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A search for the lepton-flavor violating decay of the Higgs boson and potential additional Higgs bosons
with a mass in the range 110–160 GeV to an e!μ∓ pair is presented. The search is performed with a proton-
proton collision dataset at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC,
corresponding to an integrated luminosity of 138 fb−1. No excess is observed for the Higgs boson. The
observed (expected) upper limit on the e!μ∓ branching fraction for it is determined to be 4.4ð4.7Þ × 10−5 at
95% confidence level, the most stringent limit set thus far from direct searches. The largest excess of events
over the expected background in the full mass range of the search is observed at an e!μ∓ invariant mass of
approximately 146 GeV with a local (global) significance of 3.8 (2.8) standard deviations.
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I. INTRODUCTION

The Higgs boson (H) was discovered by the ATLAS and
CMS experiments at the LHC in 2012 with mass mH ≈
125 GeV [1–3]. Measurements of the properties of the
Higgs boson, including the H decay branching fractions,
are thus far found to be consistent with the expectations of
the standard model (SM) [4–11]. Previous studies based on
the combined results from the ATLAS and CMS experi-
ments constrain the inclusive branching fraction of poten-
tial beyond-the-SM (BSM) undetected visible decays of the
Higgs boson to be <0.12 and <0.16 at the 95% confidence
level (CL), respectively [4,5].
The lepton-flavor violating (LFV) decays H → eμ,

H → eτ, or H → μτ are forbidden in the SM but may
arise in BSM theories with more than one Higgs boson
doublet [12,13], models with flavor symmetries [14], the
Randall-Sundrum model [15–19], composite Higgs models
[20,21], certain supersymmetric models [22–24], and
others [25–29]. In these models, the LFV decays can occur
through the off-diagonal LFV Yukawa couplings Yeμ, Yeτ,
or Yμτ, which couple the Higgs boson with leptons of
different flavor. The presence of these off-diagonal LFV
Yukawa couplings may enhance processes such as μ → 3e,
μ → e conversion, and μ → eγ that could proceed via a

virtual Higgs boson exchange [30,31]. In particular, the
most stringent limit on BðH → eμÞ is obtained indirectly
from the limit on μ → eγ [32] to be <10−8 [33]. However,
the indirect limit onH → eμ assumes the SM values for the
not yet tightly constrained Yukawa couplings Yμμ [34,35]
and the unmeasured Yee. For example, should Yμμ be
smaller than the SM prediction, the indirect constraints
on BðH → eμÞ mentioned would be loosened. It also
assumes the flavor changing neutral current is dominated
by the Higgs boson contribution. Hence, a direct search for
H → eμ remains important. The most stringent direct limit
on BðH → eμÞ, thus far, was set by the ATLAS experiment
at an observed (expected) limit of 6.2ð5.9Þ × 10−5 at
95% CL with a proton-proton (pp) collision dataset at a
center-of-mass energy of 13 TeV, corresponding to an
integrated luminosity of 139 fb−1 [36].
LFV could also arise in decays of additional Higgs

bosons in the Type-III two Higgs doublet model (2HDM)
[13]. Recent studies have shown that searching for addi-
tional Higgs bosons with a mass below twice the W boson
mass in the LFV decay channels is particularly important to
constrain the Type-III 2HDM parameter space [37]. An
additional Higgs boson with a mass larger than twice theW
boson mass is expected to decay primarily into a WþW−

pair which dilutes the rate of LFV decays.
This paper reports a search for a LFV decay in the eμ

channel of both H and of an additional Higgs boson (X)
with a mass, mX, in the range 110–160 GeV. The upper
range of 160 GeV corresponds to twice the W boson
mass. The search is performed with data recorded by the
CMS experiment in pp collisions at a center-of-mass
energy of 13 TeV during the period from 2016 to 2018

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 072004 (2023)

2470-0010=2023=108(7)=072004(27) 072004-1 © 2023 CERN, for the CMS Collaboration



and corresponding to an integrated luminosity of 138 fb−1.
The analysis in this paper is optimized for the two dominant
production modes of the Higgs boson at the LHC: gluon
fusion (ggH) and vector boson fusion (VBF). The final state
of interest in both production modes consists of a prompt,
oppositely-charged electron-muon pair. Subdominant pro-
duction modes of the Higgs boson in association with a
vector boson (W or Z) are not considered due to the smaller
cross sections.
This paper is organized as follows: a description of the

CMS detector is given in Sec. II, the collision data and
simulated samples are discussed in Section III, the event
reconstruction is described in Sec. IV, and the event
selection is described in Sec. V. The event categorization
is described in Sec. VI. Signal and background modeling,
and systematic uncertainties are described in Secs. VII and
VIII, respectively. Results are presented in Sec. IX, and the
summary is given in Sec. X.

II. THE CMS DETECTOR

The central feature of the CMS apparatus is a super-
conducting solenoid of 6 m internal diameter, providing a
magnetic field of 3.8 T. Within the solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and
scintillator hadron calorimeter (HCAL), each composed
of a barrel and two endcap sections. Forward calorimeters
extend the pseudorapidity, η, coverage provided by the
barrel and endcap detectors. Muons are detected in gas-
ionization chambers embedded in the steel flux-return yoke
outside the solenoid. A more detailed description of the
CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be
found in Ref. [38].
Events of interest are selected using a two-tiered trigger

system. The first level, composed of custom hardware
processors, uses information from the calorimeters andmuon
detectors to select events at a rate of approximately 100 kHz
within a fixed latency of approximately 4 μs [39]. The
second level, the high-level trigger, consists of a farm of
processors running a version of the full event reconstruction
software optimized for fast processing that reduces the event
rate to approximately 1 kHz before data storage [40].

