
Linear and nonlinear clusterings of Horndeski-inspired dark energy models
with fast transition

Orlando Luongo,1,2,3,4,5,* Francesco Pace ,6,7,8,† and Sebastiano Tomasi 1,4,‡
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We analyze time-dependent dark energy equations of state through linear and nonlinear structure
formation and their quintessence potentials, characterized by fast, recent transitions, inspired by
parameter space studies of selected classes of the more general Horndeski models. The influence of
dark energy on structures comes from modifications to the background expansion rate and from
perturbations as well. In order to compute the structures growth, we employ a generalization of the
spherical collapse formalism that includes perturbations of fluids with pressure. We numerically solve
the equations of motion for the perturbations and the field. Our analysis suggests that a true Heaviside
step transition is a good approximation for most of the considered models, since most of the quantities
weakly depend on the transition speed. We find that transitions occurring at redshifts zt ≳ 2 cannot be
distinguished from the ΛCDM model if dark energy is freezing, i.e., the corresponding equation of state
tends to −1. For fast, recent transitions, the redshift at which the properties of dark energy have the most
significant effect is z ¼ 0.6� 0.2. We also find that in the freezing regime, the σ8 values can be lowered
by about 8%, suggesting that those models could relieve the σ8-tension. Additionally, freezing models
generally predict faster late-time merging rates but a lower number of massive galaxies at z ¼ 0. Finally,
the nonlinear matter power spectrum for smooth dark energy shows a valley centered in k ≈ 1h Mpc−1

which in the clustering case is replaced by a sharp increase for k ≳ 0.2h Mpc−1 and a peak at
k ≈ 2h Mpc−1.

DOI: 10.1103/PhysRevD.110.083523

I. INTRODUCTION

Experimental evidences favor a late-time cosmic
acceleration [1–3] and suggest the existence of an exotic
fluid, exhibiting a negative equation of state (EOS),
called dark energy (DE). In the standard cosmolo-
gical puzzle, DE is intimately related to the cosmolo-
gical constant, Λ, arising from vacuum energy quantum
fluctuations [4,5].
Generally, two different possibilities are commonly

developed to explain the fundamental nature of DE. The
first is framing out the EOS, wðzÞ, through parametric
functions of redshift and observationally constraining its

evolution1 [11,12]. The second is deriving the DE EOS from
first principles, making a priori hypotheses on its micro-
physics [13–15].
In this respect, the use of field theories appears of utmost

importance to model DE in terms of its intrinsic constituent.2

The most studied models, also due to their relative simplic-
ity, are quintessence, phantom, k-essence and fðRÞ gravity
models. k-essence models represent a generalization of both
quintessence (w > −1) and phantom models (w < −1),

*Contact author: orlando.luongo@unicam.it
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1For the sake of completeness, determining the EOS as a
function of redshift may not directly reveal the nature of DE.
However, it clearly plays a significant role in distinguishing
between different DE models [6–10].

2Extended theories of gravity are often conformally equivalent
to scalar fields, for example [16,17]. Investigating scalar theories
can, therefore, provide hints on how to depart from Einstein’s
gravity.
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while fðRÞ gravity can be transformed into Brans-Dicke
models via a conformal transformation. All these models are
specific subclasses of the most general scalar-tensor theory
of gravitation in four dimensions, namely the Horndeski
theory [18]. Given a model Lagrangian, different functional
forms for the EOS arise, according to the specific class
considered. Therefore, one can see that there is a direct link
between the scalar field and the EOS. Hence, describing DE
within the Horndeski framework implies that the EOS
reconstruction with observational data leads to constraints
on the corresponding scalar field potential.3

However, there is an important caveat in this. A generic
Horndeski model, even after the constraints due to the
detection of gravitational waves [20,21], is too general to
be used, unless a particular subclass is considered. Hence,
albeit later we focus only on minimally coupled models
(quintessence, phantom and k-essence), we consider
Horndeski models the framework where to embed our
predictions. To make a concrete example of this difficulty,
we refer to [19] where the authors considered the evolution
of the scalar field for different models. When considering
k-essence, they needed to specify a functional form for the
kinetic term to write the relation between the EOS and the
scalar field potential VðϕÞ. This reinforces the necessity of
considering a particular subclass of Horndeski to proceed
and obtain results.
At small redshifts, the majority of DE models fully

degenerates [22], indicating that late-time constraints appear
less predictive in clarifying how DE evolves throughout the
Universe evolution [23,24]. Nevertheless, DE exerts its
influence through its impact on cosmic perturbations.
Accordingly, it significantly affects the rate of formation
and growth of virialized structures, such as galaxies, galaxy
clusters, and more. Indeed, the cosmic expansion, if driven
by DE, acts to decelerate the gravitational collapse of
overdense regions through the Hubble drag. As DE
becomes dominant, overdense regions experience slower
growth, and the matter gravitational collapse may even
reverse on scales comparable to the Hubble horizon.
Particularly, if DE is not the cosmological constant, it

could exhibit fluctuations in both space and time.
Consequently, DE is not only influenced by matter over-
densities but also gives rise to its own overdensities, that,
in turn, exert a nonlinear influence on matter overdensities.
Motivated by the aforementioned points, in this work we

analyze how effective DE fluid models, characterized by an
EOS with fast transitions, affect the background evolution
and structure formation. This class of paradigms is still
under study and far from being rejected as suitable
candidate for DE [25–29]. While in previous efforts a given
parametrization has been investigated, in this work we
analyze six different parameterizations, four of which

belong to the same fast transition class, in order to under-
stand if the models can be distinguished from one another
and from the ΛCDM scenario. Accordingly, we determine
their effects on structures’ growth by employing a gener-
alization of the spherical collapse formalism [30,31] that
includes fluids with pressure, adopting the formalism
developed in [32,33]. We then numerically solve the
equations of motion (EOM) of the perturbation and field
and investigate linear and nonlinear features of our
models. As a key output, our analysis seems to suggest
that a true Heaviside step transition works fairly well as an
alternative to the cosmological constant and provide a
good approximation to fast transition models. Even
though promising, we emphasize that transitions happen-
ing at z ≥ 2 cannot be distinguished from the standard
cosmological model, if DE is freezing.4 Particularly, in
the freezing regime, slight improvements on the σ8 tension
can be achieved, roughly indicating that such field models
may in principle heal this cosmic tension. Finally, the
nonlinear matter power spectrum for smooth dark energy
shows a valley centered in k ≈ 1h Mpc−1 which in the
clustering case is replaced by a sharp increase for k≳
0.2h Mpc−1 and a peak at k ≈ 2h Mpc−1.
The paper is structured as follows. In Sec. II we work out

how DE can be described in a scalar tensor theory and
introduce the framework we work in. In Sec. II A, we
specialize to the effective fluid description of quintessence
theory, for the reasons discussed above. In Sec. III we set the
perturbation framework, introducing the spherical collapse
formalism, the pseudo-Newtonian approximation to gravi-
tational interaction. Section IV is devoted to the analysis of
the fast transition models. After a brief introduction to the
models, we begin the analysis computing numerically the
quintessence potential and field that correspond to each
EOS. We then compute the linear matter perturbations and
make extensive use of numerical simulations to compute the
virialization overdensity and the linearly extrapolated den-
sity contrast at collapse for the matter perturbations. These
quantities allow for a semiquantitative analysis of the
models and are needed to compute the halo mass function
(HMF) in Sec. IV F. The HMF is quite an important quantity
as it can be directly compared to results of large N-body
cosmological simulations and will be hopefully measured
accurately by the Euclid survey [34]. Conclusions and
perspectives are discussed in Sec. V. Additional discussions
on the background and on the some observed quantities can
be found in the Appendix. Throughout this article, we will
assume c ¼ 1.

II. SCALAR FIELD THEORIES

While general relativity is the most successful theory for
explaining gravity, alternatives have been introduced and

3For a recent discussion about the background properties of the
most studied scalar field models we refer to [19].

4A freezing DE model is one where the DE EOS is approach-
ing the cosmological constant, w ¼ −1, over time.
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severely investigated. Scalar-tensor theories represent a
powerful instrument to produce self-consistent modified
theories of gravity. According to Lovelock’s theorem,
Einstein equations are the only possible second-order
Euler-Lagrange equations derived from a Lagrangian scalar
density in 3þ 1 dimensions that is constructed solely from
the metric, L ¼ LðgμνÞ [35]. To extend Einstein’s theory of
gravity, we can relax this hypothesis of Lovelock’s theo-
rem. A simple way to do this, is to add another degree of
freedom different from the metric, e.g. a scalar field. In
doing so, the EOM contains higher-order derivatives,
possibly leading to Ostrogradsky instabilities [18].
The Horndeski theory is also known, for historical

reasons, as the generalized covariant Galileon [36]. The
procedure to obtain the Horndeski theory is to start from the
most general scalar field theory on a Minkowsky spacetime,
which yields second-order equations, under the assumptions
that the Lagrangian contains at most second-order deriva-
tives of the field, behaving as polynomial in ∂μ∂νϕ.
One then promotes the theory to be covariant, replacing

partial derivatives with covariant derivatives, and adds
appropriate unique counterterm to retain second-order field
equations. The overall procedure can be realized in any
dimension and, particularly, in four dimensions, the
Horndeski theory is given by [18,37,38]

LH ¼ G2ðϕ; XÞ −G3ðϕ; XÞ□ϕþ G4ðϕ; XÞR
þ G4X½ð□ϕÞ2 − ϕμνϕμν� þ G5ðϕ; XÞGμνϕμν

−
G5X

6
X½ð□ϕÞ3 − 3□ϕϕμνϕμν þ 2ϕμνϕ

νλϕμ
λ�; ð1Þ

where ϕμ ≡∇μϕ, ϕμν ≡∇μ∇νϕ, X ¼ −gμνϕμϕν=2, and
G2, G3, G4 and G5 are arbitrary functions, playing the role
of superpotentials, and depend both on ϕ and X and, finally,
fX ¼ ∂f=∂X. Equation (1) represents the most general
scalar-tensor theory exhibiting second-order field equations
in four dimensions.
Thanks to the constraints posed by the gravitational wave

detection [20,21], the previous Lagrangian can be simpli-
fied to be in agreement with them by setting G5 ¼ 0 and
G4 ¼ G4ðϕÞ. However, as we discussed previously in the
Introduction, the resulting Lagrangian is still too generic
and to move forward we need to specify a particular class of
models. This is the reason why, in the following, we
consider only quintessence and phantom models.
These models are described by the following

Lagrangian5

L ¼ −
1

2
η∇μϕ∇μϕ − VðϕÞ; ð2Þ

where VðϕÞ is the scalar field potential and η is a constant
whose value is þ1 for quintessence and −1 for phantom
models. Consequently, the Lagrangian density includes a
further term, contributing to the energy-momentum tensor,
within the Einstein-Hilbert action

S ¼
Z
D
d4x

ffiffiffiffiffiffi
−g

p ðLEH þ LϕÞ;

where g stands for the determinant of the metric, while LEH
is the Einstein-Hilbert Lagrangian and D the integration
domain.
The usual Klein-Gordon equation of motion (EOM) for

the field holds, and reduces, in a Friedmann-Robertson-
Walker (FRW) universe, to

ϕ̈þ 3Hϕ̇þ η
dV
dϕ

¼ 0: ð3Þ

In the next subsection we describe more in detail the
properties of quintessence and phantom models.

