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A B S T R A C T

Conventionally, split nitrogen (N) applications at tillering and stem elongation enhance winter wheat yield, 
protein content, and nitrogen use efficiency. Vegetation indices, such as the Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Red Edge index (NDRE), and leaf chlorophyll content (LCC) can be used as 
crop N status indicators (CNSIs) to easily underline the N deficiency. The aim of this study, conducted across 4 
growing seasons in North-West Italy, was to create a model for regulating wheat fertilization rates and improve 
crop yield. The model relies on CNSIs measurements collected during the initial stages of stem elongation, aiming 
to achieve predetermined yield targets. In each year, the experimental design was a factorial combination of four 
N rates (0, 33, 66, and 99 kg N ha− 1) at tillering and five at stem elongations (0, 33, 66, 99 and 132 kg N ha− 1). 
The Aubusson cultivar, characterized by intermediate yield potential and protein content, was used to calibrate 
and validate the model in a 3-year trial (2018–2020), while the model was also applied to cv LG Ayrton (high 
yield potential) and Izalco (high protein content) in the 2020–21 season. Yield and protein content trends in 
function of N rate were parabolic or sigmoidal respectively and both tillering and stem elongation rate 
contributed to increase the grain yield and protein content. Furthermore, the significant interaction between 
tillering and stem elongation fertilization on grain yield suggested the possibility of correcting the N deficiency 
after tillering fertilization with a further application. A calibration function for a variable rate application was 
established related to the CNSIs; all of them were good predictors but NDRE showed a higher overall correlation 
(R2 

= 0.479) with grain yield than NDVI (R2
= 0.461) or the LCC values (R2

= 0.236) considering all the 3 years of 
experiments. The model’s intercept was reduced according to the decrease in the grain yield goal. The model’s 
validation was accomplished by comparing the outcomes predicted by the model yields with the measured. The 
yield’s Root Mean Square Error (RMSE) values were low for cv. Aubusson (0.85, on average) in all 3 years, while 
the RMSE was higher in 2021 for LG Ayrton (1.90) and Izalco (1.35), in a production situation with a higher yield 
potential. The results suggest that the topdressing N fertilization rate could be accurately determined from 
measured CNSI values for a site-specific N fertilization management, but they also highlight the requirement of a 
model adaptation for different genotypes and environments.

1. Introduction

Wheat is the first world crop per cultivated surface worldwide (219 
million hectares, Faostat 2020) and the growing area has been constant 
since 2000. However, the grain yield is constantly growing (+21 %), due 

to introducing of new cultivars with a higher input-use efficiency (Tabak 
et al., 2020).

In addition to the genotype potential, nitrogen (N) fertilization plays 
a crucial role. The lack of this macronutrient is the most limiting factor 
for canopy development and for maintaining the stay green, and thus for 
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the overall photosynthesis potential (Malhi et al., 2001).
N fertilizers are the most applied agricultural fertilizers throughout 

the world, with an agricultural use of 113 million tonnes in 2020 
(FAOSTAT). The distribution of N based fertilizers increased during the 
20th century to support the growing wheat yield resulting from the 
introduction of new genotypes by breeders during the Green Revolution 
(Hirel et al., 2007). Each cultivar requires a certain amount of N in 
different production situations to maximize the yield and to be 
economically sustainable, which involves maximizing the Nitrogen Use 
Efficiency (NUE) (Hawkesford and Riche, 2020). Moreover, the avail-
ability of N in the field is not constant, and N losses through volatili-
zation, denitrification, runoff and leaching usually occur, due to the high 
mobility of N and the application of a single uniform N rate 
(Montemurro, 2009). An additional unrequired fertilizer application 
does not increase grain yield (Fowler, 2003), and NUE can decrease to a 
great extent with severe environmental losses (Hawkesford, 2014).

In order to enhance NUE and reduce losses, N should be applied 
according to the increasing need of wheat in the different growth stages 
(GS). A split N distribution with readily available forms, such as nitrate 
or ammonium fertilizers, allows to maximize the grain yield. Compared 
to a single application of the same fertilizers, this solution enhances the 
nutrient efficiency and reduces the risk of environmental pollution of 
this nutrient, which is mainly related to high spring rainfall (Fang et al., 
2006). In temperate winter wheat production areas, N is generally split 
between tillering (GS 22–24, according to Zadoks et al., (1974)) and 
stem elongation (GS 31–34).

As far as the yield component is concerned, the tillering fertilization 
is aimed at increasing fertile tillers and the number of ears per surface 
unit. The aim of stem elongation fertilization is to increase the number of 
fertile spikelets per head and the kernel dimension (Schulz et al., 2015). 
A third late fertilization could be performed, from booting to flowering, 
to improve the grain protein content (GPC). This technique is typical for 
high protein cultivars (cv), for which the supply chain rewards the 
achievement of a certain quality threshold, but generally does not result 
in a further grain yield gain in Mediterranean growing areas (Landolfi 
et al., 2021). Compared to the use of slow release or controlled fertil-
izers, a split application allows the total N rate supplied to the crop to be 
conveniently modulated according to the rainfall and the potential 
leaching recorded in the spring, before the stem elongation stage (Grant 
et al., 2012). N fertilization at the stem elongation stage of wheat typi-
cally involves higher quantities than at tillering, due to the increasing N 
requirements in this growing stage. According to Sieling and Kage 
(2021), fertilizing at stem elongation enhances NUE and is crucial for 
achieving optimal wheat yield performance. Thus, a careful spatial 
management applied at this GS could optimize the yield and quality 
(GPC) and reduce N pollution. After the tillering N application, a N 
deficiency can be detected in function of soil coverage (number of leaves 
and stem produced) and leaf colour (yellowing) (Prystupa et al., 2003). 
Properly sensors can be used to investigate and identify deficient areas 
within a field, quantify and correct the N deficiency to obtain the spe-
cific yield target, intended as the production level that a specific field 
and variety can reach in a certain year.

Precision agriculture (PA) involves the use of several techniques to 
attain a better agronomic input management (Diacono et al., 2013). A 
Variable Rate Application (VRA) of N is a site-specific management 
procedure that is adopted to reduce over- and under- fertilization and 
improve a farmer’s income by allocating N in the best place at the best 
time (Diacono et al., 2013). Thus, N distribution can be performed in 
function of the field variability and whenever the yield of crops needs to 
be maximized, NUE to be improved, and pollution to be reduced. In 
addition to the use of indices based on the previous year’s yield or some 
physical and chemical soil parameters, the different N managements 
areas can be highlighted by directly monitoring the N status in the crop 
during the growing season. Different light tissue transmitted in-
struments, such as Yara N-Tester™ (Yara International ASA, Oslo, 
Norway) or SPAD 502 (Konica Minolta, Chiyoda, Japan), evaluate the 

