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1 Introduction and summary

Conformal field theory has been a fertile area of research since its inception in the mid-
eighties [1], with important connections to critical phenomena, integrable models and string



theory [2-4]. The conformal symmetry in two dimensions is generated by the energy-
momentum tensor 7T'(u), whose operator product expansion with itself is equivalent to the
Virasoro algebra. In the universal enveloping algebra of the Virasoro algebra, which is
generated by T'(u) along with the normal ordered composite operators built out of T'(u) and
its derivatives, it has been shown that there exists an infinite dimensional abelian subalgebra,
which is spanned by local integrals of motion [5-7]. In a series of papers in the mid-nineties,
the problem of diagonalization of these integrals of motion was analyzed [8-11]. This problem
was referred to as the quantum KdV problem, as quantum integrals of motion reduced to
those of the classical KAV problem in the limit of infinite central charge.

In this work, we study the higher spin version of this problem, which has been referred
to in the literature as the quantum Boussinesq problem. We study the higher spin Wjs
algebra, generated by the spin-2 energy-momentum tensor 7'(u), along with a spin-3 current
W (u) [12]. The universal enveloping algebra of the W5 algebra is also supposed to contain
an infinite dimensional abelian algebra [7, 13]. Building on the work of [14] (see also [15]),
we take the next few steps towards finding the infinite-dimensional abelian subalgebra within
the universal enveloping algebra of the W5 algebra. We first provide a brief review of the
Ws-algebra so that the problem we study in this work may be stated more clearly. To begin
with, we study the higher spin theory on a cylinder. The spin-2 energy-momentum tensor
T(u) and the spin-3 current W (u), have a Fourier expansion of the form

T(u):_i+ Z Ln6727rinu7 W(u): Z Wn672ﬂ'inu' (11)

n=—oo n=—0oo

Here u is a coordinate on a circle of circumference 1, and the Fourier expansions imply
that we have assumed periodic boundary conditions for the two fields. The modes L, and
W, satisfy the Wj algebra [12]:

[Lpn, Lin] = (n — m)Lypym + %(n3 — 1)0m+n,0 (1.2)
[L, Win] = (2n — m)Wpim (1.3)
n—m n—m (1 1
(W, W] = (S)An+m + 52 (15(71 +m+3)(n+m+2)— E(H +2)(m + 2)) Lyim
¢ 2 2
+ m”(” —4)(n” = 1)dptmyo, (1.4)
with ¢ being the central charge and b? = 5Cf22. The A,, are the modes of the composite

normal ordered operator (T7)(u) built out of the stress tensor:

o0
1
A, = Z s LpLy_p: —|—5an”, (1.5)

k=—o00

with 297 = 1 —I? and 29,1 = 2 — [ — [2. Here, the normal ordering symbol :: indicates as
usual that we put the operators with larger index n to the right.

In our analysis, we work with just the right-moving or chiral conformal field theory, and
the Hilbert space is built out of irreducible highest-weight modules [14]:

Hchiral = @av

Aéa)’Aéa) . (16)



The parameters Ay and Ajs are the highest weights. The associated weight-vectors are
primaries of the Ws-algebra and satisfy the following equations:

Ln|A2,A3> =0, Wn’AQ,A3> =0, forn>0, (17)

Lo|Az, Ag) = Az [Ag, Ag), WolAz, Az) = Az |Ag, Az) . (1.8)
Thus, the pair (Ag, A3) are the eigenvalues of the operators (Lg,WWy) respectively of the
highest weight state.

The universal enveloping algebra of the W algebra is supposed to possess an infinite
dimensional abelian subalgebra, that is generated by local integrals of motion:

I, — /0 " T (). (1.9)

The currents Jy1(u) are sums of normal ordered composite operators built out of 7'(u) and
W (u). The first few of these are already written down in [14] and we list them below:

Jo(u) = T(u),

To(u) = W),

Js(u) = (TW)(u), (1.10)
Jo(5) = (T(TT)) () + IV (w) + <0 mA(T'T ) ().

The parentheses indicate conformal normal ordering, and the prime denotes the derivative with
respect to the coordinate u. The currents are defined up to the addition of total derivatives.

The expressions for the currents of higher dimensions are not known, and one of our
goals is to find a systematic way to construct these currents at higher weights. As a first
step in that direction, we compute the eigenvalues of the local integrals of motion in the
highest weight states:

Ik|A2,A3> :Ik(c, A2’A3)‘A2,A3>. (111)

On the right-hand side, we have explicitly shown the dependence of the eigenvalues not only
on the weights but also on the central charge of the higher spin conformal field theory. In
this work, we compute these eigenvalues for all £ < 12, and we do this by exploiting the
ODE/IM correspondence for the highest weight state, first observed in [16], and shortly
thereafter extended to incorporate general values of the Virasoro vacuum parameter with
a proof of the correspondence based on the quantum Wronskian in [17] (see also [18] for
early results on the ODE/IM and [19-21] for the higher rank generalization relevant for the
present work). We shall also make use of the ODE/IM correspondence to compute excited
state eigenvalues, which was first proposed in [22] for the Virasoro case, with the extension
to the higher spin case carried out in [23, 24].

Our analysis in this work rests on the fact that the ODE/IM correspondence! provides
a link between the spectral theory of ODEs [31-33] and certain integrable quantum field
theories, and which relates classical and quantum integrals of motion [25-27]. A similar

'For reviews of the ODE/IM correspondence, we refer the reader to [28-30].



approach to the calculation of the eigenvalues of the integrals of motion in the quantum
KdV case has been done in [17, 34, 35], and we show how to generalize this to the quantum
Boussinesq case. This is one of the main results of this work.

The vacuum eigenvalues I, turn out to be an important first step in the construction of
the currents Ji41. In fact, in the quantum KdV case, currents up to weight 12 were derived
solely by using the vacuum eigenvalues in combination with an analysis of the conformal
field theory on the torus [36]. Following this line of reasoning, we study the higher spin
conformal field theory on the torus and compute the one-point function of composite operators
O built out of the energy-momentum tensor, the spin-3 currents and their derivatives in
a higher spin module:

(0) =TryOq"oa, (1.12)

with ¢ = e #, and 3 being the inverse temperature, as usual. The states in the module are
obtained by acting with the creation operators L_,, and W_,, on a higher spin primary.

The thermal one-point functions are computed by first calculating thermal correlation
functions involving the energy-momentum tensor and the spin-3 current using the Zhu
recursion relations [37], and then by performing conformal normal ordering. Once these are
computed, we propose an ansatz for each of the current densities, as an arbitrary linear
combination of composites of T', W and their derivatives, with each term having the same
conformal dimension. By identifying the low-temperature limit (¢ — 0) of the one-point
functions of the ansatz with the eigenvalue of the conserved currents in the Virasoro module,
we attempt to fix the coefficients appearing in the ansatz. It turns out that, in the higher spin
case, this allows one to fix the currents Jg and Jg up to a single undetermined constant. The
current density Jyg turns out to be a total derivative, while for Ji1, the vacuum eigenvalues fix
the current up to four undetermined constants. We check that these results are all completely
consistent with the classical limit of large central charge, in which the quantum currents go
over to the classical ones. This fixes the large-c¢ behaviour of the undetermined constants.

Fortuitously, in all these cases, we find that the composite operators multiplying the
undetermined constants all have vanishing thermal one-point function in the higher spin
module. This allows for an unambiguous calculation of the thermal one-point function
of the conserved charges. Moreover we show that these can be written as quasi-modular
differential operators acting on the character of the higher spin module. This is the second
main result of this work.

Finally, in the quest to fix the undetermined constants appearing in the current densities,
we move on to calculate the eigenvalues of the Boussinesq charges in the first excited level
through the ODE/IM correspondence proposed for this case [23, 24]. Firstly, we find that the
sum of the eigenvalues at the first excited level precisely matches the subleading coefficient in
the g-expansion of the thermal one-point function of the conserved charges, thereby providing
a consistency check on our results for the thermal one-point functions. Secondly, we show
that by combining the excited state eigenvalues with higher point thermal correlators we are
provided with a systematic route to determine the current densities associated with the higher
conserved charges. We illustrate this point by a determination of the current density Jg.



This paper is organized as follows. In section 2, we review the classical Boussinesq
equation, the associated classical conserved charges and identify the classical Lax operator.
We also review its relation with the matrix Lax formulation of the modified affine Toda
equation and derive the third-order ordinary differential equation that plays a central role in
what follows. In section 3, we perform a WKB analysis of the resulting scalar differential
operator via the ODE/IM correspondence. We use the asymptotic form of the wave function
to read off the eigenvalues of the quantum integrals of motion in the highest-weight modules.
In section 4 we study the higher spin CFT on a torus and compute thermal one-point functions
of the conserved charges using the Zhu recursion relations. We show that these agree with the
charges of the classical Boussinesq hierarchy in the large central charge limit. As a further
check on our results, in section 5 we compute the eigenvalues of the conserved charges in the
first excited state by working with the appropriate ODE for the excited states and find perfect
agreement with the results for the thermal one-point functions. In section 6 we show how the
higher point thermal correlators can be used to fix the form of the current density Jg. We
conclude with a discussion of our results and collect some technical details in the appendices.

2 The Boussinesq equation: classical analysis

We review some well-known results related to the classical Boussinesq equation in this section.
The Boussinesq equation for U(z,t) is a non-linear partial differential equation given by [39]

fU:—%&ﬁU—%ﬂ. (2.1)

We begin with the observation that the Boussinesq equation is essentially the consistency
condition between the two coupled equations:

oU =20,V , (2.2)
oV = f%agU + gUaxU. (2.3)
Furthermore, this problem is integrable, as it can be recast in the form of a Lax equation:
oL =1L, A], (2.4)

with the relevant Lax pair given by [40]:
L=02-Ud, — %&CU +V, (2.5)
A:8§—§U. (2.6)

2.1 Conserved charges

The scalar Lax equation is useful to us in the following way: the WKB coefficients from
the solution to its eigenvalue problem directly give us the conserved densities. We show
this in detail, following the ideas in [40, 41]. Consider the scalar Lax equation, and its
associated eigenvalue problem:

Lb = M.



We now differentiate the eigenvalue equation with respect to t and use the Lax equation,
keeping in mind its isospectral property. Further, assuming that the span of eigenvectors
with eigenvalue A is one dimensional, we arrive at

(L= A0 — Ayp) =0,
or (9 — A) = g(t)y. (2.9)

Substituting the WKB ansatz ¢ (z,t) = exp (% Jo da’ P(2',t, e)) into the z-derivative of (2.9)
gives us:

OiP(x,t,e) —€ 0, A=0. (2.10)

From this, it follows that the spatial integrals of P(x,t,¢) are conserved quantities. Therefore,
we must compute the WKB solutions of the diagonalised Lax operator to find the conserved
charges. To this end, we substitute into the eigenvalue problem of (2.5) the following ansatz:

¢4%t)=exp0f-%@£xxugu@). (2.11)

For small € we have the asymptotic expansion:
[e.e]
x(z,t,€) = Z Xn(z,t) €. (2.12)
n=1

Substituting this into the eigenvalue equation (L — X))y = 0, with i\ = E%, we obtain the
first two terms in the WKB expansion:

1 7 1
E—— =——U,—-V. 2.13
X1 3 ) X2 6 3 ( )

For n > 2, we obtain a recurrence relation for the x,:

n—1 n—2
. 1 )
Xn+1 = Z(Xn)a: - Z XkXn—k T g(anl)mx + 1 Z Xk:(Xn—k—l):v
k=1 k=1
1 U
-3 2 XeXmXi— gXa-1 (2.14)
p+m~+l=n—1

By (xn)z we mean the z-derivatives of x,. The conserved charges are given by

wmmw:/mhﬂ@w, (2.15)



where the J,,11(x,t) are proportional to x,(z,t). We list the first few non-vanishing charges:

I§lass — / dz U, (2.16a)
I51ass — / dz V (2.16b)
1§12 — / dz UV, (2.16c¢)
IS — / dzx <U3 +9V2 4 3U§> : (2.16d)

Ighss = / do (U* +18V°U + 9V + U;c +5 UU2> (2.16e)

3

Igless — / dx (U3V +3V3 —3UVU" - ZVU’2 + 5U”V”> , (2.16f)

i = [

15 21
UYW +6UV? +9VV"? —6U?VU" — EUVU’Q + ZVU’Q
15 177(3) (4) 3 3)77(3)
+ ?VU UB +30vu® + 7v U@ ). (2.16g)

We observe that all charges I3, = 0, as the corresponding densities are total derivatives. We
have normalized the conserved current densities such that

Jon =U"+..., and Jop =U"'V 4., (2.17)

One of our aims in this work is to find the conserved currents of the quantum Boussinesq
hierarchy. One check on our eventual results will be to compute the classical limit of those
currents and match with these classical currents.