A. Quintessence as effective fluid

Quintessence and phantom models are a subclass of the
Horndeski theories and are obtained by setting G3 ¼
G5 ¼ 0, G2 ¼ ηX − VðϕÞ and G4 ¼ 1=ð16πGÞ.
We now want to bridge the gap between the fluid

description of DE and its quintessence/phantom interpre-
tation. By the effective fluid description, we mean to
describe DE through its EOS only. In doing so, there are
two main approaches:

(i) We can specify a potential VðϕÞ and then derive the
EOS, w.

(ii) We can alternatively fix the EOS and calculate the
corresponding quintessence/phantom potential.

Wewill follow the latter approach. Thus, we suppose that
the EOS is a given function wðaÞ [19]. The contact point
between fluid and quintessence descriptions is the EOS
wðaÞ. We, therefore, start from its expression in terms of the
field

wðϕ; ϕ̇Þ ¼ Pϕ

ρϕ
¼ η ϕ̇2

2
− VðϕÞ

η ϕ̇2

2
þ VðϕÞ

;

which allows us to analyze both quintessence (η ¼ þ1) and
phantom models (η ¼ −1).
Thus we have to design the potential in a way that this

expression gives the desired wðaÞ. The field satisfies the
EOM, that is equivalent to the continuity equation
ρ̇ϕ þ 3Hρϕð1þ wÞ ¼ 0. By changing the differentiation
variable from t to a and integrating, we obtain

ρϕ ¼ ρ0ϕe
−3
R

a

1

1þwðxÞ
x dx ≔ ρ0ϕgðaÞ:5For an alternative perspective, we refer the reader

to [5,39–41].
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Consequently, the potential reads

VðaÞ ¼ ρ0ϕ
2

gðaÞ½1 − wðaÞ�; ð4Þ

and, so, to convert VðaÞ into VðϕÞ, we need to compute
ϕðaÞ, which is given by

ϕðaÞ − ϕ0 ¼ �
ffiffiffiffiffiffiffiffiffi
3

8πG

r Z
a

1

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0

ϕηgðxÞ½1þ wðxÞ�
q

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0

m
x3 þΩ0

ϕgðxÞ
q ; ð5Þ

where ϕ0 is the integration constant. We will select it to
ensure that ϕðaminÞ ¼ 0. In this context, amin denotes the
smallest scale parameter value that we employ in our
numerical integration.
There are very few cases in which the solution for gðaÞ is

analytical, but if we have an analytic gðaÞ, there are some
cases in which ϕðaÞ can be computed. Even though this
can be possible, generally it is not trivial to invert ϕðaÞ to
obtain aðϕÞ and, therefore, this task should be computed
numerically.
By defining

Ṽ ≡ 16πG
3H2

0

V; ϕ̃≡
ffiffiffiffiffiffiffiffiffi
8πG
3

r
ϕ; ð6Þ

we have the dimensionless quantities

ṼðaÞ ¼ Ω0
ϕgðaÞ½1 − wðaÞ�; ð7Þ

ϕ̃ðaÞ ¼ �
Z

a

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0

ϕηgðxÞ½1þ wðxÞ�
q

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0

m
x3 þ Ω0

ϕgðxÞ
q dx; ð8Þ

that can easily be integrated through numerical methods.

III. PERTURBATIONS FRAMEWORK

In this section we set the framework to study both linear
and nonlinear perturbations in DE models described by a
given EOS wðaÞ. Because linear equations can be obtained
by linearizing the full nonlinear equations, we will not
repeat the derivation twice, but we will start directly from
the nonlinear equations and then obtain, in the appropriate
limit, the linear ones. In addition, we will consider two
rather different cases regarding the evolution of perturba-
tions in DE models: one where the DE fluid affects the
background only (smooth models) and the other where also
the DE component can have perturbations (clustering
models). In the latter case, we also need to consider the
effects of pressure perturbations.
Investigating perturbations beyond the linear approxi-

mation poses significant mathematical difficulties. To
tackle these caveats, large numerical simulations are often

considered and the spherical collapse model is one of the
most used approximation. The model describes the dynam-
ics of an isolated, spherical region of matter, that is
collapsing under its own gravitational pull. This model
provides a simple, yet effective framework for analyzing
the growth of density perturbations in the early Universe
and their eventual evolution into bound structures such as
galaxies and galaxy clusters.
Heuristically, what is requested in the spherical collapse

model is to pop into existence an overdense sphere, very
early in the cosmic history. Since the Universe is expand-
ing, initially the sphere expands with the Hubble flow.
However, the overdensity causes an inward gravitational
pull that resists the Hubble flow. At a certain point, dubbed
turnaround, the sphere radius stops growing. After turn-
around, the sphere starts collapsing on itself until it reaches
zero radius and infinite density. In the physical world, the
shrinking stops before the collapse due to nonspherical
symmetry, peculiar velocities of the particles, friction,
pressure and other effects that are ignored in the most
basic formulation of the spherical collapse model. To
overcome some of those shortcomings, it is assumed that
the sphere reaches a time in which it becomes stable and
gets into virial equilibrium.

A. Spherical collapse model

To grasp the development of nonlinear perturbations
in a realistic two-component universe that contains DE,
fully-characterized by w, and matter, one can extend the
Newtonian theory to incorporate DE, as an additional term
in the acceleration equation [32,33,42].
To do so, we define δi ≡ ðρi − ρ̄iÞ=ρ̄i as the density

contrast of the ith fluid, where ρiðx; tÞ represents the
perturbed density and ρ̄iðtÞ denotes the background density.
Furthermore, we define θi ≡∇ · vi as the divergence of the
peculiar velocity vi. While, in principle, we can have a
peculiar velocity for each perturbed species, in our setting
this does not happen as the Euler equation is the same for
all the species, in our case dark matter and DE.
With respect to standard dark matter perturbations, we

need to take into account the fact that DE perturbations
involve both density and pressure perturbations. This
introduces, therefore, an additional degree of freedom to
the model, which can only be set once one knows the
microphysics of the fluid via its Lagrangian formulation. As
from a given EOS it is not possible to infer the Lagrangian,
unless one specifies the type of DE model a priori, i.e.,
quintessence or k-essence, we take the common Ansatz of
relating pressure perturbations to density perturbations via
an effective sound speed, c2eff ≡ δP=δρ ≥ 0 [43]. For
quintessence models, c2eff ¼ 1 and the DE component can
be considered effectively smooth, as perturbations propa-
gate at the speed of light. Conversely, k-essence models can
have a small sound speed and this increases the level of
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clustering. In the limit of c2eff ¼ 0, DE can cluster similarly
to dark matter.
We note that for adiabatic fluids, P ¼ PðρÞ, the relation

P ¼ wρ holds both at the background and at the perturba-
tion level, implying c2eff ¼ w. However, this is not the case
here, as the fluid is not adiabatic and having a negative
sound speed will lead to instabilities in the perturbations.
We start by considering smooth DE models, where the

only perturbed fluid is the dark matter one. In this case, it is
easy to write the EOM of the matter density contrast

δ00mþ 3

2a
ð1−weffÞδ0m−

4

3

ðδ0mÞ2
1þ δm

¼ 3

2a2
Ωmð1þ δmÞδm; ð9Þ

obtained perturbing a homogeneous and isotropic universe,
modeled by the FRW spacetime, with aðtÞ the scale factor.
The primes denote derivatives with respect to a, whereas
weff is the effective EOS for the background, defined by

weff ¼
P̄
ρ̄
¼ −

�
1þ 2a

3

H0

H

�
¼ wdeΩ̃de

Ω̃m þ Ω̃de
; ð10Þ

where Ω̃i ¼ Ω0
i giðaÞ is the density evolution of the fluid i,

with the function giðaÞ given by

giðaÞ ¼ e−3
R

a

1

1þwiðxÞ
x dx; ð11Þ

and wiðaÞ the EOS for the ith fluid.
These equations are valid only well within the horizon,

meaning that the radius of the overdensity, R, satisfies
R ≪ 1=H, where H is the Hubble function.
From the full nonlinear equation, it is easy to derive the

equation describing the evolution of linear perturbations.
The resulting expression is the so-called growth-factor
equation and it reads

δ00m þ 3

2a
ð1 − weffÞδ0m −

3

2a2
Ωmδm ¼ 0: ð12Þ

To find the initial conditions of Eq. (12), we use the
Ansatz that at early-times δm ∝ an, which reduces the
differential equation to an algebraic one for the exponent
n. The solution found in this way is valid only at early-
times, in a suitable range of scale parameter values, where
the coefficients are approximately constant. By neglecting
the decaying mode, the solution is given by δlinm ¼ c1an,
where c1 is an arbitrary constant and

n ¼ 1

4
ð−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24Ωm þ ð1 − 3weffÞ2

q
þ 3weffÞ: ð13Þ

The solution is usually denoted as DþðaÞ. For a universe
dominated by matter (baryons and cold dark matter) at
early times, we recover the standard Einstein–de Sitter
(EdS) solution and n ¼ 1 [44].

