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Using 9.0 fb−1 of eþe− collision data collected at center-of-mass energies from 4.178 to 4.278 GeV with
the BESIII detector at the BEPCII collider, we perform the first search for the radiative transition
χc1ð3872Þ → γψ2ð3823Þ. No signal is observed and the upper limit on the ratio of branching fractions
Bðχc1ð3872Þ → γψ2ð3823Þ;ψ2ð3823Þ → γχc1Þ=Bðχc1ð3872Þ → πþπ−J=ψÞ is set at 0.075 at the 90% con-
fidence level. Our result contradicts theoretical predictions under the assumption that the χc1ð3872Þ is the
pure charmonium state χc1ð2PÞ.
DOI: 10.1103/PhysRevD.110.012012

I. INTRODUCTION

As the prototypical example of charmoniumlike XYZ
states, the χc1ð3872Þ has been extensively investigated
in the past two decades since it was discovered by the
Belle experiment [1] in 2003. From a global fit to the

measurements by LHCb, BESIII, Belle, BABAR, and
others, its mass and width are determined to be M ¼
3871.65� 0.06 MeV=c2 and Γ ¼ 1.19� 0.21 MeV,
respectively [2]. Its spin, parity, and charge-conjugation
parity quantum numbers are determined to be JPC ¼ 1þþ
[3]. So far, the observed decay modes of the particle include
D�0D0 þ c:c:, πþπ−J=ψ , ωJ=ψ , γJ=ψ , and π0χc1 [4–13].
Although tremendous effort has been made from both the
experimental and theoretical sides, the interpretation of the
χc1ð3872Þ remains inconclusive. Due to the proximity of its
mass to the D�0D0 þ c:c: mass threshold, it is conjectured
to have a largeD�0D0 þ c:c:molecular component [14,15].
Indeed, some theoretical models consider it to be a mixture
of a conventional 23P1 charmonium state χc1ð2PÞ and a
D�0D0 þ c:c: molecule [16,17].
Measurements of new χc1ð3872Þ decay modes can help

to improve our understanding of its internal structure.
Reference [18] extracted the absolute branching fractions
of the known χc1ð3872Þ decays by performing a global
fit of the absolute branching fraction of the Bþ →
χc1ð3872ÞKþ channel measured by BABAR [19] together
with information from other experiments. The fraction of
χc1ð3872Þ decays not observed in experiments is estimated
to be 31.9þ18.1

−31.5%. The work is carried out by assuming the
χc1ð3872Þ has universal properties in different production
and decay mechanisms. Meanwhile, Ref. [20] also reported
the branching fractions with consideration of the threshold

effect ofD�0D0 þ c:c: and a possible bound state below the
threshold or a virtual state in Bþ → χc1ð3872ÞKþ decay. If
the χc1ð3872Þ contains a component of the excited spin-
triplet state χc1ð2PÞ, then the radiative decay χc1ð3872Þ →
γψ2ð3823Þ could happen naturally via an E1 transition [21],
where the ψ2ð3823Þ is considered as the 13D2 charmonium
state. The BESIII experiment has reported the observation
of eþe− → γχc1ð3872Þ at center-of-mass energies

ffiffiffi

s
p ¼

4.178–4.278 GeV [22,23]. Using the χc1ð3872Þ signal
produced in these data samples, we search for the radiative
transition χc1ð3872Þ → γψ2ð3823Þ, where the ψ2ð3823Þ is
reconstructed with the cascade decay ψ2ð3823Þ → γχc1,
χc1 → γJ=ψ , J=ψ → lþl− (l ¼ e, μ). The branching
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fraction ratio of this decay relative to the well-established
χc1ð3872Þ→ πþπ−J=ψ decay, Rχc1ð3872Þ≡Bðχc1ð3872Þ→
γψ2ð3823Þ;ψ2ð3823Þ→ γχc1Þ=Bðχc1ð3872Þ→ πþπ−J=ψÞ,
is determined in this work.
Many theoretical models predict the partial widths of the

