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A measurement is presented for the electroweak production of aW boson, a photon (γ), and two jets (j) in
proton-proton collisions. The leptonic decay of theW boson is selected by requiring one identified electron
or muon and large missing transverse momentum. The two jets are required to have large invariant dijet
mass and large separation in pseudorapidity. The measurement is performed with the data collected by the
CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of
138 fb−1. The cross section for the electroweak Wγjj production is 23.5þ4.9

−4.7 fb, whereas the total cross
section for Wγjj production is 113" 13 fb. Differential cross sections are also measured with the
distributions unfolded to the particle level. All results are in agreement with the standard model
expectations. Constraints are placed on anomalous quartic gauge couplings (aQGCs) in terms of
dimension-8 effective field theory operators. These are the most stringent limits to date on the aQGCs
parameters fM;2–5=Λ4 and fT;6–7=Λ4.
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I. INTRODUCTION

The discovery of the Higgs boson at the CERN LHC
[1–3] was made about 10 years ago. Now, it is of great
interest to examine in depth the mechanism of electroweak
(EW) symmetry breaking using rare EW processes. Vector-
boson scattering (VBS) processes play an independent and
complementary role in understanding the EW symmetry
breaking. The non-Abelian nature of gauge interactions in
the standard model (SM) leads to a large variety of VBS
processes with unique features and opportunities to probe
new physics beyond the SM (BSM).
The center-of-mass energy of the proton-proton (pp)

collisions and the integrated luminosity accumulated by the
LHC experiments present an opportunity to measure many
rare VBS processes. For example, the observed (expected)
significance for the EW production ofWγ þ 2 jets reported
by CMS is 5.3 (4.8) standard deviations (SD) combining
Run 1 data and Run 2 data collected in 2016 [4].
This paper presents a measurement of the EW Wγjj

production at
ffiffiffi
s

p
¼ 13 TeV based on the complete Run 2

data collected during 2016–2018, superseding the previous
CMS result [4]. A complete set of tabulated results of
this analysis is available in the HEPData database [5].

In addition to increased integrated luminosity, our new
results include: (i) an updated fiducial region requiring jets
with pT > 50 GeV; (ii) the removal of the missing trans-
verse momentum requirement from the fiducial region
definition; (iii) the treatment of the interference term
between the EW- and quantum chromodynamics (QCD)-
induced processes as a background component; and (iv) the
treatment of the out-of-fiducial signal contribution as a
background component.
The EW signal includes both VBS and non-VBS dia-

grams, such as the contributions depicted in Figs. 1(a)–1(c).
The QCD-induced production of Wγjj, in which both jets
originate from QCD interaction, occurs at a much higher
rate and is depicted in Fig. 1(d). The interference among the
VBS diagrams ensures the unitarity of the VBS cross
section in the SM at high energy. An interference is also
expected between the EW- and QCD-induced processes
[6,7]. The interference is regarded as a background when
measuring the EW process. The cross section for the EW
Wγjj production and the total cross section for the Wγjj
production that includes both the EW- and QCD-induced
processes are determined in the same restricted fiducial
region. The measurements are based on a two-dimensional
fit in the invariant mass mlγ of the lepton and the photon
and the invariant mass mjj of the two jets. Differential cross
sections unfolded to the particle level are also measured.
In addition, BSM couplings, such as anomalous triple

and quartic gauge couplings (aTGCs and aQGCs), are
predicted in BSM theories [8] and would affect the Wγjj
production. The aTGCs are well constrained by processes
such as Higgs boson and diboson production, whereas the
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aQGCs can be better constrained by VBS measurements. In
this analysis, constraints are placed on aQGCs in terms of
dimension-8 effective field theory operators.
The data set used in this analysis corresponds to an

integrated luminosity of 138 fb−1 collected in Run 2 with
the CMS detector [9] at the LHC. The final state is
characterized by an isolated electron or muon with high
transverse momentum (pT), large missing transverse
momentum (pmiss

T ) from the leptonic decay of theW boson,
a high-pT isolated photon, and two jets. Exploiting the
VBSWγjj topology, the two jets are required to have a large
invariant mass mjj and a large separation in pseudorapidity
jΔηjjj. This selection effectively suppresses the contami-
nation from the QCD-induced production of Wγjj, as well
as the non-VBS EW contribution [Figs. 1(a) and 1(b)].

II. THE CMS DETECTOR

The central feature of the CMS [9] apparatus is a
superconducting solenoid of 6 m internal diameter, provid-
ing a magnetic field of 3.8 T. Within the solenoid volume
are a silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and
scintillator hadron calorimeter (HCAL), each composed
of a barrel and two end-cap sections. Forward calorimeters
extend the coverage provided by the barrel and end-cap
detectors up to a pseudorapidity of jηj ¼ 5. Muons are
detected in gas-ionization chambers embedded in the steel
flux-return yoke outside the solenoid. Events of interest are
selected using a two-tiered trigger system [10,11]. The first
level, composed of specialized hardware processors, uses
information from the calorimeters and muon detectors to
select events at a rate of around 100 kHz within a fixed
latency of about 4 μs. The second level, the high-level
trigger, consists of a farm of processors running a version of
the full event reconstruction software optimized for fast
processing that reduces the event rate to around 1 kHz
before data storage. A more detailed description of the
CMS detector, together with a definition of the coordinate
system and kinematic variables, is reported in Ref. [9].