leaf chlorophyll content (LLC), providing an estimation of N content in 
the leaf (Samborski et al., 2009). Particularly, N Tester is a hand-held 
instrument which quantify the chlorophyll content as a dimensionless 
index, which values are comprised between 0 (lowest LCC) to 1000 
(highest LCC) by exploiting the leaf red and near infrared light trans-
mittance (Aranguren et al., 2019). However, these measurements well 
assess the leaf N content but are particularly time-consuming and may 
not be representative of the variability of the whole field, because only a 
few plants can be sampled, thus accuracy may be reduced (Fitzgerald 
et al., 2010). Anyway, previous study shows the reliability of these 
measurements to detect crop N status and guide N fertilization 
(Ortuzar-Iragorri., 2018). Crop reflectance measurements (remote and 
proximal sensing) are enhanced tools, based on Vegetation Indices (VIs) 
obtained from canopy reflectance. They are useful to frequently evaluate 
the crop status throughout the growing season (Atzberger et al., 2013), 
in particular as far as N nutrition and variability within the space and 
time are concerned (Zhao et al., 2018). Since these measurements are 
non-destructive, rapid and real-time strongly correlated with plant 
health, the use of crop reflectance and related Vis are effective decision 
support tools. In addition, it is efficient and useful for spatial and tem-
poral variability assessments (Mulla, 2013). NDVI (Normalized Differ-
ence Vegetation Index) and NDRE (Normalized Difference Red-Edge 
Index) are two of the most widespread VIs used in agriculture. Both 
indices are calculated as the normalized ratio of the difference between 
specific wavebands length reflectance. NDVI (Tucker et al., 1985) 
concern the normalized difference of the near infrared (NIR) and RED 
wavebands reflectance, while NDRE (Barnes et al., 2000) concern NIR 
and Red-Edge wavebands. The former is closely related to the biomass 
and to soil coverage (Raun et al., 2001), but a saturation effect usually 
takes place when a high biomass or chlorophyll content is encountered 
(Jiang et al., 2020). NDVI ranges between − 1 to 1 negative values are 
referred to urbanized area and water, values between 0 and 0.3 referred 
to bare soil, while starting from 0.3 values are related to crop presence 
with the highest values indicative of green and dense vegetation (Kaliraj 
et al., 2024). Conversely, NDRE is more sensitive to the N tissue content, 
and it can better distinguish the canopy colour, with less influence of the 
aboveground biomass (Cao et al., 2018). As previous, NDRE fluctuate 
between − 1 and 1, with the same meaning of NDVI, but is more valuable 
during the latest stages of crop growth because it is less prone to satu-
ration compared to the NDVI (Morlin Carneiro et al., 2020). These crop 
N status indicators (CNSIs) can be detected by both proximal and remote 
sensors (Mezera et al., 2021). The first ones are usually active in-
struments (measurements are independent of light condition), carried 
by tractor sensors such as Greenseaker® (Trimble Navigation Limited, 
Sunnyvale, USA) or handheld as Crop Circle or Rapidscan (Holland 
Scientific, Lincoln, USA) (Colaço and Bramley, 2018). The second ones 
are mainly represented by passive multispectral cameras, through aerial 
vehicles or by Earth Observation through satellites. Active sensors have 
been specifically developed and widely used for precision agriculture 
applications, with the primary objective of optimizing crop management 
practices such as fertilization (Gebbers and Adamchuk, 2010).

Studies that have focused on the management of a variable rate of N 
application, in function of field variability, to maximize crop N uptake 
and reduce N leaching, have been proposed in the last 10 years (Basso 
et al., 2011). In the majority of cases, the proposed models exploit an 
over-fertilized strip for both calibration purposes (Holland and Schep-
ers, 2010) and to apply the system to a real field condition (Franzen 
et al., 2016). To widely disseminate these solutions, there is interest in 
providing farmers with an easier to apply seasonal prediction N rate 
model (Hoefsloot et al., 2012) which detects the N deficiency in function 
of vegetation indices. Moreover, wheat varieties and pedo-climatic 
conditions can affect the prediction models, depending on the N con-
tent in the plant or VIs, thus resulting in their lower applicability 
(Vannoppen et al., 2020). In a previous work, carried out on rice 
(Cordero et al., 2018), a model was calibrated to suggest in-season N 
fertilization at a key growing stage (panicle initiation), in function of 
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CNSIs, in order to optimize the grain yield according to the target pro-
duction goal. In the present study the same approach was applied on 
wheat.

The aim of this research has been to develop a site-specific crop N 
management practice for common wheat, which could be applied to 
different production situations to optimize the crop response to this 
agronomic practice, and to reduce the effect of spatial and temporal 
variability. In this study, only the CNSIs collected on crops were applied, 
without any reference value (over-fertilized plot) or weather data, to 
optimize N fertilization. A model that can predict the N rate at stem 
elongation in order to maximize the grain yield was calibrated over 3- 
year field experiments, considering different CNSIs, obtained from the 
optical measurement of light transmission through the leaf or canopy 
reflectance, and was validated by considering an additional growing 
season and different cvs.

2. Materials and methods

The study was conducted in Moncrivello (45◦18’39.4"N 8◦03’21.9"E, 
elevation 237 m) in the Po Plain in North-West Italy, over four growing 
seasons (2017–18, 2018–19, 2019–20 and 2020–21).

Each year, the experiment involved a completely randomized plots 
design with the factorial combination of four N rates (0, 33, 66, and 
99 kg N ha− 1) applied at tillering (GS 23, named N23) with five N rates 
(0, 33, 66, 99, and 132 kg N ha− 1) applied at stem elongation (GS 31, 
named N31) for a total of 20 combinations.

Plots dimensions were 6.5 ×1.5 m and 5 the replications (blocks) 
were carried out. Three out of five blocks (randomly chosen) in the 
2017–18, 2018–19, and 2019–20 growing seasons were exclusively used 
to calibrate the N management model. The remaining 2 blocks and the 
whole 2020–2021 experiment, with another 2 genotypes, were used to 
check the performances of the model (validation).

The normal agronomic techniques adopted in the growing area were 
applied. Ammonium nitrate (33.5 % N) was used as the fertilizer. The 
wheat genotype used for calibration (the 2017–18, 2018–19, and 
2019–20 growing seasons) was Aubusson (Limagrain Italia S.p.A., Bus-
seto, PR, Italy), an ordinary bread-making cv that is widely cultivated in 
the growing area. In 2020–21, in order to extend the model to a wider 
situation, validation of the model was carried out considering different 
cvs with different phenotypic traits from Aubusson, such as plant height, 
leaf colour and habitus. For this reason, LG Ayrton (Limagrain Italia S.p. 
A.), a recently released, ordinary bread-making variety with a high grain 
yield potential, and Izalco (Lidea, Massa Finalese, MO, Italy), a high 
protein cv, were considered in the experiment.

The experiment was carried out in different adjacent fields, accord-
ing to the crop rotation normally applied in the growing area. The 
previous crop in all the growing seasons was maize, and the fields were 
ploughed each year, incorporating the residues into the soil. Potassium 
chloride (60 %) was applied at a rate of 78 kg ha− 1 of potassium before 
sowing. No phosphate fertilizer was applied in any of the growing sea-
sons. Planting was conducted in 12 cm wide rows at a seeding rate of 450 
seeds m− 2 in the end of October or beginning of November.

A chemical weed control was carried out with Pinoxaden 3.03 % +
Clodinafop-propargyl 3.03 % + Florasulam 0.76 % + Cloquintocet- 
mexyl 0.76 % (Traxos One®, Syngenta Italia S.p.A., Milano, Italy) at 
the end of tillering. In order to control foliar and head diseases, the plots 
were treated with a mixture of a strobilurin and a carboxamide fungicide 
(Priaxor®, BASF Agricultural Solutions, Lugo (RA) Italy, pyraclostrobin 
150 g ha− 1 and fluxapyroxad 75 g ha− 1) at stem elongation (GS 33), and 
with a mixture of a triazole fungicide (prothioconazole and tebucona-
zole by Prosaro®, Bayer Cropscience, Milano, Italy), applied at 
0.100 kg ha− 1 of each Active Ingredient (AI) at flowering (GS 62).

