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Interacting internal waves explain global
patterns of interior ocean mixing

Giovanni Dematteis 1,2 , Arnaud Le Boyer 3, Friederike Pollmann 4,
Kurt L. Polzin2, Matthew H. Alford 3, Caitlin B. Whalen 5 & Yuri V. Lvov6

Across the stable density stratification of the abyssal ocean, deep dense water
is slowly propelled upward by sustained, though irregular, turbulent mixing.
The resulting mean upwelling determines large-scale oceanic circulation
properties like heat and carbon transport. In the ocean interior, this turbulent
mixing is caused mainly by breaking internal waves: generated predominantly
by winds and tides, these waves interact nonlinearly, transferring energy
downscale, and finally become unstable, break andmix the water column. This
paradigm, long parameterized heuristically, still lacks full theoretical expla-
nation. Here, we close this gap using wave-wave interaction theory with input
from both localized and global observations. We find near-ubiquitous agree-
ment between first-principle predictions and observed mixing patterns in the
global ocean interior. Our findings lay the foundations for a wave-driven
mixing parameterization for ocean general circulation models that is entirely
physics-based, which is key to reliably represent future climate states that
could differ substantially from today’s.

Turbulent vertical mixing in the ocean occurs when intermittent tur-
bulent eddies smaller than a few meters, so-called oceanic micro-
structures, are generated in stratified regions through shear or
convective instabilities. In the ocean’s interior, these instabilities are
primarily caused by the breaking of internal waves—energetic oscilla-
tions free to propagate through the density-stratified ocean bulk.
Providing a mechanism for dense water to slowly rise from the deep
ocean1,2, internalwave-driven verticalmixing is generallybelieved tobe
one of the main drivers of the oceanic circulation2,3. It thus shapes the
Earth’s climate4–6, influencing, among others, sea level rise7, nutrient
fluxes and hence marine ecosystems8, and anthropogenic heat and
carbon uptake9.

The small scales (below a few meters) and intermittent nature
(timescales of minutes to hours) of turbulent mixing imply that it is
both difficult to observe directly and impossible to resolve in ocean
general circulation models (OGCM), whose grid cells are substantially
larger than the dominant turbulence length scales. Methods that allow

us to infer wave-induced mixing from far more easily obtainable
observations at larger scales (from a few to hundreds of meters)—the
so-called finestructure—are hence central to advancing our under-
standing of ocean mixing processes and how to best parameterize
them in numerical models2,10.

The state-of-the-artmethod to infer internal wave-drivenmixing is
to interpret turbulent mixing as the energy sink at the end of a
downscale energy cascade through the oceanic internal wavefield,
fueled by large-scale forcing and sustained by wave-wave interaction
processes11–14. This picture was initially supported by formal theory11,12

and ray-tracing numerical simulations15 and then capturedheuristically
by the Finescale Parameterization (FP) formula16–19, essentially in the
following form:
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allowing for an estimation of mixing metrics—here, the turbulent
kinetic energy (TKE) dissipation rate ϵ associated with the decay time
of the small-scale turbulent eddies—fromcharacteristics of the internal
wavefield: its shear-variance level E (related to the energy level E), the
local Coriolis frequency f, and the buoyancy frequency N. The
subscript 0 denotes reference values. Phenomenological corrections
due to different spectral shapes13,19,20 are omitted in Eq. (1) for
simplicity. We refer to Eq. (1) as the Gregg-Henyey-Polzin (GHP)
parameterization13, which requires input from both shear and strain
spectra. Strain-based18 and shear-based16 versions exist –below,wewill
compare our results with estimates from strain-based FP. Although the
internal wave-driven mixing picture is known to break down in
particular locations of the ocean, notably near the ocean’s surface and
bottom boundaries and in regions with strong currents, high
mesoscale activity (where interactions between geostrophically
balanced motions and internal waves are large), and the presence of
fronts21–27, the FP framework is corroborated by substantial observa-
tional evidence around the global ocean19,28–33 and is also supported by
recent numerical evaluations of the scattering integral of wave-wave
interactions34,35. The FP approach has made it possible to estimate
global maps of ϵ28–30 in the interior ocean and to parameterize mixing
in an energetically constrained way36,37 in some of the newest versions
of the OGCMs.

However, significant conceptual research gaps persist in the FP
framework: (i) The constant ϵ0 in Eq. (1) is empirical13, but in order to
reliably represent a wide range of conditions in a changing climate38

the parameterized link between internal waves and ocean mixing
needs to be based on the underlying physics10; (ii) The formula centers
around the 1976 version of the Garrett–Munk spectrum39 (GM76)
accounting for departures from it via phenomenological correction –

omitted in Eq. (1)– but new observational knowledge that GM76 is one
out of many realistic spectra32,33,40,41 calls for a process-based formula
that applies to any spectral shape indistinctly; (iii) The interpretationof
Eq. (1) relies on the notion that wave-wave interactions with large scale
separation dominate the energy transfers12, but this paradigm requires
a nonlinearity level arguably too strong for the assumed weakly non-
linear theory to apply42 and the presence of a high-frequency source
not backed-up by observations13,14.

Here, we pursue the application of formal theory11,43 in a way that
is more flexible to address the observed variability of the oceanic
internal wavefield. We show that the bare theory of wave-wave inter-
actions (weak wave turbulence)44–46 provides a systematic explanation
for the close causal link between the observed global patterns of
internal wave spectral energy and of turbulent vertical mixing in the
ocean interior. A few comments are due on the difference from
important earlier attempts to trace the FP estimates back to first
principles, in the ray-tracing regime of scale separation between small-
amplitude small-scale test waves and a large-scale background
shear15,47,48: (i) The ray-tracing simulations are implemented in the
Wentzel-Kramers-Brillouin (WKB) approximation. This requires an
arbitrary scale-separation factor that is used to tune the magnitude of
the estimate, whereas the weak wave turbulence framework does not
assume scale separation and allows for a quantification of spectrally
local transfers; (ii) The spectrally-local transports of weak wave tur-
bulencemake the results rather independent of the high-wavenumber
cutoff (Supplementary Information), vs a high sensitivity to the cutoff
scale in the eikonal nonlocal transports48; (iii) Both are weakly non-
linear theories and suffer from high levels of nonlinearity as the high-
wavenumber cutoff is approached, but our analysis (Supplementary
Information) shows that nonlinearity is not as high as Holloway’s
objection42 depicted it. An updated rigorous analysis on the eikonal
approach is found in refs. 49,50.

We synthesize our findings into an adaptive parameterization that
generalizes the FP formula and provides an expression that is based
unambiguously (without tunable parameters) on the ocean’s primitive

equations themselves instead of empirically established numbers.
Crucially, wedepart from the concept of a universal spectrumand fully
encompass the observed variability of oceanic internal wave spectra,
including an extra degree of freedom for the near-inertial spectral
content, which has not yet been included in a theoretical framework
before beyond a brief mention in ref. 19. Moreover, the inter-scale
energy transfers that we quantify and characterize turn out to be
dominated by spectrally-local interactions rather than scale-separated
ones, to require large-scale energy sources consistent with observa-
tions, and to occur in a weakly nonlinear regime for most of the
internal wave scales. We then corroborate our results with data from
some of the most advanced oceanographic field programs, finding
near-ubiquitous agreement between our theoretical predictions, input
from direct microstructure observations, and other pre-existing esti-
mates from FP methods.