2.2 The affine Toda theory

In the previous section we showed that the classical conserved charges are encoded in the
spatial integrals of the WKB solution of the scalar Lax equation. Following the recent
work [42], we shall show how the form of the scalar Lax operator L in (2.5) arises in the
context of the modified affine Toda equation. In that reference, the WKB analysis for the
linear problem associated to the modified affine Toda system was used to obtain the classical
charges associated to the integrable system. We shall review this and then show that a
suitable limit of the Lax operator reduces it to the higher order differential operator that has
previously appeared in the context of the ODE/IM correspondence [19, 20]. Since our goal in
the next section will be the WKB analysis of this higher-order ODE in order to derive the
quantum conserved charges, we believe this to be a useful detour to establish a path between
the classical analysis of this section and the subsequent quantum analysis.

We begin with the modified affine Toda equation associated to an affine Lie algebra
of rank r:

0:0,0(z, 2) ZO‘Z exp (a; - @) — p(z)p(Z)apexp (ag - @) = 0. (2.18)
>0



Here, ¢ is a Lie algebra valued field, and «; are the simple roots of the affine Lie algebra
g. This equation can also be put in the form of a compatibility condition [£,L£] = 0 of
two operators £ and L:

5_@+zpmmum<zﬁ@+m@%0, (2.19)

=1 =1

L=0;+Alem i dills (Z E o + 13(2)an> izt Ml (2.20)
=1

where H;, E,, and E_,, are the generators of g in the Chevalley basis, and ¢; are defined
through (with « being the co-roots):

o= af 6i(27). (2.21)

We now restrict ourselves to the affine algebra Agl) and write out the equation Ly = 0

explicitly, choosing a particular representation for the generators (we refer the reader to [42]
for details):

6z(l)l A 0 wl
4| 0 Bgo—0.1 A Wy | = 0. (2.22)
Ap(2) 0 —0,02 V3

Eliminating 2 and 13 using the above equation (A # 0), we obtain a higher order ordinary
differential equation for y:

(=) 7385 — 0202) (05 + Dapg — Dop1) (D + Duhr )01 = p(2)¢1 . (2.23)

The left hand side of (2.23) is in the form of a generalized Miura transform [43], where
an operator of the form 93 + u10, + ug is expressed in factorized form. We can read off
the u;(z) to be:

ui(z) = 1 — (9:61)% + %8z¢13z¢2 + (61 < ¢2), (2.24)
uo(2) = 0261 + 0.61 (0:010:05 — (9-62)7 — 20261 + D262 . (2.25)

Since the scalar Lax operator of the Boussinesq equation is an operator that fits this form,
we may equate the coefficient functions with that of (2.5) to find the map:

U(z) = - (33% — (0:01)* + %8z¢18z¢2 + (¢1 < ¢2)> : (2.26)
V(z) = % (9261 + 20.01 (9:010-02 — 9261) — 0.620261) — (62 © 1) (2.27)

2.2.1 The null conformal limit

In order to study the integrable structure of the higher spin conformal field theory, we perform
a (conformal) double scaling limit, as in [25], on the scalar Lax operator associated to the
affine Toda system. This essentially corresponds to taking the massless limit of the higher



rank integrable system [44, 45]. We begin by fixing the asymptotic behaviour of the ¢;(z)
as z,z — 0. This is obtained by setting

p(z) = $3M _ 3M 0 and 0i(z,2) = lilog (22) + O(1). (2.28)

In addition, we take a conformal double-scaling limit [25]

Z—0, z2z~s5—0, and X\ — oo, (2.29)

keeping fixed the quantities
x = )\ﬁz, E = $SM T | (2.30)

As a result of taking these limits, the scalar Lax operator reduces to the familiar differential
equation associated to the higher spin conformal field theory? [14, 42, 46]:

3
H(dﬁj—@l)%b:(w?’M—E)w' (2.31)

Jale] dr = T

Let us summarize what we have reviewed in this section. We started with the linear problem
associated to the integrable model that is the modified affine Toda system. What we have
shown is that the scalar Lax operator of this integrable system, in the null conformal limit,
reduces to the differential operator familiar from the ODE/IM correspondence for the higher
spin conformal field theory. We now turn to the calculation of the spectrum of the quantum
conserved charges in a higher spin module of the conformal field theory via the ODE/IM
correspondence.

3 Eigenvalues from the ODE/IM correspondence

We have seen in the classical analysis that the WKB solution of the linear problem associated
with the Lax operator encodes the classical conserved charges of the Boussinesq equation. In
the quantum case, the action of the charges on a state can be read off from the asymptotic
expansion of the logarithm of Baxter’s T functions. Recall that in the classical case [14]:

log{T(\)} =co A= > cn IF* X7 (3.1)
n>0

In the context of conformal field theories, these are generalizations of the T' functions, where
functions appearing in the Lax operator are promoted to fields and products of fields are
regularised through the conformal normal ordering [8]. Via the ODE/IM correspondence, the
T functions can be identified with Stokes data, which in turn can be expressed in terms of
the Wronskians of subdominant solutions in different Stokes sectors [34]. It turns out that
the Wronksians of any two solutions to (2.23) satisfy the formal adjoint of that equation [24]:

A0, 4 0.61) (0 + 0sp2 — 0261) (02 — Oup2)th1 = p(2)11 . (3.2)

2Here we set £p = £3 = 0, but in this way of writing the operator, the generalization to the higher rank
affine Lie algebras is evident [19, 20].




Therefore, the WKB periods of the adjoint ODE should encode the spectrum of the quantum
Boussinesq charges. So we first take the null conformal limit of the adjoint ODE in (3.2)
and perform a WKB analysis of the resulting differential equation. This should encode
the eigenvalues of the quantum conserved charges in a highest weight module of the higher
spin conformal field theory. A similar analysis was carried out for the quantum KdV case
in [17, 34], in which the differential operator took the form of a Schrédinger operator with a
1/22 potential; we now extend the analysis to the third order ODE:?

(5-2) (5 +222) (54 2) v =~ - Eta). (33)

T x dx T

3.1 The Langer modification and the modified ODE

The first task is to transform this equation into a form in which we can use the WKB ansatz,
with the role of & being played by € = f(F), a specific function of the energy E. We follow
the general logic of [47] (see section 6 of that reference, which in turn follows [48]).

1. We begin by expanding out the differential equation:

L W dyp 1 3M

2. We change coordinates to x = €7, in combination with the redefinition

y=ep, (3.5)
leading to the equation

d3y

d
@—(1+£§+£§+£1+£2—€1£2)—y+(1+£1)(1+£2)(£2—£1)y = —e3*(S3M2_E)y. (3.6)

dz

3. We now scale z — vz and see how the differential operator acting on y is mapped by
this scaling.

4. We then do the inverse of the map in point 1. above, and obtain the equation

(72 (2% (2™ = B)) + (v + 762 = 1) (9o — v1 + 1) (y + 761 + 1))
1'3
_ (72 (E% — (=) b+ 6+6+ 1)-1) y'(z) + y(3)(37) =0. (3.7)

2

y(x)

We choose v such that the coefficient of the 3713 term is set to zero. This is a cubic

equation in -, that has three solutions:

1 1 1
Lm___ - @ _-_- (3) — . 3.8
7 n+1 T T T T g (38)

3As observed in [45], the adjoint ODE can also be obtained more directly from the linear system by an
alternative scalar reduction.

,10,



We note that there is a complete symmetry between the 3 roots of the su(3) Lie algebra.
To make this manifest, we introduce the parameters:

rm=40+1, rg=—fy—1, rg=4F0y —{y. (39)
The r; satisfy the relation Y 7; = 0, and the three solutions for the + that simplify the
ODE is given by () = —%.

5. Without loss of generality, we choose the last of these solutions and obtain

/
rr2 Yy (z 1 3tV 2d
y 3 () + 7 352) - "3 1—FExs Jy(z)=0. (3.10)
3 3

6. Lastly we redefine the coordinate variable and the parameter
3M

x=FE"sirt, E=¢ M1, (3.11)

and obtain the final form of the ordinary differential equation whose WKB solution will
encode the eigenvalues of the quantum Boussinesq charges in a highest weight module:

/
& (v + D) - S By =0 @)
3 3

Lastly, we note in passing that we would have obtained the same third order ODE in the
t-variables if we had begun with the original ODE in (2.31), but with a different map between
the r; and ¢; variables. It follows that one can perform the WKB analysis on either the
ODE in (2.31) or its adjoint ODE in order to derive the eigenvalues of the local conserved
charges in the highest weight state.

3.2 WKB analysis

We now compute the WKB solutions to the following class of third-order equations (see [49]
for the WKB analysis of a similar third-order ODE but without the single derivative term):
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3 (afy + ¥ 8ty) +p(t)y=0. (3.13)
3

For the case at hand, we have

1 _3 3M
p(t) = st (r3+M+l)(1 — ). (3.14)
T3

To find the WKB solution, we plug in the usual exponential ansatz

y(#) = exp { / Lt Zei_lai(t)} (3.15)

i>0
into the differential equation. Collecting the terms at each order in €, we find, at the first
two orders, the equations:
/

ag +pt)=0, a1+a—0:0. (3.16)

— 11 —



From an analysis of the remaining set of equations we find that the a,, for n > 1, satisfy
the recursion relation:

n—1
rr2
" !/ .
Ay, _9 +3 E AiQp, ;1 + E Ajy Qjy Qg + @an72 = 0, (317)
i=0 i1+ia+iz=n 3

with initial conditions
a
ap=—p®)'\?,  ag=--". (3.18)

3.3 Vacuum eigenvalues from WKB coefficients
3.3.1 Period integrals

Once the a,, are computed explicitly in terms of p(t), the conserved charges of the Boussinesq
hierarchy can be calculated from the period integrals of the a,. The period integrals in the
t-plane are equivalent to twice the line integral from [0, 1] in the ¢-plane. Much of this analysis
is similar to the analogous one carried out for the quantum KdV case [30]. We first define

N 1
I, — / dt ans (1) (3.19)
0

We first make a change of variable ¢t = PEins , and rewrite the integral as
3

R 1 1 .
I, = / dz Spt1(z) = 7“73/ dz 2331y g (2307) . (3.20)
0 3M Jo

This defines the function S,,(z). We can now write a recursion relation for S, (z), with n > 1
that follows directly from the recursion satisfied by the a,(t). The boundary condition for
the recursion is given by

1 _{_M+1

E m z 3M (1 — z)% , (321)

with S1(z) given by a total derivative.?