The sowing, fertilization, and harvest dates are reported in Table S1, 
together with the dates of the main growth stages. The soils were 
sampled at a depth of 0.30 m each growing season at the tillering stage 
(GS 23), after the winter season and just before the first N fertilization, 

using Eijkelkamp cylindrical augers. The main physical and chemical 
parameters of the experiment sites are reported in Table S2. The soil 
texture in 2018 and 2020 was loam, while it was silty loam in 2019 and 
2021. Overall, the soils in the considered area present a generally low N 
content (<1 %), due to high N leaching in function of the soil texture and 
the medium-high winter rainfall. During the four-year experiment, N 
availability was medium-low in 2019 and 2021, because the applied N 
had been probably poorly washed away as a consequence of the limited 
rainfall during the winter and spring months. Conversely, medium-high 
rainfalls might have caused a higher N leaching in 2018 and 2020, 
thereby reducing the N soil content.

2.1. Field measurements

Three different CNSIs were recorded at the beginning of stem elon-
gation (GS 31) and at milky ripening (GS 75): NDVI and NDRE, using the 
active hand-held sensors, GreenSeakerTM® and RapidSCAN® CS-45, 
respectively, and the LCC of the top leaf using an hand-held N- 
Tester™ reader. Greenseaker and Rapidscan instruments collect the 
reflectance of a self-emitted light source in certain wavelength to 
calculate the CNSI as follows: 

NDVI =
NIR − RED
NIR + RED

=
770 nm − 660 nm
770 nm + 660 nm 

NDRE =
NIR − REDEDGE
NIR + REDEDGE

=
780 nm − 730 nm
780 nm + 730 nm 

The light emitted by the sensors modulated polychromatic lamp 
differs from the environmental light for frequency and amplitude. In this 
way these sensors collect only their own reflectance with optical filtra-
tion, and they do not require calibration (Jiang et al., 2020).

The NDVI and NDRE measurements were performed holding the 
instruments 0.5 m above the canopy to collect indices from an approx-
imately 0.3 wide biomass walking for the entire length of the plot. These 
sensors scan the crop about 4 time per second and then average all the 
value for finally store them in their own memory. Commonly, around 20 
measurements are automatically taken by the instruments for each plot 
to have the final value, processed by their own internal software.

The LCC was measured on 30 top unfolded leaves per plot using the 
N-Tester. This measures the light transmitted by a plant leaf at two 
different wavelengths to give back an index (Arregui et al., 2006): 

LCC =
RED (leaf)

INFRARED (leaf)
−

RED (environmental)
INFRARED (environmental)

=
650 nm (leaf)
960 nm (leaf)

−
650 nm (environmental)
960 nm (environmental)

The environmental light is collected by the instruments clipping 
without leaf on the sensor at the beginning of the surveys and is useful 
for the calibration. After clipping 30 leaf the instrument automatically 
avoids the outliers, average the values and shows the LCC index.

2.2. Grain yield and quality

The plots were harvested using a Walter Wintersteiger cereal plot 
combine harvester. Grain moisture was analyzed using a Dickey-John 
GAC2100 grain analyzer (Dickey-John Corp., Auburn, IL, USA), ac-
cording to the supplied program and after a validation with reference 
materials. The grain yield results were adjusted to a 13 % moisture 
content. The harvested grains were mixed thoroughly, and representa-
tive sub-samples (500 g) were ground to whole-meal using a laboratory 
centrifugal mill equipped with a 1 mm sieve (Model ZM-200, Retsch, 
Haan, Germany). The GPC (N * 5.7, dry weight, AACC method 39-10.01) 
was determined by means of an NIR System Model 6500 (FOSS-NIR-
Systems, Laurel, MD, US).
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2.3. Data analysis

The normal distribution and homogeneity of variances were verified 
by performing the Kolmogorov–Smirnov normality test and the Levene 
test, respectively. A three-way (N23, N31, Year) analysis of variance 
(ANOVA) was performed to compare the grain yield, GPC, and CNSIs 
recorded at different GS, using a completely randomized block design, in 
which the N23 and N31 applications, the year, and the interaction be-
tween these factors were the independent variables. Multiple compari-
son tests were performed, according to the Ryan–Einot–Gabriel–Welsh F 
(REGW-F) method, on the treatment means (p-value<0.05). Moreover, 
the impact of each factor and their interaction on the total variability of 
different variables were calculated as the ratio of the variance of each 
factor, or their interaction, on the total variance of ANOVA. Simple 
correlation coefficients were obtained for the N rates, CNSI, grain yield, 
and protein content relative to each other, by splitting the 2017–18, 
2018–19, and 2019–20 growing season data sets, to investigate the 
capability of different VIs to determine the grain yield and GPC. SPSS for 
Windows, Version 28.0, (SPSS Inc., Chicago, USA), was used for these 
statistical analyses.

The N model was calibrated starting from the parameters and results 
obtained from 3 randomly chosen blocks of field experiments pertaining 
to the 2017–18, 2018–19 and 2019–20 growing seasons on the 
Aubusson cv. The 2 remaining blocks and the whole 2020–21 experi-
ment were used to validate the model. The N prediction model was set 
up using R software, version, Version 4.2.1 (R development Core Team, 
2016), and according to the procedure described in detail in Cordero 
et al. (2018), with a few modifications, related to the different appli-
cation timings of N, which do not consider a pre-sowing fertilization on 
wheat in comparison to rice, according to the conventional practices of 
the growing area.

A General Linear Model (GLM) was used to explain the grain yield as 
a function of N23, N31 and the interaction between factors and the slope 
of the covariates. 

Yield = γ1 • N23 + γ2 • N23
2 + γ3 • N31 + γ4

• N31
2 + γ5 • N23 • N31 (1) 

where γ stands for the slopes of the covariates, N23 and N31 are the N 
supplied at tillering and stem elongation, respectively, and N23*N31 
represents their interaction.

In order to predict N31 to maximize the grain yield as a function of 
N23, a partial derivative was applied, in function of N31, and set equal to 
0. Thus, the resulting model formula was: 

N31 =
(− γ3 − γ5 • N23)

2 γ4
(2) 

where N31 is the N supplied at stem elongation, γ stands for the slopes of 
the covariates, and N23 is the N applied at tillering. Eq. 2 shows N31 as a 
function of N23, but it becomes meaningless if the interaction between 
the factors is not significant.

Eq. 1 can be rewritten by replacing N23 with the CNSI values, because 
they are able to accurately describe the effects of tillering fertilization: 

Yield = γ1 • N31 + γ2 • N31
2 + γ3 • CNSI+ γ4

• CNSI2 + γ5 • N31 • CNSI (3) 

Applying a first-order partial derivative to the previous Eq. [3] with 
respect to N31, and setting it equal to 0 allows the N rate [5] that needs to 
be applied to maximize the grain yield for each recorded CNSI [4]: 

Yield = γ1 + 2γ2 • N31 + γ5 • CNSI (4) 

N31 =
(− γ1 − γ5 • CNSI)

2 γ2
(5) 

Reduction factors of 1 %, 5 %, 10 % and 15 % (99 %, 95 %, 90 % 

and 85 % of the maximum yield, respectively) were applied to 
maximum grain yield in order to evaluate how the N demand decreases 
if the yield goal is lower than the highest goal due to the annual mete-
orological trends, field fertility and other agronomic conditions. 
Therefore, the model was again calibrated for each reduced grain yield.