Results
Global variability of internal wave spectra
Wedescribe the spatially and temporally observed oceanic variance as
an internal wavefield—purposely discard any vortical modes influence
on such variance—and characterize this internal wavefield in the two-
dimensional (2D) frequency (ω) and magnitude of vertical wave-
number (m) spectral space. Internal waves oscillate with frequencies
between f and N, and vertically between the first mode, m0 (inverse
ocean depth), and the largest available mode that is not subject to
shear instability2, mc (see Eq. (3)).

The energy spectrum, e(m, ω), represents the averaged distribu-
tion of energy in the internal-wave band, so that its 2D integration over
this rectangular spectral region amounts to the total internal-wave
energy E =KE +APE, sum of kinetic and available potential energy. We
neglect the contribution of vertical kinetic energy, thereby identifying
KEwith the contribution from the horizontal velocity only. To capture
the variability of the internal wavefield in the ocean, we propose to
represent the energy spectrum by five parameters (“Adaptive formula
for the 2D spectral energy”, Eq. (4)): the high-frequency and high-
wavenumber negative slopes, sω and sm; the finite-point singularity
exponent asω → f, sNI, encoding the concentration of energy in the so-
called inertial peak; the wavenumber scale under which the low-
wavenumber energy density saturates, m*; and the total energy
E = ÊE0N=N0, with E0 = 0.003m2s−2. The GM76 spectrum is recovered
by setting sω = 2, sm = 2, sNI = 1/2, m* =m

0
* = 0:01 m

−1, Ê = 1.
We estimate these five parameters (using best fit to the functional

form Eq. (4), but either in frequency or in wavenumber space sepa-
rately) from (a) over 2000 independent timeseries from the Global
Multi-Archive Current Meter Database (GMACMD), expanding the
analysis of ref. 33 to also include sNI in addition to sω and Ê (“Global
multi-archive current meter database”), and (b) 12 years worth of Argo
float profiles, providing around 2.9 million estimates of wavenumber
slope sm and scale m*

32 (“Argo floats”). Figure 1 illustrates the geo-
graphic location of these estimates (A) and for select observed spectra
thefitting procedure to estimate sω (B), sNI (C), Ê (D), and sm andm* (E).

We use this combined information to build the largest possible
dataset of 2D spectral estimates of the total internal wave energy
(“Combined global dataset”)—hereafter referred to as the combined
global dataset. Figure 1F–J shows the histograms of the spectral para-
meters at those locations where all five are available after data inter-
polation, fitting, and analysis, representing the observed global
variability of the oceanic internal wavefield.

Wave-wave interaction theory predicts mixing
A given test wave mode can exchange energy with a pair of other
modes when their amplitudes multiply each other in the quadratic
term of the primitive equations of the ocean51. If nonlinearity is weak
compared to linear dispersion, the energy transfers are dominated by
resonant interactions, when the wavenumbers and frequencies of two
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waves sum respectively to the wavenumber and frequency of the third
wave. Such interactions in internal wavefields are observed at play in
the ocean52, in high-resolution models53,54, and in large water tanks55,56.
We treat this triadic resonant picture rigorously in the Hamiltonian
formalism derived directly from the primitive equations43 (“Hamilto-
nian formalism of internal wave-wave interactions”). We neglect
interactions of internal waves with currents and mesoscale vortices,
although these can modify a purely wave-driven forward energy cas-
cade and the resulting energy dissipation23–25,27,57, and e.g., the pre-
sence of vortices can impact the level and shape of the internal gravity
wave continuum itself 26,58.

To quantify the energy transfers across the different scales, we
partition the internal-wave band into nine subregions (Fig. 2), using a
methodology for wave-wave energy transfers between arbitrary spec-
tral subregions59 (“Wave-wave interaction transfers”). This crucially
differentiates our approach from other recent work34, allowing us to
target quantitatively the locality and directionality of the spectral

energy transfers.When energy is transferred to the dissipative regions,
it is converted into turbulent energy2. Here, we quantify the turbulent
energy production rate, P, as the sum of the energy transfers leaving
the internal-wave band toward the dissipative regions, as e.g., in refs.
12,34. The result is a theoretical formula forP, fromwhich we are able
to evaluate the vertical diffusivity, K, and the TKE dissipation rate, ϵ, by
use of a standard parameterization Eq. (20). For ϵ, the formula reads:

ϵ= ϵth0 ðsNI, sω, smÞ
f
f 0

Em*
sm�1

E0m
0
*
sm�1

 !2

: ð2Þ

An N2 factor appears when using the normalized level Ê. Moreover, in
the case of sm = 2, corresponding to a white shear spectral density, we
have that Em* scales like the shear-variance level E, so that Eq. (2)
notably encompasses the scaling of (1) in terms of shear-variance level
—while a correction arises for sm ≠ 2. In “First-principle mixing

Fig. 1 | Observed internal wave spectra and their global variability. Input data
for our global data set of two-dimensional spectral estimates of internal wave
energy e(m,ω).A Illustrates data availability of total internalwave energy in the two
databases used (250–500m depth range shown), the frequency spectra from
current meter observations of Global Multi-Archive Current-Meter Database
(GMACMD, upper), and the vertical wavenumber spectral estimates from
Conductivity-Temperature-Depth (CTD)-profiles collected by Argo floats (lower).
The spectral parameters required for our theoretical model are obtained from
fittingpower-laws to, and integrating, the observed frequency spectra (the negative
spectral “slopes” at high frequency, sω in (B), and low frequency, sNI in (C), and the

normalized total energy Ê in (D); notice that theM2 tidal peak is filtered out in our
parameter estimation procedure), and by nonlinear curve-fitting to observed
wavenumber spectra to obtain the wavenumber negative slope sm and scale m*

(E). These exemplary spectra are from measurements at 39.5°N, 54.1°W, 1006m
depth (B–D); 29.6°S, 2.8°E, 589m depth (E, red); 41.6°S, 46.8°W, 589m depth
(E, blue); 4.6°N, 29.1°W, 566 depth (E, green). F–J shows the distribution of these
spectral estimates for locations where all five of them are available. The grey-
shaded backgrounds represent the ranges of values covered by our implementa-
tion of the theoretical formula Eq. (2), while the red dashed lines identify the
canonical Garrett–Munk spectrum (GM76) parameter values.
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parameterization” we provide a detailed justification of this fact, as
well as the analytical relationship between our five spectral parameters
and the normalized shear level of theGHPfinescaleparameterization13.
The factor encoding the dependence on the spectral slopes is fixed by
ϵth0 = ð1� Rf ÞPth

0 , with Rf =0.17, using Eq. (20), where Pth
0 is computed

numerically (“First-principle mixing parameterization”). The value
associatedwith the original FP formula Eq. (1), ofP =8× 10�10 W kg−1 13,
is retrieved by our theoretical prediction when we use as input the
canonical parameters of the GM76 spectrum, for which we obtain
P =9:8× 10�10 W kg−1. This is shown in Fig. 2A. In Fig. 2B, we then
consider a different spectrum, with the same amount of energy
redistributed with higher concentration in the inertial peak, and less
energy in the high frequencies. We observe that this different spectral

configuration depletesP considerably, bymore than a factor of 3. This
happens because the frequencies close to f are more linear than the
high frequencies, resulting in an overall reduction of turbulent energy
production. A difference in the energy pathways is also apparent in the
comparison of Fig. 2A, B. We use these two cases as examples to show
how different spectra imply different pathways and magnitudes of
energy transfer.