radiative transitions between different conventional char-
monium states. The partial widths of χc1ð2PÞ → γψð13D2Þ
and ψð13D2Þ → γχc1ð1PÞ are calculated with the non-
relativistic (NR) potential model and the Godfrey-Isgur
(GI) relativistic potential model [21]. Recently, the partial
width of ψð13D2Þ → γχc1ð1PÞ was calculated with lattice
QCD (LQCD) [24], and the total width of the ψð13D2Þ
was estimated according to the BESIII measurements
and some phenomenological results. Combining these
predictions with the total width of the χc1ð3872Þ,
Γχc1ð3872Þ ¼ 1.19� 0.21 MeV, we calculated the theoreti-
cal branching factions Bðχc1ð2PÞ → γψð13D2Þ and
Bðψð13D2Þ → γχc1ð1PÞÞ, and then proceeded to the ratio
of branching fractions,Rχc1ð2PÞ ≡Bðχc1ð2PÞ→ γψð13D2Þ;
ψð13D2Þ→ γχc1ð1PÞÞ=Bðχc1ð3872Þ→ πþπ−J=ψÞ by tak-
ing the branching fraction Bðχc1ð3872Þ → πþπ−J=ψÞ ¼
ð3.8� 1.2Þ × 10−2 from the PDG [2], as listed in Table I. It
is worth pointing out that the total width of the χc1ð3872Þ
measured in experiments is highly dependent on the para-
metrization of its line shape. The value (1.19� 0.21 MeV)
used here is from a global fit to the experimental measure-
ments of the decay mode χc1ð3872Þ → πþπ−J=ψ which
describes the χc1ð3872Þ line shapewith aBreit-Wigner (BW)

function. The decay χc1ð3872Þ → D�0D0 þ c:c., however,
will distort the line shape due to the proximity of its mass to

the D�0D0 þ c:c: threshold. LHCb studied the χc1ð3872Þ
line shape with a Flatté model instead [25] and determined
the full width at half maximum (FWHM) of the line shape to
be 0.22þ0.07þ0.11

−0.06−0.13 MeV, which is much smaller than that
obtained from the BWmodel. Recently, BESIII performed a
coupled-channel analysis of the χc1ð3872Þ line shape and
reported a FWHM of 0.44þ0.13þ0.38

−0.35−0.25 MeV [26], consistent
with the LHCb result. If the FWHM values provided by

LHCb and BESIII are used to calculate Rχc1ð2PÞ, the ratios
shown inTable Iwill increase significantly. The experimental
measurement of this ratio will help to determine whether the
χc1ð3872Þ is the conventional charmonium state, χc1ð2PÞ.

II. BESIII DETECTOR AND DATASETS

The BESIII detector [27] has an effective geometrical
acceptance of 93% of 4π. A helium-based main drift
chamber (MDC) immersed in a 1 T solenoidal magnetic
field measures the momentum of charged particles with a
resolution of 0.5% at 1 GeV=c as well as the specific
energy loss (dE/dx) with a resolution better than 6%.
A CsI(Tl) crystal electromagnetic calorimeter (EMC) is
used to measure energies and positions of photons, where
the energy resolution for a 1.0 GeV photon is about 2.5% in
the barrel and 5.0% in the end caps. A plastic scintillator
time-of-flight (TOF) system, with a time resolution of 80 ps
(110 ps) in the barrel (end cap), is used to identify the
particles combined with the dE/dx information measured in
the MDC. In addition, a multigap resistive plate chamber
technology is used in the TOF end cap starting from 2015
to improve the time resolution to 60 ps [28]; the datasets in
this work benefit from this improvement except for the data
taken at

ffiffiffi

s
p ¼ 4.226 and 4.258 GeV. A muon system

interleaved in the steel flux return of the magnet based on
resistive plate chambers with 2 cm position resolution
provides powerful information to separate muons
from pions.
The eþe− collision data collected at

ffiffiffi

s
p ¼ 4.178–

4.278 GeV are used in this analysis. The integrated
luminosity at each energy point is measured with the
Bhabha scattering process with a precision better than
1% [29] as listed in Table II. A GEANT4-based [30] software
package is used to generate the Monte Carlo (MC)
simulated data samples. The inclusive MC samples, used
to estimate the backgrounds, include the open-charm
hadronic processes, continuum processes, and the initial-
state-radiation effects, and are generated with KKMC [31] in
conjunction with EvtGen [32]. The signal MC samples