Subsequently, a validation was performed. The function model, 
developed on 3 blocks of Aubusson cv, was applied to the remaining 2 
blocks in the 2017–18, 2018–19 and 2019–20 growing seasons. The 
grain yield estimation, starting from the CNSI at GS 31, and N31 that was 
applied in each plot, was compared with the real measured yield in each 
plot for each year. A correlation analysis was performed, and the Mean 
Absolute Error (MAE) and the Root Mean Square Error (RMSE) were 
calculated. Finally, the same analysis was carried out with data collected 
from experiments carried out with cv LG Ayrton and cv Izalco in the 
2020–21 growing season.

3. Results

3.1. Weather conditions

The four growing seasons showed different meteorological trends, as 
far as both rainfall and temperature (expressed as growing degree days, 
GDDs) are concerned (Table 1). Overall, the 2019–20 growing season 
had a higher total rainfall (830 mm) than 2017–18 (622 mm), 2018–19 
(535 mm) and 2020–21 (428 mm). High rainfall occurred in 2019–20 
above all in November and December, leading to a probably higher N 
leaching at the end of winter, which decreased the N content in the soil 
at the beginning of spring. Rainfall was particularly limited during the 
winter period in the 2020–21 growing season, but also from tillering 
(March) to the end of the stem elongation stages (April). Instead, rainfall 
was well distributed over time from tillering (March) to the end of 
ripening stage (June) in 2018, 2019 and 2020, with similar rain amounts 
for the three years. Overall, the temperatures were similar in all the 
considered growing seasons. However, it is worth noting that April 2021 
was cooler than usual: additionally, rainfall was particularly low, and 
this led to a reduced disease attack.

3.2. Response of wheat yield and protein content to different N rates

The wheat yields followed a parabolic trend for each considered year 
as a function of the total N supply (N23 + N31) (Fig. 1). As expected, the 
maximum yield was influenced by the different weather conditions, 
which in turn affected the N uptake. Starting from the N rate-yield curve 
equations, the highest wheat yield was obtained for 282, 234 and 
232 kg N ha− 1 for 2018, 2019 and 2020, respectively: additional N rates 
did not lead to any further yield increase. However, from 198 kg N ha− 1 

onwards, the increases were very low, and the grain yields at that rate 
were 8.5, 6.8, and 9.0 Mg ha− 1 for 2018, 2019, and 2020, respectively. 
Conversely, GPC, in function of the N rates, showed a sigmoidal trend. 
The minimum was not detected in combination with the absence of N 
fertilization, but it was recorded for the distribution of 33 or 66 kg N 
ha− 1 at GS 23 (Fig. 1). On the other hand, a maximum concentration was 
not detectable and there were clear higher marginal increases compared 
to the yield for a high N supply.

The N fertilization at both GS 23 and GS 31 had significant effects on 
the grain yield and GPC (Table 2). Yield was mainly affected by the N31 
rate (36 % of the total variance), although a high contribution (25 %) 
came from the N23 application. On the other hand, GPC was mainly 
related to the N31 application (64 % of explained variance). Each in-
crease in the N rate at GS 31, from 0 to 132 kg N ha− 1, resulted in a 
significant and linear increase in GPC, while the supply of 33 kg N ha− 1 

at GS 23 resulted in a significant reduction of the protein concentration 
at harvest, compared to 0 kg N ha− 1. Higher fertilization rates at GS 23 
further increased the GPC, although fertilization at this GS only affected 
8 % explained variance of the GPC.

The differences between years were significant for both yield and 
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GPC. The lowest production and highest protein were measured in 2019, 
while 2020, which was characterized by higher rainfall - probably 
connected with high N leaching - resulted in the lowest GPC. The year 
factor influenced the total variability of the yield and the GPC param-
eters by 17 %. Similarly, the interaction between N23 X N31 was statis-
tically significant (P<0.001) for both considered parameters, while it 
only explained 2 % of the total variance. The N23 x Year and N31 x Year 
interactions were statistically significant for both the yield and GPC, 
while N23 x N31 X Year was only significant for GPC, although its 
contribution to the overall variance was always < 3 %.

3.3. CNSIs fluctuations in function of different N rates

The CNSIs measured at GS 31 were influenced to a great extent by the 
previous N fertilization, due to the effect determined by both the plant 
biomass and the canopy colour (Table 3). The values of all the detected 
CNSIs (NDVI, NDRE and LCC) rise progressively and significantly for 
each increasing N rate. The Year factor statistically affected the CNSI 
values. The highest average NDVI and NDRE values were recorded in 
2018, while the highest LCC value was reported for 2019. Conversely, 
overall, the lowest values of all the CNSIs were detected in 2020. N23 

Table 1 
Monthly rainfall and growing degree days (GDD) from the sowing (November) to the end of the ripening stage (June) for the four growing seasons.

Growing season 2017–18 2018–19 2019–20 2020–21

Month Rainfall GDD1 Rainfall GDD Rainfall GDD Rainfall GDD

(mm) (Σ ◦Cd− 1) (mm) (Σ ◦C d− 1) (mm) (Σ ◦C d− 1) (mm) (Σ ◦C d− 1)

November 48 224 124 292 314 249 4 277
December 33 113 11 151 132 193 79 144
January 107 178 6 141 5 168 116 128
February 60 113 43 195 1 229 29 203
March 109 223 17 314 62 285 8 286
April 93 456 116 393 81 414 37 353
May 138 583 178 478 122 579 69 501
June 35 665 40 667 113 624 86 674
Nov–Jun 622 2554 535 2632 830 2741 428 2567
Nov–Feb 248 627 183 779 452 839 229 752
Mar-Jun 374 1927 352 1853 378 1902 200 1815

1 Accumulated growing degree days for each experiment using a 0◦C base value.
Source: Rete Agrometeorologica del Piemonte - Regione Piemonte - Assessorato Agricoltura - Settore Fitosanitario. Sezione di Agrometeorologia. Weather station 
located in Borgo d’Ale, 3 km far from the experimental site.

Fig. 1. Grain yield and grain protein content (GPC) response curve as a function of the total nitrogen (N) rates for each growing season. N23: rate of kg N ha− 1 at the 
tillering stage. The difference for each total N rates is the amount of N rates at the beginning of the stem elongation stage (GS 31).
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fertilization explained 56 % of the variance of the LCC value collected at 
GS 31, while the variability of NDRE was also affected to a great extent 
by the Year (45 %). The NDVI values recorded at GS 31 were influenced 
to the same extent by the previous fertilization (N23), the Year, and their 
interaction.

The CNSI measurements at milky ripening (GS 75) were affected to a 
great extent by the N23 and N31 rates, the Year, and their interaction. The 
N rates at GS 23 were all significantly different from each other for 
NDVI, while NDRE and above all LCC showed no difference for the low N 
rate. The N rates applied at GS 31 affected the VIs to a similar extent, 
although statistical differences were not detected moving from 99 to 
132 kg N ha− 1 for any of the CNSIs. In accordance with the data 
collected at GS 31, the NDVI values were higher in 2018 than in 2019 or 
2020. At GS 75, the Year effect was different for the compared VIs: the 
highest NDRE and LCC values were detected in 2019, in the growing 
season with the lowest amount of rainfall, while all the VI values were 
lower in 2020. Overall, the highest variance components of NDVI and 
NDRE measured at GS 75 were related to the year factor (47 % and 
57 %, respectively), followed by N31 and N23. The variability of the 
chlorophyll foliar content, measured by means of the LCC at GS 75, was 
mainly explained by the N31 rate (46 %), followed by year (32 %), while 
N23 accounted for only 3 % of the total variation. The interaction be-
tween N23 X N31, N23 X Year and N31 X Year was always significant, 
although they always contributed by less than 12 % to the total 
variance.