III. SIGNAL AND BACKGROUND SIMULATION

The signal and background processes are simulated
using the MadGraph5_aMC@NLO (MG5) Monte Carlo (MC)
generator [12]. The EW Wγjj signal is simulated at leading
order (LO) using MG5 version 2.6.0. The dominant
background from the QCD-induced production of Wγjj
is simulated with up to one additional jet in the matrix
element calculations at next-to-leading order (NLO) with
MG5 version 2.4.2, using the FxFx scheme [13] to merge
jets from matrix elements and from parton showering. The
interference term between the EW- and QCD-induced
processes, of order Oðα4αSÞ at tree level, is estimated with
a full simulation and is treated as a part of the QCD-induced
Wγjj contribution. The contribution of the interference is
calculated as the difference between the total Wγjj pro-
duction, which contains the interference term, and the sum
of the individual EW- and QCD-inducedWγjj contributions
as simulated by MG5. The interference term ranges from
1% to 3% of the expected EW signal in the signal region
(defined in Sec. V), varying with mjj bin.
Other background contributions include diboson proc-

esses (VV ¼ WW, WZ, ZZ) simulated at LO with
PYTHIA8.212 [14], top-quark processes (tt̄ and single top)
simulated at NLO with POWHEG2.0 [15–19], tt̄γ production
simulated at NLO with MG5 using the FxFx jet merging
scheme, and Zγ simulated at NLO with MG5.
The PYTHIA 8 generator with the CUETP8M1 [20,21]

tune for 2016 and the CP5 [22] tune for 2017–2018 is used
for parton showering, hadronization, and underlying-event
simulation. The NNPDF 3.0 (3.1) set [23] is used for the
parton distribution functions (PDFs) for the simulated
samples of the 2016 (2017–2018) data-taking periods.
All simulated events are processed with Geant4 [24] for
the CMS detector simulation. Correction factors evaluated
with the tag-and-probe method [25] are used to account for
differences between data and simulation in the trigger,
reconstruction, and identification (ID) efficiencies.
Additional simulated pp interactions (pileup, PU) are
superimposed over the hard scattering interaction with a
distribution matching that obtained from the collision data.

FIG. 1. Representative Feynman diagrams forWγjj production at the LHC: EW (a), EW through triple (b) and quartic (c) gauge boson
couplings, and QCD-induced (d).
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IV. OBJECT RECONSTRUCTION

The particle-flow (PF) algorithm [26] reconstructs and
identifies individual particles in an event, through an
optimized combination of information from the various
components of the CMS detector. The energy of photons is
obtained from the ECAL measurement. The energy of
electrons is determined from a combination of the electron
momentum at the primary interaction vertex from the
tracker, the energy of the corresponding ECAL cluster,
and the energy sum of all bremsstrahlung photons spatially
compatible with originating from the electron track. The
energy of muons is obtained from the curvature of the
corresponding tracks. The energy of charged hadrons is
determined from a combination of their momentum mea-
sured in the tracker and the matching ECAL and HCAL
energy depositions, corrected for the response of the calo-
rimeters to hadronic showers. The energy of neutral
hadrons is obtained from the corresponding corrected
ECAL and HCAL energies. The PF candidates are used
for a variety of purposes in this analysis, such as evaluating
electron, muon, and photon isolation variables, reconstructing
jets, and computing the pmiss

T in the event, as described below.
The reconstructed vertex with the largest value of

summed physics-object p2
T is taken as the primary pp

interaction vertex [27]. The jets are clustered using the anti-
kT jet-finding algorithm [28,29] using tracks assigned to
candidate vertices as inputs and the distance parameter is
set to 0.4.
Electron candidates must satisfy jηj< 2.5 and pT >

35 GeV, excluding the ECAL transition region 1.444<
jηj < 1.566. Electrons are also required to satisfy identi-
fication criteria [30]: a selection on the relative amount of
energy deposited in the HCAL, a match of the trajectory in
the tracker with the position of the ECAL cluster, require-
ments on the number of missing measurements in the
tracker, the compatibility of the electron track and the
primary vertex, and σηη, which quantifies the spread along η
of the shower in the ECAL. Electrons identified as arising
from photon conversions are removed [30,31]. The CMS
cut-based tight ID is used to define tight electrons from W
decays, whereas the CMS cut-based veto ID is used to
define loose electrons to suppress events that contain
additional leptons. An isolation requirement is applied
to electrons. The isolation variable is defined relative
to the electron pT by summing the pT of charged hadrons
and neutral particles within geometrical cones of ΔR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

p
¼ 0.3 around the electron momentum

direction. To minimize PU effects, only charged hadrons
originating from the primary vertex are included. For the
neutral-hadron and photon components, an estimate of
the expected PU contribution (pPU

T ) is subtracted [32].
For the tight (loose) electrons, the isolation variable
is required to be less than 0.0287þ 0.506 GeV=pT
(0.198þ 0.506 GeV=pT) if the pseudorapidity of the

ECAL cluster (ηSC) satisfies jηSCj< 1.479, and less
than 0.0445 þ 0.963 GeV=pT (0.203þ 0.963 GeV=pT)
if 1.479< jηSCj<2.5.
Muon candidates are required to satisfy jηj< 2.4 and

pT > 35 GeV. They must satisfy ID criteria based on the
number of measurements in the muon system and the
tracker, the number of matched muon detector planes,
the quality of the combined fit to the track, and the
compatibility of the muon to originate from the primary
vertex [33]. The CMS cut-based tight ID is used. An
isolation requirement is applied to muons. The isolation
variable is defined relative to the muon pT by summing the
pT of charged hadrons and neutral particles within geo-
metrical cones of ΔR ¼ 0.4. The PU suppression is
performed in a similar way as for electrons. The isolation
variable is required to be <0.15 (0.25) to define tight
(loose) muons. Tight muons are used to select signal events,
whereas loose muons are used to veto events that feature
additional leptons [33].
Photon candidates must satisfy jηj< 2.5 and pT >

25 GeV, excluding the ECAL transition region of
1.444< jηj< 1.566. To minimize the contribution of jets
misidentified as photons, photon candidates must satisfy
[34] criteria based on the distribution of energy deposited in
the ECAL and HCAL, and criteria based on the isolation
variables constructed from the kinematic inputs of the
charged hadrons, neutral hadrons, and other photons near
the photon of interest. The CMS cut-based medium ID
defines tight photons and is used to identify prompt
photons (i.e., not originating from hadron decays) in the
final state, and the CMS cut-based loose ID defines loose
photons and is used to identify nonprompt photons, which
are mainly products of neutral pion decays [34]. An
isolation requirement using a consistent definition as
mentioned above for electrons and muons is applied with
ΔR ¼ 0.3 for the three components separately, i.e., the
charged hadron isolation must be less than 1.141 (1.051),
the neutral hadron isolation must be less than 1.189þ
0.01512pT þ 2.259 × 10−5p2

