SUPPLEMENTARY INFORMATION

2	for
3	Quantitative locating titanium in the framework of titanium silicalite-
4	1 by exploiting anomalous X-ray powder diffraction
5	Przemyslaw Rzepka, ^{1,2,3} † Matteo Signorile, ⁴ † Thomas Huthwelker, ⁵ Stefano
6	Checchia, ⁶ Francesca Rosso, ⁴ Silvia Bordiga, ^{4*} Jeroen A. van Bokhoven ^{2,3*}
7	¹ J. Heyrovsky Institute of Physical Chemistry Dolejškova 2155/3, 182 23 Prague 8, Czech
8	Republic
9	² Institute for Chemical and Bioengineering, ETH Zurich; 8093 Zurich, Switzerland
10	³ Paul Scherrer Institute, Center for Energy and Environmental Sciences, PSI; 5232 Villigen,
11	Switzerland
12	⁴ Department of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G.
13	Quarello 15, I-10135 and Via P. Giuria 7, I-10125, Torino, Italy
14	⁵ Swiss Light Source, PSI; 5232 Villigen, Switzerland

- ⁶ ID 15A, European Synchrotron Radiation Facility 71 Avenue des Martyrs, 38000 Grenoble,
 France
- 17 *Corresponding authors. Email: jeroen.vanbokhoven@chem.ethz.ch,
- 18 <u>silvia.bordiga@unito.it</u>

1

19 †These authors contributed equally to this work

20 Table of Contents

- 21 Basic characterization of samples (DR-UV-Vis , FT-IR, Raman)
- 22 Crystallographic data (Structural Data for refined models TS-1A and TS-1B)
- 23 Pair Distribution Function
- 24 DFT calculation data (Structural Data for DFT optimized TS-1 model)
- 25 SEM images
- 26 Structure of possible Ti-peroxo species

27 Basic characterization of samples

TS-1A and TS-1B are industrial catalysts provided by Evonik AG. Both materials 28 present diffraction signals typical of the only **MFI** phase and feature a BET specific surface 29 area of 430 and 496 m²g⁻¹ and an overall Ti content (by ICP analysis, expressed as wt% 30 TiO₂) of 2.44 and 2.89, respectively. Diffuse reflectance (DR)-UV-Vis (collected on a 31 Varian Cary 5000 spectrometer), ATR-IR (collected on a Bruker Alpha FT-IR 32 spectrometer, equipped with a diamond ATR element) and Raman (collected on a Bruker 33 RFS100 FT-Raman spectrometer, excitation wavelength 1064 nm) spectra of both 34 35 samples are shown and compared in Supplementary Figure 1.

36

Supplementary Figure 1. DR-UV-Vis (A), ATR-IR (B) and Raman (C) spectra of TS-1A and
TS-1B. Data from ref.¹ Intensities of ATR-IR and Raman spectra are normalized to that of
the Si-O-Si bridges symmetric stretching mode (800 cm⁻¹), for the sake of quantitative
comparison.

41 DR-UV-Vis data of TS-1A (Figure S1A) shows as the sample features, within the 42 sensitivity of the technique, a single type of Ti sites, namely perfectly tetrahedral