We further decouple the spectral energy transfers into the three
primary classes of Induced Diffusion (ID), Parametric Subharmonic
Instability (PSI), and Elastic Scattering (ES)12—see “Interaction pro-
cesses: classification and quantification” for more details. For the
GM76-type spectrum (Fig. 2A), the PSI class is responsible for roughly
half of the total turbulent energy production, but this proportion

Fig. 2 | Theoretical spectral energy transfers. Prediction of spectral energy
transfers for two exemplary spectra with same total energy E and different near-
inertial slope sNI. A Garrett–Munk model (GM76) with a shear-to-strain ratio Rω = 3
(see Eq. (6) in “Methods”). B Spectrum with larger near-inertial peak (Rω = 7.3). The
frequency andwavenumber energy spectra are shown at the bottom and the left of
(A, B), with dashed grey lines representing the GM76 reference.P is the sum of the
energy transfers across the red boundary separating the internal-wave band (white)
from the turbulent dissipative region (light blue). For each of the subregions, we
also report the nonlinear residence time τres (ratio between the outgoing energy
transfers and the energy contained in the subregion) and the nonlinearity para-
meter rnl (ratio between the average wave period in the subregion and τres). We

group the interactions into the three classes of Induced Diffusion (ID), Parametric
Subharmonic Instability (PSI), and Elastic Scattering (ES)—in spite of the original
scale-separated definitions, here we keep track of the class also in the local regime
(see (E)). The spectral subregions are labeled by the different combinations of high/
low frequency (HF/LF) and high/low wavenumber (HW/LW). C, D show (respec-
tively for (A and B)) the contributions to P due to each of the mechanisms.
Moreover, we quantify the proportion of such contributions that are due to spec-
trally local (vs scale-separated) interactions. E shows the energy transfers for a test
wave, with the three branches and their respective local and scale-separated con-
tributions (scale separation defined by a factor of 4 in m − ω space).
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varies for different spectra (Fig. 2B). Originally, these three interaction
classes were defined for the asymptotic regime of large scale
separation60. Previous works, including the original FP derivation16,
focus on such scale-separated interactions for estimating the energy
transfers through the internal wave spectrum. Here, the resolution of
the collision equation allows for an exhaustive evaluation of these
three types of interaction classes to account for all interactions—we
consider an interaction local if all members of the triad are within a
factor of 4 from each other (either in them or in theω directions), and
scale-separated otherwise. For ID and ES, we find that at least 80% of
the energy transfers are due to local interactions (Fig. 2C, D)—with
almost negligible scale-separated contributions, in agreement with the
understanding that GM76 is an asymptotic ID and an ES zero-flux
solution35,61. Also for PSI, the local contribution is substantial, and
Fig. 2C, D shows that the local vs scale-separated proportion depends
strongly on the spectral distribution. This makes a difference, for
instance, during the evolution of a spectrum initially forced at low
frequency and low wavenumber. In such a case, we expect a transition
between a regime characterized by interactions with large-scale
separation at the early stages of the evolution, and a significantly
more spectrally-local regime at later stages when a stationary state is
reached. In general, thesefindings contradict the notion that the scale-
separated interactions represent the total energy transfer12,16 and
highlight instead the role of the previously ignored interactions
between waves of similar scales. This supports the results of ref. 62 to
explain why there is such little observational evidence63 for the sug-
gested catastrophic decline of internal-tide energy at the latitude
where PSI is most efficient53. In fact, this decline may not be as evident
if the contribution by local interactions other than PSI is large and not
particularly affected by the critical latitude itself.

Validation and comparison
First, we validate the theoretical formula Eq. (2) with microstructure
observations. Second, we apply Eq. (2) to the combined global dataset
of internal wave spectra, compare it with strain-based FP estimates,
and characterize the global distribution of mixing intensity and
timescales.

Validation with microstructure measurements. We use time series
sampled by the High-Resolution Profiler (HRP) in five distinct ocea-
nographic regimes19 (Fig. 3A and “High-resolution profiler”): in the

vicinity of a large seamount (Fieberling Guyot) in the eastern North
PacificOcean; in amid-ocean regime in theAtlantic; below awarmcore
ring of the Gulf Stream; and above the roughMid-Atlantic Ridge in the
eastern Brazil Basin. These measurements provide simultaneous
independent access to micro- and fine-scales. We infer the 2D energy
spectrum from the finescale shear and strain spectra (“High-resolution
profiler observations”) and determine K using our theoretical formula
for P and the empirical relation K =RfP=N2 (“First-principle mixing
parameterization”).

All except for two of 42 data points shown in Fig. 3B, each the
result of an average over several profiles, agree with the micro-
structure estimate of K19,64 within a factor of 2 (slightly more in two
cases). The twooutliersweremeasured right belowa strongwarmcore
ring, where effects not considered here such as wave-mean flow
interactions are expected to enhance mixing substantially65. Con-
sidering the heterogeneity of the observations, the range of values
spanning 1.5 orders of magnitude, and a nominal uncertainty of the
microstructure estimates as high as 50%19, the agreement is striking.

For the BBTRE observations64, each data point comes from the
average of 30 full-column profiles, in one of 20 overlying depth ranges
of 200m. This allows us to show a vertical profile of turbulent diffu-
sivity throughout the over 4000m-deep water column in Fig. 3C. The
theoretical estimate with finestructure data input closely reproduces
the microstructure vertical profile of (bottom-enhanced) mixing.
Although we note an overall slight overestimate, this is comparable in
sizewith the uncertainty on the theoretical estimate itself (shaded area
in Fig. 3C).

Mixing patterns across the global ocean interior: comparison with
an existing finescale parameterization. We apply our generalized FP
(2) to the combined global dataset of internal wave spectra and com-
pare the results to the most up-to-date strain-based FP (1) mixing
estimates of ref. 30 from Argo float profiles. This reference uses the
original strain-based FP incarnation of Eq. (1) with a constant ϵ0, which
was validated against microstructure observations66 and offers wider
spatial coverage than the fully independent microstructure estimates
used above. We sort and average our estimates in the 1.5° × 1. 5° hor-
izontal bins and the three depth ranges (250–500m, 500–1000m, and
1000–2000m) of the Argo-based reference.

