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Search for X(1870) via the decay J/y - wK*K ™7
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Using a sample of (10087 & 44) x 10° J/y events collected by the BESIII detector at the BEPCII
collider, we search for the decay X(1870) — K"K 5 viathe J/yv — @K™ K5 process for the first time. No
significant X(1870) signal is observed. The upper limit on the branching fraction of the decay J/y —
wX(1870) - wK*K™n is determined to be 9.55 x 1077 at the 90% confidence level. In addition, the
branching faction B(J/y — wK+tK™5) is measured to be (3.33 + 0.02(stat) 4= 0.12(syst)) x 1074

DOI: 10.1103/PhysRevD.110.052005

I. INTRODUCTION

Within the framework of the Standard Model, the strong
interaction is described by quantum chromodynamics,
which predicts the existence of unconventional hadrons,
such as glueballs, hybrid states, and multiquark states. The
discovery and characterization of such states remain a
primary focus in hadron physics. The decays of the J/y
provide an excellent platform for investigating light hadron
spectroscopy and searching for unconventional hadrons.
Several resonances in the mass range of 1.8 to 1.9 GeV/c?
have been observed in the J/w decays, including the
X(pp) [1-3], X(1835) [4-7], X(1810) [8],and X (1870) [9].

The X (1870) resonance was first observed in the 77z 5
invariant mass spectrum via the decay of J /yy — wn™ 775 [9]
with a statistical significance of 7.2¢, based on a sample of
(225.2 £2.8) x 10° J/y events collected by the BESIII
experiment. Currently, there is less information available on
the X(1870). More experimental efforts are needed to go
further. A high-statistics data sample collected with BESIII
provides an opportunity to confirm the existence of the
X (1870) and obtain more information on the properties of the
X(1870). Searching for the X(1870) in the K*K~# decay
mode via J/y - @K K™n is of interest, which can provide
more information on the strange-quark component of the
X(1870).

I1. BESIII DETECTOR

The BESIII detector [10-12] records symmetric e*e™
collisions provided by the Beijing Electron Positron

“Full author list given at the end of the article.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2024/110(5)/052005(10)

052005-1

Collider IT (BEPCII) storage ring [13] in the center-of-mass
energy range from 2.0 to 4.95 GeV, with a peak luminosity of
1.1 x 10% cm™2s7! achieved at +/s = 3.773 GeV. The
cylindrical core of the BESIII detector covers 93% of the
full solid angle and consists of a helium-based multilayer
drift chamber (MDC), a plastic scintillator time-of-flight
system (TOF), and a CsI(Tl) electromagnetic calorimeter
(EMC), which are all enclosed in a superconducting solenoi-
dal magnet providing a 1.0 T (0.9 T in 2012) magnetic field.
The solenoid is supported by an octagonal flux-return yoke
with resistive plate counter muon identification modules
interleaved with steel. The charged-particle momentum
resolution at 1 GeV/c is 0.5%, and the dE/dx resolution
is 6% for electrons from Bhabha scattering. The EMC
measures photon energies with a resolution of 2.5% (5%)
at I GeVin the barrel (end cap) region. The time resolution in
the TOF barrel region is 68 ps, while that in the end cap region
is 110 ps. The end cap TOF system was upgraded in 2015
using multigap resistive plate chamber technology, providing
a time resolution of 60 ps, which benefits 83% of the data
used in this analysis [14-16].

III. DATA SET AND MONTE CARLO SIMULATION

The results reported in this article are based on a sample
of (10087 4 44) x 10% J/y events [17] collected by the
BESIII detector.

Monte Carlo (MC) simulated data samples produced
with a GEANT4-based [18,19] software package, which
includes the geometric description of the BESIII detector
and the detector response [12,20,21], are used to determine
detection efficiencies and estimate backgrounds. To thor-
oughly investigate potential backgrounds, we utilize an
inclusive MC sample comprising 10 billion J/y events.
The inclusive MC sample includes both the production of
the J/y resonance and the continuum processes incorpo-
rated in KKMC [22,23]. All particle decays are modeled
with EvtGen [24] using branching fractions (BFs) either
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taken from the Particle Data Group (PDG) [25], when
available, or otherwise estimated with LundCharm [26].
Final-state radiation from charged final-state particles is
incorporated using the PHOTOS package [27].

In this study, two exclusive MC samples are employed to
determine detection efficiencies. These samples correspond
to the decays J/y - wK*K™n and J/y - ©X(1870) —
wKTK™n, each consisting of 1 x 10’ MC events. The
decay w — nt 72 is simulated using a generator consid-
ering its Dalitz plot distribution [28], while other decays are
generated with the phase-space model.