We now consider the case of clustering DE. Because the
fluid is not adiabatic, the EOS of DE perturbations inside
the sphere is different from that outside represented by the
background value. Suppose that wde is the EOS for the
background DE while ws

de is the EOS inside the sphere.
Since c2eff ≔ δP=δρ, we have

δw≡ ws
de − wde ¼ ðc2eff − wdeÞ

δde
1þ δde

; ð14Þ

where δde represents the density perturbations of the DE
fluid. When perturbations are small (δde ≪ 1), the per-
turbed EOS is approximately equal to the background one,
while when δde ≫ 1 then ws

de ≈ c2eff . This shows that DE
can behave similarly to matter in terms of perturbations
when c2eff ≪ 1.
To derive the equations of the spherical collapse when

DE perturbations need to be taken into account, we can use
a generalized approach based on the pseudo-Newtonian
approximation to gravitational interactions [33,45].
Perturbing the continuity, Euler and Poisson equations
for both fluids leads to

δ0m þ ð1þ δmÞ
θ̃

a
¼ 0;

δ0de þ
3

a
ðc2eff − wdeÞδde þ ½1þ wde þ ð1þ c2effÞδde�

θ̃

a
¼ 0;

θ̃0 þ 1

2a
ð1 − 3weffÞθ̃ þ

θ̃2

3a

þ 3

2a
½Ωmδm þ ð1þ 3c2effÞΩdeδde� ¼ 0; ð15Þ

where θ̃ ¼ θ=H, with θ the divergence of the peculiar
velocity.
As done before, we can linearize the previous equations

and determine how the growth factor equation is affected
by DE perturbations and impose the appropriate initial
conditions for a model with arbitrary sound speed to both
linear and nonlinear equations.
In a universe containing DE, the exponent n is normally

very close to unity with the exception of early DE models.
In those cases, at early times matter is not completely
dominant and therefore Ωm can be quite different from 1.
For what concerns the linearized DE perturbation equation,
by neglecting the decaying mode and using the solution in
Eq. (13) found for the matter contrast, we obtain

δlinde ¼
3Ωmð1þ wdeÞ

nð1þ 2n − 3weffÞ
δlinm þ c2: ð16Þ

Because of the adiabatic condition δde ¼ ð1þ wdeÞδm, we
set c2 ¼ 0. When nonadiabatic initial conditions are
present, pressure imbalances might eventually equalize,
causing any nonadiabatic component to dissipate during
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the evolution of the perturbations [33], only leaving non-
vanishing conventional adiabatic fluctuations.
So the early-time solutions, Eqs. (13) and (16), can be

used to set the initial conditions for both linear and
nonlinear equations, by evaluating them at the scale factor
from which we want to start the numerical integration,
hereafter amin.

For completeness, we report the equations to be solved to
determine the growth factor in clustering dark energy
models. However, note that we report a second order
equation only for matter perturbations, as to avoid deriv-
atives of the sound speed in the equation for DE

δ00m þ 3

2a
ð1 − weffÞδ0m −

3

2a2
½Ωmδm þ ð1þ 3c2effÞΩdeδde� ¼ 0;

δ0de þ
3

a
ðc2eff − wdeÞδde þ ð1þ wdeÞ

θ̃

a
¼ 0;

θ̃0 þ 1

2a
ð1 − 3weffÞθ̃ þ

3

2a
½Ωmδm þ ð1þ 3c2effÞΩdeδde� ¼ 0: ð17Þ

These equations show that matter perturbations are affected
and sourced by DE perturbations.
To determine the initial conditions, we need to assume

that the perturbation collapses at a given scale factor ac (or
equivalently redshift zc). At this time, the matter density
contrast diverges.
Since the nonlinear equations can only be solved

numerically, to define the collapse we must specify a value
for the numerical infinity, indicated by δ∞. To find the
initial conditions that lead to the collapse at ac, we integrate
the nonlinear equations (15) in the range a∈ ½amin; ac� with
initial conditions

δmðaminÞ ¼ δ�c

�
amin

ac

�
n
; ð18aÞ

δdeðaminÞ ¼
nð1þ wdeÞ

nþ 3ðc2eff − wdeÞ
δmðaminÞ; ð18bÞ

θ̃ðaminÞ ¼ −nδmðaminÞ; ð18cÞ

where n is defined in Eq. (13). We choose initial conditions
with that form because in the EdS universe the quantity δ�c
is exactly the linearly extrapolated density contrast at
collapse. In the EdS case, the solution of Eq. (12) is indeed6

δlinm ¼ δ�c

�
a
ac

�
; ð19Þ

and therefore δlinm ðacÞ ¼ δ�c .
If the Universe is not an EdS, the linear matter density

contrast should be numerically integrated. Thus, in a more
general case, the value δ�c does not represent the linearly

extrapolated density contrast at collapse, but it fully
specifies the initial conditions in Eq. (18a).
The numerical algorithm that we set up searches for the

zero of the auxiliary function

fðδ�cÞ ¼ δmðδ�c ; acÞ − δ∞; ð20Þ

with the bisection method, while the system in Eq. (15) is
integrated with a Runge-Kutta 4th-order-integrator at each
iteration of the bisection, to obtain δm.
It is clear that when the function in Eq. (20) is zero, the

nonlinear density contrast at collapse is equal to the chosen
numerical infinity. The meaning of the functional depend-
ence of δm in Eq. (20) on the variables is that the nonlinear
density contrast depends on the value of the initial con-
dition δ�c , considered as the independent variable, and on
the chosen collapse scale parameter ac, which is fixed.
Hence, the bisection algorithm returns the value δ�c .
Knowing the correct value of δ�c fully specifies the initial
conditions. Then, the linearized version of Eq. (15) is
integrated to obtain δlinm ðacÞ, that is the linearly extrapolated
matter density contrast at collapse.
Another quantity that we shall compute is the turnaround

scale factor, ata. To determine it numerically, it is sufficient
to find the value of the scale factor that maximizes the
sphere radius, proportional to

xðδÞ ¼ ζ1=3ta
y

ð1þ δÞ1=3 ; ð21Þ

where the subscript “ta” stands for turnaround, y ¼ a=ata,
x ¼ R=Rta with R the radius of the sphere and ζta ¼ δm;ta þ
1 the overdensity at turnaround. To compute the scale factor
at virialization, avir, we use the result in Ref. [46] for the
radius of the sphere at virialization

xvir ¼
1 − ηv=2

2þ ηt − 3ηv=2
; ð22Þ6Equation (12) can be solved exactly in the EdS case, since the

coefficients are constant.
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where ηt¼ 2ζ−1ta ΩdeðataÞ=ΩmðataÞ and ηv¼ 2ζ−1ta ðata=acÞ3×
ΩdeðacÞ=ΩmðacÞ.
Hence, to compute the virialization scale factor, we solve

the equation xvir − ζ
1
3
ta

a

atað1þδmðaÞÞ
1
3

¼ 0, that is, we search for

the scale factor that equates the radius of the sphere and the
virialization radius.
It is known through the analytical analysis for the EdS

universe that a more reasonable value for the matter
overdensity at virialization is obtained by computing the

numerator of the overdensity ζ ¼ ζta
y3

x3 at collapse and the
denominator at virialization. We name this value7 ζ�vir,
being ζ�vir ¼ ζtað ac

avirxvir
Þ3.

Our Python code is designed to solve the background
equations (friedman_solver) and the nonlinear per-
turbations (nonlinear_perturbations_solver)
and, as we will clarify later in the text, the quintessence
potential and field (quintessence_solver). The
complete code is freely available in the following
GitHub Repository [47].

IV. FAST TRANSITION MODELS ANALYSIS

In this section, we introduce the six fast transition models
that we analyze. We then delve into the quintessence
description of the dark fluid by computing the scalar field
and potential corresponding to each model, focusing
specifically on recent and fast transitions of the EOS.
We then see how linear and nonlinear matter perturbations
grow in a universe containing the dark fluids just men-
tioned. We consider perturbations in two cases:

(i) Smooth DE evolution.
(ii) Clustering of DE.

We mostly focus on models with no phantom behavior
[48], but one of them, namely w6, is in the phantom regime.

A. Introduction to fast transition EOS

Recently, there has been some evidence of a tension
between the standard cosmological model, the ΛCDM
paradigm, and modern observations [49–51]. Thus, evolv-
ing DE scenarios are to date acquiring a renewed impor-
tance to heal cosmic tensions.
Here we explore the consequences of some parameter-

izations, characterized by a steplike transition, shaped by
four parameters, wi, wf , zt and Γ, where

(i) wi is the initial EOS value. This is the value that DE
had for most of the Universe lifetime.

(ii) wf is the final EOS value, constrained to wf < −1=3
since the value of the deceleration parameter at the
present time must be negative.

(iii) zt is the parameter fixing the transition; specifically,
it is referred to as the transition redshift.

(iv) Γ is the parameter that regulates the speed or
steepness of the transition.

We consider six DE models, described by the following
functional forms

w1ðzÞ ¼
1

2
ðwi þ wfÞ

−
1

2
ðwi − wfÞ tanh

�
Γ ln

�
1þ zt
1þ z

��
; ð23aÞ

w2ðzÞ ¼ wf þ ðwi − wfÞ
�
z
zt

�
Γ

1þ
�
z
zt

�
Γ ; ð23bÞ

w3ðzÞ ¼ wi þ
wf − wi

1þ e
z−zt
Γ
; ð23cÞ

w4ðaÞ ¼ wf þ ðwi − wfÞ
1þ e

at
Γ

1þ e−
a−at
Γ

1 − e−
a−1
Γ

1 − e
1
Γ

. ð23dÞ

In the same order of the equations above, those models are
described in the works [25,26,27,42]. In Eq. (23d),
at ¼ 1=ð1þ ztÞ. The four models above are characterized
by the four parameters previously discussed. We further-
more consider

w5ðzÞ¼−1−
Γ

3 lnð10Þ
	
1þ tanh

�
Γ log

�
1þz
1þzt

��

; ð24aÞ

w6ðzÞ ¼ −1 −
f1þ tan ½logð1þ zÞ�g

3 lnð10Þ . ð24bÞ

In the same order of the above equations, those two models
are described in the papers [28,29].
The model in Eq. (24a) has two free parameters while the

last one, Eq. (24b), has no free parameters.
Figure 1 shows all the forms of the EOS employed in

the paper. The first five models can be interpreted as

FIG. 1. Models of EOS as presented in Eqs. (23a)–(24b), using
the same order, with parameter values chosen to make the curves
clear and not overlapping. With the exception of the last two
models, all the others exhibit similar properties.