So(2)

We now convert the definite integral in (3.20) to an integral over the Pochhammer
contour I'p, resulting in

I, = ! dz Spy1(2), (3.22)

(1 —m) (1 —mi) Jre

where m%o) and msll) are the monodromy of S, 11(z) around z = 0 and z = 1. These

monodromies in turn can be calculated directly from the recursion relation satisfied by the
Sn(z). A key input for this calculation is the monodromy of Sp(z) about z =0 and z =1,
which can be read off from (3.21). In addition we also impose trivial monodromy for S;(z)
around z = 0 and z = 1, on account of it being proportional to the total derivative of Sy(z).

We omit the details of this calculation and present the result (for n > 1, and for n # 0 mod 3):
1

I, = o zm-"%;}”)/pp dz Sny1(2) . (3.23)
— € — e

“Note that for I- _1, we obtain a constant on performing the integral of So(z), while we have fo = 0, since

the integrand S_1(z) is a total derivative. So the integrals only lead to non-trivial conserved charges for n > 1.
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The change of variables and the recursion relation ensures that the integrand for every n
has a linear combination of terms involving only powers of z and (1 — z). Thus the integral
over the Pochhammer contour turns out to be linear combinations of the Euler beta-function,
on account of the integral:

. T
dz Zafl(l . z)bfl — (1 _ e27rza)(1 . e27rzb)

. Tetb (3.24)

3.3.2 Eigenvalues of conserved charges

The main point of this analysis is that the eigenvalues of the conserved charges in the highest
weight states, which we denote by I, are directly proportional to the contour integrals I,
in (3.23). Our normalization (see appendix C for more details regarding normalization) is
such that the quantum charges have the appropriate classical limit (when ¢ — o00).

From the form of the classical conserved currents, it is not difficult to infer that the first
two eigenvalues must correspond respectively to the eigenvalues of the Cartan generators
Lo — 57 and Wy in the highest weight modules labeled by (Ag, A3). These in turn should be
proportional to the integrals I, and I respectively. Given that the central charge should be
purely M-dependent, this motivates the following map between the parameters appearing
in the ODE and those in the higher spin conformal field theory:®

cmpooq M, Uitmrdg)  ME ()
9(M +1) M+1 27(1+ M)%

2
M+1’ (3.27)

Using the inverse map, one can write out the eigenvalues of the higher conserved charges
in terms of the conformal field theory data. We find that the charges Is,, = 0, which agrees
with the classical analysis. The first few non-vanishing eigenvalues are listed below:°

C
Il = AQ - ﬂ 5 (3.288,)
I, = Ag, (3.28Db)
c+6
Iy =As | Ay — .2
4 3 ( 2~ 51 ) , (3.28¢)
1 1 c(c+23)(7c + 30)
Is = A3+ 9A2 — = 8)AZ + — 2 15)Ag — 3.28d

The full list of eigenvalues in the highest weight state of the higher spin module obtained
using the ODE/IM correspondence is given in appendix C.

5A comparison with the results in [14] confirms this proposal. In particular, one can find the map to the
parameters appearing in that reference:

1

9=17 0 in terms of which ¢=50—24(g+¢~ "), (3.25)
3 3
ry = %(\/gpl +p2), T2= %(*\/gpl +p2), (3.26)

where p1 and p2 are the momenta associated with the two bosons that correspond to a free field realization of
the higher spin conformal field theory in terms of two bosons with background charges.

5These eigenvalues have also been obtained by computing the higher integrals of motion in the affine
Gaudin models [50, 51].
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4 Thermal correlators

In this section, we develop the technology needed to compute the thermal correlators of the
conserved charges in the higher spin conformal field theory. This amounts to first computing
the thermal correlators of the Boussinesq currents J,,. As seen from (1.10), the currents are
linear combinations of normal ordered operators, each of which is made up of the energy-
momentum tensor T'(u) and the spin 3 field W (u) and their derivatives. At this point, it is
also important to mention that we do not have explicit expressions for the conserved currents
Jn for n > 5. As we shall see, the thermal one-point functions of the composite operators
will provide us with a route to derive the conserved current densities.

The problem of computing the thermal correlators of conserved charges in the quantum
KdV case (which only involved the energy-momentum tensor and derivatives) was solved
in [36], and a key element that greatly aided the analysis was that of modular covariance.
It was shown that each such correlator could be written as a modular covariant differential
operator acting on the Virasoro character. With the higher spin conformal field theory,
however, this luxury is not afforded us. Deriving the modular transformation properties of
the generalized character Tr (qLO_i yWO) is still an outstanding problem (see [52, 53] for
some useful remarks in this direction) and we shall instead work with a reduced (higher spin)
Virasoro module, setting y to 1. The modular transformation properties of the character,
including insertions of the zero modes of W, for small values of n have been discussed in
detail in [54, 55] and we shall make extensive use of these results in our analysis. In the
higher spin CFT, we shall find that the thermal correlators are quasi-modular differential
operators acting on the torus character in the reduced Virasoro module.

Recall that our spatial direction is compact, with period one, u ~ v + 1. In addition, we
compactify the Euclidean time direction as well, with 7 ~ 7+ 3, so that we have a higher spin
conformal field theory at a temperature T'= 1/8. Thus, we study the higher spin conformal
field theory on a Riemann surface with the topology of a torus. As explained in [36, 56, 57],
the correlators of the conserved charges are best understood as the leading terms in a series
expansion for the partition function of a generalized Gibbs ensemble, in which chemical
potentials are turned on for each of the conserved Boussinseq charges Ij. Following [54, 55],
we shall consider the trace over a restricted module and define the reduced character as

XVyred = Try (qL()ii) s (4'1)

with ¢ = e™?, and where V is a highest-weight representation of the higher spin CFT. We
shall omit the subscripts in what follows and simply denote the character as x. The trace is
over the restricted Verma module, which is obtained by acting with the creation operators
of the Wjs algebra, namely L_, and W_,, with n > 0 on a specific primary |Ay, Az). We
write a generic state in the restricted Verma module as

P = H (LT;WE’MAQ, A3> =... (LgnnWEZ)(L(inntthf?;_ll) ce |A2, A3> where a,,, b, > 0.
n>0
(4.2)
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In this restricted Verma module, for the non-degenerate case, assuming no null vectors for
generic values of ¢, Ay and As, the character y is given by:
c c 1 qAQ—i
_c Ao— L
X(1) = Try (g™ 21) = g7 2 = : (4.3)
1;[ 1—=q")*  (4(q))?

In contrast to the Virasoro characters, where the ¢ expansion coefficients give the partition

of n, in this case, the ¢ expansion coefficients give the square of the partition of n because
we have two sets of generators.

The thermal correlator of any composite operator O in a highest-weight module V' of
the higher spin conformal field theory is then defined to be

(0) = Try ((’)qL°2C4> : (4.4)

We begin with the calculation of the thermal one-point functions of the low-weight currents
Jp(u) given in (1.10). Calculating these traces in the restricted Verma module is challenging
due to the non-linear nature of the Ws algebra. So we use a recursive method due to Zhu
to compute the thermal correlators involving the T'(u) and W (u) fields. We review the
basic idea here and refer the reader to appendix B for a detailed discussion of the Zhu
recursion relation. We will follow the notations and conventions of [37, 53], where the n-point
functions are denoted

F((a' z1),...,(a" 20);7) i= 20 2P Te(V(a, 1) ... V(@™ z)gP021) (4.5)
where V (a', z;) represents the i-th vertex operator, with a’ being the field and z; := €7
can be thought of as its location on the plane. For our purposes, the a’ will be either T or
W. The central idea of the recursion is to expand the first vertex operator V(a',2;) from
the n point function in terms of its modes and push the non-zero modes of V' around the
trace. As a result, the full n point function can be described as the sum of an n — 1 point
function with one zero mode insertion (coming from the first vertex operator) and terms
involving n — 1-point functions, in which nonzero modes of V (a!,21) act on one of the fields
appearing in the n — 1 point functions.

Thus, the thermal correlator of the individual terms that appear in the Boussinesq
currents can eventually be written as a sum of products of thermal correlators of zero modes
of the energy-momentum tensor ((Lo — 53)") and the spin-3 current (Wg") on the torus.
While the former is easily evaluated, the latter is much more difficult to compute, with
explicit results for m = 1,2 given in [54, 55].

Finally, it is important to note that all the composite operators appearing in the currents
are conformally normal ordered. For a composite operator made up of two local fields
A1 (up) and As(us), the normal ordered product (A;As)(uy) is defined using the two-point
thermal correlator [36]:

(A () = 5 f (i) An (). (1.6

For a n-point correlator involving n such fields, we perform the normal ordering successively
from right to left, starting with the normal ordering of A, (u,) and A,—1(u,—1), and so on,
until we end with a composite operator defined at u;. We shall now illustrate these points by
explicitly evaluating the thermal one-point functions of the low-weight Boussinesq currents.
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4.1 Thermal one-point functions

In this section, we compute the thermal one-point functions of the conserved charges of
the quantum Boussinesq hierarchy. One check of these one-point functions is that, in the
low-temperature limit, which corresponds to ¢ = e # — 0, the thermal one-point function
of the charges I should coincide with the eigenvalues I computed using the ODE/IM
correspondence in the previous section. Of course, except for the first few, the explicit forms
of the conserved currents are not known. In our analysis, we show how the evaluation of
the thermal one-point functions of composite operators, along with the eigenvalues I in the
highest-weight states, provide important constraints on the form of the conserved current
densities. We shall systematically work our way up the currents in order of increasing weight.

I;. We start with the thermal one-point function Jo(u) = T'(u). The one-point function
of a single vertex operator reduces to the evaluation of its zero mode on the torus. We
therefore have

(T'(u)) = F((T)o;7) , (4.7)

where (O)( denotes the zero mode of the operator O. Since the zero mode of the energy-

momentum tensor on the cylinder is Ly — we obtain

£
24>

(T'(u)) = TTV((LO - 2C4>qL°_2€4) = fiJX(T) . (4.8)

It is manifestly independent of the u coordinate; thus, doing the u-integral is trivial, and

we obtain
1 0
M) = [ du (T(w)) = a5x(7). (49)
0 q
In the zero temperature limit, we obtain
c
(I1)g—s0 = Ag — o1 (4.10)

which matches I, as expected.

Io. Next we compute the (J3(u)) = (W (u)), for which we get

c

(J3(u)) = (Wo) = Try (quL°24) = Asx(1), (4.11)
where we have used the result given in [54]. The integral over w is trivially done, and we obtain

(I2) = Azx(7). (4.12)

The low-temperature limit is again trivially taken, and we obtain Io = As.
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I4. For 14, we obtain
W= [ du (W) ) = A (0() — {Ealrx()). (4.3

where we have defined 0 = qa%, and Fs(7) is the level two Eisenstein series. We refer the
reader to appendix B.3.2 for a derivation of the one-point function. In the low temperature
limit, we have E5(7) — 1 and we therefore obtain

(I1)g—0 = A3 (A2 - 204) - % =Ags <A2 - (c;;f)) ; (4.14)

which perfectly matches Iy in (3.28¢c).

4.2 Currents and thermal expectation values

So far we have seen that the thermal one-point functions behave as expected in the low-
temperature limit and reproduce the eigenvalues obtained in the previous section. We
now illustrate the use of the thermal one-point functions of composite operators in the
determination of the conserved currents in the Boussinesq hierarchy.