We find a total of 175 bins for which both our new (average 1023/
bin) and reference (average 740/bin) estimates are available. We find

Fig. 3 | Validationwithmicrostructure.A Location of theHigh-Resolution Profiler
(HRP) observations used for validation. B Validation of the theoretical calculation
of vertical diffusivity K with input from finestructure against the corresponding

microstructure estimates, from simultaneous HRP measurements19. C Vertical
profile of K from the BBTRE observations conducted over rough topography64.
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highly significant agreement over two orders of magnitude (Fig. 4A).
This strengthens the success of our generalized FP (2) validated in the
previous subsection. It also implies that for present-day conditions, the
original FP incarnation with an empirically set constant ϵ0(1) provides
comparable estimates to our generalized FP (2). However, for climate
conditions that differ substantially from today’s, only a parameteriza-
tion based on the underlying physics alone like our generalized FP (2)
can ensure reliable mixing estimates.

The distribution of all our calculated values of ϵ collapses onto the
distribution of the strain-based FP estimates of ref. 30 (Fig. 4B), once
the spread of the theoretical estimates is suitably renormalized to
account for regional coarse-graining. We now define the coarse-
grained residence time, τres, as the ratio between the total energy in a
given subregion and the sum of its outgoing energy transfers. Fig-
ure 4C depicts the broad distributions of our predicted residence
times, withmean values from a few days (high wavenumbers) to about
30 days (low wavenumbers). This multiscale character is reminiscent
of the dual treatment of the internal tide in the OGCMs: the low-
wavenumber farfield,with large residence times allowing for hundreds
of kilometers of propagation from the source, and the high-
wavenumber near field, dissipated much faster near the generation
site2. In the low-frequency panels, we show the range of wave-wave
damping timescales for selected modes in GM76-type spectra: from
the very weakly nonlinear low-mode near-inertial waves12 (up to

100 days), to theM2 baroclinicmodes spanning from 50days (mode 1)
down to a few days (mode 10)62,67. We find general consistency of our
predicted timescales with prior knowledge, whilst also providing a
notion of typicality of nonlinear timescales in observed oceanic
conditions.

Figure 5 shows a geographical comparison between our bin-
averaged theoretical estimates of TKEdissipation rate (with input from
the global combined dataset) and the bin-averaged estimates from
strain FP of ref. 30. Agreement is generally strong, although a few
locations show some disagreement—a region-dependent study of the
reasons of disagreement, which will necessarily include a combined
analysis of the energy sources at play, is beyond the scope of the
present manuscript and will be addressed in future work.

A study of nonlinearity level reported in Supplementary Infor-
mation shows that, contrary to earlier arguments e.g., ref. 42, oceanic
internal waves are typically weakly nonlinear at most scales. The scales
that can involve lower residence times and higher nonlinearity levels
concern the low-frequency, high-wavenumber PSI decay. Strong non-
linearity, indeed, is expected as the wave-breaking scales are
approached.

Discussion
For the sake of transparency, we underscore the constraints inherent
in our approach: we (i) overlook processes other than wave-wave

Fig. 4 | Comparison with existing parameterization and global distributions.
A Evaluations of regionally and temporally averaged ϵ in the global ocean, vs the
strain finescale parameterization (FP) estimates of ref. 30. The data points where
both evaluations of ϵ are available are bin-averaged along the horizontal axis
(points per bin printed below error bars). B Distribution of all theoretical mixing
estimates for the spectra in the global combined dataset shown in Fig. 1, compared
with the updated global distribution of bin-averaged values of ref. 32. To compare

on the same coarse-graining level, assuming statistical independence we renor-
malized the horizontal spread of the theoretical estimates, dividing by log10

ffiffiffiffiffi
�ni

p
,

with �ni = 1023 estimates/bin (average). C Histograms of coarse-grained nonlinear
residence times at the different scales of global oceanic internal wavefields. At low
frequency, the shaded regions are damping-time ranges of low-modes from pre-
vious literature (mode 10, at the boundary between low and high wavenumbers,
shown in both panels).
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interactions within a spatially homogeneous, vertically symmetric,
and horizontally isotropic wavefield; (ii) employ the exactly resonant
formalism of weak wave turbulence theory implying, among other
things, that we neglect the advective “sweeping” of small-scale waves
by large-scale waves via the Doppler effect49,50; (iii) operate under the
hydrostatic balance assumption; (iv) assume separable spectra—
indeed an oversimplification. Moreover, (v) the weakly nonlinear
assumption is arguably broken near the high-wavenumber wave-
breaking threshold mc, but the results are rather insensitive of the
choice of mc, and (vi) an assumption of regionality and stationarity

underlies our cross-matching of internal-wave spectra databases. The
above points define the limitations of our approach. In particular, it
cannot describe the dynamical transitions to instabilities or other
non-weak phenomena that are a necessary bridge from weakly non-
linear theory to 3D turbulence, such as caustics in ray theory (related
to boundary layer theory), bound waves, and transient non-resonant
interactions that represent a transition to wave instability or strati-
fied turbulence68–72. This is a topic of intense investigation
from theoretical, numerical, experimental, and observational
perspectives.

Fig. 5 | Comparison of geographic distributions of turbulent kinetic energy
dissipation rate ϵ. Visual comparison between the theoretical estimates of dis-
sipation rate using our generalized finescale parameterization (FP) Eq. (2) with
input from the global combined dataset, and the strain FP estimates with input
fromArgo data.A–C shows theArgo reference in three different depth levels, while
(D–F) shows the ratio between the theoretical estimate and the Argo reference,

respectively for the three depth levels. Shown are the average values obtained over
the regional bins of 1.5∘ × 1.5∘ horizontally, and in the three given depth layers ver-
tically. These data points are used to build the plot in Fig. 4A. In the right panels,
white color indicates agreement, while red and blue color indicate respectively a
higher and lower theoretical value with respect to the strain FP value.
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Our results are, at least qualitatively, in linewith results fromhigh-
resolution numerical simulations, in particular regarding a high
dependence on spectral shape and the large contribution from local
interactions54,73,74. On theonehand,we refrain fromcomparing directly
with previous numerical simulations restricted to a 2D vertical plane
e.g., refs. 75,76, expecting the lower dimensionality to change the
properties of the system by reducing linear dispersion and thereby
increasing the effective nonlinearity. On the other hand, future work
will need to address the comparison between differentmethodologies
of quantification of spectral energy transfers, including triad estimates
and coarse-graining methods54,59,77,78.

Within the framework of assumptions listed above, we have
demonstrated that our theoretical/numerical evaluations of turbulent
mixing come straightforwardly from the dynamical equations of the
ocean, and are free of arbitrary parameters that could be used heur-
istically to fine-tune the estimates. In this sense, our quantification is
from first principles in essence. Considering the apparently strong
operational assumptions, it is all the more striking that our first-
principle quantification of turbulent mixing (which acts as a theore-
tical/ conceptual generalization of the FP formula), with input from
observational spectra, is in such strong agreement with widespread
observations in the global ocean interior—both with direct micro-
structure measurements at some select locations19, and with the most
up-to-date corroborated indirect estimates in the global ocean30, via
strain-based FP applied to Argo data. This demonstrates the close
causal link betweenwave-wave interactions, particularly the spectrally-
local ones that were previously ignored, and turbulent mixing. This
assessment paves the way for many further analyses, such as a robust
study of the spatio-temporal variability of internal wave energy
transfers, wave-induced mixing, and the link to environmental condi-
tions. Such information is essential for the design of experiments or
research cruises as well as the development of energy-constrained
mixing parameterizations, which are indispensable for the reliable
modeling of future changes in ocean dynamics and their global-scale
impact4,36,38.