coordinated Ti isomorphously substituting Si in the MFI framework (electronic transition 43 peaking at ca. 50000 cm⁻¹). TS-1B present an additional feature at 37000 cm⁻¹, assigned 44 in the literature to different type of Ti species with higher coordination/nuclearity.²⁻⁴ 45 Signorile et al. rigorously demonstrated this electronic transition can be assigned to 46 hexacoordinated (i.e. distorted octahedral) Ti sites, embed in the MFI framework as 47 defective positions (missing neighbour Si atoms) and charge-balanced by 48 extraframework cations.⁵ Possibly, a small fraction of bulk TiO₂ is also present, as 49 indicated by the shoulder at 31500 cm⁻¹. ATR-IR (Figure S1B) demonstrate that both 50 samples contain tetrahedral Ti as inferred by DR-UV-Vis, as they present a sharp band a 51 960 cm⁻¹ due to the perturbation of the Si-O-Si bridges antisymmetric stretching as 52 imparted by the Ti substitution.⁶ The Raman spectra (Figure S1C) confirm TS-1B contains 53 54 a fraction of a segregated TiO₂ phase, recognized as anatase from its diagnostic peak at 144 cm^{-1.7} TS-1A, instead, is shown to be completely TiO₂-free. The content of tetrahedral 55 Ti and anatase TiO₂ has been quantified from the ATR-IR and Raman spectra through the 56 method described in ref.¹: in TS-1A tetrahedral Ti accounts for 100% of the Ti quantified 57 by ICP (2.44 wt% TiO₂), corresponding to ca. 2.4 Ti atoms per unit cell. In TS-1B, instead, 58 89% of Ti is inserted as tetrahedral in the **MFI** framework, whereas the remaining 11% 59 60 is split into hexacoordinated framework sites (7%) and anatase (4%). On these bases, the content of perfect tetrahedral Ti approaches 2.5 atoms per unit cell. 61

62 Two different reference Silicalite-1 materials have been adopted in this work: a defective Silicalite-1 (DS-1), provided by Evonik Industries AG, and an *ad hoc* synthesized, 63 defect-free Silicalite-1 (S-1), prepared according to the verified IZA zeolite synthesis in 64 fluoride medium.⁸ Defectivity in all presented materials, to be intended as presence of 65 missing tetrahedral sites and consequent formation of silanol nests, has been checked by 66 67 transmission IR spectroscopy (collected on a Bruker Vertex 70 spectrophotometer, equipped with MCT detector, on materials outgassed at 400 °C for 2 h prior 68 measurement), as reported in Supplementary Figure 2. 69

Supplementary Figure 2. Transmission IR spectra of all (Titanium) Silicalite-1 samples
considered in this work, reported in the OH stretching modes region. The spectra have
been normalized to the intensity framework overtones to allow their quantitative
comparison.

75 The transmission IR spectra of materials in the OH stretching modes region are characterized by a main, sharp signal presenting its maximum at 3745 cm⁻¹, typical for 76 isolated silanol groups, namely not interacting by H-bond with other surrounding 77 species.^{1,9} Nonetheless, this band is accompanied by further shoulders for all samples 78 (but defect-free S-1), peaked at lower wavenumbers (e.g. 3735 and 3725 cm⁻¹, clearly 79 80 visible in the DS-1 sample). These perturbed silanol O-H stretching modes are associated to the so-called chain-terminals, i.e. silanols that accept H-bond from their neighbours. ^{1,9} 81 82 The extent or the down-shift increases as the number of silanols in the chain increases. As a counterpart of the chain-terminals, a broad band, approximately peaking 83 between 3400-3500 cm⁻¹, is formed. This can be associated to the O-H stretching modes 84

of all silanols donating hydrogen bond within silanol chains and silanol nests. Comparing
the different samples in terms of intensities, DS-1 owns the larger number of defects,
meaning it could not be suitable as a reference for differential studies with TS-1A and TS1B (vide infra section on Pair Distribution Function), both featuring a different (indeed,
lower) degree of defectivity. In this regard, the *ad hoc* prepared S-1 sample features a
closely defect free structure, making it optimal as reference for the aforementioned study.

92 Crystallographic data

Supplementary Figure 3. Experimental patterns and Rietveld refinement profiles for TS-1A. Observed data represented by dots, calculated models by lines. (Top) Profile fits for the conventional synchrotron powder diffraction data ($\lambda = 0.708597$ Å, E = 17.5 keV). (Bottom) Profile fits for the data collected across the Ti K-edge.