I5. At weight 6, the expression for the current is already given in [14]. We shall rederive
this result by using the results for the thermal correlators. We begin with the most general
ansatz consistent with the classical current at weight-6:

Jo(u) = ay (T(TT))(w) + ao (T'T") (1) + g (WW)(u) (4.15)

The thermal one-point functions of each of the composite operators have been derived in the
appendix. In fact, all we need at this point is the low-temperature limit, and we have

1 1
(T(TT))) g0 = A3 — g(c +4)A3 + %(c +2)(5¢ + 32) Az
¢ (35¢% + 462¢ +1504) (4.16)
483840 ’ '

AQ 3lc

2mV2(T'T’ =—=_ = 4.17
1 17¢ 91 191¢2 2101¢
=AZ - A2 < > - - ) 4.1

(WW)(2)amo = B3 = 582+ (3556 + 3640 )22 ~ Tra1s24 ~ 1354560 (4.18)

These are independent of u, as expected. Demanding that the low-temperature limit of
the thermal one-point function of the current in (4.15) should reproduce the eigenvalue I5
in (3.28d) turns out to uniquely fix the coefficients «; and we find that

c— 10
32

Js(u) = (T(TT))(u) + 2m)2(T'T") (u) + IWW)(u), (4.19)

which exactly matches” the result for the current in [14], and which we quoted in (1.10).
Having completely fixed the coefficients appearing in our ansatz, we present the result for

"Note that in our conventions, the circumference of the cylinder is 1.
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the thermal one-point function of the conserved charge:

(I5) = 9°x(r) — Bar)oPx(r) + (o Ba(r) + S E3(r) Jox(r)

_ C(B4Ex(T)Ey(7) + (66 4 5¢) Eg(7))

241920 X(7) + 9(W5) (4.20)

Here we have chosen to write the thermal one-point function in terms of the expectation
values of powers of the zero mode of the spin-3 current, which have been listed in the
appendix (see equation (B.23)).

I7. The current Jg, whose integral gives the conserved charge I7, can be written in terms
of the following combinations of normal ordered composite operators:

Js = a1 (T(T(TT))) + as(T(T'T")) + az(T"T") + as(TWW) + as(W'W').  (4.21)

Using the low-temperature limit of the one-point functions, and matching to the eigenvalue
I7 listed in the appendix C, we find that the current is fixed up to a single constant:

Js = (T(T(TT))) + 18(T(WW)) + 13—6(5(: + 46)(21)2(W'W")

1
- W(&? — 28¢ + 1124) (2m)4(T"T")
gc—34

+(2m)2a ((T(T’T’)) _3(WW) + (21) %(T”T”)) . (4.22)

So the low temperature limit alone does not fix the form of the current. Substituting the
thermal one-point functions for each of the composites (see appendix (B.4.1)), one can check
that a much stronger statement is true:
e sl 18y vai 2C— 34 el o

(T(T'T")) — 3(W'W") + (27) T (T"T")) =0. (4.23)
In other words, the thermal one-point function of the operator multiplying the undetermined
coefficient o vanishes. Thus, the coefficient a cannot be fixed, even if we compute the
trace of the eigenvalues in the higher excited states. However, a happy consequence of
this fact is that the thermal one-point function of the charge can be computed without
knowing «. Thus, we obtain
5.0

E2(1) + i(7c + 194)E4(T)>32X(T)

(Ir) = &'x(1) = 2Ea(m)°x(7) + (6 2 180

1 (2400E3 (7) + 108(26 + ) Ex(7) Ea(r) + (1092 + (252 + 5¢)) Eg (7)) 0x(7)

34560
+ WC%O (64E3(7) Ea(7) + (580 + c(60 + ¢)) E3 () + 2565 (7) Eg(7) ) X(7)
118 (ng _ ;EQ(7)> (W2).

In section 6 we shall return to this point of fixing the undetermined parameter «. For now,
we go on and list the thermal one-point functions of the higher Boussinesq charges.
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Is. By similar considerations, we find that the weight nine current Jy can be determined
up to a single constant:

Jo = (T(T(TW))) + 3(W(WW))

_ %(m +oy@mArwTy) — 4 *1552)0+ 390 o myt(rrwy
+(2m)% ((T(WT”)) + g(W(T’T’)) - i(w 55)(27r)2(T”W”)) . (4.24)

We refer to appendix (B.4.2) for the results of individual thermal correlators of composite
fields present in Jg. From these results it is easy to check that the operator that multiplies
~ not only has a vanishing low-temperature limit, but its thermal one-point function also
vanishes. Thus, while the current is not determined uniquely by these considerations, it is
possible to calculate the thermal one-point function of the conserved charge:

<k%:%W$+8%W@—g&hW%W&+§%ﬂmEﬂﬂ+W5+%ﬁMﬂﬁM@

~ 50430 (2730E3 (1) + 21(285 + 7¢) By (1) E4(7) + (2310 + ¢(123 4 2¢)) Eg (7)) (Wo) -

I 9. The vacuum eigenvalues are much less constraining on the ansatz for Iy and we find
that the current .Jq1 is only fixed up to four undetermined constants:

3(11e+10) A
SR W)

(2m)%(120¢ 4 6937¢* 4 24719¢ — 15906)
483840

(19¢+258)(T" (WT"))

Ji1 = (T(T(T(TW))))+6(W (W (WT))) +(27)°
(2n)4(19c24-832c4-1972)(jﬂu(vvjﬂ))+_

1536
T 2
+ 2 (T )+ 2w + 2

(5¢%4-211c+608)
2880

(T/// W///)

+ (271’)4 (T’”W’”))

+ (27’(’)452 <(TIII(WT/)) + (W(THT//)) _ Z(ZW)Z(TWWW)>

o 1

(218 (DY) 4 ST W)+ (2

(50_ 21)(Tl/lwl/l)>

+(27)20, (T’(T’(TW))) _3(W (W) — 516(2w)2(c— 150) (7" (WT'))

(9c—185)

+(2m)* 1440

(Tlllwl//)> (425)

Following the pattern found for the previous two currents, we find that the four combinations
multiplying the §; are trace-free. Thus, the thermal one-point function of the conserved
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charge can be calculated without ambiguity and we find:

(Tio) = 0*((Wh)) — 3Ea(1)9((Wh))

+60{(W0)%) = JEa(n)(Wo)®) + (B3 + (5 + 55 ) Balr) ) %W

13 5 Tc 87 193¢ 5¢?
— (= E3 S+ By n)E o 15
(24 2 () (6 * 480) 2(T)Ea(r) + (224 * Tooso * 24192) 6(7)>a((Wo)>
1 2 3 2 )
+ 5770 (8 (256 + 2428¢ 4 53700) Eg(7)Ea(r) +5 (¢ +126¢" + 4972¢ + 72504) E(7)

+ 448(17¢ + 945) Ey (1) E2(7) + 107520E§(r)) (W) . (4.26)

4.3 The classical limit

In the large central charge limit, the quantum Boussinesq charges should go over to the classical
conserved charges derived in section 2.1. As we shall see, this imposes some constraints on
the form of the undetermined coefficients «, v and 9;. The way to take the classical limit has
already been outlined in [14], and we review this now. We first rescale and redefine

C 2

T(u)—>(24> Ulu), W(u)—m’(—;l) V). (4.27)

Then, the quantum conserved charges go over to the classical ones in the following manner:

k41
I, — i k! (—C> ® pcless (4.28)
24
in the limit that ¢ — —oo. Doing this for the first three charges is a trivial exercise, as there
is only a single term in both the classical and quantum currents. For Is, it has been checked
already in [14] that the classical limit gives the expected classical current.
We now turn to the constraints that follow from taking the classical limit for the higher
Boussinesq currents. We find a perfect agreement with the classical charges, provided we set

3c

- (0) —_2 (0)
o 16 +o, vy 39 +7,
C 0 7c? 1 0
b= -7+, b= o+ 0y et dy, (4.29)
), (0 Be | ()
03 = @4‘53 C+53 , (54——E+(51 .

Thus the leading-in-c behaviour of the various constants is uniquely fixed by the classical
limit.> We emphasize here that a(®, v and 5§j ) are c-independent numbers. Requiring
a consistent classical limit of the proposed conserved quantum currents is a non-trivial
constraint since the constants «, v and, §; feed into multiple terms that appear in the classical
conserved charges. Thus, it is also a useful consistency check, both of the expressions for
the currents and of our results for the thermal correlators.

8The fact that 82 and &3 are both quadratic polynomials of the central charge follows by requiring that
the operators multiplying these contribute in the classical limit. A linear polynomial in ¢ would lead to a
vanishing contribution in each case, and there would be a mismatch with the classical limit.
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4.4 Discussion

We conclude this section with a few remarks about the nature of our results. We have
calculated the thermal one-point functions of all Boussinesq charges up to weight 10. We
have expressed these as differential operators acting on the character (with insertions of the
zero mode Wy), and with coefficients that are quasi-modular forms. As shown in [54, 55]
for n = 1,2, the thermal expectation values (W{') can also be computed as quasi-modular
differential operators acting on the character. Thus, the thermal one-point functions can
be expressed as quasi-modular differential operators acting on the character of the higher
spin module. This is expected from a study of the generalized Gibbs ensemble, in which one
defines a partition function that includes chemical potentials for all the higher spin conserved
currents [58]. The thermal correlators we have defined should be thought of as the lowest-order
terms in a power series expansion (in the fugacities) of the generalized partition function.

Secondly, we emphasize the fact that we could calculate the thermal one-point functions
even without fixing the form of the current densities exactly. The currents Jg, Jg and Jq1
have undetermined parameters, but these did not appear in the thermal one-point functions.
This is on account of certain trace-free combinations appearing in the current densities.

As a first step towards the determination of the undetermined constants, we took the
classical limit of large central charge and fixed the leading coefficients in the large-c limit
in equation (4.29). To completely fix the remaining parameters, we need more data from
the conformal field theory side. For this purpose, we now calculate the eigenvalues of the
conserved currents in the first level of excited states in the higher spin module. This will
prove to be useful in two ways: first of all, we should match the sum of the eigenvalues (of
the conserved currents) in the first excited level with the terms that appear at sub-leading
order in the g-expansion of the thermal one-point functions. This is indeed what we shall
find in our analysis in section 5. Secondly, as we shall show in section 6, the excited state
eigenvalues open up the possibility of fixing the undetermined parameters of the current
densities via two-point functions involving the conserved currents.

5 Excited state eigenvalues from ODE/IM

In this section we first review the results of [24] in which they have proposed the ODE
corresponding to higher excited states of the quantum Boussinesq model. The third order
ODE that is considered in [24] is given by

09 (2) = Wi(2)@/(2) + Wa(2)é(2) = 0, (5.1)

where the coefficient functions are given by

N ()
W1:”+Z< o, 3 2), (5.2)
j=1

22 z(z—wj) (2 —wy)
_ N () ()
rg 1 k a22 @21 3 )
Wy = =+ =5+ A"+ + + : (5.3)
z3 22 ;<22 (z—wj)  z(z—wj)? (z—w;)3

Here N is the level of excited state; for N = 0, the ODE should therefore be mapped to the
one we studied in section 3. We will show this explicitly in the following subsection. For now,
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we simply state that the parameters (71, 72) will be mapped to (¢1,f2) variables, while k& and
A will be expressed as functions of M and E (see equation (5.9) for the map of parameters).