III. COLLISION DATA AND SIMULATED EVENTS

This search is carried out using pp collision data col-
lected by the CMS experiment from 2016–2018 at a center-
of-mass energy of 13 TeV with the integrated luminosity
being 36.3 in 2016, 41.5 in 2017, and 59.8 fb−1 in 2018,
respectively. Single-electron or -muon triggers with iso-
lation criteria are used to collect the data. The transverse
momentum, pT, thresholds for the electron (muon) trigger
are 27 (24), 32 (27), and 32 (24) GeV in the 2016, 2017 and
2018 datasets, respectively.

Simulations are used to model the signal and background
events. To model the parton showering, hadronization, and
underlying event properties, PYTHIA [41] version 8.240,
with the CP5 underlying event tune [42] is used in all cases.
The NNPDF3.1 parton distribution functions (PDFs) are
used in the simulations [43]. The simulation of interactions
in the CMS detector is based on Geant4 [44]; the same
reconstruction algorithms are used as for data.
The Higgs bosons are produced at the LHC predomi-

nantly via the ggH mode [45], the VBF mode [46], and in
association with a vector boson (W or Z) [47]. Signal
samples of H → eμ and X → eμ with a hypothesized mX
of 110, 120, 130, 140, 150, and 160 GeVare generated for
the ggH and VBF modes at next-to-leading order (NLO)
accuracy in perturbative quantum chromodynamics (QCD)
with the POWHEG v2.0 generator [48–53] using the imple-
mentation described in Refs. [54,55], interfaced with
PYTHIA. The simulated Xs are assumed to have narrow
width. The Herwig 7.2 generator [56] with the CH3 under-
lying event tune [57] interfaced with the POWHEG v2.0

generator, is used to produce alternative samples for the
VBF signal. These samples are used to evaluate the
systematic uncertainty in the kinematic distributions of
the final state particle in VBF production due to different
choices of parton shower simulation [58].
Background events from H decaying to a pair of τ

leptons are simulated for all three dominant production
modes at the LHC at NLO with the same POWHEG v2.0

generator as the signals, interfaced with PYTHIA. Back-
ground events from H decaying to a pair of W bosons are
generated similarly for the ggH and VBF modes only as the
contribution of other production modes is negligible.
The MadGraph5_aMC@NLO generator [59] (version 2.6.5) is

used to simulate the single W=Z backgrounds produced by
VBF in association with two or more jets from electroweak
vertices (VBF W=Z þ jets) at leading order with the MLM
jet matching and merging schemes [60]. Drell-Yan (DY),
singleW with jets from QCD vertices (QCDW þ jets), and
diboson (WW,WZ, ZZ) events are simulated with the same
generator at NLO, with the FxFx jet-matching and merging
scheme [61]. Top quark-antiquark pair and single top quark
production are generated at NLO with POWHEG v2.0.
All samples include the effects of additional pp inter-

actions in the same or adjacent bunch crossings, referred
to as pileup. The distribution of the number of pileup
interactions in simulation is also weighted to match the one
observed in data.

IV. EVENT RECONSTRUCTION

The particle flow (PF) algorithm [62] reconstructs and
identifies particles in an event through an optimized
combination of information from the various subdetectors
of the CMS detector. The identification of the particle type
(photons, electrons, muons, charged and neutral hadrons)
plays an important role in determining the direction and
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energy of each reconstructed particle (PF candidates). The
primary vertex (PV) is taken to be the vertex corresponding
to the hardest scattering in the event, evaluated using
tracking information alone, as described in Sec. 9.4.1
of Ref. [63].
An electron is identified as a track from the PV combined

with one or more ECAL energy clusters. These clusters
correspond to the electron and possible bremsstrahlung
photons emitted when passing through the tracker.
Electrons are accepted in the range of jηj< 2.5, except
for 1.44< jηj< 1.57, the transition region between the
barrel and endcap calorimeters, because the reconstruction
of an electron object in this region is not optimal. Electrons
with pT > 10 GeV are identified with an efficiency of 80%
using a multivariate discriminant that combines observ-
ables sensitive to the amount of bremsstrahlung energy
deposited along the electron trajectory, the geometric and
momentum matching between the electron trajectory and
the associated clusters, and the distribution of the shower
energy in the calorimeters [64]. Electrons identified as
originating from photon conversions are removed. The
electron momentum is estimated by combining the energy
measurement in the ECAL with the momentum measure-
ment in the tracker. The momentum resolution for electrons
with pT ≈ 45 GeV from Z → ee decays ranges from 1.6 to
5.0%. It is generally better in the barrel region than in the
endcaps, and also depends on the bremsstrahlung energy
emitted by the electron as it traverses the material in front of
the ECAL [64,65].
Muons are detected in the region of jηj< 2.4 with drift

tubes, cathode strip chambers, and resistive-plate cham-
bers. Matching muons to tracks measured in the silicon
tracker results in a pT resolution of 1% in the barrel and 3%
in the endcaps for muons with pT up to 100 GeV. Overall,
the efficiency to reconstruct and identify muons is greater
than 96% [66].
The electron (muon) isolation is determined relative

to its pl
T values, where l is e (μ), by summing over the

scalar pT of the PF particles within a cone of ΔR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

p
¼ 0.3 (0.4) around the lepton (where ϕ

is azimuthal angle in radians), divided by pl
T:

Ilrel ¼
"X

pPV charged
T þmax

#
0;
X

pneutral
T

þ
X

pγ
T − pPU

T ðlÞ
$%&

pl
T;

where pPV charged
T , pneutral

T , and pγ
T are the pT of charged

hadrons, neutral hadrons, and photons within the cone,
respectively. The neutral particle contribution to the iso-
lation from pileup, pPU