IV. MEASUREMENT OF BRANCHING FRACTION
OF J/w - wK*K™n

A. Event selection and background analysis

The decay J/y — oK K7 is reconstructed with @ —
atn 2’ and n/7° — yy. The final state consists of
KtK~ntn~yyyy, requiring four charged tracks with a
net zero charge. Charged tracks detected in the MDC
are required to be within a polar angle () range of
|cos 8| < 0.93, where 0 is defined with respect to the z
axis, which is the symmetry axis of the MDC. For each
track, the distance of closest approach to the interaction
point (IP) must be less than 10 cm along the z axis, |V_],
and less than 1 cm in the transverse plane, |V,,|. Particle
identification (PID) for charged tracks combines measure-
ments of the energy deposited in the MDC (dE/dx) and the
flight time in the TOF to form likelihoods L(h)(h =
p,K,x) for each hadron h hypothesis. Charged tracks
with £(K) > L(p) and L(K) > L(x) are identified as
kaons, and those with L(z) > L(K) and L(z) > L(p)
as pions.

Photon candidates are identified using isolated showers
in the EMC. The deposited energy of each shower must
be more than 25 MeV in the barrel region (|cos 8| < 0.80)
and more than 50 MeV in the end cap region
(0.86 < |cos@| < 0.92). To exclude showers that originate
from charged tracks, the angle subtended by the EMC
shower and the position of the closest charged track at the
EMC must be greater than 10 degrees as measured from the
IP. To suppress electronic noise and showers unrelated to
the event, the difference between the EMC time and the
event start time is required to be within [0, 700] ns. The
number of photon candidates in an event is at least four.

To improve the mass resolution, a kinematic fit is applied
under the hypothesis J/y — KTK~z"z"yyyy, imposing
constraints on four-momentum conservation and requiring
the invariant mass of one pair of photons to the nominal 7°
mass, which is called the five-constraint (5C) fit [29]. The
5C kinematic fit loops over all K™K~z z~yyyy combina-
tions and the one with the minimum ch value is retained.
To further suppress background contributions and improve
the significance of signal, the y2. requirement is optimized

using a figure of merit [30] defined as S/+/S + B, where

S denotes the number of signal events from MC simulation
and B represents the number of background events esti-
mated with @ and 7 sidebands in the data. The nominal
criterion is set as y2. < 80.

The mass windows for w and 7 are set to 3¢ around
their respective nominal masses, corresponding to
|M(z* 7~ 7°) —m(w)| <0.02GeV/c? and |M (yy) —m(n)| <
0.02GeV/c?, where m(w) and m(n) are obtained from the
PDG [25]. To suppress backgrounds containing 7', an addi-
tional requirement of |M (7" z~5) —m(n')| > 0.025 GeV/ c?
is applied.

To investigate potential background contributions, the
same selection criteria are applied to an inclusive MC
sample of 10 x 10°J/y events. The topology analysis of
the inclusive MC sample is performed with the generic tool
TopoAna [31]. A detailed study indicates that there is no
peaking background with both an @ and an 7. Three main
types of background contributions are identified. The
first type of background is due to J/y — oK K**,
o — n’zrtr~, K*t - 2°K*, with an @ but no 7. The
second type of background is due to J/y — 7 nK*K**,
n—yy, K¥ > ntK~, K** = 7°K™, with an 5 but no w.
The third type of background is due to J/y — p~K*K**,
p~ = 'z, K* - 7t K=, K*" - 29K™*, without any w or
any 7. These contributions would be considered in the
fitting for signal extraction.

B. Measurement of branching fraction

Figure 1(a) shows the distribution of M (z"z~2°) versus
M(yy). A two-dimensional (2D) maximum likelihood fit is
performed on the distribution of M (z"z~2°) versus M(yy)
of the accepted candidates for J/y — KTK~nt 7~ 7%y to
obtain the signal yield of J/w — wK"K™n. The fitting
model is constructed as

F(ntna%:yy)

= Ngg x (F(r* 27 2%)g, - F(ryr)§e)
—+ NEE;_" x (F(ztnn° Ge F(y}/)gﬁg_n)
+ N x (F(rt =2 )ige™ - Frr)g,)