We shall set N =1 in the rest of this section. For this case there are four undetermined
coefficients (a11, a1, aze,w;) in the excited state ODE, and these are fixed by imposing the
constraint that the monodromy about w is trivial.” These will lead to exactly four algebraic
constraints that completely fix these parameters. The imposition of the flatness conditions is
carried out in detail in [23, 24], and we only present the results.' The coefficients a1, azo
and the location of the pole wy are completely determined in terms of a1, as follows:

aj] = k’, (5.4)
2k+3 k2
azy = —5—az — o, (5.5)
1 _

— B3+ k) (k(k+1)(k+3) = (k+9)r1 +973)) . (5.6)
The coefficient ao; is in turn determined by the quadratic equation:
(a21)2 —kaoy +k(3+k)—3r1 =0. (5.7)

Putting all this together and relabelling ao; = a1, we have the ODE corresponding to the
first excited states of the higher spin module:

<Z+;+A2k+<(2k+3)al_k2+ m 3 )3>>¢(z) (5.8)

322 (2 —wq) z(z —wi) (z —wy

B (Z; i <2(2 ﬁ wi) * (= —3w1)2>> ¢ (2) + 6% (2) = 0.

5.1 WKB analysis

As a first step towards performing the WKB analysis for the excited state ODE, we make a
variable change to map the differential equation in (5.8) as a perturbation of the vacuum
ODE in (2.31). We make the following change of parameters and variables:

3M +2 —1 _3M_
k=-Srg 0 A= (DO 1) TR,
= _1+51(514-1)4-62(@24-1)4—1—51@2
9(M + 1)2 ’
(= 3M =264 3M ) (0 — 1y + 3+ 3M) (5.9)
T 27(1 + M)3 ’
3D 3M+2
Z:—mv P(z) =z Y(z).

9From the Bethe ansatz and TQ approach to the integrable structure of the conformal field theory, this
condition guarantees that the @ function corresponding to the excited state (whose eigenvalue we compute
using the ODE) has the same asymptotics as the vacuum solution [22]. See [59] for a proof of this claim for
the quantum KdV models associated with simply laced Lie algebras.

10We have corrected some minor typographical errors in the results of [24].
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It is then straightforward to check that the excited state ODE takes the form

P rt—0m® a4 — )+ (B — My (5.10)
A3 22 2 1 1 2 1£2 dx 23 1(*t2 1 2
O(M + 1)zM+L (3M+3 — 97(M +1)3(3M + 2wy )
(3M+3 4+ 27(M + 1)3wy) 2
91 (M + 1)%23M (203243 — 27(M +1)3(3M + 1wy )
(3M+3 + 27(M + 1)3wy) 2
27(M + 1)220M+3 (23M+3 — 27(M + 1)3(3M + 2)w: )
(x3M+3 4+ 27(M + 1)3wn) 3

¥'(z)

+

(z

_l’_

P(x)=0.

The terms in the first line are exactly those that appear in the vacuum ODE in (2.31). From
the discussion in section 3 it follows that one has to take the adjoint of this differential
equation and perform a WKB analysis to extract the eigenvalues of the conserved charges in
the excited states. As in the vacuum case, we find that the results obtained for the conserved
charges are the same whether we perform the WKB analysis for (5.10) or its adjoint. So
we continue to work with the differential equation in (5.10).

The additional terms in the differential equation are the simplest (L = 1) higher spin
generalization of the monster potentials proposed in [22] to compute the eigenvalues of the
quantum KdV charges in the excited states. The data of the conformal field theory can be
expressed in terms of the #;, as explained in the previous sections. From here onwards, the
path to deriving the excited state eigenvalues is precisely what has been described previously.
But first, we rewrite the constraints satisfied by a; and w; in terms of the CFT parameters.
The constraint on a; reads:

o BM+2 - 3M41  3Ay
M1 T M+ 12 M1

0. (5.11)

a

The quadratic equation has two solutions, and for each solution of the parameter a1, the
parameter wi is given by the equation

As As 3M + 2)

MM+ 12 T OM(M 1 1) (2a1 VS (5.12)

w1 =

Now, at each order in the WKB expansion, the period integral of the wavefunction at that
order encodes the eigenvalues of the conserved charge in the excited states. The period
integrals are obtained in terms of the parameters (aj,w;). Substituting the two independent
solutions for these, we obtain the two eigenvalues in terms of the CFT parameters. These
correspond to the eigenvalues of the eigenstates (of the conserved charges) that are particular
linear combinations of the states {L_1|Aq, As), W_1|Ag, Az)}. As we shall see, while the
individual eigenvalues are complicated functions of the CFT data, the sum of the eigenvalues
are polynomials in (¢, Ag, Ag) and will precisely match the O(q) coefficient of the thermal
one-point function of the conserved charge.

The map from the ODE written in the x-coordinates to the t-coordinates most suited to
the WKB analysis is the same as the one that worked for the vacuum ODE:

_ M+1

T = Ef%t, e = F~3MmM . (513)
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The final version of the ODE takes the following form:

(¢ 1 _3¢ 3M
e (y“” (1) + ”T”()) + gt s HMED ( g ()

r3 12
3(M+1)
M +1)e3 [1-27(M +1)3(3M + 2)unedt” s,
- T§t2 Yy (t)

3(M+1) \ 2
(1 +27(M + 1)3wye3t s )

3(M+1)
a1 (M +1) (2 —27(M +1)3(3M + 1w, €3t 73 >
+

y(t)

3(M+1) \ 2
r3t (1 + 27<M + 1>3w163t 3 )

3(M+1)

N 27(M +1)3w1e3(3M (rs —3M — 4) +r3 —5)t 3 +3M —r3+2

3(M+1) \ 3 y(t)
r3t (1 + 27(M+ 1)3’w1€3t 3 )
6 o g, S0LD)
729(M +1)°(3M + 2 1 t
(M + 17 BM 4 2)(rs + Dwiet y(t)}:o. (5.14)

3(M+1) \ 3
rat (1 +27(M + 1)3un et s >
The WKB analysis proceeds exactly as before. We plug in the exponential ansatz:
t .
y(t) = exp [/ dt Zellai(t)} (5.15)
i>0
into the differential equation. We collect the terms at each order in €, and solve for the a,(t)

recursively. The period integrals of the a,(t) encode the eigenvalues of the conserved charges
in the L = 1 excited states, up to some constant coefficients:

I, = /01 dt an(t) . (5.16)

5.2 Eigenvalues and eigenstates at level one

The first non-trivial eigenvalue is given by

=Y A, £ 4 5.17
which is consistent with the fact that the conformal dimension of the excited state is one
more than that of the primary in the module. The next charge is I = Wy, whose action

on the level one subspace we compute explicitly:

IoL_1]|Ag, Ag) = AzL_1|Ag, Ag) +2W_1|Ag, A3),

1 1

(5.18)
LW_1]Ag, Az) = — (2 .

15

Since the charges are mutually commuting, we can use this result to compute the level one

+ IOAz) L_1|Ag, Az) + AsW_1]|Ag, Ag) .

eigenbasis for the Boussinesq charges:

Y —C+32A2 +2
|€1> - 4\/6
leg) = V—c+32A9 +2
46

L,1|A2, A3> + W71|A2> A3> )
(5.19)
L_1]Ag, Ag) + W_1]|Ag, A3) .
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We introduce the notation
Toles) = I3 les) (5.20)

where the index ¢ distinguishes the two eigenvectors at the first excited level. For n = 2,
the two eigenvalues are easily calculated from (5.18) to be

vV—c+32A9 +2
2/6 '

On the other hand, the excited state energies calculated from the ODE/IM correspon-

Y = Ay + (5.21)

dence give us:
(1) 2v/M + 1 3M + 2
1272- = Ag - | Q1 .

3 2(M +1) (5:22)

Substituting the two values of a;; obtained by solving (5.11), and recalling the relation (3.27)
between the central charge and M

24 M2

:2—7
¢ M1’

(5.23)
we find a precise match with the results obtained by directly diagonalizing the operator Wy on
the level one subspace of the W5 module. Through this, we identify the common eigenvector
of the Boussinesq charges (at level 1), whose corresponding eigenvalue is obtained by setting
the parameter a; to each solution of (5.11). By summing over both eigenvalues, we obtain

TI“L:112 = 2A3 . (524)

A similar analysis can be carried out for the higher charges, and we obtain the following
expressions for the sum of the eigenvalues from the excited state ODE:

— 90
Trr—11y = 24 (Az - o1 ) ; (5.25)
1 1
Trroals = 248+ 18AF + (112 - 0)A] + o (¢ = 103¢ + 2670) A,
—7¢3 + 313¢% — 40506¢ + 87696
5.2
* 48384 ’ (5-26)
1
Trrly = 203 +36A58; — < (c — 156) (243 +943) (5.27)
1, o (—10c3 + 853¢% — 93636 + 534996) Ay
— (52 — 713¢ + 25794) A
+ 310 (5¢% — T13¢ + 25794) A3 + %0
10" — 373¢ 4 107916¢? — 1475460c + 2671488
1658880 ’
1 1
Trr—1Ig = 2A3A3 + 6A3 + L (178 = c)A3A3 + =0 (502 —812¢ + 33540) A3y
(—35¢% + 2378¢% — 521028¢ + 637560) Ag
. 2
* 241920 (5:28)
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5.3 Consistency with thermal one-point functions

It is now a straightforward exercise to check that the thermal one-point functions of the
conserved charges computed in the previous section are consistent with the excited state
eigenvalues. The checks for I1 and Iy are trivial, so we discuss the first non-trivial case:

(L) = 8 (0x() - S Eal)x ) (529)

The character of the higher spin module is given by (see equation (4.2))

<
Az—o3

q

x(1) = LO—g2 (5.30)

Expanding the thermal one-point function in (5.29) as a power series in ¢, we obtain

_c C A c—90

The zeroth order term matches with the vacuum eigenvalue, while the sub-leading coefficient
matches the sum of eigenvalues at the first excited level in equation (5.25). We have checked
that a similar match holds for all conserved charges up to Ig. For I;p we have checked
this for the special case of M = 1 (which corresponds to ¢ = —10), but with arbitrary As
and As. These are important consistency checks (at the sub-leading order) of the thermal
one-point functions in the previous section.

6 Fixing the higher Boussinesq currents

In this section, we shall show how the form of the quantum current Jg can be fixed by
using the excited state eigenvalues and two-point thermal correlators. We begin by recalling
the form of the current Jg:

Js = (T(T(TT))) + 18(T(WW)) + —= (5¢ + 46) (27)> (W' W)

16
— ﬁ@c? — 28¢ + 1124) (2m)4(T"'T")
+(2m)2a ((T(T’T’)) (W) + (2@26;;’4@%")) , (6.1)

where « is a central charge dependent constant which cannot be determined by the thermal
one-point function (I7). We know that this coefficient has to be non-zero since we have
computed the c-dependent component of « in (4.3). The combination of fields in the last
line of (6.1) does not contribute to the trace but does have non-trivial matrix elements on
the level one subspace of the W5 module. Therefore, we may determine o by computing a
trace weighted by an operator that does not act identically on the basis states of the level
one subspace. The simplest such operator is the KdV charge

Q= [ du (7)), (6.2)
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whose operator form is given by:

c+2 n c(bc+ 22
12 2880

Qs = ((TT)(u))o = L§ — ) +2Y L_yLy. (6.3)
>0

We now consider the trace involving the KdV charge and any of the Boussinesq charges
at the first excited level:

Try 0 (InQ3) : (6.4)

We compute the trace in two distinct ways: directly using the operator formalism, and more
indirectly, via calculating the thermal correlators involving the various terms in Jy(u;) and
(T'T)(uz), and by extracting the subleading coefficient in the g-expansion, after appropriate
normal ordering.