T (2.718þ 0.0117pT þ 2.3×
10−5p2

T) and the photon isolation component must be
less than 2.08þ 0.004017pT (3.867þ 0.0037pT), for the
tight photon candidates found in the barrel (end-cap)
region, whereas the charged hadron isolation must be
less than 1.694 (2.089), the neutral hadron isolation
must be less than 24.032þ 0.01512pT þ 2.259 × 10−5p2

T
(19.722þ 0.0117pT þ 2.3 × 10−5p2

T) and the photon iso-
lation component must be less than 2.876þ 0.004017pT
(4.162þ 0.0037pT), for the loose photon candidates found
in the barrel (end-cap) region, where pT is measured in
GeV. The PU suppression is performed in a similar way as
for electrons. An additional veto is applied on electrons
reconstructed as photons.
Jets are required to have jηj< 4.7 and pT > 50 GeV. To

reduce the contamination from PU, charged PF candidates
within the tracker acceptance are excluded from the jet
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clustering when they are associated with PU vertices [26].
The contribution from neutral PU particles to the jet
energy is corrected based on the projected area of the jet
onto the front face of the calorimeter [35]. A jet energy
correction, similar to the one developed for 8-TeV
collisions [36], is obtained from dedicated studies per-
formed on both data and simulated events (typically
involving dijet, γ þ jet, Z þ jet, and multijet production).
Other residual corrections are applied to the data as
functions of pT and η to correct for small differences
between data and simulation. Additional quality criteria
are applied to jet candidates to remove spurious jet-like
features originating from isolated noise patterns in the
calorimeters or in the tracker [37].
The missing transverse momentum p⃗miss

T is computed as
the projection onto the plane perpendicular to the beam axis
of the negative vector momentum sum of all PF candidates
originating from the primary vertex in an event [38], and its
magnitude is denoted as pmiss

T . The jet energy corrections
are propagated to the p⃗miss

T . Data-to-simulation efficiency
ratios are used as scale factors to correct the simulated event
yields.

V. EVENT SELECTION

Signal event candidates are collected with single lepton
triggers and are selected by requiring exactly one electron
(muon) with pT > 35 GeV and mW

T > 30 GeV, where mW
T

is the transverse mass of the W boson defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl

Tp
miss
T ½1 − cos ðΔϕl;pmiss

T
Þ'

q
, pl

T is the lepton pT, and

Δϕl;pmiss
T

is the azimuthal angle between the pl
T and the

p⃗miss
T directions. Events are required to contain a well-

identified and isolated photon with pγ
T > 25 GeV,

pmiss
T > 30 GeV, and at least two jets, each with jηj <

4.7 and pT > 50 GeV. A separation of ΔR > 0.5 is
required between any two selected objects (photon, lepton,
jets), as detailed in Sec. IX. In the electron channel, we
additionally require the invariant mass mlγ of the selected
photon and electron to be inconsistent with the Z boson
mass, jmlγ −mZj > 10 GeV, to suppress the Z → eþ e−
background where one electron is misidentified as a
photon. Depending on the photon pseudorapidity, the
electron and muon channels are each subdivided into a
barrel region with jηγj< 1.444, and an end-cap region with
1.566< jηγj< 2.5. The nominal selection consists of all the
above requirements.
The longitudinal component of the neutrino momentum

is estimated by solving the quadratic equation that con-
strains the mass of the charged lepton and neutrino system
to the world-average value of the W boson mass [39]. As
described in Ref. [40], when there are multiple solutions,
the one with the smallest longitudinal neutrino momentum
component is chosen; if there are only complex solutions,
the real part is chosen as the longitudinal momentum.

The signal region (SR) is defined as the above nominal
selection with the additional requirements ofmjj>500GeV,
jΔηjjj > 2.5, mWγ > 100 GeV, jyWγ − ðyj1 þ yj2Þ=2j< 1.2
[41], and jϕWγ − ϕjjj > 2, wheremWγ , ϕWγ , and yWγ are the
invariant mass, azimuthal angle, and the rapidity of the Wγ
system, respectively, ϕjj is the azimuthal angle of the dijet
system between the two pT-leading jets, and yj1ð2Þ is the
rapidity of thepT-leading (subleading) jet. The requirements
on jyWγ − ðyj1 þ yj2Þ=2j and on jϕWγ − ϕjjj are intended to
ensure that the momentum of theWγ system is balanced by
that of the dijet system, which is expected in the absence of
additional QCD radiation. The selection thresholds are
determined by scanning the expected significance of the
EW signal to give the maximum sensitivity.
A control region (CR) is defined to validate the modeling

from simulation and perform a background estimation
derived from data. The CR uses the nominal selection
mentioned above with the additional requirements of
200<mjj < 500 GeV. The contamination from signal
events in the CR is less than 1%.

VI. BACKGROUND ESTIMATION

In Fig. 2 the pγ
T distributions for the unfit data and the

estimated backgrounds in the CR are presented for the
barrel (upper) and end cap (lower). This region is used to
constrain the QCD Wγjj background. The estimations of
the backgrounds are described in this section.
Reconstructed photons or leptons that do not originate

from the hard interaction are denoted as misidentified
(misID) photons and leptons. This reducible background
includes genuine photons or leptons, as well as photons
or leptons of instrumental origin. Because of the variety of
sources of these misID particles and the difficulty of
modeling instrumental effects, their contribution is esti-
mated using data in a signal-free region.
The main backgrounds arise from W þ jets and top-

quark processes where the jet constituents are misidentified
as a photon. The method used to estimate this background
involves measuring the fraction of jets misidentified as
photons in data and applying a per-photon extrapolation
factor from the region with loose photons to the signal
region with tight photons. The factors are extracted as
functions of the photon pT and η. The fraction of jets
misidentified as photons is determined from a template fit
to the photon σηη observable, which is the lateral extension
of the shower, defined as the energy-weighted spread
within the 5 × 5 crystal matrix centered on the crystal with
the largest energy deposit in the supercluster. The prompt
photons are more populated in the small-σηη region, while
the nonprompt photons are enriched in the large-σηη region.
The fit template for the prompt photons uses MC, while the
fit template for the nonprompt photons uses data from a
sideband of the photon isolation distribution in W þ jets
using the same method as that used in Ref. [42].
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The background from jets misidentified as leptons
(nonprompt leptons) is estimated in a similar way. The
lepton misidentification rate fl is defined as the ratio of the
number of misID leptons passing the tight lepton require-
ments to the number of leptons passing only the loose