TABLE I. The calculated values forRχc1ð2PÞ, by including as input values the partial decay widths Γχc1ð2PÞ→γψð13D2Þ
and Γψð13D2Þ→γχc1ð1PÞ predicted by the NR and GI models and LQCD, the total widths, Γχc1ð3872Þ and Γψ2ð3823Þ, and the
branching fraction Bðχc1ð3872Þ → πþπ−J=ψÞ. The “� � �” mean unavailable. The two values of the ratio for the
LQCD case correspond to the results by taking the Γχc1ð2PÞ→γψð13D2Þ width from the NR and GI models as input,
respectively.

Γχc1ð3872Þ ¼ 1190� 210 keV [2]
Γψ2ð3823Þ ¼ 520� 100 keV [24]

Bðχc1ð3872Þ → πþπ−J=ψÞ ¼ ð3.8� 1.2Þ × 10−2 [2]

NR [21] GI [21] LQCD [24]
Γχc1ð2PÞ→γψð13D2Þ (keV) 35 18 � � �
Γψð13D2Þ→γχc1ð1PÞ (keV) 307 268 337� 27

Rχc1ð2PÞ 0.46� 0.19 0.21� 0.09 0.50� 0.21, 0.26� 0.11
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eþe− → γχc1ð3872Þ, with the decay chain χc1ð3872Þ →
γψ2ð3823Þ, ψ2ð3823Þ → γχc1, χc1 → γJ=ψ , J=ψ → lþl−

(l ¼ e, μ), are used to determine the detection efficiency.
The eþe− → γχc1ð3872Þ decay is simulated as an E1 tran-
sition according to the measurement from BESIII [22]. The
χc1ð3872Þ → γψ2ð3823Þ and ψ2ð3823Þ → γχc1 decays are
produced with a phase space model.

III. EVENT SELECTION AND RESULT

According to the decay chain of the signal process,
eþe− → γχc1ð3872Þ, χc1ð3872Þ→ γψ2ð3823Þ, ψ2ð3823Þ →
γχc1, χc1 → γJ=ψ , J=ψ → lþl− (l ¼ e, μ), the final state
contains a lepton pair from the J=ψ decay and four
radiative photons. For the leptons, each corresponding
charged track is required to have its point of closest
approach to the beam axis within 1 cm in the radial
direction and within 10 cm along the beam direction and
to lie within the polar-angle coverage of the MDC,
j cos θj < 0.93, in the laboratory frame. We require exactly
two good charged tracks in the candidate events. EMC
information discriminates between the electrons and muons:
electrons are required to deposit at least 0.8GeVin the EMC,
and the muons less than 0.4 GeV. Photons are reconstructed
from isolated showers in theEMC, at least 10° away fromany
charged track, with an energy deposit of at least 25 MeV
in both the barrel (j cos θj < 0.80) and the end cap
(0.86 < j cos θj < 0.92) regions. In order to suppress elec-
tronic noise unrelated to the event, the EMC time t of the
photon candidate must be in the range 0 ≤ t ≤ 700 ns,
consistent with collision events. We require at least four
photons for each candidate event.
A four-constraint (4C) kinematic fit is applied to con-

strain the total four-momentum of the lepton pair and the
four photons to that of the colliding beams, to suppress
backgrounds and improve the resolution. For events with
more than four photons, the combination with the best-fit
quality corresponding to the minimum fit chi-square, χ24C, is
retained. The J=ψ is reconstructed by requiring the

invariant mass MðllÞ of the lepton pair to satisfy
jMðllÞ −mðJ=ψÞj < 30 MeV=c2, where mðJ=ψÞ is the
nominal J=ψ mass. The selection criteria are optimized by
maximizing the Punzi figure-of-merit S=ða