3.4. Capability of CNSIs to identify N status and predict Yield and Protein

Correlation matrices were drawn up for each year to determine the 
relationship between CNSI, grain yield, and GPC in function of the N rate 
(Table 4). As previously underlined, each CNSI was closely related to the 
N23 rate at GS 31, in particular for NDRE and LCC in 2018 and 2020, 
while the correlation at GS 75 was significant for all the growing sea-
sons, albeit only for NDVI and NDRE. The VI measurements at GS 75 

were closely correlated with N31, but the correlation coefficient 
increased when the relationship with N23 + N31 was considered. The 
total N rate, the sum of N supplied at GS 23 and GS 31, was closely 
correlated with the grain yield, while GPC was described better by N31 
alone.

The correlation between CNSI, yield, and GPC was investigated in 
the same matrices (Table 4). The NDVI and NDRE collected at GS 31 
closely matched the same indices measured at ripening, while the LCC 
values at GS 31 were not correlated with the measurement of this CNSI 
at GS 75 to any great extent.

The correlation of all the CNSIs with the grain yield was always 
significant, although the correlation coefficients were always higher at 
GS 75 than at GS 31. The relationship between CNSI at GS 31 and GPC 
was only significant for NDRE and the LCC in the 2018 experiment. High 
correlation coefficients were detected for all the years and for all the VIs 
measured at GS 75, with the highest values being observed for the 
chlorophyll content measured by means of the LCC.

3.5. Calibration model used to predict N31 to reach a certain yield goal

Fig. 2 reports the calibration results considered to achieve different 
grain yield goals on the basis of NDVI, NDRE, and LCC. The lines, top to 
bottom, refer to 1 %, 5 %, 10 %, and 15 % of the maximum yield 
reduction. All the calibration curves are parallel to each other within the 
CNSI, while the slope changes slightly between NDVI and NDRE (Eqs. 6 
and 7). The different slope value of the LCC function (Eq. 8) is only due 
to the different scale of this index. 

99%yield : N31 = − 181.313 • NDVI31 + 255.462 (6) 

99%yield : N31 = − 180.997 • NDRE31 + 201.394 (7) 

99%yield : N31 = − 0.3196 • LCC31 + 312.841 (8) 

A larger N rate is required for each CNSI to increase the yield from 
95 % to 99 % than from 85 % to 90 %. A rate of 150, 157 and 146 kg N 
ha− 1 are required to obtain the 99 % of maximum yield for NDVI, NDRE, 
and LCC values of 0.580, 0.240 and 520, respectively, which represents 
the average values of the CNSIs over the three years. Only about 65 kg N 
ha− 1 are enough to obtain 85 % of the maximum yield. The model shows 
that when the wheat vigor and/or nutritional status (and the related 
CNSI values) are increased, the amount of N that needs to be provided at 
GS 31, in function of the yield goal, is reduced. Therefore, a lower yield 
target decreases the required N. However, no CNSI values detected at GS 
31 allow N31 fertilization to be avoided to maximize the yield, thus it can 
be seen that the crop always requires N fertilization at GS 31 to maxi-
mize the yield.

3.6. Model validation

Validation of the model, calibrated in 2018, 2019, and 2020 on 
Aubusson cv, was performed on other plots of the same variety culti-
vated in the same period, and considering data collected on different 
genotypes in the 2020–21 growing season. NDRE collected before the 
N31 application was chosen to validate the model. Indeed, this index was 
the one most closely correlated with the N rate at GS 31 and with the 
grain yield over the years, and it is an easier large-scale detectable index 
than LCC. The yield predicted by the model, on the basis of the NDRE 
measurements and the applied N31 rate, was compared with the one 
measured in each of the considered production situations. As far as the 
data collected on cv. Aubusson is concerned (Fig. 3 A, B, C), the model 
overall MAE was about 0.72 Mg ha− 1 in the 3-growing seasons. The 
model instead predicted the yield better for each year: on average, a 
MAE of 0.55 and 0.58 Mg ha− 1 was recorded for 2018 and 2019, while in 
2020 the model underestimated the yield by 1.06 Mg ha− 1 due to the 
high yields of this year. The R2 values were 0.81, 0.77, and 0.92 for 
2018, 2019, and 2020, respectively. Furthermore, the RMSE was low 

Table 2 
Effect of the nitrogen supply application at tillering (N23), beginning of stem 
elongation (N31), and year on wheat grain yield and grain protein content (GPC).

Factor Source of 
variation

Grain 
yield

GPC

(Mg ha- 

1)
Explained 
variance

(%) Explained 
variance

N23 (kg 
ha-1)

0 5.5 d 25 % 10.6 c 8 %
33 6.6 c 10.4 d
66 7.1 b 10.8 b
99 7.5 a 11.3 a
p-value <0.001 <0.001

N31 (kg 
ha-1)

0 5.2 e 36 % 9.7 e 64 %
33 6.2 d 9.8 d
66 6.8 c 10.7 c
99 7.4 b 11.5 b
132 7.8 a 12.2 a
p-value <0.001 <0.001

Year (Y) 2018 7.0 a 17 % 11.0 b 17 %
2019 5.8 b 11.3 a
2020 7.2 a 10.1c
p-value <0.001 <0.001

N23 x 
N31

p-value <0.001 2 % <0.001 2 %

N23 x Y p-value <0.001 3 % 0.005 0 %
N31 x Y p-value 0.015 1 % <0.001 1 %
N23 x 

N31 x 
Y

p-value 0.964 1 % <0.001 1 %

Error 15 % 6 %

Means followed by different letters are significantly different for each factor in 
the REGW-F test. The level of significance (p-value) is shown in the table.
a The explained variance percentages were calculated as the ratio of the variance 
of each factor, or their interaction to the total variance of ANOVA.
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Table 3  
Effect of the nitrogen supply application at tillering (N23) and at the beginning of stem elongation (N31), and of the year on the Crop Nitrogen Status Indicators (CNSI)a collected at the beginning of stem elongation (GS 31) 
and at milky ripening (GS 75).

Variable NDVI31 explained 
varianceb

NDRE31 explained 
variance

LCC31 explained 
variance

NDVI75 explained 
variance

NDRE75 explained 
variance

LCC75 explained 
variance

N23 (kg ha-1) 0 0.456 d 25% 0.167 d 39% 424 d 56% 0.572 d 9% 0.233 c 12% 514 b 3%
33 0.577 c 0.232 c 508 c 0.643 c 0.258 bc 502 b
66 0.627 b 0.273 b 558 b 0.697 b 0.282 b 530 ab
99 0.658 a 0.306 a 593 a 0.747 a 0.316 a 567 a
p- 
value

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001

N31 (kg ha-1) 0 0.555 d 28% 0.214 c 19% 383 d 46%
33 0.637 c 0.242 c 456 c
66 0.688 b 0.278 b 560 b
99 0.713 a 0.305 ab 600 ab
132 0.731 a 0.322 a 643 a
p- 
value

<0.001 <0.001 <0.001

Year (Y) 2018 0.679 a 22% 0.323 a 45% 532 b 28% 0.720 a 47% 0.315 b 57% 580 a 32%
2019 0.551 b 0.219 b 569 a 0.669 b 0.326 a 589 a
2020 0.508 c 0.193 c 451 c 0.605 c 0.176 c 417 b
p- 
value

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001

N23 x N31 p- 
value

<0.001 2% 0.026 1% 0.023 1%

N23 x Y p- 
value

<0.001 24% <0.001 10% <0.001 4% <0.001 2% <0.001 2% <0.001 2%

N31 x Y p- 
value

0.016 3% <0.001 2% <0.001 11%

N23 x N31 X Y p- 
value

0.939 0% 0.674 1% 0.002 2%

Error 27% 10% 8% 9% 7% 4%

Means followed by different letters were significantly different in the R-E-G-W-F test. The level of significance (p-value) is shown in the table.
a NDVI, Normalized Difference Vegetation Index; NDRE, Normalized Difference Red Edge index; LCC, leaf chlorophyll content
b The explained variance percentages were calculated as the ratio of the variance of each factor, or their interaction, to the total variance of ANOVA.
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and comparable for 2018 and 2019 (0.67 and 0.73), while it increased in 
2020 (1.15).