lepton requirements. To extrapolate from loose- to tight-
requirements leptons, an extrapolation factor is defined as
fl=ð1 − flÞ. To suppress additional contamination from
genuine leptons, the W þ jets and Z þ jets contributions
are subtracted from both the numerator and denominator
using MC simulation. The extrapolation factor is measured
as a function of the η and pT of the lepton in a CR
dominated by dijet events. This CR is defined by selecting
one lepton, one jet well separated from the lepton, and
pmiss
T < 30 GeV. More details are described in Ref. [43].
The double-misID background is defined as events

containing both a misID photon and a misID lepton. Its
yield is estimated using an event sample where both the
photon and lepton are required to pass the loose lepton
requirements and fail the tight lepton requirements. A
weight is assigned to such events, equal to the product
of the misID extrapolation factors of the photon and lepton.
Double-misID events contaminate the single-misID back-
ground estimate since the second object is assumed to be
genuine. Whenever a weight is added to the double-misID
estimate, the same weight is subtracted from both the
single-photon and -lepton estimates. In addition, events in
which genuine photons and leptons pass the loose lepton
requirements but fail the tight lepton requirements con-
taminate both the single- and double-misID estimates.
This source of contamination is estimated and removed
using simulation with reconstructed objects matched to
generator-level objects.
Other background contributions that feature genuine

photons and leptons in the final state, such as top quark,
diboson and Zγ, are estimated from MC simulation and
normalized to the integrated luminosity of the data set using
their corresponding cross sections.

VII. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties that affect the measurements
arising from experimental inputs, such as detector effects
and methods, and theoretical inputs such as the choice of
the renormalization (μR) and factorization (μF) scales and
the choice of PDF sets, are included. Each source of
systematic uncertainty is quantified by evaluating its effect
on the yield and on the distributions of relevant kinematic
variables in the signal and background categories. The
uncertainties are calculated bin-by-bin and propagated to
the final distributions.
The uncertainties in jet energy scale (JES) and jet energy

resolution (JER) are estimated by shifting or spreading the
jet energies in the simulations up and down by one SD, and
are then propagated to all relevant variables, including VBS
jet kinematic observables and pmiss

T , and the impacts on the
signal and background yields are evaluated. The uncer-
tainties arising from the JES and JER correspond to various
processes and variousmjj–mlγ [mjj vsmlγ two-dimensional
(2D) distribution] bins are in the ranges of 0.1–34% and
1.8–33%, respectively. The uncertainties in the lepton
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FIG. 2. pT distributions for photons in the barrel (upper) and in
the end caps (lower) in the control region for data and from
background estimations before the fit to the data. The misID
backgrounds are derived from data, whereas the remaining back-
grounds are estimated from simulation. All events with a photon
pT > 200 GeV are included in the last bin. The hatched bands
represent the combined statistical and systematic uncertainties on
the predicted yields. The vertical bars on the data points represent
the statistical uncertainties of data. The bottom panels show the
ratios of the data to the predicted yields.
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trigger, reconstruction, and selection efficiencies, measured
using a tag-and-probe technique, are 1.8–4.6% [30,33].
The uncertainties in the photon reconstruction and selec-
tion efficiencies are 1.9–4.3% [44]. The integrated lumi-
nosities have uncertainties in the 1.2–2.5% range [45–47],
with an overall uncertainty for the 2016–2018 data set
of 1.6%.
The statistical uncertainties arising from the limited size

of both the simulated and data samples used in our back-
ground and signal predictions are estimated assuming a
Poisson distribution. The uncertainties related to the limited
number of simulated events or to the limited number of
events in the data control samples are 1.2–11% for the EW
Wγjj signal, 2.1–48% for the QCD-induced Wγjj back-
ground, 4.9–77% for the nonprompt-lepton background,
and 2.1–45% for the nonprompt-photon background. Some
of these statistical uncertainties increase with increasingmjj

andmlγ . The largest values typically come from bins where
the specific process is less important, and do not signifi-
cantly impact the signal sensitivity. All the statistical
uncertainties are uncorrelated across various processes
and bins of any single distribution.
An overall systematic uncertainty in the nonprompt-

photon background estimate is defined as the quadratic sum
of the systematic uncertainties from three distinct sources.
The uncertainty arising from the choice of the isolation
variable sideband is evaluated by estimating the non-
prompt-photon fraction with alternative choices of the
sideband [48]. The statistical uncertainty in extracting
the fake photon fraction is obtained from the template fits.
The nonclosure uncertainty is defined by performing the
nonprompt-photon fraction fits using simulated events and
comparing the results with the predicted fractions fromMC
simulation. The nonclosure uncertainty in the end-cap
region is larger than in the barrel region and increases
with the photon pT. The overall systematic uncertainty in

the nonprompt-photon background ranges from 7.8% to
12%, dominated by the nonclosure contribution.
Similarly, the uncertainty in the nonprompt-lepton esti-

mate comes from the nonclosure that is obtained using MC
samples. The same misidentified lepton method used in the
analysis is applied to MC γ þ jets events, and the result is
compared with the true number of γ þ jets events falling
into the SR. The difference of the two quantifies the
nonclosure. The selection used is the same as in the
nominal event selection, except that the mW

T and pmiss
T

requirements are removed to increase the size of the
selected sample. The uncertainty associated with the non-
prompt-lepton background is 30%.
The effects of the choice of μR and μF in the theoretical

calculation for signal and background cross sections are
estimated by independently changing μR and μF up and
down by a factor of 2 from their nominal values in each
event, satisfying 1=2< μR=μF < 2. The uncertainties are
defined as the maximal differences from the nominal
values. The PDF uncertainties are evaluated according to
the procedure described in Ref. [49] using the NNPDF set.
For the signal, the scale uncertainty varies within 0.7–5.4%
and the PDF uncertainty varies within 0.06–0.10% in the
acceptance. The scale uncertainty in the QCD-induced
Wγjj process corresponds to a 0.08–12% uncertainty in the
acceptance. It is constrained by the simultaneous fit to the
data in the CR. The PDF uncertainty in the acceptance of
the QCD-induced Wγ production is 0.05–1.40%.
A correction factor is applied to the simulated events to

account for the first level trigger timing drift in 2016 and
2017 data [11]. This mistiming results in a loss of trigger
efficiency in the data and is not modeled by the simulation.
Uncertainties arising from these correction factors vary
within 0.9–3.4%, and are treated as correlated across
various processes and bins of the 2016 and 2017 data
analysis.