+ N X (Fata 2 )™ Flrrgg s (1)

where the multiplication sign (i.e., x) represents multipli-
cation in mathematics, while the dot sign (i.e., -) denotes the
product of different dimensions of probability density
functions. The signal shapes for @ (i.e., F% ) and 7 (i.e.,

sig
F Zig) are modeled with a sum of two Johnson functions [32]

sharing the same mean and width parameters. The mean
and width parameters for the @ and # are determined from
the 2D fits to the data. The tail parameters and fractions of
each Johnson function are fixed to the values obtained from
the fit to the signal MC events. The background shapes of
non- (i.e., Fipa~*) and non-n (i.e., Fyyo ") are described
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(a) The distribution of M (77~ 7°) versus M(yy) of the accepted candidates for J/w — K*K~z* 7~ 7%y in data. Projections

of the 2D fit on (b) M(z*z~x°) and (c) M(yy) of the accepted candidates for J/y — K+ K~ z* 7~ z’yy. The dots with error bars are data
and the red solid lines represent the fit result. The green dash lines denote the @ — # signal shape, the cyan dot-dashed lines represent the
@ — non-7 peaking backgrounds, the pink dotted lines denote the 7- non-@ peaking backgrounds and the blue short-dashed lines are the
non-@ — non-x peaking backgrounds. The blue short-dashed arrows and yellow dot-dashed arrows point to the sideband regions of @
and 7, respectively. The red solid arrows point to the signal regions of @/n.

by first-order and second-order Chebyshev polynomial

functions with free parameters, respectively. N, is the
. . non—y, non—w non—wn
number of signal events, while N bke > NVokg > and kag

represent the event numbers of the three types of back-
grounds mentioned above. The projections of the 2D fit on
M(n"z=z°) and M(yy) are shown in Fig. 1. The BF of
J/w - wK*T K7 is calculated by

Ng
B(J/w = oK*K™n) = —p—, (2)
NJ/I/I : Bint €
where € = 9.98% 1is the detection efficiency obtained by
MC simulation, N/, is the number of J/y events in the
data sample, and B;, is the product of the BFs for
w—ntr 7, 2°—yy and 5 - yy quoted from the

PDG [25]. The signal yield from the 2D fit is

Ng, = 116136 =504. The BF is determined to be
B(J/y —» oK K n) = (3.33 4 0.02(stat)) x 1074

C. Systematic uncertainties

The systematic uncertainties on the BF measurement are
from tracking, PID, photon detection, the number of J/y
events, quoted BFs, the 5C kinematic fit, background
rejection, the 2D fit, and MC simulation. Details are
discussed below.

The systematic uncertainties associated with 7+ tracking
and PID are evaluated using a control sample of
J/w — pprtr~. The efficiency differences between data
and MC simulation for the control sample are used to
reweight the signal MC sample. The systematic uncertain-
ties of tracking and PID of two pions are both taken as
1.7%. Similarly, the systematic uncertainties of tracking
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and PID of two kaons (K™) are assigned as 0.5% and 0.1%,
respectively, using a control sample of ete™ — Tz~ J/y
with J/y > KTK~"KTK~.

The systematic uncertainty related to the photon detection
is studied using a control sample of eTe™ — yutu~ [33].
The relative difference of 1.4% in the momentum
reweighted efficiency between data and MC simulation is
assigned as the systematic uncertainty.

The systematic uncertainty from the number of J/y
events is 0.4% according to Ref. [17]. The quoted BFs [25]
of w = ntn~ 7" 7° = yy, and n — yy are (89.2 4+ 0.7)%,
(98.823 +0.034)%, and (39.36 £0.18)%, respectively.
The quadratic sum of the individual contributions, 0.9%,
is assigned as the total systematic uncertainty due to the
quoted BFs.

The systematic uncertainty from the kinematic fit is
estimated by correcting the helix parameters of the charged
tracks in the MC simulation [34]. The differences in the
detection efficiencies with and without the corrections for
the helix parameters, 0.8%, is the taken as the uncertainty.

The systematic uncertainty from the " veto is estimated
by varying its veto range within +1¢. The maximum
change of 0.9% in BF is assigned as the systematic
uncertainty.

To estimate the systematic uncertainties related to the
signal shapes, an approach based on MC simulations is
used. Two thousand sets of MC simulation samples, with
an equivalent size as data, are generated based on the
nominal fitting results. Each of them is fitted with both the
nominal and alternative signal shapes. The alternative
signal shape is modeled with a sum of two Johnson
functions [32] and a Crystal Ball function [35]. The relative
differences in the signal yields between the nominal fit
and alternative are calculated. This distribution of the
differences is then fitted with a Gaussian distribution.
The mean values of individual Gaussian distributions,
0.5% and 0.3%, are taken as the systematic uncertainties
for the w and # signal shapes, respectively.