We work with the operator method first. At the first excited level, one can compute
the action of Q3 on the basis states:

5¢2 —218¢ +2400 1
QsL_1|Ag, Ag) = ( 2880 — E(C —70)As + A%) L_1]|Ag, Ag), (6.5)

QsW_1|Ag, Az) = 6A3L_1|Ag, A3)
(502 —218¢+2400 1

2550 —5(e=22)Ay + A%) W_1]A2,A3). (6.6

To calculate the action of the conserved charges on the basis, we recall the discussion from
section 5.2 and the derivation of the eigenstates |e;) that simultaneously diagonalize all the
Boussinesq charges in (5.19). It is straightforward to derive the following relations:

(L) +103) 2v6 (I3 —14)
LL_1|Ay,Ag)=-—"1 20 1 1A, A 2 Uy 1Ay Ag), 6.7
1182,43) 5 182,80)+ i S W | A2, 83) (6.7)
W
V—c+3285+2 (L1 +1n2)
L,W_1|Ag,Ag) = G 2 (Iﬁ%—Inﬂ)L_l|A2,A3>+%W_1\A2,A3>. (6.8)

The trace of the product of these two charges can now be computed for all n and we obtain

(5¢? — 218¢ +2400) 1 1y . )
Try 0 (InQB) = (A% + 9830 - E(C —46)A2 | (1,1 +1,,9)
48675 1 1
(g —134). (6.9)

4
2V —C—|—32A2 + 2

We note that this result does not require knowing the form of the current density Jg but
instead relies on our knowledge of the excited state level-one eigenvalues and eigenvectors
of the Boussinesq charges from the ODE/IM correspondence. Thus, the expression in (6.9)
can be thought of as the ODE/IM prediction for the level-one contribution to the trace of
the product of charges in the first excited level.

We now independently calculate the two-point correlator, but now using the explicit form
of the current density Jg in (6.1). This is done by normal ordering appropriately the required
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n-point correlators of the stress tensor and the spin 3 field, which in turn are computed via
the Zhu recursion formula. For details, we refer the reader to appendix B.5. By comparing
the result of this computation for the ansatz current given in (6.1) and (6.9), we find a perfect
match with the ODE/IM result if we fix a to be

1
_E(

We note that this is consistent with the linear-in-c piece deduced from the classical limit of

a 3c—14) . (6.10)

the current in section 4.3 (see the expression for « in (4.29)). The analysis in this section
fixes a0 = —%. In conclusion, we have completely determined the Boussinesq current Jg
(up to total derivatives), and it is given by:

5¢2 — 276¢ + 628
3840

(2w)2(711”1ﬂ))+—§(2ﬂ)2(c4-30)(M/Wm”). (6.11)

Js = (T(T(TT))) + 18(T(WW)) +

(3¢ —14)
* 16

A similar analysis for the next current Jy does not lead to a solution for the coefficient ~

(27T)4 (T//T//)

because it turns out that the thermal two-point function of Qs and the operator multiplying
v gives a vanishing result at all orders in the g-expansion. A similar result holds for the
operators multiplying §; in J1;. However, we have checked that if we instead insert the
operator §(7"T"), then it does indeed give a non-vanishing contribution, but at sub-subleading
order. Thus, one would have to calculate the eigenvalues of the conserved charges in the
excited states at level L = 2, which we leave for future work. What should be evident from
the analysis in this section is that, by judiciously combining the results for the thermal
correlators and the eigenvalues in higher excited levels, it is possible to determine the current
densities systematically.

7 Conclusions

The main result of this work is the calculation of the thermal one-point functions of all
conserved charges up to weight ten, and the derivation of the higher conserved current Jg in
the quantum Boussinesq hierarchy. The thermal one-point functions are obtained by first
calculating the thermal correlators using the Zhu recursion relations, followed by conformal
normal ordering. Independently, we have also computed the eigenvalues of the conserved
charges in the vacuum and first excited state of a higher spin module through the ODE/IM
correspondence, and shown the mutual consistency of these two sets of results. All thermal
one-point functions we have obtained are quasi-modular linear differential operators acting
on the character of the higher spin module.

It is interesting to note that the information content coming from the ODE/IM cor-
respondence is in some sense complementary to that coming from the thermal one-point
functions. From the ODE/IM side, we computed the eigenvalues of the conserved charges
in the vacuum and first excited levels of the higher spin module. Each of these calculations
involved a WKB analysis of ordinary differential equations. As one moves on to higher
excited states, the calculations get progressively more difficult, and explicit expressions in
terms of the conformal field theory data, namely the central charge, conformal dimension
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and higher spin of the highest weight state, would be hard to obtain (since this rewriting
would involve solving algebraic equations of high degree). In contrast, the thermal one-point
functions contain information about all the excited levels, but only about the sum of the
eigenvalues at each level. These, in turn, have simple expressions that are polynomial in
the conformal field theory data.

One curious feature of our analysis is the fact that there are trace-free combinations of
normal ordered composite operators; that is, linear combinations of composite operators of a
given conformal weight, whose one-point functions give a vanishing contribution to the trace.
It would be important to better understand this feature of the one-point functions. As a
consequence, the thermal one-point functions alone do not lead to a unique determination of
the current densities. However, the excited state eigenvalues of the charges that we compute
once again using the ODE/IM correspondence, along with the higher point thermal correlators
come to the rescue in this case. By computing thermal two-point functions and extracting
the subleading terms in the low-temperature limit, we were able to uniquely fix the current
density Jg, whose integral gives rise to the quantum integral of motion I of the Boussinesq
hierarchy. We believe that this method, which involves both the excited state eigenvalues
and the thermal higher point functions, provides a systematic way to compute the higher
conserved charges unambiguously. In this way we hope to fix the undetermined constants
appearing in the higher currents Jg and Ji; by combining the excited state eigenvalues at
the next level (L = 2), and the thermal two-point functions.

It is important to note that our methods would only fix the form of the current densities.
In order to obtain the operator that corresponds to the conserved charge, one would have
to work out the zero modes of the composite operators appearing in the currents. This
can be done by following the methods of [60]. Once the charge densities and conserved
charges are determined, there are many interesting directions to explore. The calculation
of higher point functions of the conserved charges is an important next step. These will
be crucial to the study of the statistics of the conserved charges (see [56] for work in the
quantum KdV case). In accordance with the generalized eigenstate thermal hypothesis (ETH)
for conformal field theories [61, 62], in the high-temperature limit, correlators receive their
dominant contributions from the states at higher levels. We expect that the higher point
correlators of the conserved charges, akin to those of [56], should factor into a product of
one-point functions in the large temperature limit.

One could also aim to obtain exact results for the generalized partition function in the
large-c limit for the higher spin conformal field theory [57, 63]. We have obtained the eigen
functions and eigenvalues of the conserved charges at the first excited level. It would be a
difficult but worthwhile exercise to attempt a similar calculation at the higher excited levels.

Finally, we would like to recall that, in this work, we have expressed the thermal one-
point functions of the conserved charges as quasi-modular differential operators acting on the
character of the higher spin module, with insertions of powers of the zero mode Wj. These
are known in closed form only for n = 1,2 [54, 55]. Calculating these for higher values of n
remains an outstanding problem. These are all questions we hope to address in the future.
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A Quasimodular forms and elliptic functions
We denote the Eisenstein series as For(7). They are defined as [64, 65]

2 n2k—1qn

Eop(t) =1+ =2 2 rDE

with n, ke Z", (A.1)

where g = *™7. For the first few Eisenstein series, we present the power series expansions:

BEy(7) =1—24q — 72¢*> — 96¢° + . .. (A.2)
Ey(1) = 1+ 240q + 2160¢* + 6720¢° + . .. (A3)
Fe(T) = 1 — 504q — 16632¢> — 122976¢> + . ..

All Eoi(7) for k > 2 transform as a weight 2k modular form under modular transformations,
while Fs is a quasi-modular form:

ar+b
E
2<CT+d

) (7 + )2 Ba(r) - %c (er +d) .
(A.5)

at +b
B (CT -~ d) = (e + d)* Bx(7) .

ab
where d € SLy(Z). To compute the derivatives of Eisenstein series, we set 0 = qdiq
c

and recall Ramanujan identities:
OBy (r) = - (H3(r) ~ Bu(r)).
OEi(r) = 3 (Ba(r) Ba(r) — Eo(r) . (A.6)
OEs(r) = 5 (Ex(7) Bol(r) — E3(7))

The Weierstrass functions are defined for k£ > 1, as [37]

n

nFly
> A=) (A7)

Ok
Pk(:EaQ) = (5{2_ )1)'
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2miu

These expansions converge for |¢| < |z| < 1. We write x = e“™", where u is the coordinate

on a cylinder with a period 1. The derivative with respect to w is given by

OuPr(e2™, q) = kPry1(e*™™,q). (A.8)

2miu

The relationship between P(e*™, q) and Weierstrass functions py(u, ) are guven by [37]:

Pl(eQﬂ—iuv q) = _,01(% 7—) + 2C(2)E2(7')U - i’ﬂa
732(627”“, q) = p2(u, 7) + 2((2)Es(7), (A.9)
Pr(e?™ q) = (—l)kpk(u,T) for k > 2,

where ¢ = €™ and Eoi(7) is the Eisenstein series. The Laurent expansion of p(u,T)
near small u is given by

o (u, 7) = Z <2n + 1) 2¢(2n + 2) Eoppo(T)u? 27k (A.10)

with ((n) the Rienmann zeta function. Note that the above sum vanishes for 2n +2 — k < 0.

B Thermal correlators from recursion

B.1 Vertex operators and square modes

The vertex operator associated to a CFT state a is a local operator whose action on the
CFT vacuum (Q is given by:

V(a,2)Q = eF1%q. (B.1)

For a system of local vertex operators, the action on the vacuum given above determines
the vertex operator completely [66] (see also [67]). A formal series expansion of the operator
associated with a state a in terms of the coordinate on the plane z defines the plane modes
a, for it:

an
Via,2)=> e (B.2)
nez

where h, is the conformal dimension of the field V' (a, z). Since we compute the correlator
of fields on the torus, it would be natural to use vertex operators and mode expansions in
coordinates that have the right periodicity properties built in. Therefore, we transform vertex

operators to the cylinder through a conformal map z = 2™

, u being the coordinate on
a cylinder of circumference 1. The conformal map from the plane to the cylinder has the

following effect on a primary operator V(a, 2):
V(a,z) = V(e*mulog 2miny (B.3)

We now introduce a new type of vertex operator V[a,u] on the cylinder through the following
transformation:
Via,u] = V(e2™ulog 2™ 1), (B.4)

)
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This type of vertex operator naturally appears in the computation of the operator product
expansions of vertex operators on a cylinder [68, 69]. They play an important role in the Zhu
recursion relations, which relate n-point correlators on the torus to lower-point correlators. A
formal series expansion of V[a,u] in the cylinder coordinates defines the square modes for us:

Via,u] = ZZ ui[fg . (B.5)

Explicitly, the square bracket modes can be written in terms of plane modes as:

1 .
aln] = Wj>n;h c(ha,j+ hq —1,n)a;, (B.6)

where the expansion coefficients are given by

(log(1+2)) (1 +2)""1 = c(h,j,5)2 . (B.7)
jzs
This formula will be used for instance to compute the square modes of W (z), whose vertex
operator representation is given by V(W_3(,z). Here we tabulate just the first few of
these square modes:

-1

W o+ 2W_1 + W())

3 30 60
(B.8)