T ðlÞ, is estimated for the electron
from the area of jets and their median energy density in
each event [67]. For the muon, half of the pT sum of the
charged hadrons not coming from the PV within the

isolation cone is used instead. The factor of 0.5 is estimated
from simulations to be the ratio of neutral particle to
charged hadron production in inelastic pp collisions [66].
The charged-particle contribution to the isolation from
pileup is rejected by requiring all tracks to originate from
the PV. An isolation requirement of Ierel < 0.10 (Iμrel < 0.15)
is imposed to suppress backgrounds of jets misidentified as
an electron (muon).
Charged hadrons are identified as charged particle tracks

neither identified as electrons, nor as muons. Neutral
hadrons are identified from HCAL energy clusters not
assigned to any charged hadron or from an excess in the
combined ECAL and HCAL energy with respect to the
expected charged-hadron energy deposit.
For each event, hadronic jets are clustered from these

reconstructed particles using the infrared and collinear safe
anti-kT algorithm [68,69] with a distance parameter of 0.4.
Jet momentum is determined as the vectorial sum of all
particle momenta in the jet, and is found from simulation to
be, on average, within 5%–10% of the true momentum over
the whole pT spectrum and detector acceptance. Pileup can
contribute additional tracks and calorimetric energy dep-
ositions to the jet momentum. To mitigate this effect,
charged particles identified to be originating from pileup
vertices are discarded and an offset correction is applied to
correct for remaining contributions. Jet energy corrections
are derived from simulation to bring the measured response
of jets to that of particle level jets on average. In situ
measurements of the momentum balance in dijet,
photonþ jet, Z þ jet, and multijet events are used to
account for any residual differences in the jet energy scale
between data and simulation [70]. The jet energy resolution
amounts typically to 15%–20% at 30 GeV, 10% at
100 GeV, and 5% at 1 TeV [70]. Additional selection
criteria are applied to each jet to remove jets potentially
dominated by anomalous contributions from various sub-
detector components or reconstruction failures. Jets are
required to have a pT > 30 GeV, jηj< 4.7, and be sepa-
rated from each lepton of the identified eμ pair by
ΔR > 0.4. Jets originating from b hadron decays and
detected within the tracker acceptance of jηj< 2.5 are
tagged using a deep neural network based algorithm,
DeepJet, using a working point with a 94% b-jet identifica-
tion efficiency at a 10% misidentification rate for light-
flavor quark and gluon jets in tt̄ events [71].
Hadronic τ decays (τh) are reconstructed from jets, using

the hadrons-plus-strips algorithm [72], which combines 1
or 3 tracks with energy deposits in the calorimeters, to
identify the tau decay modes. To distinguish genuine τh
decays from jets originating from the hadronization of
quarks or gluons, and from electrons, or muons, the DeepTau

algorithm is used [73]. Information from all individual
reconstructed particles near the τh axis is combined with
properties of the τh candidate and the event. The rate at
which jets are misidentified as τh by the DeepTau algorithm
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depends on the pT and whether it was initiated by a quark
or gluon. A working point with an 80% τh identification
efficiency and a 0.05–0.95% misidentification rate for jets
is used.
The missing transverse momentum, p⃗miss

T , is computed as
the negative vectorial pT sum of all the PF candidates in an
event [74], with its magnitude labeled as pmiss

T . Corrections
to the reconstructed jet energy scale are propagated to the
p⃗miss
T . Anomalous high-pmiss

T events can originate from
various reconstruction failures, detector malfunctions, or
noncollision backgrounds. Such events are rejected using
event filters designed to identify more than 85%–90% of
the spurious high-pmiss

T events with a misidentification rate
of less than 0.1% [74].

V. EVENT SELECTION

The signal topology consists of an oppositely charged
electron-muon pair with possible additional jets. Events
with an oppositely charged electron-muon pair separated
by ΔR > 0.3 are selected. Both the electron and muon are
required to have a longitudinal and a transverse impact
parameter within 5 and 2 mm from the PV, respectively.
The invariant mass of the eμ pair, meμ, is required to fall

in the range of 100–170 GeV such that signals with the
lowest (highest) mX ¼ 110ð160Þ GeV targeted in this
search are fully contained. Themeμ window is intentionally
chosen to lie beyond the peak of the tt̄ background
distribution, thus selecting a region where it falls smoothly.
Backgrounds from H → ττ and H → WW also peak below
the mass window since part of the H four-momentum is
carried away by the final-state neutrinos.
The pT of the electron (muon), pe

T (pμ
T), collected by the

single-electron (single-muon) triggers is required to be
larger than 29 (26) GeV in 2016, 34 (29) GeV in 2017, and
34 (26) GeV in 2018. These pT requirements are chosen to
be slightly above the pT thresholds of the triggers so that
the efficiency of the triggers is nearly 100%. For electrons
(muons) that do not pass the single-electron (single-muon)
trigger requirements, their pT are required to be larger than
25 (20) GeV in all years. Events containing additional
reconstructed electrons, muons, or hadronically decaying
tau candidates are vetoed. Events with at least one b-tagged
jet are also vetoed to suppress the tt̄ and single top quark
backgrounds.