As far as the data collected on cv LG Ayrton and cv Izalco in 2021 are 
concerned (Fig. 3 D and E), the model underestimated the grain yield for 
both varieties (MAE of 1.71 and 1.13 Mg ha− 1 for LG Ayrton and Izalco, 
respectively). The R2 values were lower than those detected in the 
previous years for cv Aubusson, in particular for the Izalco genotype 
(0.69), while the RMSE values were slightly higher (1.90 and 1.35 for LG 
Ayrton and Izalco, respectively).

4. Discussion

The data of the present study, which was conducted over 4 growing 
seasons and involved comparing a large combination of N23 and N31 
fertilization applications, further highlights the key role of N fertiliza-
tion on wheat yield performance. Moreover, it is clear the importance of 
defining a rate that can guarantee the target for each production situa-
tion, while considering the agronomic, economic, and sustainable aims. 
Furthermore, the data reported a more marked effect of the N rate on 
grain quality (e.g. GPC) than the yield, as previously reported for 
temperate growing areas by Marinaccio et al. (2016) and Litke et al., 
(2018).

The relationship between N amount and yield was found to be 
parabolic. The optimum N rate to maximize the yield was 198 kg N 
ha− 1, a value that is comparable with the 180 kg N ha− 1 observed by 
Litke et al. (2018) in a trial performed in north Europe on a loam soil 
with a high organic matter and medium N content. The marginal in-
creases were very low (< of 10 kg of yield per kg of N) for an extra N 
rate, although the maximum yield was reached according to the pro-
posed curve equation for a total of 282, 234, and 232 kg N ha− 1 each 
year. A maximum peak of protein content was not achieved in the 
research carried out by Litke et al., (2018), although a still high marginal 

increase was reported for further increases in N rate, similar to observed 
in our study.

Fertilization at both tillering (N23) and stem elongation (N31), and 
their interaction, contributed substantially to the wheat yield and GPC. 
The significant interaction between the N rate on wheat yield is worthy 
of noting, and it suggests the possibility of correcting an N23 rate defi-
ciency with a subsequent N31 topdressing fertilization. A split N appli-
cation could help to satisfy the N demand of wheat during the crop cycle, 
particularly in the two uptake peak periods (tillering and stem elonga-
tion until heading), which are fundamental to maximize the yield 
components (Ma et al., 2021). N fertilization at both tillering and stem 
elongation, applied as ammonium nitrate, contributed to the same 
extent to the final yield. However, according to Marino et al. (2011), 
GPC is influenced largely by N31 fertilization, rather than at the earlier 
stage (N23), according to the N kernel storage, which is concentrated at 
the end of the crop cycle. In a previous study, Aranguren et al. (2021)
showed no general relationship over the years between CNSI measure-
ments collected at flowering and GPC values under humid Mediterra-
nean conditions. Conversely, the capability of all the CNSIs to predict 
GPC has been highlighted in this study, but only when detected at the 
grain ripening stage (GS 75), as a measure of the last N fertilization 
(N31).

This study clearly points out the capability of CNSIs to indicate the 
morphological and canopy color differences of crops, as a consequence 
of their different nutritional status. Quebrajo et al. (2015) reported a 
high capability of the CNSIs collected by active sensors to investigate the 
leaf nitrogen content as expression of nutritional status. The different 
fertilization rates, but also the meteorological trend of each year, with its 
influence on N leaching and uptake, influenced both the colour and 
vigor of the crops, and this resulted in CNSI variations strictly related to 
N deficiency. CNSIs are very sensible at the N fertilization rate applied 
on wheat and they change according to the N uptake by the plants, with 

Table 4 
Pearson’s correlation coefficient between the Crop Nitrogen Status Indicator (CNSI)a detected at the beginning of stem elongation (GS 31) and at milky ripening (GS 
75), the grain yield and the Grain Protein Content (GPC) for the 2018, 2019, and 2020 experiments.

Year Parameter NDVI31 NDRE31 LCC31 NDVI75 NDRE75 LCC75 Grain yield GPC

2018 N23 0.827*** 0.893** 0.899*** 0.492*** 0.618*** 0.197 0.597*** 0.272**
N31 0.642*** 0.633*** 0.844*** 0.634*** 0.909***
N23+31 0.809*** 0.880*** 0.785*** 0.868*** 0.882***
NDVI31 0.901*** 0.890*** 0.473*** 0.589*** 0.227 0.650*** 0.170
NDRE31 0.914*** 0.538*** 0.623*** 0.187 0.643*** 0.248*
LCC31 0.547*** 0.632*** 0.219 0.647*** 0.281**
NDVI75 0.921*** 0.840*** 0.872*** 0.733***
NDRE75 0.800*** 0.940*** 0.742***
LCC75 0.817*** 0.812***
Grain yield 0.713***

2019 N23 0.404*** 0.614*** 0.787*** 0.638*** 0.648*** 0.293* 0.348*** 0.337**
N31 0.510*** 0.480*** 0.852*** 0.630*** 0.802***
N23+31 0.796*** 0.779*** 0.385** 0.710*** 0.838***
NDVI31 0.777*** 0.492*** 0.544*** 0.532*** 0.087 0.414*** 0.161
NDRE31 0.657*** 0.606*** 0.567*** 0.144 0.453*** 0.166
LCC31 0.513*** 0.553*** 0.156 0.299* 0.086
NDVI75 0.934*** 0.820*** 0.847*** 0.609***
NDRE75 0.771*** 0.788*** 0.643***
LCC75 0.806*** 0.738***
Grain yield 0.610***

2020 N23 0.925*** 0.956*** 0.973*** 0.667*** 0.284** 0.162 0.637*** 0.188
N31 0.614*** 0.890*** 0.909*** 0.676*** 0.898***
N23+31 0.895*** 0.874*** 0.813*** 0.926*** 0.821***
NDVI31 0.987*** 0.967*** 0.680*** 0.247* 0.120 0.659*** 0.101
NDRE31 0.973*** 0.688*** 0.276** 0.145 0.660*** 0.133
LCC31 0.675*** 0.320* 0.131 0.666*** 0.145
NDVI75 0.760*** 0.658*** 0.967*** 0.575***
NDRE75 0.913*** 0.787*** 0.891***
LCC75 0.716*** 0.920***
Grain yield 0.642***

(*) = correlation significant for p-values ≤ 0.05; (**) = correlation significant for p-values ≤ 0.01; (***) = correlation significant for p-values <0.001. The data reported 
in the table are Pearson product-moment correlation coefficients.