Methods
Field data
Global multi-archive current meter database. Ocean velocities
timeseries were selected from the Global Multi-Archive Current Meter
Database (GMACMD). Following ref. 33’s methodology, 2260 current
meters on 1362 moorings were selected (Fig. 1). The instruments’
depths range from 100 m below the surface to 200 m above the sea-
floor with a maximum of 6431m depth. Finally, data within 5° of the
equator were discarded to avoid complications with the longer inertial
periods at very low latitudes.

The time evolution of kinetic energy frequency spectra (ϕKE(ω))
for each of these time series is evaluated using a multitaper method
with a sliding 30-day window. After removing the spectral peaks
associated with the main energy sources (removing frequency bands
around the near-inertial and tidal peaks as well as their harmonics), the
slope (sω) of the internal wave continuum is estimated with a linear fit.
A similar method is used to estimate the slope (sNI) of the near-inertial
peak using ϕKE ðω�f

f Þ.

Argo floats. Argo floats autonomously profile the ocean’s upper
2000m, collecting temperature, salinity, andpressure information at a
vertical resolution of a few meters roughly every 10 days e.g., ref. 79.
Building on previous implementations of the finestructure
parameterization28,32,80,81 derived verticalwavenumber spectraof strain

ξz = ðN2 � N2
f it Þ=N2, where N2 is the buoyancy frequency, N2

f it a quad-

ratic fit and N2 the vertical mean, from these profiles, translated them
into energy spectra by exploiting the polarization relations51, and fitted
the GM76 model to obtain a global database of internal wave energy

level, vertical wavenumber slope sm and wavenumber scale m*, which
we here use and are available at https://doi.org/10.5281/zenodo.
696641682. The integrated strain spectrum provides the strain var-
iance, a key component of the FP expression to estimate TKE dis-
sipation rates. We here use an update of the TKE dissipation rate
estimates fromArgofloatprofiles of ref. 81, available at https://doi.org/
10.17882/9532730.

High-resolution profiler. The free-falling, internally recording HRP83

samples the water column giving access to spectra in vertical wave-
number space. It features an acoustic velocimeter and a Conductivity-
Temperature-Depth (CTD) probe, from which we obtain the fines-
tructure spectra of shear and strain variance, respectively. Indepen-
dently, the HRP also has airfoil probes to sense the centimeter-scale
velocity field. This makes it possible to reconstruct the microstructure
shear variance, yielding a direct estimate of the TKE dissipation rate ϵ
and, by use of the relations Eq. (20), of the diffusivity K.

The five observational campaigns that we use are TOPO_Deep, in
the eastern North Pacific Ocean, consisting of eight profiles as deep
as 3000m; TOPO_F, consisting of 15 profiles near TOPO_Deep but
with enhanced non-GM characteristics; the 40 WRINCLE profiles
from the center of a warm core ring of the Gulf Stream; 10 profiles
from the NATRE experiment, in the North Atlantic mid-ocean regime;
30 profiles from the BBTRE experiment64, conducted above the
rough topography of the Mid-Atlantic Ridge in the eastern Brazil
Basin. All profiles used in this analysis start at least 200m above the
bottom. Each of the 42 independent data points represented in
Fig. 3B roughly corresponds to a 1-day average of multiple vertical
profiles that extend in depth from 1000m in the WRINCLE experi-
ment to over 4000m in the BBTRE experiment. When they belong to
the same experiment, the data points come from well-separated
conditions in space or time, ensuring complete statistical indepen-
dence. Detailed information on the five observational campaigns is
found in refs. 19,64.

Data processing: from observations to 2D spectra
Adaptive formula for the 2D spectral energy. Due to the large aspect
ratio of the horizontal-to-vertical scales of oceanic internal waves, a
minimal statistical description of the wavefield—assuming no pre-
ferential directionality in the horizontal plane—must be two-
dimensional (2D). We represent the spectra in frequency (ω) and
magnitude of vertical wavenumber (m)—the natural dual variables for
fixed-point time series and vertical stratification profiles, respectively.
The internal-wave band is bounded in frequency space by the local
Coriolis frequency (f) and the buoyancy frequency (N), and in the
vertical wavenumber space by the mode-1 wavenumber m0 =π/H
where H is the full water column, and the wavenumber of the largest
available mode that is not subject to shear instability2:

mc =2π=‘c ð3Þ

where ‘c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RicKE

p
=N =Oð10mÞ is related to the critical Richardson

number of Kelvin–Helmholtz instability Ric = 1/4, and KE is the kinetic
energy density per unit of mass.

Wemodel the total energy spectral densitywith the followingfive-
parameter formula (separable in frequency and wavenumber),

eðm,ωÞ=B ω2sNI�sω

ðω2 � f 2ÞsNI
1

msm +msm
*

, ð4Þ

where B is a normalization constant constrained by the total energy E.
In order for E to always befinite, we assume a regularization plateau for
frequency smaller than 1.025 f, such that e(m, ω < 1.025 f) = e(m, 1.025
f). Our justification of the plateau width is twofold: first, it is of the
order of the frequency space resolution implied by our observational
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sliding window of 30 days (“Global multi-archive current meter
database”), at mid-latitudes; second, we observe that most energy
close to f (in the plateau region) is “frozen” in an effectively
noninteracting linear state that does not affect the nonlinear energy
transfers quantified in this manuscript (cf.Supplementary Information
Fig. S2, showing residence times larger than 100 days in the inertial
limit). The choices sNI = 1/2, sω = 2, sm = 2, E = 2.3 × 10−3 J kg−1 (instead of
E = 3 × 10−3 J kg−1 because of the regularization plateau at f), m* = 4π/b
(with b = 1300m) evaluated atN0 = 3 cph, f 0 = 2 sinðlatÞ cpd, at latitude
lat = 32.5°, reduce formula Eq. (4) to the reference GM76 spectrum.
The following sections provide details on the estimate of the five
spectral parameters in Eq. (4) from observational data.

Combined global dataset. In our global analysis of 2D internal-wave
spectra, the three parameters sNI, sω, and E are estimated for each
moored frequency spectrum of kinetic energy computed as described
in section “Global multi-archive current meter database”. By the
polarization relations of internal waves41, the near-inertial spectrum of
total energy (and therefore sNI) is dominated by kinetic energy, since
the near-inertial waves are mostly horizontal-velocity oscillations. On
the other hand, the high-frequency slope sω is asymptotically the same
for the kinetic and potential energy. The total energy E relates to the
kinetic energy KE (neglecting vertical kinetic energy) via

E =KE
Rω + 1
Rω

, ð5Þ

where the shear-to-strain ratio Rω (which equals the ratio of horizontal
kinetic energy to available potential energy), assuming separability, is
computed as

RωðsNI, sωÞ=
1

N2

R N
f

N2�ω2

N2�f 2
ω2 + f 2

ω2
ω2sNI�sω

ðω2�f 2ÞsNI
dωR N

f
ω2�f 2

ðN2�f 2Þω2
ω2sNI�sω

ðω2�f 2ÞsNI
dω

, ð6Þ

as represented in Fig. 6 (left) (see e.g., ref. 32). The yellow data points
show the spread of the bin-averaged spectral slopes, with values of Rω

always smaller than 10. This fact is important as it justifies a-posteriori
the applicability of the strain-based FP in these regions, in light of the
correction proposed by Ijichi and Hibiya20,48, which would be relevant
only for larger values of Rω. The global distribution that we obtain for
Rω is shown in Fig. 6 (right).