To evaluate the systematic uncertainties from the back-
ground shapes, the same method as that for the signal shape
is applied. The background shapes are changed from the
first-order to a second-order Chebyshev polynomial func-
tion for the non-@ backgrounds, and from the second-order
to a third-order Chebyshev polynomial function for the
non-n backgrounds. The systematic uncertainties due to the
background shapes for non-@ and non-# are determined to
be 0.3% and 0.4%, respectively.

To take into account the difference between data and MC
simulation in the invariant mass distributions of KTK~,
the invariant mass spectra are divided into ten bins, and an
averaged efficiency is calculated from the signal MC by
weighting the efficiency obtained for each bin by the
fraction of generated events for each bin; in an analogous
way, the averaged efficiency is calculated for the data
sample by weighting the selected events using the

TABLE 1. Relative systematic uncertainties on the BF meas-
urement for J/y — oK+ K™n.

Source Uncertainty (%)
7+ tracking 1.7
K* tracking 0.5
#+ PID 1.7
K* PID 0.1
Photon selection 1.4
Number of J/y events 04
Quoted BFs 0.9
Kinematic fit 0.8
Veto of 1/ 0.9
Signal shape 0.5
Background shape 0.4
MC model 1.5
Total 3.6

bin-dependent efficiency obtained from MC. The differ-
ence between the averaged efficiency for simulation and for
data is taken as the systematic uncertainty of MC model.

The systematic uncertainties are summarized in Table 1.
Each source of systematic uncertainty is treated as an
individual value and summed in quadrature.

V. SEARCH FOR X(1870) IN J/y —» X (1870) —
wK*K™n

Furthermore, we search for the X (1870) resonance in the
distribution of the K™K~# invariant mass, M(K*K™n),
based on the selected candidates for J/y — oK™ K™n.

A. Background analysis

Detailed topology analysis with the inclusive MC sample
within the mass range of [1.7,2.1] GeV/c? of the K* K™
mass spectrum indicates that there is no peaking back-
ground with both @ and # in the final states. To esti-
mate the background contribution, we use a data-driven
approach that utilizes 2D sideband regions of @ and #. The
sideband regions of w/n are defined as 0.06 GeV/c? <
|M(zt2~2°) — m(w)| < 0.1 GeV/c? and 0.06 GeV/c? <
|M(yy) —m(n)| < 0.1 GeV/c?, corresponding to (7-13)c
away from the @ or # nominal masses. In Fig. 1(a), the
regions A is indicated with green solid line boxes, while the
regions B is marked with yellow short-dashed line boxes
and the regions C with blue dash line boxes. The number of
background events in the signal region, denoted as Ny, is
estimated as Ny, = 0.50Ng + 0.53N¢c — 0.265N 5, where
N, Ng, and N represent the number of events in regions
A, B, and C, respectively. The normalization factors for
events in the sideband regions are estimated by the 2D fit on
M(z*72~z°) and M(yy) of the accepted candidates for
J/w = K*K~n"n~ 2y in data. The fitting model for the
2D fit and the fit results are as described above. The
background fraction is estimated to be 28.5%.
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B. Upper limit of the branching fraction for X(1870)

To search for X(1870) via the decay J/w —
@X(1870) » wK"K™n, the maximum likelihood fit is
performed to the M(K"K™#) distribution of the accepted
candidates for J/yw - wK" K™ 7. In the fit, it is assumed
that there is no interference between the X(1870) and non-
X(1870) components. The signal shape is described by a
Breit-Wigner function defined as

1 2
I ME - s — iMRTR|’

f(s) = [BW(s)[? (3)
where My and I'y are the mass and width of the X (1870). The
width of the Breit-Wigner function is fixed to 0.057 GeV/c?
and the mass is fixed to 1.8773 GeV/c? [9]. +/s is the
K™ K~n invariant mass. The background contributions are
estimated with the w/n 2D sidebands. The nonresonant
contribution is described by a free third-order Chebyshev
polynomial function. The full range of the M(K*K 1)
distribution and the fit result are shown in Fig. 2, where
the cyan line represents the fitted X(1870) signal. Since no
X (1870) signal is observed, the upper limit on the number of
X (1870) signal events is determined at the 90% confidence
level (CL). The details are described in the next section.