VI. EVENT CATEGORIZATION

Events are first divided into two broad categories to
enhance the signal from either the ggH or the VBF
production mechanisms. Events with two or more jets
where the two highest pT jets have an invariant mass
mj1j2 > 400 GeV and a pseudorapidity separation
jΔηðj1; j2Þj > 2.5 are classified as the VBF production
category. Otherwise, events enter the ggH production
category. The meμ distributions of the data, the simulated

backgrounds, and signals of H → eμ are shown in Fig. 1
for both categories. The QCD multijet background shown
is estimated from a control region of the data using events
with an eμ pair of the same electric charge and extrapolated
to the signal region as a function of jet multiplicity and the
ΔR separation of the eμ pair as described in Ref. [75]. The
data and background simulations show good agreement
within the statistical and the SM cross section uncertainties
combined.
The two broad categories are further split according to

the signal purity using the output of boosted decision trees

FIG. 1. The meμ distributions of the data, simulated back-
grounds and signals of H → eμ in the ggH (upper) and the VBF
categories (lower). A BðH → eμÞ ¼ 0.2% is assumed for the
signal for illustration. The lower panel in each plot shows the ratio
of the data to the total estimated background. The uncertainty
band corresponds to the background uncertainties, adding in
quadrature the statistical and the SM cross section uncertainties.

A. HAYRAPETYAN et al. PHYS. REV. D 108, 072004 (2023)

072004-4



(BDTs) trained with the XGBoost package [76]. The BDTs
are trained separately for the ggH and the VBF catego-
ries. The BDT discriminants range from 0 for back-
groundlike events to 1 for signal-like events. For both
BDTs, a mixture of simulated signal events is used in the
training including events of H → eμ and X → eμ at
mX ¼ 110, 120, 130, 140, 150, and 160 GeV from both
the ggH and the VBF production modes. Kinematics
variables from the dominant sources of backgrounds of
di-leptonic decays of tt̄ and WW diboson events are
used in the training. All events used in the training are
from Monte Carlo (MC) simulations described in
Sec. III. The simulated signals of H → eμ and back-
grounds are weighted according to their expected yields
from the SM cross sections. The simulated signal
samples of X → eμ are weighted according to their
relative SM-like production cross sections as evaluated
in Ref. [77] as a function of mX. Their total weights are
matched to that of the backgrounds in the training to
ensure the larger total weights of the background samples
does not lead to BDTs with poor signal identification
efficiency. Each signal event is additionally reweighted
by the inverse of its expected mass resolution during
training. The mass resolution is the uncertainties of meμ

propagated from the expected uncertainty of the lepton
pT measurements. This reweighting allows the BDTs to
assign more importance in classifying signal events with
high mass resolution. The ggH and VBF BDT discrimi-
nant distributions of the data, the simulated backgrounds,
and signals of H → eμ are shown in Fig. 2 for the ggH
and VBF category, respectively. The data and background
simulations show good agreement within the statistical and
the SM cross section uncertainties combined.

A. BDT input variables

The BDT input variables are chosen such that the BDTs
do not make use of meμ to discriminate between the signal
and background. This ensures background events with meμ

close to the signal resonance are not preferrentially
assigned a higher BDT discriminant which distorts their
smoothly falling shape to form spurious signal resonances
along meμ. For example, the eμ system’s pT scaled by meμ,
peμ
T =meμ, is used instead of peμ

T which is correlated with
meμ. The background samples are also reweighted to match
the shape of the meμ distribution of the signals during
training to further ensure that the BDTs do not benefit from
using meμ to discriminate between the signal and back-
ground. No sculpting of themeμ distribution is observed for
the MC background events in different ranges of the BDT
discriminants. The BDT discriminant distributions of the
simulated signals at different Higgs boson masses are also
observed to be similar. The distributions of pmiss

T , which is
the most discriminating variable in both the ggH and VBF
category, are shown in Fig. 3 for both categories.

1. The ggH BDT

The input variables to the ggH BDT include the absolute
pseudorapidities of the electron, jηej, and of the muon, jημj,
the ratio of the eμ system’s pT to its invariant mass,
peμ
T =meμ, and the pseudorapidity separation of the eμ pair,

FIG. 2. The ggH and VBF BDT discriminant distributions of
the data, simulated backgrounds and signals of H → eμ for each
BDT trained in the ggH (upper) and the VBF categories (lower).
A BðH → eμÞ ¼ 1.0% is assumed for the signal for illustration.
The lower panel in each plot shows the ratio of the data to the total
estimated background. The uncertainty band corresponds to the
background uncertainties, adding in quadrature the statistical and
the SM cross section uncertainties. Vertical lines in the plots
illustrate boundaries of the subcategories: ggH cat 0–3 and VBF
cat 0–1, as defined in Sec. VI B. Events in the shaded region of
the VBF category with a VBF BDT discriminant less than 0.78
are discarded since their sensitivity is an order of magnitude
lower than other subcategories.
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jΔηðe; μÞj. Variables related to the p⃗miss
T including pmiss

T and
its azimuthal separation to the eμ system, Δϕðp⃗miss

T ; peμ
T Þ,

are also used to discriminate the neutrinoless LFV decay
against backgrounds with neutrinos in the final state. The
number of jets in each event is also added as an input
variable.
Additional jet variables are added for events with at least

one jet, including the pT of the leading jet, p
j1
T , the absolute

pseudorapidity of the leading jet, jηj1 j, and the pseudor-
apidity separation of the leading jet to the eμ system,

jΔηðj1; eμÞj. For events with at least two jets, the scalar pT
of all jets is added. Observables sensitive to the angular and
pT correlations between the eμ system and the two highest
pT jets are also included, including the pT-balance ratio:

pT-balance ratio ¼ jp⃗T
e þ p⃗T

μ þ p⃗T
j1 þ p⃗T

j2 j
peμ
T þ pj1

T þ pj2
T

; ð1Þ

and the pT-centrality:

pT-centrality ¼ peμ
T − ðpj1

T þ pj2
T Þ=2

pj1
T − pj2

T

: ð2Þ

If jets are absent in an event, the undefined jet variables
are handled by the sparsity-aware split finding algorithm in
the XGBoost package [76], with the exception of pj1

T set to be
zero in events with no jets. When jet variables are used at
a decision split of a tree, the sparsity-aware algorithm
assigns events with an undefined value to the direction that
minimizes the loss function.