2m (
W 27” 2( 1+ W()"‘ W1_7W2+ Wg——W4—i— )
W2 (2mi) (

-3 W0+W1—*W2+ W4+ )
W[?)] = (27Ti)_4 <W1 + §W2 - ZWB + §W4 —+ .. > .
In contrast to primary fields, general vertex operators transform non-trivially under conformal

transformations [70]. For instance, under the aforementioned map from the plane to the
cylinder, the energy-momentum tensor transforms as:

V(L 59, 2) = (2m0)222V (L 59, 2) — (27)2V (219 z) | (B.9)
This motivates the introduction of the state @ and its modes defined through
~ & _
&= (L_Q— 24) Q, with V(©,2) an T Zan e — ﬂ (B.10)

The conformal dimension of the quasi-primary @ is 2, and the square modes of the stress
tensor on the torus are defined through the formal series expansion in u of the following
vertex operator:

V(emmlog, e — 1) (B.11)
Using the power series expansion discussed previously, the square modes take the form:

Ly = 2mi)0[n +1] = @)™ S o2, 4,n+ 1)Lt — (2mi)° —

—2. B]Q)
24 n,—2 (
j>n+1
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Here we have defined the modes L|_, that satisfy the Virasoro algebra. Evaluating these
square modes for the first few values of n, we get:

Li_y = (2mi)?@[0] = (2mi)(L_1 + Lo),

1 1 1 1
_ 2~ _ - _ = _
Ly = (2mi) (1] = (L0+ 2L1 sLot 5 ls 20L4+...) ,
1

I L 1L (B.13)
2m< O TR 4+"’>’

Ly = (2mi)*@[2] =

D~ 1 1 1
Ly = (27i)2@[3] = @i <L2 — §L3 + ZL4 4. ) )

B.2 Zhu recursion relation

We will follow the notations and conventions of [38, 53|. The n-point correlation functions
are denoted

F((al7 21)y .., (a" 2n);T) = Tr[V(ezmulLOdl, 62”“1) .. V(e2”“"LOELn, eQ”i“")qLo_i] )
(B.14)
Here, the z; := e?™% are coordinates on the plane. For later purposes, it is more convenient
to write the recursion for the n-point correlation function, with [ insertions of the zero mode
of another field b. As shown in [53], this satisfies the (modified) Zhu recursion relation:

F(bé;(a1 21)y ..y (@™, 20);T) :F(béa(l);(aQ,zQ),...,(a",zn);T)

L , . . (B.15)
+ Z Z Z ( >gm+1 (zj1, 9 )F(bf)_’; (@, 22),..., (d'Imld?, zj), ..., (a", z,); T),
=0 j=2m=0
where z;; = 2 and the functions g}'C are defined in terms of the Weierstrass functions'!
Pk(xvq) as
i (z.0) ~enp D p g, (B16)
(1 - q") (k—1)!

In the recursion, the mode denoted d‘[m] is defined to be
d'lm] = (=1)"((b[0])*a")[m] . (B.17)

To find the square modes of composite objects of the form (b[n])a, we use the identity (see
equation (4.2.4) of [38])

(b[n]a)[m] =3 (”) ((=1)'bln — dla[m + 1] = (=)™ a[n + m — iJb]i]) . (B.18)

- 7
)

B.2.1 Thermal expectation values of zero modes

As we show in many examples, the Zhu recursion eventually reduces a higher point correlation
function to the thermal expectation values of zero modes of the various operators. So it

"' More details on this can be found in appendix A of [36].

— 33 —



is useful to tabulate these for the higher spin conformal field theory. The character in the
higher spin module is defined to be
Ag— £
_ q 24
X(1) = Tr<qL° 24> =-—. (B.19)
ne1(l—q")?
The zero mode of the energy-momentum tensor on the torus is given by

~ miuLg ~ iU ¢
@) = /du V(e2rinkog e2miny — [y — TR (B.20)

Thus, the insertion of the zero mode is equivalent to a derivation:
c d\"
T (afy a5 ) = (a4 ) x(r)=0"x(7). (B.21)

where we have defined 0 = qd%.

The insertion of the Wy operator is more complicated and these have been evaluated for
n = 1,2 exactly, while for n > 2, the first few terms in the power series expansion have been
calculated in [54, 55]. We list the results that are of relevance to our calculations:

TrWoq" =31 = Agx(r) = ¢°27% (A5 + 283q + 5A3¢* + O(¢)) , (B.22)
_c 1 c—2 1 1lc+ 30
2 Lo _ 2 _ = _ / o - /
TeWyq™° 2 = (A3 3 (Ag 51 ) Ey(1) + 27E2 (1) + 6 1440 E4(7'))X(T)
Ag—= 2 2 1 2
= ¢ A+ (285 + (3282 — ¢+ 2))g + O(¢) | , (B.23)
C C A
TeWqroms1 = A2 = <A§ + (243 + f(:&m2 —c+2))g+ O(q2)) : (B.24)

B.3 Thermal correlators

In this section, we illustrate how the Zhu recursion works in practice by computing some two
and three-point correlators involving the energy-momentum tensor and the spin-3 current.
The thermal correlators involving just the energy-momentum tensors have been worked out
in detail in [36], so after reviewing the simplest two-point correlator of the stress tensor, we
shall mostly present the results for the new correlators involving the spin-3 field.

B.3.1 (T(u1)T(u2))

We start with the two-point function, which is (7'(u1)T'(uz2)). For this purpose we can put
| =0 and a' = a® = @ in (B.15) and we obtain

F((@,21), (@, 22);7) = F(@0); (@, 22);7) + D g1 (221) F((d°[m]@, z2);7)

m=0

= F(®0); (@,22);7) + Y g1 (220) F((@[m]@, 22);7) (B.25)

m=0

— 34 —



Using the fact that the zero mode of @ is Lo — 57, we find that F'((&())";7) = 0"x(7) where
0= qa% and x(7) is the reduced character defined in (4.3). Since @[0] oc Lj_y), the action of
@[0] on a state corresponds to the action of a derivative with respect to the cylinder co-ordinate;
thus the zero mode for such a state is vanishing. Thus, the m = 0 term in (B.25) does not
contribute to the correlator. To compute the contribution of the m > 0 terms in (B.25), we
use the square modes listed in (B.13). By using all of the above arguments, we find that

F(@,21), @ 2)57) = F(@0)7) + Gz Polm) F((@10):7) + sy PaCean) F(7)
= (1) + G Pa(an)OX(T) + g Palean(). (B26)
Next, we perform the normal ordering using the definition (see (4.6)):
(@) ) = 5 f (T T(). (B.27

In order to do so, we use expansions of the Weierstrass functions (see (A.9) and (A.10))

P2(627ri(u2*u1)’ q) — 1 5 + QC(Q)EQ(T) + 6<(4)E4(7’)(u2 — u1)2 + ...

(ug — uy)

<—1> +20(4) Ea(7) +20¢(6) Eg(7)(uz — 1) + ...

| (B.28)
734((€2m(ug—u1)’ q) _

Only the third term in each of the expansions contributes to the integral over ug in (B.27),
and substituting the values ((2) = %2 and ((4) = g—é, we obtain

c
1440

(TT(w))) = 0°x(7) — %Ez(f)ax(ﬂ + Ey(r)x(7).- (B.29)

For this correlator we set | = 0, a! = @ and a®> = W in (B.15) and we obtain
o0
F((@,21), (W, 22);7) =F((@)o(W)o;7) + Y geny1(z20) F(@[m]W)o; 7) - (B.30)
m=0

Using the square modes of @ given in (B.13) we can show that &[m|W = 0 for m > 2. The
trace of the insertion of the zero mode Wy over the restricted Verma module was computed
in [54]. We use that result to write the first term on the right-hand side of (B.30) as

F((@)o(W)o; 7) = qu(,qum . (B.31)

Combining the aforementioned arguments gives

F((@,21), (W, 22);7) = Az0x(7) + (27T3Z.)2732(221)A3X(7') : (B.32)
Normal ordering is done as before, and we obtain
(W (1)) =84 (0x(r) = EalrIx(7) ) (3.33)
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B.3.3 (T(u1)T(u2)T(us))

We now compute a thermal correlator involving three energy-momentum tensors. We set
| =0and a! = a®> = a® = & in (B.15) and we obtain

F(((Z), Zl)’ (‘Da Z2)a (‘Dv 23); T) = 83X(7—) +

1
(2mi)4

(27T2Z.)2{732(221) + Pa(z31) + Pg(z;gg)}82x(r)
{4732(232) (732(231) + PQ(Z21)> + 2(27)20Ps (232)

+ 4P (231)P3(232) — 4P1(221)P3(232)

_|_

+ g(ﬂ;(zm) + Pa(z31) + 734(z32)) }8){(7-)
+ (27:2.)6{;(2772')28774(232) + Pa2(231)Pa(232) + Pa(221)Pu(232)

+ 2731 (Z31)735(232) - 2731(221)735(232) }X(T) . (B.34)
The normal ordering for three-point function is defined as

(T(TT))(ur)) = (2;)2 7{” u;lﬁgm 722 usdﬁsu2 (T(ur)T (u2)T (us)) . (B.35)

Note that here we have coupled Weierstrass functions in the integrand. To do the integration
sequentially, we use the method discussed in [36], where we Taylor expand P(z;;) using (A.8)
about z;_1 —2; = 01if j # i — 1. Then we use the expansion of the Weierstrass function
in terms Eisenstein series given in (A.9) and (A.10) to do the integral, where again only
the simple pole will contribute.

After performing the normal ordering, we get

(T(TT))(ur)) = &°x(7) — %Ez(T)OQX(T)

C_Ee(r)x(r). (B.36)

+ (B30 + 5 Ba(r) + 365 Bu(r) )Ox(r) = 50 Ey

24 40
We take the low-temperature limit ¢ — 0 and find

lim g2 (T(TT))) = A3~ S(c + A3

q—0
1 ¢ (35¢% + 462¢ + 1504)
—(c+2 2)Ay — B.
T ggo T Aot 2R 183840 (B.37)
B.3.4 (W (u1)W(u2))
For this case we set [ = 0, a! = W and a®> = W in (B.15) and we have
F((W.20), (W.z2)i7) = FWE7) 4 3 g (o) (W m]W)oi 7)
m=0
= F(W§;7) + g9(z20) F(W[LW)g; 7) (B.38)

2, e
* 3b2(27ri)4g4(221)F(w(0)’ T)+ 9b2(2m~)696(221)X(7) :
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We use the square modes of W given in (B.8) to compute the zero mode of W[m|W. The
calculation of the zero mode of W[1]W is straightforward when m # 1. When m = 1, we have

1 2 1 2
)L_4Q+L_3Q+L_QQ+ ¢

2 2
5?—5 2[)2 9b2 Q+*L_2Q . (B39>

27002 3

WLW_39 = (2ri) 2 K
For all but the last term, the zero modes are easy to compute, as
(L,kn)o = (=1)F(k—1)Lg. (B.40)

To compute the zero mode of (L_2)2Q), we use the fact that it is identical to the zero mode
of (T'T)(z) on the plane, which we computing using the formula for the nth mode of (AB)(z)
in terms of the modes of A(z) snd B(z) [4]:

n<—ha n>—hg
We get
(22, Q)O = (TT)o =L +2Lo+2 L nLy. (B.42)
n>0

Collecting all the zero modes, and substituting into (B.38), we get

F(W.2). (W22 7) = FOVEm) + s Palen) (50°3(7) = 50x(7) + 5c5(0))
1 4
+ WPQ(ZQl) <3 TZZZ%L”LH>
+ 31)2(227ri)47)4(221)ax(7') + mpﬁ(m)x(ﬂ . (B.43)