TABLE I. Number of Wγ events from the fit to the data in the signal region. The signal predictions inside and
outside the fiducial region defined in Sec. IX are shown. The contributions of various backgrounds are also shown.
Statistical and systematic uncertainties are added in quadrature.

Barrel End cap

EW Wγ inside fiducial region 316" 16 90.2" 5.5
EW Wγ outside fiducial region 64.7" 2.0 20.4" 1.0
QCD Wγ 1301" 28 362" 13
Top, VV, Zγ 402" 14 93.3" 7.2
Nonprompt photon 434" 13 120.2" 5.7
Nonprompt muon 134" 27 45" 11
Nonprompt electron 189" 20 86" 13
Nonprompt photon, nonprompt muon 43.0" 7.0 14.6" 3.4
Nonprompt photon, nonprompt electron 75.5" 5.5 25.0" 2.0

Total prediction 2960" 43 856" 21
Data 2959" 57 849" 32
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VIII. OBSERVATION OF EW Wγ PRODUCTION

The measurement of the total EW Wγ production rate is
performed using a binned likelihood fit to the data of the 2D
distribution inmjj (four bins) andmlγ (three bins). Bothmjj

and mlγ are highly discriminating variables between the
EW signal and the QCD-induced Wγjj background.
Furthermore, the 2D analysis provides a larger expected
significance than using either variable alone.
Data in the SR and CR are both included in the fits to

constrain the dominant background (QCD-induced Wγjj).
Table I shows the signal and background yields after the fit,
as well as the observed data yields. Figure 3 shows the
observed and expected distributions of mjj–mlγ used in the
total EWWγjj cross section measurement. The expectation
is given after the fit to data.
The signal significance is quantified using a profile

likelihood test statistic [50]. This test statistic involves
the ratio of two Poisson likelihood functions, one in
which the signal strength is fixed to zero and one in
which the signal strength is allowed to have any positive
value. The signal strength represents the ratio of observed
to expected signal yields. Systematic uncertainties are
included as nuisance parameters in the likelihood func-
tion that scale the relevant processes using log-normal
probability density functions. The distribution of the
test statistic is assumed to be in the asymptotic regime
where there is a simple relationship between its value and
the significance of the result [51]. The observed
(expected) significance is 6.0 (6.8) SD for the EW Wγ
processes.

IX. FIDUCIAL CROSS SECTION MEASUREMENT

The fiducial cross section measurement for the EW Wγ
production at 13 TeV is extracted with the same 2Dmjj–mlγ

binning used for the signal significance. The fiducial
region is defined based on the particle-level (for leptons,
photons, jets) quantities: one lepton with pl

T > 35 GeV and
jηlj < 2.4, pmiss

T > 30 GeV, pγ
T > 25 GeV, jηγj< 1.444 or

1.566< jηγj< 2.5, ΔRlγ > 0.5, mW
T > 30 GeV, and two

jets with pj1ð2Þ
T > 50 GeV, jηjj< 4.7, mjj > 500 GeV,

ΔRjj > 0.5, ΔRjl > 0.5, ΔRjγ > 0.5, and jΔηjjj > 2.5.
The leptons are reconstructed at the particle level with
fully recovered final-state radiation. The acceptance is
defined as the fraction of the signal events passing the
fiducial region selection, and is estimated using MG5. The
theoretical uncertainty in the extrapolation between the
fiducial and SR is negligible (<1%). We define the cross
section as σfid ¼ σgμ̂αgf , where the cross section for the
signal events is σg ¼ 0.776 pb calculated with MG5 at LO
in QCD [12], the observed signal strength parameter
μ̂ ¼ 0.88þ0.19

−0.18 , and the acceptance of the fiducial region,
αgf ¼ 0.034. The measured fiducial cross section is

σfidEW ¼ 23.5" 2.8ðstatÞþ1.9
−1.7ðtheoÞþ3.5

−3.4ðsystÞfb¼ 23.5þ4.9
−4.7 fb:

ð1Þ

The observed signal strength is compatible with unity
within one SD, and the measured fiducial cross section
agrees well with the SM prediction.

FIG. 3. 2D distributions used in the fit for the total EW Wγ cross section measurement. The hatched bands represent the combined
statistical and systematic uncertainties in the predicted yields. The vertical bars on the data points represent the statistical uncertainties of
data. The expectation is shown after the fit to the data. EW Wγ inside (outside) fiducial region stands for the events of EW Wγ falling
inside (outside) the fiducial region defined in Sec. IX.
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The cross section for the sum of the EW- and QCD-
induced Wγjj contributions is also measured. The fiducial
region definition is identical to that used for the EW Wγjj
fiducial cross section measurement and the formula for the
cross section is σfidEWþQCD ¼ μðσEWg αEWgf þ σQCDg αQCDgf Þ. The
inputs used for the fit are similar to the ones for EW Wγjj
production, with the difference that EW- and QCD-induced
Wγjj contributions are combined as signal. The cross
section for QCD-induced Wγjj production is 192.3 pb
calculated with MG5 at NLO in QCD [12], and αgfQCD

is calculated to be 4.6 × 10−4. The measured signal strength
for the EWþ QCD Wγjj production is 0.98þ0.12

−0.11 and the
observed fiducial cross section is

σfidEWþQCD ¼ 113" 2.0ðstatÞþ2.5
−2.3ðtheoÞþ13

−13ðsystÞfb

¼ 113" 13 fb: ð2Þ

The observed signal strength is compatible with unity
within one SD, and the measured fiducial cross section
agrees well with the SM prediction.