2. The VBF BDT

The input variables to the VBF BDT are the same to that
of the ggH BDT with a few exceptions: Δϕðp⃗miss

T ; peμ
T Þ,

jηj1 j, and jΔηðj1; eμÞj are dropped due to their insignifi-
cant contributions to the VBF BDT training. Instead, the
Zeppenfeld variable [78], defined as

Zeppenfeld variable ¼ ηeμ − ðηj1 þ ηj2Þ=2
jΔηðj1; j2Þj

; ð3Þ

is added along with mj1j2 and jΔηðj1; j2Þj.

B. Sensitivity optimization

The ggH and VBF categories are further split according
to the ggH and VBF BDT discriminant value to optimize
the expected sensitivity of the search. The expected
sensitivity is estimated from the expected significance of
discovery in the asymptotic approximation [79] from a
signal-plus-background (Sþ B) fit to the meμ distribution
in the data within 100–170 GeV, overlayed with a simulated
signal of BðH → eμÞ ¼ 5.9 × 10−5, the most stringent
direct expected limit of BðH → eμÞ up-to-date [36]. In
these fits, the signal peaks are modeled with a sum of three
(two) Gaussians for the ggH (VBF) production signals in
the ggH categories. For both the ggH and VBF production
signals in the VBF categories, a sum of two Gaussians is
used. The number of Gaussians chosen are motivated by the
likelihood-ratio test [80], as explained in Sec. VII. The total
expected background is modeled from data directly with a
third (first) order Bernstein polynomial for the ggH (VBF)
category. Subcategory boundaries are determined sepa-
rately in the ggH and the VBF categories by iteratively
scanning in steps of 0.01 for a cutoff along the ggH and the
VBF BDT discriminants, respectively, that maximizes the

FIG. 3. The pmiss
T distributions of the data, simulated back-

grounds and signals of H → eμ in the ggH (upper) and the VBF
categories (lower). A BðH → eμÞ ¼ 1.0% is assumed for the
signal for illustration. The lower panel in each plot shows the ratio
of the data to the total estimated background. The uncertainty
band corresponds to the background uncertainties, adding in
quadrature the statistical and the SM cross section uncertainties.
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total expected sensitivity. This procedure is repeated until
the further gain in sensitivity is less than 1%.
Four optimized subcategories are defined for the ggH

category, named as “ggH cat 0,” “ggH cat 1,” “ggH cat 2,”
and “ggH cat 3,” which correspond to events of decreasing
ggH BDT discriminant of 0.89–1.00, 0.77–0.89, 0.46–
0.77, and 0.00–0.46, respectively. Similarly, three opti-
mized subcategories are defined for the VBF category,
“VBF cat 0,” “VBF cat 1,” and “VBF cat 2,” corresponding
to events with a VBF BDT discriminant between 0.94–
1.00, 0.78–0.94, and 0.00–0.78 respectively. Events from
the least sensitive category “VBF cat 2” are discarded.
Table I summarizes the definition, the expected background
(B), and signal yield of H → eμ at B ¼ 10−4 (S) in each
categories at an integrated luminosity of 138 fb−1. An
estimate of the expected significance in each category by
S=

ffiffiffiffi
B

p
is also listed. The yields are estimated by the number

of MC events within a meμ interval of 125 GeV! σeff ,
where σeff is half of the smallest symmetric interval that
contains 68% of the signal events in each category.

VII. SIGNAL AND BACKGROUND MODELING

The meμ distributions of simulated signal events are fit
with a sum of Gaussian distributions for each production
mode, category, and mass of the Higgs boson. The number
of Gaussians is chosen with the likelihood ratio test [80],
such that the next higher order does not give a significantly
better fit at a p-value of 0.05. A sum of three Gaussians is
determined to be sufficient for the signals from the ggH
production mode in the ggH category, while a sum of two
Gaussians is sufficient for the rest. When carrying out the
fits, the means are fit as a sum of the known simulated mX
or mH and a small floating shift due to initial/final-state
radiations and detector effects. Example fits of the signal
models to the simulated H → eμ signal are shown in Fig. 4
for the analysis categories ggH cat 0 and ggH cat 3, as well
as VBF cat 0 and VBF cat 1, summing events from both the
ggH and VBF production modes. σeff for each distribu-
tion is included as an illustration of the signal resolution.

110 115 120 125 130 135

 [GeV]em

0

0.05

0.1

0.15

0.2

0.25

A.
U

. /
 G

eV CMS (13 TeV)

 = 125 GeVHm

Simulation

ggHcat0 simulation

 1.7 GeVeff

ggHcat0 model,

ggHcat3 simulation

 2.5 GeVeff

ggHcat3 model,

110 115 120 125 130 135

 [GeV]em

0

0.05

0.1

0.15

0.2

0.25

A.
U

. /
 G

eV CMS (13 TeV)

 = 125 GeVHm

Simulation

VBFcat0 simulation

 1.9 GeVeff

VBFcat0 model,

VBFcat1 simulation

 2.2 GeVeff

VBFcat1 model,

FIG. 4. Example fits of the signal models to the simulated
H → eμ signal in the analysis categories ggH cat 0 and ggH cat 3
(upper), as well as VBF cat 0 and VBF cat 1 (lower), summing
events from both the ggH and VBF production modes. Half of the
smallest symmetric meμ interval that contains 68% of the signal
events, σeff , is shown in the legends for each signal as an
illustration of the signal resolution. The signal resolution in
general improves with the signal purity of the analysis categories.