2
þ ffiffiffiffi

B
p Þ [33],

where the number of signal events (S) is determined with
the signal MC sample, the background (B) is estimated with
the inclusiveMC, and the expected statistical significance (a)
is set to be 3. The dominant background is from the process
eþe− → π0π0J=ψ . After the J=ψ selection, we veto π0

candidates by requiring that the invariant mass of all photon
pairs is more than 15 MeV=c2 away from the nominal π0

mass. After these requirements, a seven-constraint (7C)
kinematic fit with an additional three constraints on the
masses of MðllÞ, MðγllÞ, and MðγγllÞ to the nominal
masses of J=ψ , χc1, and ψ2ð3823Þ, respectively, is applied to
distinguish the radiative photon in each cascade decay. The
best-fit combination with the minimum chi-square, χ27C, is
retained; χ27C < 100 is also required to further suppress the
combinatorial backgrounds. One possible peaking back-
ground is ψ2ð3823Þ → γχc2; χc2 → γJ=ψ , the contribution
of which is estimated according to the measurement of the
branching fraction ratio of ψ2ð3823Þ → γχc2 to ψ2ð3823Þ →
γχc1 in Ref. [34]. The ratio of the yields of ψ2ð3823Þ → γχc2
to ψ2ð3823Þ → γχc1;2, is about 1.5%, which is taken into
account as a source of systematic uncertainty.
Figure 1 shows the distribution of the invariant mass of

the radiative photon and the ψ2ð3823Þ, Mðγψ2ð3823ÞÞ for
the selected candidates, summed over all the energy points.
No signal is observed in the χc1ð3872Þ signal region in data.
The three events around 3.93 GeV are very unlikely to be
from the χc2ð2PÞ decays since no χc2ð2PÞ signal was
observed in its more favorable radiative transition to ψð2SÞ
[9]. After normalizing the MC samples according to the
luminosity and cross section in data, the contributions of

TABLE II. The datasets and their integrated luminosity at each
energy point.

ffiffiffi

s
p

(GeV) Luminosity (pb−1)

4.178 3189.0
4.189 526.7
4.199 526.0
4.209 517.1
4.219 514.6
4.226 1101.0
4.236 530.3
4.244 538.1
4.258 828.4
4.267 531.1
4.278 175.7
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FIG. 1. Distribution ofMðγψ2ð3823ÞÞ. The dots with error bars
are data, the red histogram is the signal MC sample with arbitrary
scale, the filled blue histogram is the inclusive MC sample
without the process eþe− → π0π0J=ψ , and the green stacked
histogram is the contribution from eþe− → π0π0J=ψ .
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the eþe− → π0π0J=ψ process and of the other back-
grounds, estimated with the inclusive MC sample, are also
shown in Fig. 1.
The branching ratio Rχc1ð3872Þ is calculated as

Rχc1ð3872Þ ¼
Nobs − r · Nsdb

obs

Nπþπ−J=ψ ·
ϵγψ2ð3823Þ
ϵπþπ−J=ψ

· Bðχc1 → γJ=ψÞ ; ð1Þ

where Nobs ¼ 0 is the number of observed events from all
data in the χc1ð3872Þ signal region ½3.855; 3:885� GeV=c2
which covers around �3σ of the signal shape according to
the signal MC distributions, Nsdb

obs ¼ 4 is the number of the
observed events in the χc1ð3872Þ sideband region [3.840,
3.855] and ½3.885; 3:940� GeV=c2; r, the background
scaling factor from the sideband regions to the signal
region, is 0.474 based on the inclusive MC sample (taking
into account its systematic uncertainty; see Sec. IV);
Nπþπ−J=ψ ¼ 80.7� 9.0 is taken from the BESIII measure-
ment [10]; the branching fraction Bðχc1 → γJ=ψÞ ¼
0.343� 0.010 is quoted from the PDG [2]; ϵγψ2ð3823Þ is
the efficiency for the signal process reconstruction, deter-
mined with the signal MC sample; and ϵπþπ−J=ψ is the
efficiency of the process χc1ð3872Þ → πþπ−J=ψ [10]. The
efficiency ratio ϵγψ2ð3823Þ=ϵπþπ−J=ψ at each energy point is
shown in Fig. 2, which is almost independent of the center-
of-mass energy. The mean value with the standard
deviation, ϵγψ2ð3823Þ=ϵπþπ−J=ψ ¼ 0.433� 0.004, is used to
calculate the Rχc1ð3872Þ value. The upper limit of Rχc1ð3872Þ
at the 90% confidence level (CL) is computed with the
TRolke program implemented in the ROOT framework [35]
by assuming the background Nsdb

obs and the denominator
of Rχc1ð3872Þ follow Poisson and Gaussian distributions,
respectively, where the systematic uncertainties discussed
in the following section are taken as the standard devia-
tion of the Gaussian function to be considered in the upper
limit. We obtain an upper limit of Rχc1ð3872Þ < 0.075 at
the 90% CL.