X. DIFFERENTIAL CROSS SECTION
MEASUREMENTS

The differential cross sections for the EW only and for
the EWþ QCD Wγjj production processes are measured
for several characteristic variables using the same SR as
defined in the fiducial cross section measurement. For each
unfolded variable, its generator-level values are mapped to
the reconstruction-level ones in binned histograms that
account for the detector resolution effects. The efficiencies
for selecting events from the generator level to the
reconstruction level are calculated using the same binning
as used in the fiducial region measurements, in order to
recover the limited acceptance and selection efficiencies.
Signal events outside the fiducial region are treated as
background. Both the resolution and efficiency effects are
evaluated using signal simulation. A bin-by-bin unfolding
is performed to obtain differential distributions, in which
the effects of detector resolution, limited acceptance, and
selection efficiencies are corrected.
The unfolded variables include the transverse momen-

tum of the lepton pl
T and of the photon pγ

T; the invariant
masses of the lepton and the photon mlγ; the transverse
momentum of the leading jet (pT ordered) p

j1
T ; the invariant

mass of the two jets mjj; and the separation in pseudor-
apidity of the two jets Δηjj. Since the ranges of some
variables extend to infinity, the last bins accommodate all
the events above the last bin boundaries, but the bin widths
that are used in the denominator are finite and are (110,
400), (170 200), (160, 1000), (250, 500), and (1500,
2000) GeV for pl

T, p
γ
T, mlγ, p

j1
T , and mjj, respectively.

The unfolded differential distributions are shown in
Fig. 4 for the EW production and in Fig. 5 for EWþQCD

production. Comparisons are shown with the theoretical
predictions from MG5. The predictions are in agreement
with the unfolded data in general.

XI. LIMITS ON ANOMALOUS QUARTIC
GAUGE COUPLINGS

The effects of BSM physics can be parametrized in a
generic way through a set of linearly independent higher-
dimensional operators in an effective field theory [8]. As
mentioned above, VBS is particularly suitable to constrain
aQGCs. The lowest-dimension operators that modify
quartic gauge couplings but do not exhibit two or three
weak gauge boson vertices are dimension-8. Reference [52]
proposed nine independent charge-conjugate and parity-
conserving dimension-8 effective operators by assuming
the SUð2Þ × Uð1Þ symmetry of the EW gauge field. The
model includes a Higgs-field doublet to incorporate the
presence of the SM Higgs boson. The operators affecting
the Wγjj channel can be divided into two categories. The
operators LM;0–LM;7 contain an SU(2) field strength,
the U(1) field strength, and the covariant derivative of
the Higgs doublet field. The operators LT;0–LT;2 and
LT;5–LT;7, contain only the two field strengths. The
coefficient of the operator LX;Y is denoted by fX;Y=Λ4,
where Λ is the unknown scale of BSM physics.
A simulation is performed that includes the effects of

aQGCs in addition to the SM EW Wγjj production, as well
as the interference between the two contributions. Since a
contribution from aQGCs would enhance the production of
events with largeWγ mass, we therefore use this observable
to extract limits on the aQGC parameters. To obtain a
continuous prediction for the signal as a function of each
anomalous coupling, a quadratic fit is performed to the
SMþ aQGC yield as a function of the aQGC coefficient
value, separately in each mWγ bin. In addition to the
selection described in Sec. V, further requirements are
applied to exploit the fact that the aQGC contributions arise
from pure VBS diagrams, and are thus enhanced in the
VBS phase space region, and the anomalous operators lead
to more energetic final-state particles. These requirements
are optimized to enhance the aQGC sensitivity, based on
simulation studies, and are mjj > 800 GeV, jΔηjjj > 2.5,
mWγ > 150 GeV, and pγ

T > 100 GeV. As an example,
Fig. 6 (upper) shows the resulting mWγ distribution in
the muon channel.
We set two-sided limits on the operator coefficients

through a limit-setting procedure that involves first
obtaining the global maximum of the profile likelihood
function, and then the maximum of the profile likelihood
function at fixed coefficient values, which are compared
with the global maximum and converted to confidence level
(CL) intervals. Figure 6 (lower) shows the likelihood scan
for the fM;2=Λ4 parameter in the calculation of the observed
limits.
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FIG. 4. Differential cross sections for the EWWγjj production as functions of pl
T, p

γ
T, p

j1
T ,mlγ ,mjj, and Δηjj. The highest bins in each

plot have no upper bound and are normalized by the bin boundaries of (110, 400), (170 200), (160, 1000), (250, 500), and (1500,
2000) GeV for pl

T, p
γ
T,mlγ , p

j1
T , andmjj respectively. The blue bands stand for the systematic uncertainties and the black bands represent

the total uncertainties.
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FIG. 5. Differential cross sections for the EWþ QCDWγjj production as functions of pl
T, p

γ
T, p

j1
T ,mlγ ,mjj, and Δηjj. The highest bins

in each plot have no upper bound and are normalized by the bin boundaries of (110, 400), (170 200), (160, 1000), (250, 500), and (1500,
2000) GeV for pl

T, p
γ
T,mlγ , p

j1
T , andmjj respectively. The blue bands stand for the systematic uncertainties and the black bands represent

the total uncertainties.
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The observed and expected 95% CL limits on the aQGC
coefficients are summarized in Table II. These are the most
stringent limits to date on the aQGC parameters fM;2–5=Λ4

and fT;6–7=Λ4.

They are obtained by varying the coefficient of one
operator at a time, with all others set to zero, i.e., the SM
value. The yield of the EW signal in any bin is a quadratic
function of the coefficient, whose minimum in general does
not occur at a coefficient value of zero because of the
interference with the SM operators. The constraints set on
the aQGCs are compatible with the SM predictions of zero.
The NLO EW corrections to VBS Wγ can be sizable and
increase as a function of mjj, which may bias the aQGC
measurement. Although there is no NLO EW calculation
available yet for VBS Wγ production, we have checked,
using the numbers from same-sign WW scattering [53,54],
that the effect on the aQGC limits is negligible. The
unitarity bound (Ubound) is defined as the scattering energy
at which the aQGC coupling strength, when set equal to the
observed limit, would result in a scattering amplitude that
violates unitarity. The value of Ubound is determined using
the analytical formulas from Ref. [55].