7Another way to obtain the same is reported in Ref. [45], by
solving the first order system, Eq. (15), and using the new
variable f ≡ 1=δ, leading to a considerable noise reduction.
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nonphantom, with suitable parameters choices, while the
last is in the phantom regime. The first four models can
mimic a fast transition. The difference between them is in
the exact shape of the transition, while they are identical far
away from it.
We now provide a brief description of the main proper-

ties of some of the fast transition models. Referring to
Eq. (23a), for Γ → 0 it reduces to w1 ¼ ðwi þ wfÞ=2which
is the average between the initial and final EOS values. The
average value is also reached when z ¼ zt, thus at zt
the transition is half way through. For Γ → ∞ it tends to
the Heaviside step function centered at zt. The transition
speed can be related to the redshift interval Δz around zt in
which the transition takes place. For Eq. (23a) it can be
computed to be Δz ¼ 2ð1þ ztÞ sinh ð2Γ−1Þ. To obtain this,
we define Δz as the interval between the redshifts where
Eq. (23a) takes the values ðwi þ wfÞ=2� Δw tanhð2Þ=2,
where tanhð2Þ ≈ 0.96. For this model, the transition speed
depends linearly on the transition redshift and thus those
two parameters are not decoupled. In Eq. (23c), Δz
depends only on Γ and thus when the transition happens
it does not influence the transition speed.
Most of the DE models have four free parameters that

must be constrained. The first constraint we apply is
considering fast and recent transitions. In fact recent
developments [26,27] demonstrate that the parametrization
in Eq. (23b) performs optimally when there is a recent and
rapid transition. Furthermore, in Ref. [25] an early-time
transition is indistinguishable from a genuine Chevallier-
Polarski-Linder parametrization [52,53]. Finally, we also
demonstrate that only a recent transition has observable
effects. Therefore, these points justify why we focus on fast
and recent transitions. We choose as “default” the values
reported in the top part of Table I. We are thus considering
mostly freezing models with the exception of Eq. (24b)
which is thawing.8 This choice also allows us to interpret
the models as quintessence theories, as the EOS is always
above the phantom divide line w ¼ −1. Throughout this
paper, we consistently utilise the background parameters
listed in the bottom part of Table I.

B. Quintessence potential and field

In view of the discussion above, we numerically compute
the quintessence potential and field for the DE models
reported in Sec. IVA. To do so, we assume the Lagrangian
in Eq. (2).
To perform the numerical integration, it is more con-

venient to work with the dimensionless quantities ϕ̃ and Ṽ,
as defined by Eqs. (7) and (8). As noted in Sec. II A, we
have the freedom to choose the integration constant, ϕ̃0, of
the scalar field. For simplicity, we set ϕ̃ðaminÞ ¼ 0, where
amin is the lower integration limit.
In Fig. 2, we present the evolution of the scalar field and

its potential for the first model, varying the wi parameter.
We immediately notice that as wi approaches −1, ϕ̃
decreases, resulting in a smaller domain for the potential.
In the limit where both wi and wf equal −1, the model
reduces to the cosmological constant, for which the
potential does not depend on ϕ̃. Numerically, this degen-
eracy results in the potential becoming the single point
ðϕ̃0; 2Ω0

deÞ. As wi approaches zero, DE tends to a matter-
like fluid. For any value of wi inside the interval ð−1; 0�, the
potential is divergent in zero and its slope is shallower when
wi increases and becomes less negative. After the transition

FIG. 2. Model with the EOS w1 with wf ¼ −1, Γ ¼ 10,
zt ¼ 0.5. Top panel: quintessence potential as a function of the
scalar field. The closer is wi to zero, the faster is the divergence
for ϕ̃ → 0. Bottom panel: time evolution of the scalar field. After
the transition to wf , the field flattens as it enters a slow-rolling
period.

TABLE I. Top: default parameters used in the models. Γ is not
shown since it is highly dependent on the model. Bottom:
background cosmological parameters. We have approximated
the values obtained by [54].

wi wf zt Γ

−0.4 −1 0.5 −
Ωm Ωde H0 zls
0.3 0.7 67 1090

8Thawing models have a value of w which begins near −1 and
increases with time.
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to wf ¼ −1, both the field and the potential become
approximately constant, as in this regime DE behaves as
a cosmological constant.
Figure 3 shows the shape of the potential and the

evolution of the scalar field obtained varying Γ. The
dependence on this parameter is relatively weak, with only
one substantially different curve corresponding to Γ ¼ 0.1.
With this choice of parameter, the steplike character of the
transition is lost. Apart from this limiting value, the
potential and the field do not depend strongly on how fast
the transition is. Thus, a true step transition provides a good
approximation for fast transition models, and it has the
benefit of having analytical ṼðaÞ and ϕ̃ðaÞ.
The other models we examined, Eqs. (23b)–(23d), are

quite similar to Eq. (23a) as we can choose their parameter
values in a way that they can mimic Eq. (23a).
Thus, we shift our attention to the fifth model, Eq. (24a),

which is markedly distinct. This functional form contains
only two free parameters, zt and Γ, which influence the final
result in a nontrivial manner, making it an intriguing subject.
Moreover, all other missing degrees of freedom are com-
pletely dependent on these two free parameters, resulting in

a restricted range of possible behaviors compared to the
other models.
Notably, this model does not exhibit a slow-roll period,

since the EOS is always different from −1. Additionally,
Eq. (24a) cannot be regarded as a fast transition. In fact,
while the model starts to behave as a fast transition for large
negative values of Γ, this results in the final value
wðz ¼ 0Þ > −1=3, which is inadmissible as it would not
lead to an accelerated expansion. Although the parameters
influence each other, the scalar field and the potential show
a weak dependence on the transition speed and the final
value of the EOS, compared to the other parameters. Thus,
even if the parameter values depend on each other, the
general behavior is mostly dictated by the parameter zt.
Equation (24b) has no free parameters and is classified as a
phantommodel since it has an EOS w that is always smaller
than −1.
Before moving on with the analysis of the effects that

fast transition induces on linear and nonlinear perturba-
tions, we want to comment more about the results obtained
in this section. As extensively discussed above, here we are
following the designer approach, which implies fixing the
background EOS wðaÞ and then reconstructing the scalar
field and its potential once the functional form of the
Lagrangian has been fixed. For simplicity, we considered
results only for the quintessence/phantom case as the
Lagrangian is unequivocally defined, however we could
have performed the same exercise considering a k-essence
Lagrangian. In this case though, as illustrated in [19], we
can distinguish at least three different functional forms and
to solve for the potential we need not only fix the
Lagrangian, but also the functional form of the kinetic
term. This will make the investigation extremely complex.
Nevertheless, the analysis in [19] shows that the potentials
in the different cases, even though derived for a constant
EOS, do not differ qualitatively, but only quantitatively.
This reinforces our choice to consider only quintessence
models.
Being based in the Horndeski framework, we can move

beyond the simplest models and consider other subclasses,
such as KGB, Gauss-Bonnet and fðRÞ. While the first two
effectively involve scalar fields, the latter will lead to the
determination of the functional form for fðRÞ thanks to
which one can study the evolution of the cosmological
model if it satisfies certain viability criteria. In all the cases,
the analysis will not be trivial and not directly comparable
with what done here. We, therefore, prefer to be more
conservative and discuss models for which we can provide
an immediate physical interpretation.
When studying perturbations, we would face the same

problem, even considering the fluid description. For
quintessence/phantom models, perturbations are negligible,
but this is not necessary the case for k-essence models. To
have an exact value for the sound speed of perturbations,
we would need, once again, the precise Lagrangian we

FIG. 3. Plots for model w1 with wi ¼ −0.4, wf ¼ −1, zt ¼ 0.5.
The solid yellow line is computed using a true step transition,
which in this model corresponds to the limit Γ → ∞. Top panel:
corresponding quintessence potential. Bottom panel: correspond-
ing scalar field. A very fast transition results in wf ¼ −1 right
after zt, while a smoother transition needs additional time to reach
the asymptotic value of wf ¼ −1, corresponding to the slowly
rolling field.

LINEAR AND NONLINEAR CLUSTERINGS OF HORNDESKI- … PHYS. REV. D 110, 083523 (2024)

083523-9



started with. Hence, we simply consider the case where dark
energy, in its broader sense, fully clusters, as we discuss in
the next section.

C. Linear regime

In this section, we analyze how the linear matter density
contrast is affected by the fast transition models presented
in Sec. IVA. We solve the differential equations given by
Eq. (15) with initial conditions obtained from the procedure
outlined in Sec. III A, with amin ¼ als. When we include
DE perturbations, we assume that the DE EOS is not the
same inside or outside the collapsing regions. The differ-
ence is encoded in the effective sound speed, that we will
fix to ceff ¼ 0 since we lack the underlying model9 from
which the parametrizations emerge. This is the minimum
allowed effective sound speed value and it maximizes DE
perturbations.
We start by analyzing the first model given by Eq. (23a).

Figure 4 illustrates how linear perturbations depend on the
wi parameter in the absence of DE perturbations. Linear
perturbations increase as wi decreases, as in this case the
model becomes more similar to the ΛCDM one. In fact,
even if lower values of w correspond to higher late-time
accelerations,10 they also correspond to lower Hubble
functions for 0 < a < 1, as shown in Fig. 21. Due to the
Hubble drag, we expect that lower Hubble functions result
in higher matter density contrast. Using these consider-
ations, we can explain our results by taking into account the
amount of matter at initial conditions. At early times, as
there is a small amount of DE, perturbations grow more
slowly than in a ΛCDM model as the rate of expansion is
higher in the past. This leads to a smaller value of
perturbations today as shown in Fig. 4. We remark that,

even though DE perturbations are often neglected in the
analysis of perturbations, this is strictly true only for
wde ¼ −1, as evident also from Eq. (15).
What happens if we include DE perturbations is shown

in Fig. 5. When δde ≠ 0 the overall behavior remains
qualitatively similar, but with some notable differences.
The presence of DE perturbations results in a reduced
sensitivity of matter perturbations to the parameters value.
Furthermore, if the DE has an EOS with wde < −1=3, it
tends to dilute matter perturbations, whereas if
wde > −1=3, it tends to amplify them. This can be deduced
by inspecting the source term of Eq. (17). As the transition
occurs, DE perturbations cease to grow, and the already
present ones gradually decay due to the expansion. As a
result, the feedback mechanism weakens, and matter
perturbations gradually decouple from DE perturbations.
In agreement with general expectations, dark energy
perturbations are subdominant and are about an order of
magnitude smaller than matter perturbations. Note that here
we just consider the effects of δde on δm, without attempting
to discuss an eventually more general definition of matter
perturbations based on the combination of the two.
Figure 6 presents the results obtained by varying the zt

parameter. As one could expect, for zt > 2, the curves

FIG. 4. Evolution of the linear matter density contrast for model
w1 with wf ¼ −1, Γ ¼ 10, zt ¼ 0.5, when δde ¼ 0. Correspond-
ing background quantities are reported in Fig. 20.