TABLE I. Range of the ggH (VBF) BDT discriminant to define the ggH (VBF) subcategories, and the corresponding expected
background (B), and signal yield of H → eμ at B ¼ 10−4 (S) at an integrated luminosity of 138 fb−1. The yields are estimated by the
number of MC events within ameμ interval of 125 GeV! σeff , where σeff is half of the smallest symmetric interval that contains 68% of
the signal events in each category. The fraction contributions of the expected signal yields from the ggH and VBF production mode are
listed. An estimate of the expected significance in each category by S=

ffiffiffiffi
B

p
is also listed.

Analysis category BDT discriminant σeff (GeV) S ggH mode fraction (%) VBF mode fraction (%) B S=
ffiffiffiffi
B

p

ggH cat 0 0.89–1.00 1.7 22.4 94.2 5.8 79.1 2.5
ggH cat 1 0.77–0.89 2.1 55.4 96.4 3.6 399.3 2.8
ggH cat 2 0.46–0.77 2.4 60.4 96.0 4.0 1045.9 1.9
ggH cat 3 0.00–0.46 2.5 20.9 94.4 5.6 3755.4 0.3
VBF cat 0 0.94–1.00 1.9 2.2 23.7 76.3 1.1 2.2
VBF cat 1 0.78–0.94 2.2 2.4 42.2 57.8 9.7 0.8
VBF cat 2 0.00–0.78 2.4 2.3 61.8 38.2 161.3 0.2
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The signal resolution in general improves with the signal
purity of the analysis categories since signal events are
reweighted by the inverse of their mass resolution during
training of the BDTs as mentioned in Sec. VI. The meμ dis-
tributions of a Higgs bosonwith mass between the simulated
mass points are interpolated by fitting the parameters and
normalizations of the sum of Gaussians with second-order
polynomials as a function of the Higgs boson mass.
The background in each category is modeled with a

Bernstein polynomial. Orders of the polynomials are
chosen with a bias study as follows. The meμ distribution
in data from 100–170 GeV is first fit with three distinct
functional forms: a Bernstein polynomial, a sum of
exponential functions, and a sum of power law functions.
An optimal order for each function is chosen with the
likelihood-ratio test [80] at a p-value of 0.05. Then,
ensembles of 2000 pseudo-experiments are generated with
the meμ distributions drawn from each of the three back-
ground models, with or without an injection of a signal at
the simulated mX points with a branching fraction of 10−4.
The pseudoexperiment mass spectra are fit with a Bernstein
polynomial with an order equal to or higher than the chosen
order in the first step. The signal yield from these fits would
in general differ from the injected yield since different
background models are used to generate and fit the signal
peaks. The bias of a model choice is evaluated as the
average difference of the fit signal yield to the generated
yield divided by the uncertainty in the fit yield in the
pseudoexperiments. The final order of the Bernstein poly-
nomial used to model the background in each category is
then chosen by requiring the bias to be less than 20% across
all generating functions and ensembles of pseudoexperi-
ments. The third order is chosen for all ggH subcategories,
while the second and the first order are chosen for “VBF cat
0” and “VBF cat 1,” respectively.

VIII. SYSTEMATIC UNCERTAINTIES

A. Background uncertainties

The systematic uncertainty associated to the bias of the
background model choice is modeled by adding a signal-
like background shape to the background models. The
signal-like background shape is drawn directly from the
signal models in each category. The normalization of
the signal-like background is implemented as a nuisance
parameter modeled with a Gaussian constraint of zero mean
and a standard deviation equal to the maximum of the
pseudo-experiment averaged signal yield fit over the three
background models in the bias study with no signal injected,
as described in Section VII. The maxima are no more than
20% of the statistical uncertainties in the fits. The standard
deviations amount to a Higgs-like signal yield with a
branching fraction BðH=X → eμÞ of 0.4–2.9 × 10−5 across
the categories. This is a dominant source of systematic
uncertainty, contributing 6.9–14.4% of the total uncertainty
on the best fit of the signal yield, depending on mH=mX.
Besides the systematic uncertainty associated to the bias of
the background model and the statistical uncertainty of the
fits, there are no additional systematic uncertainties in the
background models as they are derived directly from data.

B. Signal uncertainties

The simulated signals are affected by various sources of
experimental and theoretical systematic uncertainties. These
uncertainties affect both the yield and the shape of the meμ
distributions. The systematic uncertainties are incorporated
as nuisance parameters in the Sþ B likelihood fit of themeμ
distribution. Log-normal constraints are assumed for uncer-
tainties affecting the yield, and Gaussian constraints are
assumed for uncertainties affecting the fit parameters of the
meμ distribution. The uncertainties affecting the yield have

TABLE II. Systematic uncertainties in the expected signal yields from different sources for the ggH and VBF
production modes. All the uncertainties are treated as correlated among categories. The ranges listed are for signals
with a different Higgs boson mass.

Systematic uncertainties ggH mode (%) VBF mode (%)

Muon identification, isolation, and trigger 0.2–0.4 0.3–0.4
Electron identification, isolation, and trigger 1.8–2.6 2.0–2.5
b-tagging veto efficiency 0.1–0.4 0.1–0.3
Jet energy scale 0.6–18.6 4.0–10.0
Unclustered energy scale 0.1–9.3 0.1–9.9
Trigger timing inefficiency 0.1–0.4 0.2–0.5
Integrated luminosity 1.6 1.6
Pileup 0.1–1.6 0.1–1.6
Parton shower & & & 1.9–11.4
Renormalization and factorization scales 3.9–8.0 0.2–0.5
PDFþ αS 3.0–3.2 1.9–2.1
Effect of the ren. and fact. scales on the acceptance 0.2–11.2 0.2–1.3
Effect of the PDFþ αS on the acceptance 0.1–0.6 0.1

Total 2.9–23.8 5.2–16.3
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negligible effects on the signal shapes in general. All the
uncertainties are treated as correlated between the categories,
except for systematic uncertainties from the interpolation of
signal shapes. The list of yield uncertainties is summarized in
Table II for the ggH and VBF production modes separately.