XII. SUMMARY

Measurements of the EW production of a W boson, a
photon, and two jets in proton-proton collisions at a center-
of-mass energy of 13 TeV have been presented. The data
correspond to an integrated luminosity of 138 fb−1 in Run 2
collected with the CMS detector. Events were selected by
requiring one isolated lepton (electron or muon) with high
transverse momentum (pT), a moderate missing transverse
momentum, one high-pT isolated photon, and two jets with
a large rapidity separation and a large dijet mass. The signal
was observed for the first time at 13 TeV, with an observed
(expected) significance of 6.0 (6.8) standard deviations,
where the expectation is based on the standard model
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FIG. 6. Upper: mWγ distribution for muon events satisfying the
aQGC region selection and used to set constraints on the
anomalous gauge coupling parameters. Electron events, not
shown here, are also used. The gray line represents a nonzero
fM;2=Λ4 setting. Events with mWγ > 1500 GeV are included in
the last bin. The hatched bands represent the combined statistical
and systematic uncertainties on the predicted yields. The vertical
bars on the data points represent the statistical uncertainties of
data. Lower: likelihood scan and the observed 95% CL interval
for the aQGC parameter fM;2=Λ4.

TABLE II. Exclusion limits at the 95% CL for each aQGC
coefficient, derived from the mWγ distribution, assuming all other
coefficients are set to zero. Unitarity bounds corresponding to
each operator are also listed. All coupling parameter limits are in
TeV−4, while Ubound values are in TeV.

Expected limit Observed limit Ubound

−5.1< fM;0=Λ4 < 5.1 −5.6< fM;0=Λ4 < 5.5 1.7
−7.1< fM;1=Λ4 < 7.4 −7.8< fM;1=Λ4 < 8.1 2.1
−1.8< fM;2=Λ4 < 1.8 −1.9< fM;2=Λ4 < 1.9 2.0
−2.5< fM;3=Λ4 < 2.5 −2.7< fM;3=Λ4 < 2.7 2.7
−3.3< fM;4=Λ4 < 3.3 −3.7< fM;4=Λ4 < 3.6 2.3
−3.4< fM;5=Λ4 < 3.6 −3.9< fM;5=Λ4 < 3.9 2.7
−13 < fM;7=Λ4 < 13 −14< fM7=Λ4 < 14 2.2
−0.43< fT;0=Λ4 < 0.51 −0.47< fT;0=Λ4 < 0.51 1.9
−0.27< fT;1=Λ4 < 0.31 −0.31< fT;1=Λ4 < 0.34 2.5
−0.72< fT;2=Λ4 < 0.92 −0.85< fT;2=Λ4 < 1.0 2.3
−0.29< fT;5=Λ4 < 0.31 −0.31< fT;5=Λ4 < 0.33 2.6
−0.23< fT;6=Λ4 < 0.25 −0.25< fT;6=Λ4 < 0.27 2.9
−0.60< fT;7=Λ4 < 0.68 −0.67< fT;7=Λ4 < 0.73 3.1
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predictions. In a restricted fiducial region, the cross section for
the EW Wγjj production is 23.5þ4.9

−4.7 fb and the cross section
for the total EWþ QCD Wγjj production is 113" 13 fb.
Both measurements are consistent with standard model
predictions. For the first time, differential cross sections for
EW Wγjj and for EWþ QCD Wγjj production were mea-
sured. Constraints placed on anomalous quartic gauge cou-
plings in terms of dimension-8 effective field theory operators
were extracted and are the most stringent limits to date on the
aQGC parameters fM;2–5=Λ4 and fT;6–7=Λ4.
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D. Fiorina ,77a,77b P. Montagna ,77a,77b V. Re ,77a C. Riccardi ,77a,77b P. Salvini ,77a I. Vai ,77a P. Vitulo ,77a,77b

P. Asenov ,78a,bbb G. M. Bilei ,78a D. Ciangottini ,78a,78b L. Fanò ,78a,78b M. Magherini ,78a,78b G. Mantovani,78a,78b

V. Mariani ,78a,78b M. Menichelli ,78a F. Moscatelli ,78a,bbb A. Piccinelli ,78a,78b M. Presilla ,78a,78b A. Rossi ,78a,78b

A. Santocchia ,78a,78b D. Spiga ,78a T. Tedeschi ,78a,78b P. Azzurri ,79a G. Bagliesi ,79a V. Bertacchi ,79a,79c

R. Bhattacharya ,79a L. Bianchini ,79a,79b T. Boccali ,79a E. Bossini ,79a,79b D. Bruschini ,79a,79c R. Castaldi ,79a

M. A. Ciocci ,79a,79b V. D’Amante ,79a,79d R. Dell’Orso ,79a M. R. Di Domenico ,79a,79d S. Donato ,79a A. Giassi ,79a

F. Ligabue ,79a,79c G. Mandorli ,79a,79c D. Matos Figueiredo ,79a A. Messineo ,79a,79b M. Musich ,79a,79b F. Palla ,79a

S. Parolia ,79a,79b G. Ramirez-Sanchez ,79a,79c A. Rizzi ,79a,79b G. Rolandi ,79a,79c S. Roy Chowdhury ,79a T. Sarkar ,79a

A. Scribano ,79a N. Shafiei ,79a,79b P. Spagnolo ,79a R. Tenchini ,79a G. Tonelli ,79a,79b N. Turini ,79a,79d A. Venturi ,79a

P. G. Verdini ,79a P. Barria ,80a M. Campana ,80a,80b F. Cavallari ,80a D. Del Re ,80a,80b E. Di Marco ,80a M. Diemoz ,80a