We complete the set of spectral parameters by assigning the
average vertical wavenumber slope sm and scale m* computed from
the Argo dataset (cf. section “Argo floats”) for the discretization bin
that contains the given moored spectrum. Two assumptions of sta-
tistical regionality and stationarity underlie our analysis. The results of
ref. 41 indicate that the regional characterization of spectral power
laws after averaging over themesoscale-eddy space-time scales is fairly
independent of the seasonal variability of E. Closer spatial correlation
and seasonal variability will be analyzed in a follow-up study.

High-resolution profiler observations. From the HRP profiles, we
obtain thefinestructure spectra of shear and strain variance.Weobtain
directly the vertical wavenumber slope sm and scale m*, and the total
energy E by use of the polarization relations and by direct calculation
of Rω as the shear-to-strain ratio. Now, we need to infer information on
the frequency slopes sNI and sω. To this end, we exploit the fact that Rω

depends solely on the frequency spectrum Eq. (6) since the wave-
number spectral properties cancel out in the ratio. Therefore, we have
that Rω =Rω(sNI, sω), as shown in Fig. 6. A given value of Rω therefore
corresponds to a level set establishing a unique curve in the sNI–sω
plane. For an evaluation of turbulent energy production rate (P), we
study the variation of the factorPth

0 ðsNI, sω, smÞ∣sm in formula Eq. (15), at
fixed sm, along the given Rω level set in the sNI–sω plane. The resulting
variation turns out to be small as the level sets of Pth

0 ðsNI, sω, smÞ∣sm are
mostly parallel to those of Rω(sNI, sω), as can be appreciated in Fig. 7.
The uncertainty associated with this variation is smaller than 10% in
most regions of the sNI–sω space. For operational purposes, we are thus
free to fix a value of sω (for simplicity, a choice of sω = 2 is made here),
and determine the value of sNI constrained by the computed value of
Rω. The ensuingmixing evaluation is independent of the choice up to a
small uncertainty.

Theoretical methods
Hamiltonian formalism of internal wave-wave interactions. We start
from the simple Boussinesq approximation of the primitive equations
of the ocean51,84 and use the Hamiltonian formalism of ref. 43.
Assuming hydrostatic balance, the dispersion relation of internal
waves is given by

ω2 = f 2 +
g2

ρ2N2

k2

m2 , ð7Þ

Fig. 6 | Shear-to-strain ratio. Left: Colormap representing the shear-to-strain ratio
Rω as a function of the spectral parameters sω (high-frequency slope) and sNI (near-
inertial slope), according to formula (5). The yellow dots represent the spread of

bin-averaged slopes from the 175 regions in the global combined dataset. Right:
Global distributionofRω. The reddashed line indicates theGarrett–Munk spectrum
(GM76) value of Rω = 3.
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where k and m are the magnitudes of the horizontal and vertical
components of wavenumber, ρ is themass density per unit of volume,
and g is the acceleration of gravity. We now use isopycnal coordinates
(x, y, ρ) and assume spatial homogeneity and constant potential vor-
ticity on each isopycnal layer. For simplicity of notation, here and in
the rest of section “Theoretical methods”, m denotes the vertical
wavenumber in isopycnal coordinates. This reduces the equations to
two field variables, the velocity potential ϕ(x, y, ρ) (such that the
horizontal velocity is given by u =∇ ϕ + ∇⊥ψ, where ∇⊥ = (−∂/∂y, ∂/∂x)),
and the differential layer thicknessΠ(x, y, ρ) = ρ∂z/∂ρ. The divergence-
free field ψ is dynamically constrained to Π by the constant potential
vorticity assumption. The two ϕ(x, y, ρ) and Π(x, y, ρ) are Hamiltonian
canonically conjugated variables with respect to the Hamiltonian

H=
1
2

Z
dxdydρ Π ∇ϕ+∇?ψ

�� ��2 � g
Z ρ

0

Z ρ1

0
dρdρ1

Πðρ2Þ � �Πðρ2Þ
ρ2

� �2
 !

,

ð8Þ

where �ΠðρÞ=ρ∂�zðρÞ∂ρ = � g=N2 is the given stratification in hydro-
static balance (here assumed constant by the vertical homogeneity
assumption). This means that the equations of motion take the simple
form:

∂Π
∂t

=
δH
δϕ

,
∂ϕ
∂t

= � δH
δΠ

: ð9Þ

The Hamiltonian H has a cubic nonlinearity in addition to harmonic
terms. The harmonic part is diagonalized by the canonical normal
variables aðpÞ=N=k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðpÞ=ð2gÞ

p
ΠðpÞ � ik=N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ð2ωðpÞÞ

p
ϕðpÞ, where

we have now switched to Fourier space and p denotes the 3D
wavevector.

We now use the relationship haðpÞa*ðp0Þi =nðpÞδðp� p0Þ (the
symbol * denotes complex conjugation and 〈⋅〉 denotes statistical
average over a suitable statistical ensemble) defining the 3D wave-
action spectrum n(p) in spatially homogeneous conditions. The 3D
energy density is given by e(p) =ω(p)n(p), with respect towhich the 2D
energy density is given by eðm,ωÞ=4πðg=ðρ0NÞÞ2m2ωeðpÞ, with
ρ0 = 103 kg/m3.

Following the standard approach of wave turbulence44,45,85, under
the assumption of weak nonlinearity, in a random near-Gaussian
wavefield with spatially homogeneous, horizontally isotropic, and
vertically symmetric statistics, we derive theWave Kinetic Equation for
the spectral energy density11,43:

_eðm,ωÞ= I½e, e�ðm,ωÞ, ð10Þ

where I[e, e] is the wave-wave collisional operator, a quadratic integral
operator that accounts for the contributions from all of the possible
resonant triads that involve the test wave identified by the point (m,ω).
For details on the derivation and on the r.h.s. of Eq. (10) summarized
above, we refer the reader to ref. 86. The r.h.s. of Eq. (10) has the
following form43:

I½e, e�ðm0,ω0Þ= Jðm0,ω0Þ
Z

R0
12 � R1

02 � R2
10

h i
dp12, ð11Þ

with Jðm,ωÞ=4πρ2
0N

2m2ω2=g2. The term R0
12 reads

R0
12 = 4πn0n1n2

1
n0

� 1
n1

� 1
n2

� �
jV0

12j2δðω0 � ω1 � ω2Þδðp0 � p1 � p2Þ,

ð12Þ

with 3D action spectrum np = e(m, ω)/J(m, ω) and matrix elements

∣V0
12∣

2
=

N2

32g
k0 � k1

k0k1
k2

ω0ω1 + f
2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0ω1ω2
p +

k0 � k2

k0k2
k1

ω0ω2 + f
2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0ω1ω2
p +

k1 � k2

k1k2
k0

ω1ω2 � f 20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0ω1ω2

p
" #28<

:
+

f 0k1 � k?
2

k0k1k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0ω1ω2

p
 !2

ω0ðk2
1 � k2

2Þ+ω1ðk2
0 � k2

2Þ+ω2ðk2
1 � k2

0Þ
h i29=

;:

ð13Þ

k = (kx, ky) denotes the 2D horizontal wavenumber, and k⊥ = (−ky, kx). A
set of three wavenumbers simultaneously fulfilling the frequency and
wavenumber delta functions is called resonant. The three resonance
conditions in Eq. (11) restrict the integration domain onto a 2D subset
of R6 called the resonant manifold, with six independent branches—
two for each resonance condition. The six branches have analytical
solutions only in the non-rotating approximation (f =0)35.

Here, we depart from such an approximation and treat the fully
rotating problem. For the numerical integration of the collision inte-
gral Eq. (11), we use the same discretization of the k–m space as in
ref. 87. The change of variables to them–ω space is obtained by using
the dispersion relation Eq. (7). The search for the solutions of the six
branches of the resonant manifold (see Fig. 2) with f ≠ 0 is performed
iteratively starting fromthe exact solutions of the f =0 case87, using the
fzero Matlab routine. This implies a significant increase in the com-
putational cost compared to the non-rotating approximation.

A representation of the six-branch resonantmanifold for a test wave
with coordinates (m, ω) is shown in Fig. 8, as the test wave is moved
around them–ω space. Forω≫ f, approaching the non-rotating limit, the
resonant manifold tends to the analytical non-rotating solutions35. As
ω→ f, on the contrary, thedeformationof the resonantmanifoldbecomes

Fig. 7 | Numerical evaluation of theoretical parameterization. Color map of the
theoretical reference turbulent prodution rate Pth

0 ðsNI,sω,smÞ, function of the three
spectral slopes (near inertial sNI, high-frequency sω, and high wavenumber sm),
computed numerically on a grid of 5 × 5 × 5 points (cf. “First-principle mixing para-
meterization”). The dashed white lines are level sets of shear-to-strain Rω. When only

the shear-to-strain ratio is available, sω and sNI are not known. In that case, we exploit
the fact that the level sets of Pth

0 and Rω are nearly parallel. We assign to our estimate
the value of Pth

0 intercepted on the fixed level set of Rω at sω= 2 and evaluate the
uncertainty error from the observed variability of Pth

0 along the level set of Rω. We
find that this uncertainty is always smaller than 10% for the observed values of Rω.
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apparent, and only three branches are present for ω<2f. A direct
numerical integration over the two remaining degrees of freedom span-
ning the resonant manifold finally returns a numerical value for Eq. (11).

Wave-wave interaction transfers. Given two non-overlapping sub-
regions of the spectral space, sets A and B, the instantaneous energy
transfer from A (input control set) to B (output control set) is given by

PA!B = � N2

g

Z
A
I½e, e�ðm,ωjBÞdmdω,

I½e, e�ðm0,ω0jBÞ= Jðm0,ω0Þ
Z

χBðp1Þω1 + χBðp2Þω2

ω1 +ω2

� �
R0
12

�

� χBðp1ÞR1
02 � χBðp2ÞR2

10

i
dp12

ð14Þ

where I[e, e](m,ω∣B) captures the resonant transfers ofmode (m,ω)∈A
subject to the constraint that the transfer must be between point

(m, ω) and set B59. The indicator function of set B is defined so that
χB(p) = 1 if p ∈ B and χB(p) = 0 otherwise. The factor N2/g takes into
account the conversion between volumes from isopycnal coordinates
to Eulerian coordinates so that the energy transfers are expressed in
W/kg.

In order to go from Eqs. (10) to (14), the following two steps are
necessary: (i) A logical weighting that accepts only those contributions
whoseoutput wavenumbers are in the output set B, discarding the rest
of the contributions; (ii) An outer supplementary 2D integration over
the input set A. The method is rigorously derived in ref. 59. Here, the
main innovation is the use of a 3 × 3 multiscale partition of the Fourier
space tailored to the oceanic internal-wave problem. A complete
knowledge of the inter-scale transfers requires a permutation of all of
the nine subregions of the partition in the roles of A and B, resulting
into a 9 × 9 energy transfer matrix—although not all elements are
relevant to the analysis: e.g., we are not interested in quantifying
transfers between different dissipative subregions. The matrix is anti-
symmetric, satisfying some fundamental properties for a directed

Fig. 8 | Evaluation of energy transfers represented in spectral space. Con-
tribution I[e, e](m, ω∣B), representing the energy exchange between a point (m, ω)
and set B, the white region in each of the four panels. A yellow tonality at a point
(m, ω) indicates energy directed from B to (m, ω), and a blue tonality the reverse.
Green points have no direct energy exchange with B. The curved lines are the
resonant manifold for a representative point (black dot) in set B. The matching
between the resonant manifold’s lobes and the observed energy transfer patterns

allows us to discern the direction of the energy transfers associated with the dif-
ferent processes of Induced Diffusion (ID), Parametric Subharmonic Instability
(PSI), and Elastic Scattering (ES). The ultraviolet (UV) and infrared (IR) labels indi-
cate interaction of the testwavewithwavesof smaller and larger scale, respectively.
The black box surrounding the test wave delimits a scale separation by a factor of 4
from the test wave, delimiting the scale-separated interactions from the spectrally-
local interactions (see Fig. 2E).
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transfer: (i) PA→A =0, (ii) PA→B = −PB→A, and (iii) PA∪B→C = PA→C + PB→C
(for A∪B= ;).

We end this section with a remark on numerical details. We use the
antisymmetry of PA→B as a criterion to establish a satisfactory numerical
resolution level of the spectral space, in the numerical integration. Our
convergence requirement is that (PA→B+ PB→A)/PA→B (our measure of
numerical uncertainty, as the quantity tends to zero as the resolution
increases) be smaller than 5% for all elements of the transfer matrix.
Using parallel computing on a 12-core station, the computation of the
9 × 9 transfer matrix for a given point in parameter space (sNI, sω, sm)
takes about 6 hours. We use a numerical grid of 5 × 5 × 5 points to
discretize the parameter space, for a total computing time of the order
of a month. Once this computation has been performed once and
stored in memory, we then use 3D interpolation to establish the flux
matrix associated with any given point (sNI, sω, sm) that is not on the
numerical grid, with almost negligible extra computing time. The pro-
cessing of the hundreds of thousands of spectra in the combined global
data set, including both spectral slope fitting and energy transfer pre-
dictions, is performed in a few hours of computing time. All compu-
tations and plotting in the presentmanuscript are performed inMatlab.