IV. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties on Rχc1ð3872Þ arise mainly from
the estimations of r, the possible peaking background of
ψ2ð3823Þ → γχc2 → γγJ=ψ , Nπþπ−J=ψ , ϵγψ2ð3823Þ=ϵπþπ−J=ψ ,
and Bðχc1 → γJ=ψÞ. The background scaling factor r is
determined from the inclusive MC samples including the
process eþe− → π0π0J=ψ . We use a first or second order
polynomial function to fit the Mðγψ2ð3823ÞÞ distribution
from the inclusive MC samples; the r value is calculated
several times using the parameters from the fit and varying
them within 1σ. The value r ¼ 0.474 is chosen from the
obtained values since it provides the most conservative
upper limit. The contribution of the potential peaking
background of ψ2ð3823Þ → γχc2 → γγJ=ψ is estimated
with the related measurements mentioned previously
within one uncertainty, and the result providing the most
conservative Rχc1ð3872Þ upper limit is retained.
Both statistical and systematic uncertainties of Nπþπ−J=ψ

contribute as sources of systematic uncertainty, where the
statistical part (11.2%) is obtained by assuming thatNπþπ−J=ψ
follows a Poisson distribution, and the systematic part (4.1%)
is obtained from Ref. [10] where the dominant contribution
is from the parametrization of the χc1ð3872Þ signal shape.
The systematic uncertainty (2.9%) due to Bðχc1 → γJ=ψÞ is
taken from the PDG [2]. The systematic uncertainty of
ϵγψ2ð3823Þ=ϵπþπ−J=ψ comes mainly from the tracking (2.0%),
the photon selection (3.0%), and the kinematic fit (2.2%)
uncertainties, estimated with the control sample eþe− →
π0π0J=ψ . The systematic uncertainty due to the π0 veto is
mainly caused by potential differences in the angular dis-
tributions of the radiative photon between the data and the
signal MC sample, and it is estimated by changing the
angular distribution of the radiative γ in χc1ð3872Þ →
γψ2ð3823Þ to 1� cos2 θ (from flat) in the generator model.
The relative difference of 5.3% between the efficiencies
obtained with the photon angular distributions of 1 − cos2θ
and 1þ cos2 θ is taken as the systematic uncertainty.
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FIG. 2. Values of ϵγψ2ð3823Þ=ϵπþπ−J=ψ at each energy point (blue
dots). The red line indicates the mean value.

TABLE III. The relative systematic uncertainties on Rχc1ð3872Þ.
Systematics on the sideband scaling ratio r are treated separately
(see text).

Item Systematic (%)

Nπþπ−J=ψ Statistical 11.2
Systematic 4.1

ϵγψ2ð3823Þ=ϵπþπ−J=ψ Tracking 2.0
Photon 3.0
Kinematic fit 2.2
π0 veto 5.3

Bðχc1 → γJ=ψÞ 2.9

Sum 14.1
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The systematic uncertainties are listed in Table III. The
total systematic uncertainty is obtained by summing all
systematic uncertainties in quadrature, assuming they are
uncorrelated.

V. SUMMARY

In summary, we search for the radiative decay
χc1ð3872Þ → γψ2ð3823Þ for the first time by using the
eþe− collision data accumulated at

ffiffiffi

s
p ¼ 4.178 –

4.278 GeV with the BESIII detector. No signal is observed,
and the upper limit on the branching fraction ratioRχc1ð3872Þ
is determined to be 0.075 at the 90% CL. This upper limit
is more than 1σ below the theoretical calculations of
Rχc1ð3872Þ under the assumption that the χc1ð3872Þ is the
pure charmonium state χc1ð2PÞ, listed in Table I, and
much smaller than the predictions based on the FWHMs
measured by LHCb and BESIII [25,26]. Our result there-
fore indicates that the χc1ð3872Þ is not a pure χc1ð2PÞ
charmonium state.
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