E. Longo ,80a,80b P. Meridiani ,80a G. Organtini ,80a,80b F. Pandolfi ,80a R. Paramatti ,80a,80b C. Quaranta ,80a,80b

S. Rahatlou ,80a,80b C. Rovelli ,80a F. Santanastasio ,80a,80b L. Soffi ,80a R. Tramontano ,80a,80b N. Amapane ,81a,81b

R. Arcidiacono ,81a,81c S. Argiro ,81a,81b M. Arneodo ,81a,81c N. Bartosik ,81a R. Bellan ,81a,81b A. Bellora ,81a,81b

C. Biino ,81a N. Cartiglia ,81a M. Costa ,81a,81b R. Covarelli ,81a,81b N. Demaria ,81a M. Grippo ,81a,81b B. Kiani ,81a,81b

F. Legger ,81a C. Mariotti ,81a S. Maselli ,81a A. Mecca ,81a,81b E. Migliore ,81a,81b E. Monteil ,81a,81b M. Monteno ,81a

M.M. Obertino ,81a,81b G. Ortona ,81a L. Pacher ,81a,81b N. Pastrone ,81a M. Pelliccioni ,81a M. Ruspa ,81a,81c

K. Shchelina ,81a F. Siviero ,81a,81b V. Sola ,81a A. Solano ,81a,81b D. Soldi ,81a,81b A. Staiano ,81a M. Tornago ,81a,81b

D. Trocino ,81a G. Umoret ,81a,81b A. Vagnerini ,81a,81b S. Belforte ,82a V. Candelise ,82a,82b M. Casarsa ,82a

F. Cossutti ,82a A. Da Rold ,82a,82b G. Della Ricca ,82a,82b G. Sorrentino ,82a,82b S. Dogra ,83 C. Huh ,83 B. Kim ,83

D. H. Kim ,83 G. N. Kim ,83 J. Kim,83 J. Lee ,83 S.W. Lee ,83 C. S. Moon ,83 Y. D. Oh ,83 S. I. Pak ,83 M. S. Ryu ,83

S. Sekmen ,83 Y. C. Yang ,83 H. Kim ,84 D. H. Moon ,84 E. Asilar ,85 T. J. Kim ,85 J. Park ,85 S. Choi ,86 S. Han,86

B. Hong ,86 K. Lee ,86 K. S. Lee ,86 J. Lim,86 J. Park ,86 S. K. Park,86 J. Yoo ,86 J. Goh ,87 H. S. Kim ,88 Y. Kim,88

S. Lee,88 J. Almond,89 J. H. Bhyun,89 J. Choi ,89 S. Jeon ,89 J. Kim ,89 J. S. Kim,89 S. Ko ,89 H. Kwon ,89 H. Lee ,89

S. Lee,89 B. H. Oh ,89 S. B. Oh ,89 H. Seo ,89 U. K. Yang,89 I. Yoon ,89 W. Jang ,90 D. Y. Kang,90 Y. Kang ,90

D. Kim ,90 S. Kim ,90 B. Ko,90 J. S. H. Lee ,90 Y. Lee ,90 J. A. Merlin,90 I. C. Park ,90 Y. Roh,90 D. Song,90

I. J. Watson ,90 S. Yang ,90 S. Ha ,91 H. D. Yoo ,91 M. Choi ,92 M. R. Kim ,92 H. Lee ,92 Y. Lee ,92 Y. Lee ,92

I. Yu ,92 T. Beyrouthy,93 Y. Maghrbi ,93 K. Dreimanis ,94 G. Pikurs,94 M. Seidel ,94 V. Veckalns ,94 M. Ambrozas ,95

A. Carvalho Antunes De Oliveira ,95 A. Juodagalvis ,95 A. Rinkevicius ,95 G. Tamulaitis ,95 N. Bin Norjoharuddeen ,96

S. Y. Hoh ,96,ccc I. Yusuff ,96,ccc Z. Zolkapli,96 J. F. Benitez ,97 A. Castaneda Hernandez ,97 H. A. Encinas Acosta,97

L. G. Gallegos Maríñez,97 M. León Coello ,97 J. A. Murillo Quijada ,97 A. Sehrawat ,97 L. Valencia Palomo ,97

G. Ayala ,98 H. Castilla-Valdez ,98 I. Heredia-De La Cruz ,98,ddd R. Lopez-Fernandez ,98 C. A. Mondragon Herrera,98

D. A. Perez Navarro ,98 A. Sánchez Hernández ,98 C. Oropeza Barrera ,99 F. Vazquez Valencia ,99 I. Pedraza ,100

H. A. Salazar Ibarguen ,100 C. Uribe Estrada ,100 I. Bubanja,101 J. Mijuskovic ,101,eee N. Raicevic ,101 A. Ahmad ,102

M. I. Asghar,102 A. Awais ,102 M. I. M. Awan,102 M. Gul ,102 H. R. Hoorani ,102 W. A. Khan ,102 M. Shoaib ,102

M. Waqas ,102 V. Avati,103 L. Grzanka ,103 M. Malawski ,103 H. Bialkowska ,104 M. Bluj ,104 B. Boimska ,104

M. Górski ,104 M. Kazana ,104 M. Szleper ,104 P. Zalewski ,104 K. Bunkowski ,105 K. Doroba ,105 A. Kalinowski ,105

M. Konecki ,105 J. Krolikowski ,105 M. Araujo ,106 P. Bargassa ,106 D. Bastos ,106 A. Boletti ,106 P. Faccioli ,106

M. Gallinaro ,106 J. Hollar ,106 N. Leonardo ,106 T. Niknejad ,106 M. Pisano ,106 J. Seixas ,106 J. Varela ,106

P. Adzic ,107,fff M. Dordevic ,107 P. Milenovic ,107 J. Milosevic ,107 M. Aguilar-Benitez,108 J. Alcaraz Maestre ,108

A. Álvarez Fernández ,108 M. Barrio Luna,108 Cristina F. Bedoya ,108 C. A. Carrillo Montoya ,108 M. Cepeda ,108

M. Cerrada ,108 N. Colino ,108 B. De La Cruz ,108 A. Delgado Peris ,108 D. Fernández Del Val ,108

J. P. Fernández Ramos ,108 J. Flix ,108 M. C. Fouz ,108 O. Gonzalez Lopez ,108 S. Goy Lopez ,108 J. M. Hernandez ,108

M. I. Josa ,108 J. León Holgado ,108 D. Moran ,108 C. Perez Dengra ,108 A. Pérez-Calero Yzquierdo ,108
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