a NDVI, Normalized Difference Vegetation Index; NDRE, Normalized Difference Red Edge index; LCC, leaf chlorophyll content
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an increasing precision if only the year data are considered (Li et al., 
2010). Plant tissues with N deficiency reflect more light than N-suffi-
cient ones, but usually les slight in the NIR region, which is used for the 
calculation of the CNSIs in this study (Tremblay et al., 2011). According 
to these, all the CNSIs in this work were able to point out the nutritional 
status of the crop at GS 31 related to the N rate applied in an earlier GS. 
Thus, for all the considered CNSIs, this study has developed predictive 
models that allowed quantify the optimal N rate at GS 31 according to 
the grain yield goal. The slope of the models, based on different CNSIs, 
obtained by considering canopy reflectance (NDVI, NDRE) or leaf 
transmission (LCC) measured through the N-Tester, were similar, due to 
the high correlation observed between the VIs measured at GS 31. 
Practically, lowest values of the CNSIs suggest high N deficiency and 
require and higher amount of N for the same yield compared to high 

CNSIs values.
Furthermore, since NDRE showed a higher correlation with N31 and 

yield than NDVI or the LCC, it was considered the most suitable index to 
develop a prediction model to apply at a large-scale. As also highlighted 
by Cordero et al. (2018) on rice in the same growing area as that of the 
present experiment, and then confirmed by Prey and Schmidhalter 
(2019) on wheat, NDRE shows a better R2 value than the other CNSIs, 
related to grain yield. (Wang et al., 2019) reported the same result with a 
slightly better performance of NDRE compared to NDVI in predicting 
both yield and crop N status, since this CNSI exploits spectral band 
related mostly with N concentration in the plants. In another experi-
ment, Quebrajo et al. (2015) reported in wheat R2 values similar to the 
ones observed in the present manuscript, without a difference between 
NDVI and NDRE.

Remote sensing sensors can easily detect NDRE, with a spatial res-
olution that is 10 or 20 m for free Sentinel-2 imagines (Delwart, 2015), 
although it could reach 0.5 m with a private satellite service (Anger 
et al., 2020). In a previous study (Farbo et al., 2022), the correlation 
between VIs collected by proximal and remote sensors was demon-
strated to be very high, thus suggesting the possibility of applying the 
presented model at a large scale, using satellite data. However, valida-
tion of these remote sensors at a territorial level is still necessary. This 
involves relevant factors such as sensor types, data processing tech-
niques, crop and cultivar characteristics, and integration of multiple 
data sources for a comprehensive and effective N management in agri-
culture (Zhang et al., 2024).

Although the LCC measurements showed a significant relationship 
with the N23 rate, this CNSI would not permit a rapid application of the 
model to a large growing area or to areas with numerous production 
situations, due to the long time necessary to detect this VI. Although this 
method would not easily permit the calculation of VRA of N, it could be 
applied to define the best fertilizer rate to optimize the yield of a whole 
field, according to the variability over the growing seasons. Further-
more, LCC measurements are closely related to the leaf N content and, 
for this reason, they are able to provide a more reliable prediction of 
grain quality, in terms of protein content, than the other measurements. 
As in this study, Aranguren et al. (2021) found a close correlation of this 
CNSI, collected in the late GS, with GPC, due to the capability of CNSI to 
quantify the N flag-leaf content, which moves to the spike during the 
grain filling period.

The proposed N fertilization strategy is based on the assumption of 
applying quickly-available N fertilizers, split into different key stages of 
crop development. This strategy is the most frequent solution applied by 
farmers in humid temperate growing areas on winter wheat (Zhang 
et al., 2021). It permits farmers to control the N supply during plant 
development and according to the seasonal variability of rainfall and the 
nutritional status of the crop (N deficiency). The first fertilization at 
tillering (N23) should mainly be defined by farmers in function of the 
winter rainfall, and the crop status at the end of winter (plant density 
and vigor), while other agronomic factors, such as the soil fertility, the 
crop precession, and the tillering capacity of the cv, should also be taken 
into consideration. Other studies considered the tillering fertilization as 
fixed and applied VR fertilization at the stem elongation or at heading, 
due to their higher impact on grain yield and protein content, respec-
tively (Elbl, 2019). However, the use of CNSIs to guide fertilization at 
this GS could be less useful, since the detected VIs may be less indicative 
of the availability of N for the crop. In fact, a high interference with soil 
(low canopy coverage) can mislead the correct fertilization prescription 
in this GS (Wang et al., 2012). Moreover, the presence of weeds, before 
their chemical control, can increase the VI values, thus leading to an 
underestimation of the N that is required. Moreover, a rate of 
30–60 kg N ha− 1 is usually adopted in temperate growing areas at GS 
23. Considering the low range of possible N rates, a VR application 
might not be necessary, above all with the possibility of correcting the N 
deficiencies or excesses with a further N31 application. Furthermore, in 
fields characterized by a large variability, in terms of soil fertility, the 

Fig. 2. Calibration functions for the nitrogen (N) rate fertilizer spreading at 
stem elongation (GS31) as a function of different crop N status indicators 
(CNSI)1 and progressively decreasing grain yield goals2. 1 NDVI, Normalized 
Difference Vegetation Index; NDRE, Normalized Difference Red Edge; LCC, leaf 
chlorophyll content. 2 The solid black line represents the calibration function of 
each CNSI for 99 % of the maximum grain yield. The dashed black lines moving 
downwards, represent the calibration functions considered to obtain 95 %, 
90 %, and 85 % of the maximum grain yield, respectively.
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application of VR in this GS could be based mainly on different ap-
proaches from the use of CNSI, such as the use of soil texture (which is 
closely related to N leaching) or previous year yield maps (Basso et al., 
2011).

The developed model permits the second fertilization at the begin-
ning of stem elongation (N31) to be controlled according to the CNSI. 
This second N application is linked more to the wheat grain yield than 
N23 fertilization, and the nutrient rates are usually higher than at 
tillering. For these reasons, a careful VR management is more important 
to avoid the unnecessary spreading of N or a higher lodging in fertile 
fields, or a lower grain yield and quality due to lower N rate than 
potentially required (Boulelouah et al., 2022).

The quality of the model was high, according to the R2 and RMSE 
calculated between the predicted and observed grain yields. Similar 
values to those reported in previous studies, carried out using only NDVI 
detected at GS 31 and weather data (Pennacchi et al., 2022; Gobbo et al., 
2022) were found. Moreover, the present model was not calibrated on a 
reference overfertilized strip, as is usually done to obtain a non-limiting 
N situation (Colaço and Bramley, 2018). An overfertilized strip allows 
the maximum CNSIs to be reached and the N rate to be calibrated on the 
basis of such values. However, an overfertilized strip may be located in a 
non-representative zone of a field. Consequently, both positive and 
negative calibration problems can arise, without considering that 
farmers have to carry out these dedicated operations.