Supplementary Figure 4. Experimental patterns and Rietveld refinement profiles for TS-100 1B. Observed data represented by dots, calculated models by lines. (Top) Profile fits for 101 the conventional synchrotron powder diffraction data ($\lambda = 0.708597$ Å, E = 17.5 keV). 102 (Bottom) Profile fits for the data collected across the Ti K-edge.

104

105

106

107

Refinen	Refinement with using conventional powder diffraction data				
	Chemical composition	[Si _{93.8} Ti _{2.2} O ₁₉₂]			
	Space group	Pnma			
	a (Å)	20.1452(1)			
	b (Å)	19.9708(1)			
	<i>c</i> (Å)	13.4314(1)			
	Wavelength (Å)	0.708597			
	2θ range (°)	2.9 - 50			
	Observations	13082			
	Reflections	5084			
	Profile parameters (cell, peak, xy-offset)	9			
	Structure parameters (scl, xyz, B)	121			
	Restraints	3			
	R _{wp}	2.58			
	R _{exp}	1.80			
	R _{Bragg}	0.94			

AXRD data collection

Energy (keV)	2θ range (°)	Observations	Reflections
4.600	9.4 - 160	402	1155
4.960	9.4 - 160	404	1448
4.968	9.4 - 160	401	1451
4.972	9.4 - 160	401	1453

Parameters refined using all three AXRD data sets

a = 20.1156(3) Å	1
<i>b</i> = 19.9372(3) Å	1
<i>c</i> = 13.4091(2) Å	1
Sample displacement	1
Peak shape	5
Scale	1

Structure coordinates xyz	110
B _{iso}	2
Ti occupancy	12

111 Supplementary Table 2. Details of the Rietveld refinement of TS-1B.

Refine	efinement with conventional powder diffraction data				
	Chemical composition		[Si94.2Ti1.8O192]		
	Space group		Pnma		
	a (Å)		20.1350(2)		
	b (Å)		19.9543(3)		
	c (Å)		13.4226(2) 0.708597 2.9 - 50 13082 5070 9 121 3 2.17		
	Wavelength (Å)				
	2θ range (°)				
	Observations				
	Reflections				
	Profile parameters (cell, pe	eak, <i>xy</i> -offset)			
	Structure parameters (scl, x)	vz, B)			
	Restraints				
	R _{wp}				
	R _{exp}		1.77		
	R _{Bragg}		0.97		
AXRD	D data collection Energy (keV) 2θ range (°)				
			Observations	Reflections	
	4.600	9.4 - 160	402	1155	
	4.960	9.4 - 160	404	1448	
	4.968	9.4 - 160	401	1451	

Parameters refined using all three AXRD data sets

9.4 - 160

a = 20.1157(4) Å

4.972

401

¹¹⁰

<i>c</i> = 13.4080(3) Å 1	
Sample displacement 1	
Peak shape 5	
Scale 1	
Structure coordinates xyz 110	
B _{iso} 2	
Ti occupancy 12	

113 Structural Data for TS-1A

- 114 data_TS1A
- 115 _cell_length_a 20.1174
- 116 _cell_length_b 19.93851
- 117 _cell_length_c 13.41013
- 118 _cell_angle_alpha 90
- 119 _cell_angle_beta 90
- 120 _cell_angle_gamma 90
- 121 _cell_volume 5378.9504
- 122 _symmetry_space_group_name_H-M Pnma
- 123 loop_
- 124 _symmetry_equiv_pos_as_xyz
- 125 'x, y, z '
- 126 '-x, y+1/2, -z '
- 127 '-x+1/2, -y, z+1/2 '
- 128 '-x+1/2, y+1/2, z+1/2 '
- 129 'x, -y+1/2, z '
- 130 '-x, -y, -z '
- 131 'x+1/2, -y+1/2, -z+1/2 '
- 132 'x+1/2, y, -z+1/2 '
- 133 loop_
- 134 _atom_site_label
- 135 _atom_site_type_symbol