First-principle mixing parameterization. The turbulent energy pro-
duction rate, P, is given by the sum of the energy transfers across the
boundary delimiting the dissipative regions34,88. The resulting first-
principles formula for P reads:

P =Pth
0 ðsNI, sω, smÞ

f
f 0

Em*
sm�1

E0m
0
*
sm�1

 !2

, ð15Þ

where Pth
0 ðsNI, sω, smÞ is a function in the 3D space of the spectral

slopes.
Let us summarize the main steps leading from the primitive

equations of the ocean to the formula Eq. (15) for P.
• Derivation of Eq. (10) under the assumptions listed in section
“Hamiltonian formalism of internal wave-wave interactions”;

• Calculation of the inter-scale energy transfers between the
different subregions of the Fourier space (section “Wave-wave
interaction transfers”), via Eq. (14), including the total energy
transfer into the dissipative subregions, leading directly to
formula Eq. (15).

The function Pth
0 ðsNI, sω, smÞ is computed numerically and is

represented in Fig. 7 as a colormap at five given values of sm. Pth
0 is

independent ofm* because of the following approximation. As shown
in Fig. 2 the direct contribution to P from small wavenumbers close to
m* is nearly negligible. By the analytical properties of the
GM76 spectrum41, for fixed slope sm and total energy E, the vertical
wavenumber spectrum is given by

eðmÞ= cðsmÞEðm*Þ�1

1 + m
m*

� �sm , with cðsmÞ=
sm

Γ 1
sm

� �
Γ sm�1

sm

� � , ð16Þ

where Γ( ⋅ ) is the gamma function (see section 2.2 of ref. 41). At high
wavenumbers, we have eðmÞ ’ EcðsmÞðm*Þsm�1m�sm , for m≫m*. This
shows that the high-wavenumber spectral level depends directly on the
value of m*, even for m≫m*. Thus, in order for the spectrum with the
reference parameter m0

* to match the high-wavenumber spectral level
of a spectrum with parameter m*, it has to be renormalized by a factor
ðm*=m

0
* Þ

sm�1
. This explains the correction to the energy level in Eq. (15).

Here, we briefly derive a relationship between the normalized
shear spectral level of Eq. (15)13 and our five spectral parameters. Using
Eq. (16) and the definition of shear spectral density Sz(m) = 2m2ek(m),
where ek(m) = e(m)Rω/(1 + Rω), we obtain the high wavenumber

approximation

Sz ðmÞ ’ 2
Rω

1 +Rω
cðsmÞEmsm�1

* m3�sm
c : ð17Þ

Following13, only in this paragraph we usemc as the high wavenumber
cutoff defined via

Z mc

0
Sz ðmÞdm=

2π
10

N2
0: ð18Þ

After some algebra, using the definition of the normalized shear
spectral level as E =0:1cpm=mc, where cpm = 2π/m, we arrive at

E = 2π
10

N2
0

1
2cðsmÞ

1 +Rω

Rω

3� sm
Emsm�1

*

 ! 1
sm�3

: ð19Þ

When sm = 2, E / Em*. As a proofof consistency, if we consider the case
of the standardGM76 referenceparameters (whichgive c(sm) = 2/π and
Rω = 3) we correctly obtain E = 1.

In steady conditions, the turbulent energy production rate feeds
the vertical buoyancy fluxes, B, and the dissipation into disordered
molecular motion, ϵ: P =B + ϵ. The vertical mixing diffusivity K is
defined as a function of the buoyancy fluxes via K =B=N2. We use the
classical Osborn parameterization89,90, establishing the proportion to
be B =RfP, where Rf ≃ 0.17 is the flux Richardson number2. Thus,
diapycnal diffusivity and turbulent dissipation rate are estimated,
respectively by

K =
RfP
N2 , ϵ= ð1� Rf ÞP: ð20Þ

The five-parameter spectral simplification is a powerful con-
ceptualization that turns out crucial for the realizability of our analysis
in terms of numerical cost. However, in principles, any particular
observed 2D spectrum can be processed individually without reduc-
tion to the five-parameter approximation. In conclusion, we can state
that the calculation of P from a given input spectrum is from first
principles. Yet, the input from observational spectra is phenomen-
ologicaldue to thefittingprocedure to formula Eq. (4). Indeed, also the
use of Eq. (20) to pass from P to the observables K and ϵ is empirical.
The problem of mixing efficiency, i.e., the ratio of K and ϵ in stratified
turbulence, is somewhatdecoupled from the theoretical investigations
of the present manuscript. On its own, it defines an entire area of
intense research activity91–96.

Interaction processes: classification andquantification. An in-depth
analysis of the contributions to the energy transfers allows us to
identify the transfers due to each of the resonant branches with a
known physical process. The numerical procedure underlying this
analysis is depicted in Fig. 8 for the different spectral subregions and
the different interaction classes. The resonant manifold associated
with a given test wave (m, ω) (shown in Figs. 2E and 8) has six lobes
corresponding to the six resonant branches. Asymptotically, i.e., far
away from the test wave, these lobes identify the three well-known
scale-separated regimes of internal wave-wave interactions: ID, PSI,
and ES12,60,88. Eachof the threeprocesses corresponds to two lobes: one
relating the test wave to larger scales (termed ultraviolet, or UV), and
the other relating the test wave to smaller scales (termed infrared, or
IR). We remark that our use of the terms ID, PSI, and ES refers to the
whole resonant lobes, that technically correspond to the original
definition of the three classes of ref. 60 only in the asymptotic scale-
separated regimes.
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In Fig. 8, we represent the contribution I[e, e](m, ω∣B) (cf. Eq. (14)
for a reference spectrum39, choosing the four non-dissipative sub-
regions as set B, respectively in the four panels. The yellow color
indicates wavenumbers that are gaining energy from set B (white
box), while the blue color indicates wavenumbers that are transfer-
ring energy into set B. Clearly, three lobes toward smaller scales and
three lobes toward larger scales (when applicable) appear in each of
the panels. We superpose the curves of the resonant manifold for a
representative test wave in each box to illustrate that the directions
of the observed energy transfer correspond to the three main phy-
sical mechanisms of ID, PSI, and ES. Moreover, the energy transfer
direction is predominantly from the IR regions (blue) to the UV
regions (yellow), i.e., from the large scales to the small scales. In
summary, in Fig. 8 each of the three processes is associated with a
characteristic direction of energy propagation: the “energy cascade”
is direct in both wavenumber and frequency for the ID branch, direct
in wavenumber and slightly inverse in frequency for the PSI branch,
slightly inverse in wavenumber and direct in frequency for the ES
branch.

Data availability
The analyses of the Argo data used in this manuscript are publicly
available at https://doi.org/10.5281/zenodo.6966416 and https://doi.
org/10.17882/95327. Details on the availability of the current meter
data are found in ref. 33—please contact aleboyer@ucsd.edu for fur-
ther information. Details on the High-Resolution Profiler data are
found in refs. 19,41.

Code availability
The codes developed for the data analysis and theoretical computa-
tions in this manuscript are available at https://doi.org/10.5281/
zenodo.1252964597.
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