FIG. 5. Plots for model w1 with wf ¼ −1, Γ ¼ 10, zt ¼ 0.5.
Top panel: DE perturbations. After the transition, perturbations
start to decay since the cosmological constant cannot cluster and
the already formed overdensities are diluted by the expansion.
Bottom panel: linear matter perturbations with δde ≠ 0.

9If one assumes quintessence, ceff ¼ 1. Different generalized
versions of quintessence, under the form of quasi-quintessence
fields can be seen in Ref. [55].

10In the wCDM model, ä0 ¼ −0.5½Ω0
m þ ð1þ 3wÞΩ0

de�.
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become nearly indistinguishable from the ΛCDM model
due to the sub-dominant role of DE at early times.
Consequently, an early transition to wf ¼ −1 makes the
model very similar to ΛCDM. This observation has led us
to concentrate on recent transitions and to set zt ¼ 0.5,
while varying the other parameters. On the other hand, if
the transition occurs during DE domination, it significantly
impacts matter perturbations. We chose the initial EOS
value wi ¼ −0.4, which is quite distant from −1. This
choice amplifies the difference between a late-time and an
early-time transition. In fact, for a recent transition, this
value represents what the EOS had for most of the
Universe’s evolution, making the difference with the
ΛCDM model even more pronounced.
In Fig. 7, the results obtained by varying the Γ parameter

are shown. Even though we have considered a wide range
of Γ values, leading to significant changes in the EOS, it is
evident that the linear perturbations are relatively insensi-
tive to this parameter. Thus, a step transition can approxi-
mate a smooth transition quite well at the perturbative level.

D. Nonlinear regime

In this section, we look at nonlinear perturbations when
DE is described by the models reported in Sec. IVA. In
particular, we analyze the behavior of the virialization
overdensity and the linearly extrapolated matter density
contrast at collapse. The equations to be solved are Eq. (15)
with ceff ¼ 0 for clustering DE and Eq. (9) for smooth
models.
In Fig. 8 we show the results for nonlinear matter

perturbations with smooth DE. The curves corresponding
to wi ¼ −0.5 exhibit significant deviation from the ΛCDM
model. This is because, during the evolution of the
Universe, the EOS, wde, had for most of the time the value
−0.5, which is far from the cosmological constant EOS
value. As wi ¼ −0.5 is relatively close to zero, DE starts to
dominate earlier than models with wi < −0.5. Thus, the
corresponding curves deviate more from the ΛCDM case,
compared to others. The fact that the curve corresponding
to wi ¼ −0.5 displays the highest value across all redshifts
for ζ�vir can be attributed to the same effect of the Hubble
function that was discussed in the linear perturbation
analysis (for more details, see Sec. IV C).
Since the models defined by Eqs. (23a)–(23d) can be

made indistinguishable by appropriately choosing the
transition speeds, we do not show results for all of them.

FIG. 6. Linear perturbations with δde ≠ 0, for model w1 with
wi ¼ −0.4, wf ¼ −1, Γ ¼ 10. For zt > 2 the curves become
almost indistinguishable from the ΛCDM model.

FIG. 7. Linear perturbations with δde ≠ 0, for model w1 with
wi ¼ −0.4, wf ¼ −1, zt ¼ 0.5. Despite the extreme variations of
the EOS, the curves corresponding to the DE model are almost
indistinguishable.

FIG. 8. Plot for model w1 with wf ¼ −1, Γ ¼ 10, zt ¼ 0.5 and
δde ¼ 0. Top panel: δc as a function of the collapse redshift zc.
Bottom panel: ζ�vir as a function of the collapse redshift zc. The
wi ¼ −0.5 curve has the highest virialization overdensity.
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The differences between the first four models are shown in
Fig. 9. The maximum difference between the correspond-
ing δc is less than 0.001%, making them completely
indistinguishable from each other, but with appreciable
differences from the ΛCDM model.

E. Matter power spectrum

Given that our primary objective is to compare our results
with simulations and observations, we compute the halo
mass function (HMF) for different fast transition models.
Understanding the dependency of the HMF on the DE
model is crucial, especially in anticipation of precise
measurements in upcoming surveys such as Euclid [34].
The results presented in this section are partially obtained
using the CLASS code [56], which is used to compute the
linear matter power spectra, while for the nonlinear matter
power spectrum we used the ReAct code [57] based on the
halo model reaction [58].
In the halo model reaction, the nonlinear matter power

spectrum can be evaluated using the following relation:

PNLðk; zÞ ¼ Ppseudo
NL ðk; zÞRðk; zÞ; ð25Þ

where the pseudo matter power spectrum is such that the
nonlinear physics is given in a general relativistic frame-
work and the initial conditions are adjusted to mimic the
modified linear clustering and the required redshift. The
function Rðk; zÞ is the reaction term and is the corrected
ratio of target-to-pseudo halo model spectra

Rðk;zÞ¼f½1−EðzÞ�e−k=k⋆ðzÞ þEðzÞgP2Hðk;zÞþP1Hðk;zÞ
Ppseudo
hm ðk;zÞ ;

ð26Þ

whose components are

Ppseudo
hm ðk; zÞ ¼ P2Hðk; zÞ þ Ppseudo

1H ðk; zÞ; ð27Þ

EðzÞ ¼ lim
k→0

P1Hðk; zÞ
Ppseudo
1H ðk; zÞ ; ð28Þ

k⋆ðzÞ¼−k̄
	
ln
�
Aðk̄;zÞ
P2Hðk̄;zÞ

−EðzÞ
�
− ln½1−EðzÞ�


−1
; ð29Þ

and

Aðk; zÞ ¼ P1−loopðk; zÞ þ P1Hðk; zÞ
Ppseudo
1−loopðk; zÞ þ Ppseudo

1H ðk; zÞP
pseudo
hm ðk; zÞ

− P1Hðk; zÞ: ð30Þ

In the expressions above, PLðk; zÞ is the linear matter
power spectrum, while the 1-halo terms with and without
corrections to the standard spherical collapse are P1Hðk; zÞ
and Ppseudo

1H ðk; zÞ, respectively. Finally, P2Hðk; zÞ is the
2-halo term while P1−loopðk; zÞ and Ppseudo

1−loopðk; zÞ are the
1-loop predictions with and without nonlinear modifica-
tions to the ΛCDM model, respectively.
Both codes have been suitably modified to evolve the

perturbations for the models considered in this work.
Subsequently, we calculate the HMF using the results from
Sec. IV D. In this work, we assume a spectral index ns ¼
0.96 and use the background parameters provided in
Table I. Unless stated otherwise, if δde ¼ 0, we also set
c2eff ¼ 1. Conversely, if δde ≠ 0, we set c2eff ¼ 0. This
means that if DE cannot cluster, we set the effective sound
speed to unity in the CLASS code.11 However, if DE can
cluster, we maximize its perturbations by setting the sound
speed to zero. In Table II we present the values of σ8ðz ¼ 0Þ
for the model described by Eq. (23a). Allowing DE to
cluster consistently increases the σ8 value, thereby enhanc-
ing matter clustering.
For freezing models, DE can cluster until the transition

occurs, since, according to Eq. (15), only DE with w ≠ −1
can cluster. This mechanism could result in a decrease of σ8
by about 8%, without significantly impacting the back-
ground evolution, for example the maximum deviation of
the age of the Universe is less then 3%.
Figure 10 presents our results about the linear (top panel)

and nonlinear (bottom panel) matter power spectra with the
corresponding percentage difference with respect to
ΛCDM for the model described by Eq. (23a) with δde ¼ 0.

FIG. 9. Plot for models w1, w2, w3, w4 respectively, with
wi ¼ −0.5, wf ¼ −1, Γ1 ¼ 10, Γ2 ¼ 6.5, Γ3 ¼ 0.07, Γ4 ¼ 0.033,
showing the matter density contrast at collapse. As we can see,
the differences between these four models are negligible.

11Formally, the CLASS code always evolves a set of equations
in which the fluid perturbations are included. However, setting
c2eff ¼ 1 makes sure that perturbations are effectively suppressed
and relevant only on the largest scales.
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Note that the positions of the throats in the ratio, shown in
the bottom panel, are not due to the transition, as altering zt
does not shift them, but are due to the exact scale where the
spectrum starts to become nonlinear. By comparing with
Fig. 11, which shows similar results for clustering DE, we
note that the models behave very similarly on small scales.
At larger scales, we see that in the clustering case, peaks
replace the throats observed in the smooth case. We also
compared our results with those obtained by deriving the
nonlinear matter power spectrum using the halo model
approach. We found qualitatively similar results, with
differences of the order of 5% between the two approaches.
In particular, with the ReAct code, the nonlinear effects are
stronger.
We notice that, however, to understand the exact level of

accuracy of our predictions, we need to rely on full N-body
simulations, which solve the full equations consistently.
These simulations would then permit a direct comparison
with our results and allow us to establish the exact scales to
which we can trust the ReAct code or any other formalism
used. For clustering dark energy, an available framework is
provided by the k-evolution code [59,60] which also evolves
the equations of clustering dark energy. The authors
showed that for large values of the sound speed, nonlinear
effects of the dark energy component are either negligible
or very small and results from the CLASS code are very
accurate, while this is not the case for very small values of
the sound speed. The k-evolution code solves the equations
assuming that the dark energy component is represented by
a scalar field, while in this work we assumed it to be
represented by a fluid. Hence, the formulation proposed
by [61], which is based on the integration of the continuity
and Euler equations is closer to what we have done here,
even though, in their formulation, additional terms are
considered. It is, therefore, important, to compare the
different codes, establish their level of agreement and then
improve the accuracy of our results.

F. The halo mass function

One of the most useful quantities that can be computed in
order to test a model is the HMF. This function gives the

FIG. 10. Plots for model w1 with wf ¼ −1, Γ ¼ 10, zt ¼ 0.5,
δde ¼ 0. Top panel: linear matter power spectrum. Bottom panel:
nonlinear matter power spectrum.