Finally we apply the technique described in [36] to compute <Zn20 L,nLn> by moving L_,
through the trace, and obtain

_ 1= Ex(7) Ey(r) -1
<7§L_HL”> =T O ey ) (B.44)
Substituting this into the correlator we have
) = FOV7) + g Patean) (39700 = o) + o))
F((W,21), (W, z9);7) = F(Wg's7) + (QM-)gpz(Zm) 39°X(T) = GOX(7) + a6 x(7)
L L—Ba(r) Ealr) —1 )

+ (2m.)2772(zz1)( 12 ox(T)+c 5850 x(7)
2 c

-+ W'PZL(ZQI)(?X(T) + WP@(ZQl)X(T) . (B45)

We normal order the above correlator and we get
1 1
(W (1) = (Wo)*) = ~=Ba(r)oPx(r) + o (1605 + (22 + 5) Ey())dx ()

C (168E, () E4(r) + (22 + 5¢) Eg(7))x(7) - (B.46)

4354560
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The thermal one-point function of W@ and its g-expansion has been listed previously in (B.23).
Substituting this into the normal ordered one-point function, and taking the low-temperature
limit, we get

1 1 1 191¢2 2101
A2 ( Tc 9 ) , 91c Ole (B.47)

li ww =A} - — Ay — _ '
qlﬂ%w SHWW) () = A3 18 3456 | 8640 1741824 4354560

B.3.5 (T'(u1)T'(u2))

To compute the thermal correlator involving the derivatives of T', we us the fact that @[0]
operating on T is T". We put [ = 0 and a' = a? = ©[0]@ in (B.15) and we obtain

12 10c
F((@[0]@, 21), (0[0)w, z2); 7) = —WP4(221)8X(7') - WPG(ZM)X(T)' (B.48)
Here we use the fact that the zero mode of @[0]& is zero. We perform the normal order-
ing and get
Ey(T) cEg(T)
2m)*(T'T = — : B.4
(T T w) = —2ox(r) - SEx() (1.49)
In the low-temperature limit, we obtain
A 3lc
2 !t =22
lim i (20 (T'T) () = G2 - 20 (B.50)

B.4 Thermal one-point function of composite operators
B.4.1 Weight eight

Here we present the thermal one-point functions of composite objects which are relevant
to compute the thermal one-point function of I7.

55 (e + 3 Eu(r) + 60E3(r)o"x(r)

(3(c + 32)E4(7)Ey(7) + 10(c 4 6) Eg () 4+ 60E3(7))dx(7)

(T(T(TT)))) = 0'x(r) — E2(1)9°x(7) +

1
4320
L1
4838400

(T(WW))) = —%Eﬁ ) x(7) + ﬁ((&: + 214) E4(7) + 560E§(T))82X(T)
1

= 1354560 (42E2(T )(320E3(7) 4 3(98 4 3¢) E4(7))

+ (150 + ¢)(22 + 5c)E6(T))aX(T)

¢ ((Te+ 1024) B3(7) + 10(7c + 32) By (7)) x(7) ,

¢ 2 2
+ 171132100 (560E2 (T)E4(7) + 4(446 + 25¢)E3 (1) + 2240E5 (1) Eg(7)
o 1

+15(22 4 5 Ba(r))x(r) + (a5 — 3E2() )W),

@r2(T(T'T)) = @Eu P)OX(r) — <o (42B5(r) Ba(r) + 5(14 + ) Bo(r) ) Ox(7)

+ s 100E(r) = 9B(r)x(r).
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1

@OHWW) = 1 Ea(m)0*x(7) = Jgras (168B2(T)Ea(r) +5(22 + 5¢) B (7) ) Ox(7)
+ 1300 (LB (1) + (22 + 50)Es(r))
() H(T"T")) = — = Fo()ox(r) + 5 Bs(r)x(r).

Using the above results, we can show

5C— 34

<(T(T’T’)) - 3(W'W’) + (2n) o

(T”T”)> ~0. (B.51)

B.4.2 Weight nine

Next, we present the thermal one-point functions of composite objects which are relevant
to compute the thermal one-point function of Ig.

(T(T(TI)))) =0 Wo) — 2 B (r)0P (Wo) + 5 (2003 () (c-+ 108) B4 (r)) 0 Wo)

(42003 (7) +63(108+ ) By (7) Ea(7) +130(30-+¢) Eg (7)) (Wo),

120960

(W(WW))) = (W) — éEQ(T)a%W@ +?160(400E%(T) +(166+5¢) E4(T))0{Wy)

— m(5040E§’(7’)+21(978+23C)E2(T)E4(T)

+(3930+c(21T+5¢)) Eg (7)) (W),

(T WT") =5 Ba()Wo) + o2 (63Ba(r) By (7)+2(30+) Bo(r)) (W),

- $E4(r)a<vvo> - ﬁ (6352 (1) E4(7)+5(45+¢) Bg (7)) (Wo),

() (W) =~ B (r){(Wo).

Using the above results, we can show

(2m)*(W(T'T")))

<(T(WT”)) + g(W(T’T’)) _ i(c + 55)(27r)2(T”W”)> ~0. (B.52)

B.4.3 Weight eleven
Next, we present the thermal one-point functions of composite objects which are relevant
to compute the thermal one-point function of I7q.

(W) =0 Wa) ~ 2Ba(r0P W) + ( 5y e+ 1DEA) + TER(T) )02 (00)

~ (3(130(0 +152) Ey (1) Ea(7) + %(% +81)Eg(r) + 158E§(T)) (W)

+ (7¢? 4 4882¢ 4 175356) E2 (1) 4 2(35¢* + 3439¢ + 36978) Fg(7)

m(
+ 1680(c + 152) E4(7) E2(7) + 3200(2¢ + 81) E¢(7) Ea(7) + 84000E§(T)) (W),

(W (W (W) = 05 — 2 Ba(r)(WE) — < Ea(m)*(Wo) + o (5c -+ 502) Bu(r)

((502 + 1717 + 42210) Eo(7)

1
+ 1040E§(7)>52<W0> 1451520
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1
58060800
X (10(5c2 + 1941c + 55650) Eg (7) Bo(T) + (235¢% + 16481c + 371826) E4(7)?

+ (185¢% + 5989¢ + 51954) E (1) + 280(23¢ + 1926) Ey () Ea(7)?

+1008(c + 97) B4 () Ea(7) + 63840E§(T))5<W0> +

+—100800122(r)4)<vvb>,
(2m) (T W)) = %Ea )W)
(2m) (2" (WT")) = ﬁEa P)O(Wo) — 5o (e +9) () + 10B> (1) Bo(r) ) (Wo)
@m)>(W(W'W'))) = @m( 7)0*(Wo) — 181440( 5(C+38)E6(T)+672E2(T)E4(T))8<W0>
29030400 (7 (5¢% + 299¢ + 6102) E4(7)? + 1000(c + 38) Eg (1) Ex(7)

13440 E4 (1) Eo (7) )(vvb>.

The thermal one-point functions of the remaining four composite operators can be inferred
from the four trace-free relations, which we list:

< ((T(T(WT”))) + %(W (W'W")) + (? 9; (19¢ + 258)(T”’(WT’))>
¥ <<2w>4<5c P2t o) <T”’W”’>)> ~0,
<(T”WT +awTTﬂy—?%ﬁaWW%>>:m
((@ovrm) + S@"wT) + @) 155 (e - 2@ W") ) ) =0,
<<T’(T’(TW))) BV VI) — o (2m) (e - 150)(T”’(WT’))>
+ <(27r)4(9"31;£35)(:r’"w'")>> —0.

B.5 A two point correlator

In this section, we show how to calculate the two point correlator

((TT) (w) Jun(w1) ) (B.53)

for n = 8 using the Zhu recursion relations. The procedure described here is fairly general
and can be used to compute two-point functions of any two composite operators. To illustrate
the ideas involved let us discuss the thermal two point function ((T'T)(u1)(T(WW))(v1)).
The other correlators involving the composite operators in Jg can be computed similarly.

The first step is to use the Zhu recursion to compute

(T ()T (u2) T (01) W (v2) W (v3)) , (B.54)
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and then perform normal ordering in a particular manner. Using the arguments used
n (B.3.3) we have that

<(TT)(u1)(T(WW))(U1)>_(Q;Z-)si = f &

1 U2 — U1 Joyy V2 — U1

X % dvs (T'(u1)T (u2)T (v1)W (v2) W (v3)). (B.55)
vy U3 — U2

This two-point function depends only on the difference in the positions of the insertions,

and expanding it in these variables and discarding all but just the constant term gives

us the zero mode. In this computation, we will encounter the product of two Weierstrass

functions with the same argument, for which we are only interested in the constant piece.

The constant piece is given by

(2mi)ymitme (—1)me
(m1 — 1) (mg — 1)!

Pml (x>Pm2 (l‘)’x_m = C(?’ —m1— mQ)aEm1+m2—2 . (B'56>

We once again refer the reader to appendix G of [36] for further details.

C Vacuum eigenvalues of quantum Boussinesq charges

In this section, we list the eigenvalues of the quantum Boussinesq charges in the highest
weight vector of the higher spin module labeled by (Ag, Ag). The charges I3, vanish, and
the rest can be related to the contour integrals in (3.19) by the formula

2w D + )

In=cpe 5 (1+ M) (g S

For the first twelve charges, the ¢, are given by the list {1,0,3,9,0,108} for odd n, and the
list {3,9,0,135,567,0} for even n. The eigenvalues are given by

w3

+
I,. 1
o b (1)

\:

C

— Ay — = 2
27 51 (C.2a)
I = As, (C.2b)
6
I4 = A2A3 — ¢ + Ag y (C2C)
A3 9 c+8> 1 (e +23)(7e+30)
Is = A3+ 9A2 ( L2) A3 (e 2) (et 15)A et (C.24)
I; = A} +18A3A, — %(c + 12)A2
c+12 4 1 9
- +@(5c +127c 4 594) A
(c+2) (10c? + 387c + 3150) c(5c + 186) (2¢% + 43¢ + 150)
- A 2
34560 2 3317760 ’ (C.2e)
14 14
s = Ajay 4383 - CH D apa, [OCH LTI 0
4) + 294
(e +30)(c(35¢ + 604) + 2940) Ay, (C.21)

483840
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1 1
Lo = A3A3 + 6AA3 — glet 18)A3A; — (et 18)A3

(c+30) (7¢* + 215¢ + 1422)
24192

A?) ) (C2g)

N

1
+ %(c +14)(c 4 24) A3z A3 —

N (c+30) (7c® + 401c? + 5844c + 26460)
2322432
135

1
Iy = A§ + = Af + 45A5A] — < (e +20) (243 + 4503A3)

+ 1%22 (A3 +943) (5¢2 + 211¢ + 2154)
35¢3 + 2353c2 + 50514c + 383400 Az |
a 10752 5 96768
350c* + 34061¢3 + 1154072¢% + 14378340¢ + 50425200 A2
+ 7741440 2
(c+2) (140c* + 18577¢ + 8655602 + 15423300¢ + 87318000) A
- 185794560 2
N c(Tc +470) (1820¢* + 216001¢? 4 69978962 + 78367140¢ 4 227026800)

2434651914240

140¢3 + 9445¢2 + 202320c + 1233036)

A3

(C.2h)

The constant prefactors are chosen in such a way that, in terms of the conformal field
theory data, the eigenvalues of the even-dimension charges are normalized to be written as
A3 + ..., while the odd-dimension charges are normalized to be written as AJ ™! Ag + ...
This ensures that the quantum Boussinesq charges go over to the charges of the classical
Boussinesq hierarchy in the large-c limit.
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