C. Systematic uncertainties

In the search for J/y — 0X(1870) - K" K™n, the
systematic uncertainties are categorized into additive and
multiplicative uncertainties. The additive uncertainties
originate from the fit to extract the signal yield. The
uncertainty in the signal shape is studied by changing
the Breit-Wigner function to the MC simulated shape.
The systematic uncertainty related to the width and mass
of X(1870) is estimated by varying the nominal mass and

e
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FIG. 2. The fit to the M(K*TK™5) distribution of the accepted
candidates for J/w — wK*TK™#5. The inset plot shows the full
range of the M (K K~n) distribution. The dots with error bars are
data and the red solid line represents the fit result. The cyan short-
dashed line represents the fitted signal shape, the green dotted line
denotes the 2D w/n sideband background from data and the blue
dot-dashed line represents other nonpeaking backgrounds.

width by +10 [9]. To account for the systematic uncertainty
arising from the 2D sideband backgrounds, the number of
events in the 2D sideband backgrounds is varied within £1¢
and the sideband shape is varied by shifting the sideband
ranges within +1¢. The systematic uncertainty from the
nonpeaking background is examined with an alternative fit
with a second-order Chebyshev polynomial function. The
resulting upper limits for each case are determined and the
maximum value is taken as the upper limit.

The multiplicative uncertainties are associated with
the efficiencies, and will affect the BF calculation. The
systematic uncertainties from the tracking and PID, photon
selection, the number of J/y events, and the quoted BFs
are the same as those mentioned above.

The systematic uncertainty associated with the @ or 7
signal region selection is estimated by varying the @ and 5
signal regions. The relative differences in efficiencies
between data and MC simulation, 1.2% for @ and 1.6%
for n, are taken as the systematic uncertainties.

The systematic uncertainty in the quantum numbers of
the X(1870) is evaluated by assuming that it as a pseudo-
scalar meson. The resulting 7.7% change in efficiency is
considered as the systematic uncertainty.

A difference of 1.4% in efficiency with and without
correcting the helix parameters in the 5C kinematic fit is
taken as the systematic uncertainty due to the kinematic fit.

The systematic uncertainty associated with the " veto is
studied by varying the 7’ veto range within +1¢ of its fitted
resolution. The maximum difference of 1.0% in the BF is
take as the uncertainty.

The multiplicative uncertainties on the BF measurement for
J/w — ©X(1870) - wK " K~n are summarized in Table II.
The total multiplicative systematic uncertainty is obtained by
summing the individual contributions in quadrature.

To incorporate the multiplicative systematic uncertain-
ties in the calculation of the upper limit, the likelihood
distribution is convolved by a Gaussian function with a

TABLE II. Multiplicative uncertainties for the upper limit on
the BF measurement for J/y — X(1870) - oK K™n.

Source Uncertainty (%)
x* tracking 1.7
K* tracking 0.5
7+ PID 1.7
K* PID 0.1
Photon selection 1.4
Number of J/y events 04
Quoted BFs 0.9
Kinematic fit 1.4
Veto of #/ 1.0
@ signal region 1.2
n signal region 1.6
Quantum number of X(1870) 7.7
Total 8.7
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mean of zero and a width equal to o,, as described in
Refs. [36-39], with

1 € —(e=¢0)?
L'(B) / L(B—)e 2% de, (4)
0 €o

where L(B) is the likelihood distribution as a function of
the yield n, €, is the detection efficiency, and o, is the
multiplicative systematic uncertainty. The upper limit on
the BF at the 90% C. L., Bz, is obtained by integrating the

si

likelihood function to 90% of its physical region. Finally,
with the detection efficiency (¢’) of 7.02% obtained from
MC simulation, the upper limit on the BF of the signal
decay at the 90% CL is set to be 9.55 x 107,

VI. SUMMARY

Based on the sample of (10087 + 44) x 10° J/y events
collected from the BESIII detector, the BF of the decay
J/w - K"K n is measured to be (3.33 + 0.02(stat) £
0.12(syst)) x 10~* for the first time. No significant J /y —
®X(1870) — K K7 signal is observed. The upper limit on
the product BF of the decay J/yy — 0X(1870) - wK"K™n
at the 90% CL is determined to be 9.55 x 10~ for the first
time. In Ref. [9], the X (1870) resonance had a clear signal in
the 7+ z~n invariant mass spectrum. However, there is no
evidence of X(1870) in the K K~ invariant mass spectrum.
The product BF (or the upper limit on the product BF) of the
two decay modes of X(1870) differs by 3 orders of
magnitude. The probability of the X(1870) decaying via
the K K~# decay mode is lower compared to its decay via
the 7" z7n decay mode. This suggests that the X(1870) may
have a limited s-quark content. To understand the nature of
X(1870), it is critical to measure its spin and parity and to
search for it in more decay modes with higher statistics of
J/y data samples in the future.
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