TABLE II. Present values of σ8, for model w1. The superscript
0 correspond to δde ¼ 0, c2eff ¼ 1, while 1 to δde ≠ 0, c2eff ¼ 0.

wi −0.5 −0.7 −0.9

σ08 0.71 0.754 0.754
σ18 0.729 0.765 0.784

wf −0.5 −0.7 −0.9

σ08 0.636 0.635 0.663
σ18 0.705 0.711 0.724
zt 0.1 0.8 2

σ08 0.626 0.713 0.771
σ18 0.679 0.755 0.788

Γ 0.5 1 5
σ08 0.704 0.707 0.677
σ18 0.743 0.743 0.718
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number of virialized objects with mass M∈ ½M;M þ dM�
per unitary comoving volume, at a given redshift. Calling n
the number density of virialized object, the mass function
is dn=dM.

The most consolidate treatment to obtain an analytical
expression for the mass function is the Press and Schechter
(PS) HMF [62]. To obtain the corresponding expression,
we assume that the density field is Gaussian and if δM is the
density field filtered on a scale M ¼ 4=3πR3ρ̄m;0, then we
have

pðδMÞ ¼
1ffiffiffiffiffiffi

2π
p

σðMÞ e
−

δ2
M

2σ2ðMÞ; ð31Þ

where σðMÞ is the variance of the filtered contrast. Then the
probability that the density contrast is larger than a critical
value δc can be computed as

PðδM > δcÞ ¼
Z

∞

δc

pðδMÞdδM ¼ Erf

�
δMffiffiffi
2

p
σðMÞ

�
∞

δc

; ð32Þ

with Erf the complementary error function. This quantity is
approximately proportional to the number of structures
with masses larger than M. Thus, we have that

2ρ̄m;0
dPðMÞ
dM

¼ M
dn
dM

; ð33Þ

yielding the standard formula

dn
d lnM

¼ ρ̄m;0

M
fðνÞ

���� d ln σd lnM

����; ð34Þ

where ρ̄m;0 ¼ ρ̄mða ¼ 1Þ. The multiplicity function is

fðνÞ ¼
ffiffi
2
π

q
νe−ν

2=2, with ν ¼ δc=σ. Usually, the critical

value δc is taken to be the linearly extrapolated density
contrast at collapse as computed in the spherical collapse
model, since this value should correspond to fully collapsed
objects. The redshift dependence of the HMF comes from
both δcðzÞ and the fact that σðM; zÞ ¼ DþðzÞσðMÞ where
DþðzÞ is the growth factor.
The Sheth–Tormen (ST) [63,64] HMF extends the PS

formalism by assuming that halos are ellipsoidal and not
perfectly spherical. The result is that the function f of
Eq. (34) changes to

fðν0Þ ¼
ffiffiffi
2

π

r
A

�
1þ 1

ðν0Þ2q
�
ν0e−ðν0Þ2=2; ð35Þ

with ν0 ¼ ffiffiffi
a

p
ν and fiducial values for the parameters

q ¼ 0.3, A ¼ 0.322, a ¼ 0.707, coming from fits of
numerical simulations data.
In Fig. 12, we present the Sheth-Tormen (ST) HMF for

smooth DE. For a galaxy of average size, such as the
Milky Way, which has a mass of approximately
7 × 1011M⊙h−1, we predict the deviations outlined in
Table III. As anticipated from the analysis in Sec. IV D,
we expect the difference with respect to the ΛCDM model

FIG. 11. Plots for model w1 with wf ¼ −1, Γ ¼ 10, zt ¼ 0.5,
δde ≠ 0. Top panel: linear matter power spectrum. Bottom panel:
nonlinear matter power spectrum.
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to peak at z ≈ 0.8. The deviations reported in Table III,
even if the considered redshift range is too narrow to draw
a definitive conclusion, suggest this behavior as well for
the HMF.
The ST formalism offers a possible description of the

HMF in clustering DE models. A prescription by [65]
implies a rescaling of the ST mass function via the PS mass
function [62] according to the following recipe

dn
d lnM

¼ dnSTðc2eff ¼ 1Þ
d lnM

dnPSðc2eff ¼ 0Þ=d lnM
dnPSðc2eff ¼ 1Þ=d lnM : ð36Þ

The main idea is that the errors in the PS approach will
partially cancel in doing the ratio. As we can see in the top
panel of Fig. 13, the effect is greater at higher masses where
the recipe tells us that we can expect deviations of about 5%
aroundM ≈ 1013M⊙h−1. In the bottom panel of Fig. 13, we
show the percentage difference between the scaled mass
function computed through Eq. (36) and the ST mass
function with clustering DE. In this case the deviations are
around 1% and almost constant across the mass range. This
confirms that taking the ratio of the PS HMFs partially
removes its shortcomings. The top panel in Fig. 13 also
shows the difference between clustering and smooth DE on
halo formation. With the exception of models with

wi ¼ −0.5, the difference in the number density of galaxies
with average mass, between the clustering and smooth
cases, is of the order of 1% which is not particularly
significant. Only at higher masses and for higher initial
EOS values the effect becomes more significant.
In Fig. 14, we illustrate the HMF, taking into account

variations in the final value of the EOS. Note that devia-
tions are expected to increase with redshift up to z ≈ 0.8.
The curves are grouped according to their corresponding
redshifts. Despite the high sensitivity of the virialization
overdensity to wf variations, the HMF’s sensitivity pri-
marily hinges on redshift rather than the specific value of
wf . This is anticipated since the HMF is a function of the
growth factor and our analysis showed that it is much less
sensitive to wf with respect to the nonlinear regime. At
z ¼ 1, the curves become indistinguishable due to z ¼ 1
being prior to both matter-DE equality and the DE
transition. Therefore, the deviation between curves for
clusters with the same redshift of the standard model
can be attributed to the initial value of the EOS.
In Fig. 15, we display the HMF, adjusting the transition

redshift parameter. In this scenario, we anticipate the
differences to reach their peak at z ≈ 2. If the transition
is quite recent (as in the case of zt ¼ 0.1), the model

TABLE III. Percentage deviations of the ST HMF from the
ΛCDM model, for an average size (7 × 1011M⊙h−1) galaxy, as
extracted from Fig. 12.

Redshift wi ¼ −0.5 (%) wi ¼ −0.7 (%) wi ¼ −0.9 (%)

z ¼ 0 þ0.57 þ0.39 þ0.14
z ¼ 0.5 −9.7 −3.8 −1
z ¼ 1 −24 −10 −2.7

FIG. 13. Plots for model w1 with wf ¼ −1, Γ ¼ 10, zt ¼ 0.5.
Top panel: the plot shows ½PSðcs ¼ 0Þ=PSðcs ¼ 1Þ − 1� × 100,
where the PS functions ratio is used to scale the ST mass function
as prescribed by Eq. (36). Bottom panel: percentage difference
between the scaled ST mass function and the ST mass function
with cs ¼ 0.

FIG. 12. Plots for model w1 with wf ¼ −1, Γ ¼ 10, zt ¼ 0.5,
δde ¼ 0. Top panel: ST mass function for various values of wi and
redshift. Bottom panel: percentage difference with respect to the
ΛCDM model defined through the relation ΛCDM ð1þ%Þ.
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behaves similarly to a wCDM with w ¼ wi ¼ −0.4, result-
ing in the maximum difference compared to the ΛCDM
paradigm. However, if the transition to wf ¼ −1 occurs
before matter-DE equality, the model behaves like the
standard one at z ¼ 0, but shows deviations at higher
redshifts.
In Fig. 16 the results for the HMF when the transition

speed is varied are shown. The effects of the transition
speed on galaxy formation are quite low at z ¼ 0: the
differences between the curves are ≈0.1% for an average
mass galaxy. The differences become more prominent at
higher redshifts: curves with z ¼ 1 can differ by 22%,
while at z ¼ 0.5 can differ by 6%. Those differences at high
redshifts are amplified by the choice wi ¼ −0.4. An initial
value closer to −1 dampens those differences. Despite that,
only measurements at z⪆ 0.5 could possibly detect the
transition speed effects.

Regarding the other models, they bear a strong resem-
blance to the model of Eq. (23a). The main differences lie in
the exact shape of the transition. As we have seen here and
in previous sections, structure formation is quite insensitive
to the exact form of the transition, thus reporting them
would not add more insights on the physics. We just show
in Fig. 17 the HMF for the first four models, with fixed
parameter values and different redshifts. The maximum
deviations at redshift z ¼ 1 are < 5% at high masses and
< 0.5% for an average mass galaxy.

V. OUTLOOKS AND PERSPECTIVES

In this study, we analyzed six fast transition DE models.
Five of them are argued as effective quintessence fluids
while all lie within the category of effective Horndeski
fluids, i.e., these scenarios originally emerged from explor-
ing the Horndeski parameter space. For those frameworks
allowing a quintessence interpretation, we computed the
quintessence field and potential. Our results are summa-
rized below.

FIG. 15. Model w1 with wi ¼ −0.4, wf ¼ −1, Γ ¼ 10, δde ≠ 0
for several values of zt.

FIG. 16. Plot for model w1 with wi ¼ −0.4, wf ¼ −1, zt ¼ 0.5,
δde ≠ 0 for various values of Γ and redshift.

FIG. 17. Comparison of the HMFs for model w1, w2, w3, w4

with wi ¼ −0.5, wf ¼ −1, zt ¼ 0.5, Γ1 ¼ 10, Γ2 ¼ 6.5,
Γ3 ¼ 0.07, Γ4 ¼ 0.033. The models are indistinguishable.

FIG. 14. Plots for model w1 with wi ¼ −0.4, Γ ¼ 10, zt ¼ 0.5,
δde ≠ 0. Top panel: ST mass function for various values of wf and
redshift. Bottom panel: percentage difference with respect to the
ΛCDM model defined through the relation ΛCDM ð1þ%Þ.
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(i) The field potential exhibits a weak dependence on
both the final value and the transition speed of the
EOS. Notably, the dependence on the transition
speed is particularly weak and we demonstrated
that a Heaviside step transition can serve as a good
approximation for fast transition models, with the
benefit of having analytical gðaÞ and VðaÞ.

We computed the effects of such models on the expan-
sion history of the Universe and on structure formation. The
performed analysis brought to light the most important
aspects of the fast transition models. In the simplest
analysis of the matter linear perturbations we found results
consistent with the scalar field analysis.

(ii) Linear matter perturbations are quite insensitive to
the transition speed, suggesting that a Heaviside
step transition can approximate well fast transition
models also at perturbative level.