1. Signal shape uncertainties

The uncertainties in the electron (muon) momentum scale
and resolution affect the means and widths of the signal
models. These uncertainties are measured in Z → ee
(Z → μμ) events in data and simulation in the H → ZZ →
4lðl ¼ e; μÞ analysis [81]. They are estimated tobe 0.1% for
the means and 10.0% for the widths of the signal models.

2. Signal yield uncertainties

The uncertainties in the reconstruction, single-lepton
trigger, offline identification, and isolation efficiencies of
electrons and muons are respectively measured in Z → ee
and Z → μμ events with the “tag-and-probe” method [82]
in data and simulated events. They amount to be 1.8–2.6%
for electrons and 0.2–0.4% for muons [64,66]. The lepton
identification and isolation uncertainties are treated as
correlated between the data-taking years, while the trigger
uncertainties are treated as uncorrelated.
The uncertainties in the jet energy scale and resolution

from different sources are evaluated as functions of the jetpT
and η [70]. Jets with pT < 10 GeV are classified as unclus-
tered energy. The uncertainties in the unclustered energy
scale for charged particles, neutral hadrons, photons, and
very forward particles are evaluated separately according to
the resolution of the different sub-detectors. The combined
uncertainty of the unclustered energy scale is then propa-
gated to the p⃗miss

T . Uncertainties on jets and p⃗miss
T affect both

the ggH and VBF BDTs, which are used to define the
categories. They are transformed into signal yield uncertain-
ties per category, which in turn enter as nuisance parameters
in the likelihood fit. The efficiency to identify a b-tagged jet
with the DeepJet algorithm is different in data and simulations
and affect the b-tagging veto. Scale factors dependent on the
jetpT and η are applied to correct the simulation [83,84]. The
uncertainties in these scale factors are taken into account.
The theoretical uncertainties in the renormalization and

factorization scales, the choice of PDFs, and the value of the
strong coupling constant, αS, evaluated at the Z boson mass,
affect the measurement of the Higgs boson production cross
sections [77]. These uncertainties in turn affect the expected
signal yield and are treated as correlated between the data-
taking years. The QCD scales variations lead to 3.9–8.0%
and 0.2–0.5% of uncertainty in the ggH and VBF cross
sections, respectively, while changes in the PDFs and αS
result in 3.0–3.2% and 1.9–2.1% uncertainties, respectively.
The uncertainties in the event acceptance in each category
due to the scales, PDFs, and αS are also taken into account.
An additional uncertainty in theVBFparton showermodel is
assigned as the signal yield difference between the dipole

shower in PYTHIA and the alternative angular-ordered shower
in Herwig. This amounts to 1.9–11.4% uncertainties across the
categories.
The integrated luminosities for the 2016–2018 data-

taking years have 1.2–2.5% individual uncertainties
[85–87], while the overall uncertainty for the 2016–
2018 period is 1.6%. They affect the overall yield of the
signal expected from simulations. The uncertainty on the
number of pileup vertices is evaluated by varying the pileup
correction weights applied to the simulation. The variation
of weight is obtained through a !4.6% change to the total
inelastic cross section at a nominal value of 69.2 mb used
to estimate the pileup effect on data. The pileup uncer-
tainties are treated as correlated between the years.
During the 2016 and 2017 data-taking periods, a gradual

timing shift of the signals from the ECAL first-level trigger
caused a specific trigger inefficiency in the region of jηj >
2.0. For events containing an electron with pT > 50 GeV or
a jet with pT > 100 GeV, in the region of 2.5< jηj< 3.0,
the efficiency loss is between 10.0%–20.0%, dependent on
pT, η, and time. Scale factors are computed to correct the
detector acceptance in simulations to reflect this effect in the
data. The uncertainty due to this correction is 0.1%–0.5%and
is treated as correlated between the two years.

IX. RESULTS

A. Results for the Higgs boson

No excess of data above the background prediction has
been observed for the LFV decay of H → eμ. An upper
limit on the branching fraction of the decay is computed
using the CLs criterion, with the profile likelihood as
the test statistic, which is assumed to be distributed as
in the asymptotic approximation [79,88,89]. The observed
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]-4 10)  [ e(H95% CL limit on 
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FIG. 5. Observed (expected) 95% CL upper limits on BðH →
eμÞ for each individual analysis category (as shown in the left axis
label) and for the combination of all analysis categories.
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(expected) upper limit on BðH → eμÞ is 4.4ð4.7Þ × 10−5 at
95% CL. A breakdown of the upper limit on BðH → eμÞ is
shown per analysis category, and for the combination of all
analysis categories is illustrated graphically in Fig. 5 and
listed in Table III. Tabulated results are provided in the
HEPData record [90].
The upper limit on BðH → eμÞ is also interpreted as a

constraint on the LFV Yukawa couplings Yeμ [33]. The
LFV decay arises at tree level from the BSM Yukawa
coupling, Yeμ. The decay width ΓðH → eμÞ can be written
in terms of the Yukawa coupling as,