The presented model was applied over the four growing seasons. The 
obtained data highlight its applicability, with a similar precision, for 
different growing seasons, although certain abiotic stresses (drought 
stress and low tillering in 2019) and biotic ones (Fusarium head blight 

attack in 2018) resulted in a clear negative constraint for the grain yield 
potential (Boulelouah et al., 2022). Yearly yield fluctuations found in 
this study were in accordance with the meteorological trends which 
have influenced the agronomic performance in each growing seasons, 
and they are consistent with the observed average yield in the area. The 
expected average N uptake, calculated in function of grain yield and N 
content, was similar between the growing seasons (135, 115 and 
128 kg N ha− 1 in 2018, 2019 and 2020, respectively), since the year 
with the lowest yield (2019) resulted in the highest GPC. Considering 
the application of the model in the production situations of the present 
experiment, the R2 obtained from the validation carried out in 2019 was 
the lowest, probably due to the limited rainfall, which resulted in higher 
N soil availability and plant uptake, together with a lower contribution 
of the applied fertilizers. Conversely, in 2020, the more abundant 
rainfall might have increased winter N leaching, thus making the effects 
of N fertilization on the CNSI and grain yield clearer. The slope of the 
function of the prediction model highlighted a similarity over the years 
on the same genotype (cv. Aubusson). Furthermore, in 2018 and 2019, 
the model tended to overestimate the yield below 7.5 Mg ha− 1 and to 
underestimate it for higher level. Besides, the higher yield levels 2020 
decreased the accuracy of the model, and resulted in a general under-
estimation, although the R2 of the model validation was the highest and 
the MAE and RMSE were the most consistent. Pennacchi et al. (2022)
also reported that the RMSE value showed yearly fluctuations for 
different wheat yield levels in function of the meteorological data. 
Appling the model to the datasets obtained in 2021 for different geno-
types (cv. Ayrton and Izalco), the R2 supported the goodness of pre-
diction, although a general yield underestimation was observed. This 

Fig. 3. Relationship between the measured yields and those predicted by the model based on the nitrogen rate at stem elongation (GS31) as a function of the NDRE. 
Graphs A, B and C compare the yield values predicted by the model vs measured on cv. Aubusson in 2018, 2019, and 2020, respectively. The plots used for calibration 
are excluded. Graphs D and E compare the yield values predicted by the model vs measured on cv. LG Ayrton and cv. Izalco in 2021.
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underestimation and the higher MAE and RMSE, in addition to the 
specific conditions of a different growing season, could explain the 
higher yield potential that characterizes these two recently released cvs, 
compared to Aubusson, a widely cultivated cv, on which the model was 
calibrated. Although the validation functions for these genotypes were 
similar to those observed for Aubusson in 2020, the year with the 
highest grain yield for this cv, the different canopy colour and plant 
habits, as well as the variable yield potential of each genotype could 
imply the need for a calibration process to correctly adapt this model to 
different wheat categories. This process would need to be defined ac-
cording to specific traits, such as yield potential, precocity, and the 
tolerance to biotic and abiotic stress. In particular, the proposed model 
may require a different calibration, as far as N23 and N31 plant needs are 
concerned, for wheat cvs that can be sown at a low seed rate, to exploit 
their higher tillering ability, such as the recent commercial F1 variety 
hybrid (Buczek et al., 2017).

Farmers play a key role in choosing the fertilization rate to reach a 
specific yield goal. With their experience, considering the overall 
agronomic status of the crop, the economic context (e.g. cost of N fer-
tilizers and the expected kernel price) and that a 100 % yield potential is 
unachievable (Cordero et al., 2018; Pennacchi et al., 2022), they can 
enhance the NUE and crop income.

The proposed methodology, unlike the management of fertilization 
required to reach the yield goal, was not able to return a useful model to 
manage the N application in order to address bread-making quality. 
Since Aubusson is an ordinary bread making cv, which only requires a 
minimum market threshold value of the protein content to be surpassed 
for it to be commercialized without any qualitative penalty (GPC >
11.5 %; Foca et al., 2007), and without any further premium price for 
kernels with higher qualitative traits, there is no economic interest in 
this market category to maximize the GPC. In our experiment, the 
highest N23 rate needed to be supported by at least another 66 kg N ha− 1 

at GS 31 to reach this qualitative threshold in 80 % of the cases. More-
over, regardless of the N23 rate, almost all the plots fertilized at stem 
elongation with 132 kg N ha− 1 (95 %) reached a higher GPC level than 
11.5 %. Furthermore, the relationship between N fertilization manage-
ment (rate and timing) and GPC is described by a sigmoid curve. The 
supply of 33 kg N ha− 1 at GS 23 resulted in a significant reduction of the 
protein concentration at harvest, compared to 0 kg N ha− 1, and this was 
probably related to a positive effect on the number of spikes per surface 
unit, which determined a dilution of the available N into a higher sink. 
This trend differed from that between N and grain yield, which is 
parabolic, and therefore the strategy to manage the N application at GS 
31 to increase the yield, according to the CNSI, did not maximize the 
GPC. As Hellemans et al. (2018) also reported, the GPC was more closely 
related to the N fertilization rate at stem elongation than at tillering, 
while the late season timing, between booting to flowering, could lead to 
a further important contribute (Blandino et al., 2020). For these reasons, 
and also considering the weak relationship between CNSI collected at GS 
31 and the protein content and the sigmoidal GPC trend in function of 
N23+31, the proposed model may only be exploited to maximize the grain 
yield, following the N31 rate model suggestion, to obtain a specific yield 
goal. Elbl, (2019) show that the variable N rate application in open field 
experiments allow to increase the wheat grain yield without affecting 
the quality as protein content. The qualitative target, in terms of GPC, is 
strictly required for improver high protein wheat (GPC >13.5 %, Foca 
et al., 2007). In temperate growing areas this wheat cvs receive a third 
late season N fertilization (Blandino et al., 2020). For this reason, a 
model could be developed to guide this practice at heading in order to 
optimize and standardize the quality of this market category, starting 
from VIs detected at the booting stage. Further studies, focusing on 
defined market categories for which the achievement of a qualitative 
target is mandatory. It will be necessary to investigate the relationship 
between CNSIs and GPC, as well as to establish the correct N rate at stem 
elongation or in a later GS, in order to satisfy the supply chain request by 
optimizing the N application and producing a further enhancement of 

NUE.

5. Conclusions

This study has highlighted the possibility of managing the variable N 
fertilization rate at stem elongation to attain specific yield goals, 
through the use of such CNSIs as NDRE or NDVI, which are easily 
obtainable through proximal or remote sensing at the end of the tillering 
stages. The field experiment carried out over different growing seasons 
and on different cvs clearly supported the use of the wheat crop as an 
indicator of N availability in the soil, according to the meteorological 
trends and the agronomic management practices. Thus, the top-dressing 
N fertilization rate can be accurately determined by means of a cali-
bration function based on in-season CNSI values. In this way it is 
possible to avoid N imbalances and to allow a site-specific N fertiliza-
tion. Moreover, avoiding inserting any further weather or soil parame-
ters into the model the decision support system is easier to apply to a 
wider production situations and genotypes.

However, the study has highlighted that the different varietal habitus 
and canopy colour, which could have an impact on the VI values, and, 
above all, the grain yield potential of different genotypes, could affect 
N31 forecasting to a certain degree. Therefore, the application of the 
proposed model to different genotypes may require a more detailed 
adjustment of the calibration, mainly considering the productive 
response of the crop to N fertilization.

The application of the model with a different distribution of the N 
rate can be reasoned in term of VR application within the field, by 
varying N fertilization as a function of spatial and interannual variability 
or considering the whole fields as single unit and varying the nutrient 
rate as a function of interannual variability. This simplified option could 
be necessary in small fields, considered each as a unique homogeneous 
area, or when a proper equipment for the variable rate application is not 
available. In order to guarantee a cheaper and faster management of 
large growing areas, future research have to focus more on the use of 
CNSIs detected through passive sensors satellite data, as an interesting 
alternative of to the active sensors considered in the present study.
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