(iii) For all the nonphantom models we found that they
result in lower density contrast respect to the
standard model. We showed that this can be under-
stood with the background evolution, by comparing
the Hubble functions of the different models with
the ΛCDM one.

(iv) Linear perturbations are insensitive to the redshift at
which the transition happens (zt) if zt ⪆ 2. This is
due to the fact that matter-DE equality happens
between12 z ¼ 1 and z ¼ 0.3. If the transition
happens before matter-DE equality, when DE is
sub-dominant, DE effects are not evident. On the
other hand if the transition happens within DE
domination, the effects are more pronounced.

(v) We compared the case of δde ¼ 0 to δde ≠ 0 and
found that when DE perturbations are included, the
overall behavior remains qualitatively similar. The
presence of DE perturbations results in damping of
matter perturbations due to the interactions between
the two fluids. If DE has wde < −1=3, it tends to
dilute matter perturbations, whereas if wde > −1=3,
it tends to amplify them.

(vi) The models w1, w2, w3 and w4 are indistinguishable
one from the other, because the maximum differ-
ence between them is less than 1%. The w6 model,
being phantom, results in perturbations higher than
the standard model.

We also analyzed matter perturbations in the nonlinear
regime. We computed the virialization overdensity, ζ�vir, and
the linearly extrapolated matter density contrast at collapse,
δc. The latter quantity is very significant as we used it to
compute the HMF.
(vii) We understood in a simple way the qualitative

behavior of the virialization overdensity and its
main features, such as the presence of a peak in

the percentage difference with respect to ΛCDM
and its position. In fact, we explained why the ratio
between the Hubble function for a wCDM universe
to the standard model one, shows the same quali-
tative behavior as the ratio of the virialization
overdensities. We analytically computed the loca-
tion of the peak using the Hubble functions and
obtained, for w → −1, z ≈ 0.6.

(viii) The peaks in the virialization ratios are generally
located at z ¼ 0.4� 0.2 and z ¼ 0.8� 0.2 which
average at z ¼ 0.6� 0.2, i.e., very close to the
transition redshift constraints [66–68], while far
from the equivalence DE-dark matter [69]. The
Hubble function approximation does not work well
in predicting the peaks when the zt parameter is
varied. In the case of zt ¼ 2 we found the peak
at z ¼ 2.9� 0.2.

(ix) We showed how the shape of the virialization
overdensity can be understood by comparing the
model’s Hubble function to the EdS one.

(x) By varying the transition speed we found that also
nonlinear perturbations are quite insensitive to the
parameter, confirming again the previous results.

(xi) In the nonlinear regime, perturbations exhibit high
sensitivity to the final EOS value in comparison to
the linear regime. This is because in the nonlinear
phase, the changes happen much faster13 and thus
even if DE has a short time after the transition in
which it can act, the effects are quite large.

(xii) We compared the clustering case, δde ≠ 0, to the
smooth case, δde ¼ 0. The main effect of DE
perturbations is to dampen, on average, by 2%
the differences of the model with respect to the
ΛCDM model. The dampening depends on the
exact parameter value considered.

(xiii) Consistently with the linear results, the models
w1, w2, w3 and w4 are indistinguishable one from
the other.

We then analyzed statistical properties of the matter
clustering, namely the linear and nonlinear power spectrum
and the HMF. We found that:
(xiv) Freezing fast transition models can lower the

present σ8 value by around 8%, without affecting
too much the background evolution. This suggests
that it may be possible to relieve the σ8 tension
with such models. This possibility deserves a
thorough investigation, and we intend to pursue
it in a future work.

(xv) By comparing the nonlinear matter power spectrum
for smooth and clustering DE, we found that
clustering slightly suppresses the differences with
respect to the LCDM model. In the smooth case,

12The bounds are computed using the wCDM model with w ¼
−0.4 and w ¼ −1 for the first and second bounds, respectively.

13In the time it takes linear perturbations to reach δ ¼ 1.686 the
nonlinear ones reach infinity.
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valleys at k ≈ 1h−1 Mpc in the percentage differ-
ence are replaced by peaks at k ≈ 2h−1 Mpc when
clustering is allowed. This effect could be used to
detect signatures of clustering DE.

(xvi) Since perturbations are maximally different from
the standard model at z ≈ 0.6, we argue that this
happens also for the HMF. The redshift range we
have used is too narrow to prove this; thus, we plan
to extend it in future work.

(xvii) We showed that the differences between the HMF
in the clustering and smooth case are small,
approximately 1% for average size galaxies, while
they can become more important, approximately
5% for massive galaxies.

(xviii) We explained why the HMF shows a weak depend-
ency on wf . The dependency of the HMF on the zt
parameter is very weak for zt ⪆ 2. For zt ¼ 2 at
z ¼ 0, the model is indistinguishable from the
standard one, while there are some signs of the
transition at higher redshifts z ¼ 0.5; 1.

(ixx) All the models predict a lower number of massive
galaxies, except Eq. (24a) which is thawing, and
predicts higher numbers of massive galaxies with
respect to the ΛCDM model at z ¼ 0. This model
with Γ ¼ −2.5, predicts that from z ¼ 0.5 to z ¼ 0,
the number of massive galaxies increases by 50%
with respect to the ΛCDM scenario, implying a
period of fast galaxy merging which may be
detectable. This is a common feature of the models:
they predict a merging rate higher than in the
ΛCDM universe.

We conclude by presenting perspectives and research
challenges below.

(i) Can an evolving fast-transition DE influence gravi-
tational lensing, and how? By changing the EOS of
DE to a fast-transition model, we can study how a
sudden period in which DE undergoes a transition
affect this observable.

(ii) Determining whether freezing fast transition mod-
els can alleviate the σ8 tension and to clarify their
impact on the Hubble tension [see also [70–72]].
Indeed, the presence of DE perturbations may
influence baryon acoustic oscillations and the
cosmic microwave background power spectrum.
A dynamical DE also changes the expansion
history of the Universe and thus the relation
between the values of the Hubble parameter at
different redshifts. Thus, we will explore the
possibility of a model that can alleviate both
tensions at the same time.

(iii) Investigating whether future data from the Euclid
mission will be accurate enough to discern
differences in the nonlinear power spectrum be-
tween clustering and smooth DE cases.
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APPENDIX: ADDITIONAL MATERIAL

In this appendix we present some additional material
which contributes to a better understanding of our results.
In particular, we discuss how the model represented by the
EOS w1 depends on the free parameters and how similar or
different the other models are, with respect to both back-
ground and perturbations.

1. Background

In Fig. 18 we report the EOS for the chosen values of the
wi parameter, for model w1, Eq. (23a). For lower values of
wi the transition is more gentle, in the sense that the EOS
derivative during the transition is lower. However, the time
it takes to transition does not depend on wi. How the EOS
w1 depends on the wf parameter is shown in the top panel of
Fig. 19. The potential and scalar field consequently vary
but as the transition is recent, the potential and the field do
not depend as strongly on the wf parameter as they do on
the wi parameter, resulting in a narrow cluster of curves we
calculated but decided not to show. In the bottom panel of
Fig. 19 we present the EOS as we vary the transition speed
parameter, Γ. The model exhibits a spectrum of behaviors,
from approximating the wCDM with w ¼ ðwi þ wfÞ=2
when Γ ¼ 0.1, to resembling the Heaviside step transition

FIG. 18. Behavior of the EOS for model w1 with constants
wf ¼ −1, Γ ¼ 10, zt ¼ 0.5, when the parameter wi is varied.
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when Γ ¼ 10. The true step transition is also shown and
serves as an approximation for fast transition models.
To give the reader a more comprehensive understanding

of the Universe evolution in the presence of the considered
DE models, we present the evolution of some additional
background quantities, namely the matter density param-
eter, the Hubble function and the model described by the
EOS w5. In Fig. 20, we show the effective EOS and the
matter density parameter when DE is described by model
w1, with different values of the wi parameter. The more wi

approaches zero, the more Ωm, at early-times (a ≈ 10−3),
differs from unity, even if slightly. In the limit of wi ¼ 0, at
early times Ωm would be equal to 0.3. Considering for a
moment matter perturbations, this is useful to understand
how the background affects clustering and remarks the
importance of using the correct exponent for the growth
factor in Eq. (13).
Figure 21 shows the percentage difference between the

scaled Hubble function, EðaÞ≡HðaÞ=H0, of the standard
cosmological model and the wCDM model, which we use
as a reference to better understand fast transition models.
The main feature is that the wCDM model has an Hubble
function always higher than the ΛCDM model, resulting in

an augmented Hubble drag. We have shown in Sec. IV C
that this implies lower matter clustering in the wCDM
universe.
The last model we analyze is w5, Eq. (24a). Results are

shown in Fig. 22. In the top panel, we can see that at early

FIG. 19. EOS of a model described by the w1 functional form
with fixed wi ¼ −0.4 and zt ¼ 0.5. Top panel: we set Γ ¼ 10 and
vary wf parameter. Bottom panel: we fix wf ¼ −1 and consider
different values of the Γ parameter. The yellow line is the
Heaviside step function which approximates the model for
Γ → ∞. For small values of Γ, the model tends to a wCDM
model with w equal to the average of wi and wf .

FIG. 20. Plots for model w1 with wf ¼ −1, Γ ¼ 10, zt ¼ 0.5.
Top panel: effective EOS. It shows that at early times, DE with wi
close to zero has an important impact on the background
evolution of the Universe. Bottom panel: matter density param-
eters. Comparing the case wi ¼ −0.5 to the ΛCDM curve shows
that matter is not completely dominant at last scattering.

FIG. 21. Percentage difference between the wCDM and ΛCDM
Hubble functions, defined as EwCDM ¼ EΛCDMð1þ%Þ. This
shows that if the late-time acceleration of the Universe increases,
the Hubble function decreases. Even if we have shown this for the
wCDM model, it qualitatively holds for fast transition models.
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times, the EOS is consistently close to −1, implying that
matter dominates. In the bottom panel, instead, we show the
effect of varying the parameter zt. We can note that the final
EOS value and the Γ and zt parameters are highly
dependent, while the initial value is fixed to wi ¼ −1
making this model thawing.