ΓðH → eμÞ ¼ mH

8π
ðjYeμj2 þ jYμej2Þ: ð4Þ

The branching fraction BðH → eμÞ assuming H → eμ is
the only BSM contribution is given by,
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FIG. 6. Constraints on the lepton-flavor violating Yukawa
couplings, jYeμj and jYμej. The observed (expected) limit in
black (red) line is derived from the limit on BðH → eμÞ in this
analysis. The green (yellow) band indicates the one (two)
standard deviation uncertainty in the expected limit. The hashed
region is excluded by this direct search. Other shaded regions
represent indirect constraints derived from the null searches for
μ → 3e (gray) [92], μ → e conversion (light blue) [93], and
μ → eγ (dark green) [32]. The flavor-diagonal Yukawa couplings,
jYeej and jYμμj, are assumed to be at their SM values in the
calculation of these indirect limits. The purple line is the
theoretical naturalness limit of jYeμYμej ≤ memμ=v2, where v
is the vacuum expectation value of the Higgs field. Dotted lines
represent the corresponding constraints on jYeμj and jYμej at
upper limits on BðH → eμÞ at 10−5; 10−6; 10−7, and 10−8,
respectively.
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the relative SM-like production cross sections of the ggH and
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against the background-only hypothesis are shown as a function
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TABLE III. Observed and expected 95% CL upper limits on BðH → eμÞ for each individual analysis category and for the combination
of all analysis categories.

Category ggH cat 0 ggH cat 1 ggH cat 2 ggH cat 3 VBF cat 0 VBF cat 1 Combined

Observed limit (10−4) <0.53 <0.85 <1.45 <10.54 <2.08 <3.96 <0.44
Expected limit (10−4) <0.82 <0.82 <1.32 <7.12 <1.72 <3.27 <0.47
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BðH → eμÞ ¼ ΓðH → eμÞ
ΓðH → eμÞ þ ΓSM

: ð5Þ

The decay width of H is assumed to be ΓSM ¼ 4.1 MeV
at mH ≈ 125 GeV [91]. The observed (expected) upper
limit on the Yukawa coupling is evaluated to beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jYeμj2 þ jYμej2

q
< 1.9ð2.0Þ × 10−4 at 95% C.L. The result

is illustrated in Fig. 6.

B. Results for additional Higgs bosons

The observed (expected) upper limit at 95% CL on
σðpp → X → eμÞ is plotted as a function of the hypoth-
esized mX in the range 110–160 GeV on the left in Fig. 7,
assuming the relative SM-like production cross sections of
the ggH and VBF production modes as evaluated in

Ref. [77]. An excess of events over the background-only
hypothesis is observed at mX ≈ 146 GeV. The corres-
ponding Sþ B fit combining all categories is shown in
Fig. 8, where events in each category are weighted by
S=ðSþ BÞ, where S and B are the fit number of signal
and background events in that category. The observed
and expected upper limits on σðpp → Xð146Þ → eμÞ at
95% CL per-category and combined are listed in Table IV
and illustrated graphically in Fig. 9. The best fit of σðpp →
Xð146Þ → eμÞ combining all analysis categories is
3.89þ1.11

−1.08ðstatÞþ0.57
−0.34ðsystÞ fb, with the uncertainties domi-

nated by the statistical uncertainties of the data. The best fit
of σðpp → Xð146Þ → eμÞ per-category and combined with
the corresponding local significance are also summarized in
Table IV. Tabulated results are provided in the HEPData
record [90]. Such an excess, however, was not reported in a
search of similar sensitivity for H → eμ carried out by the
ATLAS experiment which covered the meμ range of the
excess [36].
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FIG. 9. Observed (expected) 95% CL upper limits on σðpp →
Xð146Þ → eμÞ for each individual analysis category (as shown in
the left axis label) and for the combination of all analysis
categories assuming the relative SM-like production cross sec-
tions of the ggH and VBF production modes.

TABLE IV. Observed (expected) 95% CL upper limits, best fit, and local significance in unit of standard deviation (σ) of σðpp →
Xð146Þ → eμÞ for each individual analysis category and for the combination of all analysis categories.

Category ggH cat 0 ggH cat 1 ggH cat 2 ggH cat 3 VBF cat 0 VBF cat 1 Combined

Observed limit (fb) <7.74 <4.70 <11.99 <54.87 <12.56 <22.46 <6.01
Expected limit (fb) <3.68 <3.57 <5.04 <34.56 <6.56 <12.58 <2.07
Best fit (fb) 4.16þ2.10

−1.87 1.30þ1.87
−1.78 6.56þ3.25

−3.07 23.46þ18.17
−17.31 5.35þ3.92

−2.96 9.00þ7.46
−6.30 3.89þ1.25

−1.13
Local significance (σ) 2.3 0.7 2.2 1.4 2.1 1.5 3.8
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X. SUMMARY

Searches for the lepton-flavor violation decay ofH and X
with amX in the range 110–160GeVhave been performed in
the eμ final state in data collected by the CMS experiment.
The data correspond to an integrated luminosity of 138 fb−1

of pp collisions at a center-of-mass energy of 13 TeV. The
observed (expected) upper limit on the branching fraction of
the H decay BðH → eμÞ is found to be 4.4ð4.7Þ × 10−5 at
95% confidence level, which is themost stringent direct limit
set thus far. Upper limits on the cross sections ofpp → X →
eμ are set in the mX range 110–160 GeVat 95% confidence
level. This is the first result of a direct search for X → eμ,
withmX below twice theW bosonmass. The largest excess of
events over the expected background is observedwith a local
(global) significance of 3.8 (2.8) standard deviations at an
invariant mass of the eμ final state of around 146 GeV. The
observed significance of this excess is insufficient to draw
any conclusions. More data will be needed to clarify the
nature of the excess.
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77bUniversità di Pavia, Pavia, Italy

78aINFN Sezione di Perugia, Perugia, Italy
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79dUniversità di Siena, Siena, Italy

80aINFN Sezione di Roma, Roma, Italy
80bSapienza Università di Roma, Roma, Italy
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