the present out-of-equilibrium method is
represented by systems that include fermionic degrees of freedom. This does not pose any
additional theoretical difficulties, nor does it contribute in principle with any computational
overhead. Indeed, the calculation of the action needed at each change of the parameter
controlling the boundary conditions for the gauge fields entering the fermion determinant
is performed both at the beginning and at the end of each Hybrid Monte Carlo trajectory
anyways. Alternatively, a prior distribution with periodic boundary conditions for the fermion
determinant can be used, making the fermionic contribution to the work exactly zero.
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Finally, given the recently-established connection with Jarzynski’s equality and the
theoretical framework of Stochastic Normalizing Flows (SNFs) in ref. [44], our work sets the
stage for an application of our proposal to SNFs, where a stochastic part (which is given
by the out-of-equilibrium evolutions discussed in this study) is combined with the discrete
layers (parametrized by neural networks) that compose Normalizing Flows. The training of
such layers would of course need a possibly lengthy procedure, which is however performed
only once. Such an approach has the potential to greatly improve the efficiency of the
non-equilibrium evolutions as, in principle, a considerably lower amount of Monte Carlo steps
would be needed to achieve the same efficiency when sampling the target distribution. Another
natural future outlook of the present investigation is to implement the non-equilibrium setup
in a more physical and realistic model, such as the 4d SU(3) pure-gauge theory. We plan
to investigate both ideas in the near future.
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A Evaluating ˆESS as an estimator of the Effective Sample Size

From eq. (3.6), the variance Var(χ)p obtained in a system with PBCs can be related to the
variance of the same quantity, but computed with non-equilibrium methods, as follows,

Var(χ)p = ⟨(a2χ)2⟩ − ⟨a2χ⟩2 ≃ Var(χ)NE
ˆESS

2τint
. (A.1)

Now, as already stated in the main text, this quantity should be (approximately) independent
of the method used to compute a2χ and of the magnitude of the involved auto-correlations.
In particular, this is certainly valid if the “true” ESS is used in the right-hand side. We
now wish to check that this remains true also when ESS is replaced by its estimator ˆESS.
If ˆESS was a good estimator, then we would expect the left-hand side to be independent
of any change in the parameters of the non-equilibrium evolutions. In figure 12, Var(χ)p

is displayed as a function of ˆESS for N = 21 at β = 0.7, and N = 41 at β = 0.65. The
range of ˆESS explored is evidence of the fact that the parameters that are being tuned do
impact on the non-equilibrium evolutions. Yet, for each value of N separately, the values
of Var(χ) seem to cluster around a constant, with no discernible dependence on ˆESS. We
thus conclude that ˆESS must be a good estimator of the true effective sample size, at least
in the range of parameters that was explored.
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Figure 12. Variance of the topological susceptibility sampled on PBCs, as a function of ˆESS for
several values of nstep, nrelax and Ld, both for the N = 21 and N = 41 ensembles.

B Relation between the Effective Sample Size and the Kullback-Leibler
divergence

In this study we considered two different figures of merit to quantify the distance from
equilibrium of our out-of-equilibrium evolutions: the Kullback-Leibler divergence D̃KL of
eq. (2.17) and the estimator of the Effective Sample Size ˆESS of eq. (2.20). Given that the
latter depends on the features of the probability distribution of the weights e−W appearing in
eq. (2.12), and the former on the probability distribution of the work W itself, it is clear that
these two quantities are tightly related, although not in a straightforward way. Indeed, our
data seems to point out that D̃KL and ˆESS are in a one-to-one correspondence, with little to
no dependence on the details of the simulation (i.e., on Ld and nstep). In the left-hand panel
of figure 13, D̃KL is displayed as a function of ˆESS. To an impressive degree of precision, the
data points seem to gather around the graph of an invertible function that relates ˆESS to
D̃KL. This signals that these two quantities are in a one-to-one correspondence.

Another aspect of the same tight relationship can be appreciated by first highlighting
a result from ref. [25],

D̃KL ≃ 1
2Var(W ), (B.1)

which was derived in the case of Normalizing Flows. The above is strikingly demonstrated in
left-hand panel of figure 6, where D̃KL is displayed as a function of Var(W ). The data seem
to organize along a line with slope 1/2, with remarkable precision, as expected from eq. (B.1).

Since the estimator of the Effective Sample Size is directly related to the variance of the
exponential average, see eq. (2.21), it is natural to think that it can be linked to the variance of
the work itself. In order to better understand this relationship, let us introduce the fluctuation
of the work δW ≡ W − ⟨W ⟩f , where, by definition, ⟨δW ⟩f = 0. It is straightforward to
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Figure 13. Behavior of D̃KL as a function of ˆESS (left panel) and as a function of the variance
of the work Var(W ) (right panel) for several values of the defect size Ld, both for the N = 21 and
N = 41 ensembles.

rewrite the ˆESS as follows,

⟨e−2W ⟩f = e−2⟨W ⟩f ⟨e−2δW ⟩f , =⇒ 1
ˆESS

= e−2D̃KL ⟨e−2δW ⟩f . (B.2)

If our protocol is sufficiently close to equilibrium, we know from eq. (B.1) that the work W

does not fluctuate much among different non-equilibrium evolutions. Hence, if we assume
that Var(W ) ≡ ⟨δW 2⟩f ≪ 1, then the typical value of δW along these evolutions is small.
Thus, it is reasonable to perform the following expansion,

⟨e−2W ⟩f ≃ e−2⟨W ⟩f (1 + 2Var(W )), Var(W ) ≪ 1 . (B.3)

From eq. (B.1) we now obtain a simple relation between ˆESS and the variance of the work
in the close-to-equilibrium limit,

1
ˆESS

≃ 1 + Var(W ), Var(W ) ≪ 1 . (B.4)

The validity of this approximate relation is confirmed by our data, see figure 14, and is
further evidence, at least in the regime of close-to-equilibrium evolutions, the estimator ESS
is simply a function of Var(W ).
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Figure 14. Behavior of the estimator ˆESS as a function of the variance of the work Var(W ). The
dashed line in the left panel represents our prediction from eq. (B.4) in the close-to-equilibrium regime.
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