2. Linear and nonlinear perturbations

In the previous section, we should have considered all
the other models, but we notice that among the six EOS
considered, the first four, Eqs. (23a)–(23d), behave in the
exactly same way, as shown in Fig. 23, justifying our
choice to focus only on the model given in Eq. (23a). To
ensure a fair comparison, we carefully selected the tran-
sition speed parameters to align the models as closely as
possible. The maximum deviation between the models is
less than 1%.
In view of the results reported in Fig. 23, we now focus

on the fifth model, Eq. (24a), which has only two
parameters: Γ and zt. These parameters are closely related,
as their values determine the rate of the transition as well as
the initial and final values of the EOS. We limit our analysis
to the nonphantom regime, for which Γ < 0. The results for
this model are presented in Fig. 24.
The deviations from the ΛCDM model are constrained

by the requirement that the acceleration parameter is

negative today, which implies that wða ¼ 1Þ < −1=3.
The plot in Fig. 24 covers almost the full range of
admissible Γ values. Varying the other free parameter of
Eq. (24a), zt, yields the linear perturbations shown in
Fig. 25. We notice that the parameter Γ has a bigger impact
than zt.
The last model, Eq. (24b), has no free parameters and it

is entirely in the phantom regime. Thus, as expected, it
predicts larger perturbations than in theΛCDMmodel. This
happens because the DE component is subdominant until
very late in the cosmic history. If wewould normalize linear
perturbations to be unity today, we would see that the
growth factor has lower values than the ΛCDM model at
early times, as structures need to grow more slowly to reach
the same speed of the other models today.
A universe that, at late times, has a faster expansion rate,

will exhibit lower values of the Hubble function, as shown
in Figs. 21 and 26. Given that the Hubble function dilutes
perturbations, overdensities in a universe expanding with a
slower rate will face greater dilution while collapsing. Since
the collapse time is fixed, to counterbalance the effect of a

FIG. 22. Plots for model w5. Top panel: EOS with constant
zt ¼ 0.5, for various values of Γ. Bottom panel: EOS with
constant Γ ¼ −1, for some values of zt.

FIG. 23. Plot for models w1, w2, w3 and w4, respectively, with
wi ¼ −0.5, wf ¼ −1, Γ1 ¼ 10, Γ2 ¼ 6.5, Γ3 ¼ 0.07 and
Γ4 ¼ 0.033. As we can see, the differences between these four
models are negligible in the linear regime.

FIG. 24. Plot for model w5 with zt ¼ 0.5. Linear perturbations
with δde ≠ 0.
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higher Hubble function, the virialization overdensity will
consequently be higher.
In order to understand the increase in the virialization

overdensity at late times, it is important to note that the ζ�vir
remains constant in the EdS universe. This means that if the
Hubble function follows the same evolution as in the EdS
universe, the virialization overdensity will remain constant.
However, if the Hubble function exceeds that of the EdS
universe, the virialization overdensity must increase to
counterbalance the Hubble flow that attempts to dilute
the perturbation. In Fig. 26, we present the percentage
difference between EwCDM and EEdS. Additionally, in the
top panel of Fig. 27, we show the percentage difference
between EwCDM and EΛCDM.
In Fig. 27 we can see that for each choice of the parameter,

there exists a time interval during which the virialization
overdensity maximally deviates from the ΛCDM model. In
the bottom panel of Fig. 27 we show the percentage
difference of ζ�m with respect to the ΛCDM one, for the
case of smooth DE while in the central panel DE is
clustering. As we have pointed out in the linear perturbation
analysis, for values of w close to −1, allowing DE to cluster

FIG. 25. Plots for model w5 with Γ ¼ −1. Linear perturbations
with δde ≠ 0.

FIG. 26. Percentage difference defined by EwCDMðzÞ ¼ffiffiffiffiffiffiffi
Ω0

m

p
EEdSð1þ%Þ. Note that we scaled the wCDM Hubble

function EwCDM → EwCDM=
ffiffiffiffiffiffiffi
Ω0

m

p
in order to make the wCDM

model reduce to the EdS one at early times.

FIG. 27. Top panel: percentage difference defined as
EwCDMðzÞ ¼ EΛCDMðzÞð1þ%Þ. This shows that DE models
with wde > −1 result in Hubble functions higher than the
ΛCDM model one and thus explain why those models result
in higher virialization overdensities than the ΛCDM model. The
maximum point of the ratio approximately corresponds to the
time at which the difference between perturbations are most
different from the ΛCDM model. For w close to −1, the
maximum point is approximately zmax ≈ 0.6. Central panel:
percentage difference ζ�m ¼ ζ�ΛCDMð1þ%Þ where ζ�m is the
matter virialization overdensity for model w1 and δde ≠ 0. The
behavior is similar to the ratio shown in the top plot. The redshift
that maximizes the difference is zmax ≈ 0.8. Bottom panel:
percentage difference defined by ζ�m ¼ ζ�ΛCDMð1þ%Þ, where
ζ�m is the matter virialization overdensity for model w1 with
δde ¼ 0. The maximum points are located at respectively
zmax ¼ ½0.4; 0.8�. We can therefore note that the estimate of
zmax obtained from the wCDM Hubble function ratio in the top
panel is precise within 0.2 redshift units.
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or not, does not have appreciable consequences on pertur-
bations. The effect of imposing δde ¼ 0 is to enhance the
difference between the fast transition model and the ΛCDM
one. The increase in difference depends on the value of the
wi parameter. For wi ¼ −0.5 the deviation from the ΛCDM
model increases of about 3%, while for the other values ofwi
the difference drops to 1%.
We only consider clustering DE in the rest of this section.

The results obtained when the wf parameter is changed and
DE is allowed to cluster are quite revealing. In the nonlinear
regime, perturbations are much more sensitive to the final
EOS value, wf , compared to the linear perturbations. Small
variations in wf can have a dramatic impact on the
virialization overdensity and density contrast at zc ¼ 0.
The time at which the transition occurs has considerable

effects on structure formation only if the transition is recent.
Only transitions with zt ≲ 2 are distinguishable from the
ΛCDM paradigm. This is because at early times matter
dominates and thus an early-time transition is practically
indistinguishable from the ΛCDMmodel. Interestingly, the
effects are more visible in the approximate range of
collapse times zc ∈ ½0.6; 3�, where we can observe devia-
tions greater than 10%. The very recent transition with

zt ¼ 0.1 has the strongest effect, since the transition
happened after the DE with wi ¼ −0.4 started to dominate.
As one can see in Fig. 28, variations in the Γ parameter do

not impact significantly the behavior of the nonlinear
perturbations, strengthening the results obtained in
Secs. IV B and IV C. Thus, a step transition is a very good
approximation to transition models also in the nonlinear
regime.
We now shift our attention to the fifth model, Eq. (24a),

because it shows interesting differences with the previous
ones. The only two free parameters are Γ and zt. In the other
models those parameters are almost independent: for
example changing the transition redshift does not affect
significantly the transition speed. In this model, the value of
one parameter changes the behaviors that should be
regulated by the other parameters. Results are shown in
Fig. 29. The DE parametrization in question has initial EOS
values close to −1, causing matter to remain dominant at
later times than the other models, and resulting in all curves
converging quickly to the EdS model. We have varied the Γ
parameter in a range for which the EOS at a ¼ 1 is always
less then −1=3.
A notable difference compared to the model of Eq. (23a),

is that the redshift which maximizes the difference with
respect to theΛCDMmodel is consistently zero, rather than

FIG. 28. Plots for model w1 with wi ¼ −0.4, zt ¼ 0.5,
wf ¼ −1. Top panel: percentage difference of δc with respect
to the ΛCDM model. Bottom panel: percentage difference of
ζ�vir with respect to the ΛCDM model. The redshifts that
maximize the differences with respect to the ΛCDM model
are zmax ¼ ½0.4; 1.2�.

FIG. 29. Plots for model w5 with zt ¼ 0.5. Top panel: percent-
age difference of δc with respect to the ΛCDM model.
Bottom panel: percentage difference of ζ�vir with respect to the
ΛCDM model.
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peaking around z ¼ 0.8. This characteristic remains true
independently of the parameter we choose to vary and its
value. This is probably due to the fact that this EOS,
Eq. (24a), does not behave as a fast transition, but more like
a Chevallier-Polarski-Linder parametrization, as one can
see in Fig. 22.
In Fig. 30 are shown the results obtained by varying

the zt parameter. Since the parameters are strongly inter-
twined, changing zt also considerably changes the final
EOS value and, in the end, the effect on perturbations is
quite important.
The last model, Eq. (24b), cannot be analyzed in the

same way since it results in δde < −1 that would corre-
spond to a negative energy density. Thus we modified the
code to impose δde ¼ −1 when this happens. Results are
shown in Fig. 31. This is the only intrinsically phantom
model we analyzed and the only case in which the density
contrast is greater than that of the ΛCDM model while the
virialization overdensity is lower.
While in the main body of this work we considered

mainly the model described by Eq. (23a), here we consider
the HMF for the model of Eq. (24a) and present our results
in Fig. 32. This model is unique due to its initial value of
the EOS being fixed at −1, leading to a thawing behavior.
Because of the initial condition wi ¼ −1, the curves do not

cluster in groups with the same redshift, and the range of
variation is narrower. For Γ ¼ −0.5, the EOS is bounded
between −1 and −0.9. For lower values (e.g., Γ ¼ −2.5),
the model shows a slow transition from −1 to −0.5.
Focusing on the model with Γ ¼ −2.5, we observe that

FIG. 31. Plot for model w6. Top panel: percentage difference of
δc with respect to the ΛCDM model. Bottom panel: percentage
difference of ζ�vir with respect to the ΛCDM model. The
percentage difference with respect to the ΛCDM model peaks
at z ¼ 0 at about −8%.

FIG. 32. Plot for model w5 with zt ¼ 0.5, δde ≠ 0. Top panel:
ST mass function for various values of Γ and redshift. Bottom
panel: Percentage difference with respect to the ΛCDM model
defined through the relation ΛCDM ð1þ%Þ.

FIG. 30. Plots for model w5 with Γ ¼ −2. Top panel: percent-
age difference of δc with respect to the ΛCDM model.
Bottom panel: percentage difference of ζ�vir with respect to the
ΛCDM model.
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at z ¼ 0, the model predicts a 30% increase in massive
galaxies, and at z ¼ 0.5, it predicts a 20% decrease. This
suggests a recent and brief period during which many
smaller galaxies rapidly merged to form more massive
ones. However, it is important to note that this effect is
present in all the other models as well, with the difference

being that the other models generally predict a lower
number of massive galaxies than the ΛCDM model.
This effect is particularly notable for this model since it
predicts a higher number of massive galaxies compared to
the standard model.
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