- 136 _atom_site_symmetry_multiplicity
- 137 _atom_site_fract_x
- 138 _atom_site_fract_y
- 139 _atom_site_fract_z
- 140 _atom_site_occupancy
- 141 _atom_site_B_iso_or_equiv
- 142
 T1 Si
 8 0.42396 0.05891 0.66526 0.96(1) 2.54607
- 143
 T1 Ti
 8 0.42396 0.05891 0.66526 0.04(1) 2.54607
- 144T2 Si8 0.311 0.03292 0.82308 0.97(2) 2.54607
- 145
 T2 Ti
 8 0.311 0.03292 0.82308 0.03(2) 2.54607
- 146T3 Si8 0.27651 0.05813 0.03041 0.93(2) 2.54607
- 147 T3 Ti 8 0.27651 0.05813 0.03041 0.07(2) 2.54607
- 148 T4 Si 8 0.11796 0.06155 0.02463 0.98(1) 2.54607
- 149T4 Ti8 0.11796 0.06155 0.02463 0.02(1) 2.54607
- 150T5 Si8 0.07064 0.0286 0.8171 1.00(1) 2.54607
- 151
 T5 Ti
 8 0.07064 0.0286 0.8171 0.00(1) 2.54607
- 152T6 Si8 0.18646 0.06088 0.67251 1.00(1) 2.54607
- 153T6 Ti8 0.18646 0.06088 0.67251 0.00(1) 2.54607
- 154T7 Si8 0.42667 0.82549 0.67457 0.98(1) 2.54607
- 155 T7 Ti 8 0.42667 0.82549 0.67457 0.02(1) 2.54607
- 156T8 Si8 0.31281 0.87044 0.81677 1.00(0) 2.54607
- 157 T8 Ti 8 0.31281 0.87044 0.81677 0.00(0) 2.54607
- 158 T9 Si 8 0.27466 0.82862 0.03426 0.94(2) 2.54607
- 159 T9 Ti 8 0.27466 0.82862 0.03426 0.06(2) 2.54607
- 160 T10 Si 8 0.12009 0.82332 0.03397 1.00(2) 2.54607
- 161 T10 Ti 8 0.12009 0.82332 0.03397 0.00(2) 2.54607
- 162T11 Si8 0.06943 0.8706 0.81769 0.98(2) 2.54607
- 163 T11 Ti 8 0.06943 0.8706 0.81769 0.02(2) 2.54607
- 164 T12 Si 8 0.18843 0.8239 0.68384 0.98(2) 2.54607
- 165 T12 Ti 8 0.18843 0.8239 0.68384 0.02(2) 2.54607
- $166 \qquad 01\ 0 \ \ 8\ 0.4967\ 0.05161\ 0.71189\ 1\ 1.18747$
- $167 \qquad 02\ 0 \quad 8\ 0.37365\ 0.05317\ 0.77015\ 1\ 1.18747$
- $168 \qquad 03\ 0 \ \ 8\ 0.4135\ 0.13374\ 0.60934\ 1\ 1.18747$

169	$04\ 0\ \ 8\ 0.4081\ 0.01868\ 0.59921\ 1\ 1.18747$
170	$05\ 0\ \ 8\ 0.30373\ 0.0603\ 0.92641\ 1\ 1.18747$
171	$06\ 0\ 8\ 0.30875\ 0.95548\ 0.81483\ 1\ 1.18747$
172	$07\ 0\ \ 8\ 0.24401\ 0.05061\ 0.74152\ 1\ 1.18747$
173	$080\ \ 80.299220.132510.0965911.18747$
174	090 80.191790.058250.0303711.18747
175	010 0 8 0.30368 0.01137 0.10027 1 1.18747
176	011 0 8 0.10026 0.12754 0.06132 1 1.18747
177	$012\ 0\ 8\ 0.09381\ 0.06994\ 0.92239\ 1\ 1.18747$
178	013 0 8 0.11238 0.05868 0.72655 1 1.18747
179	$014\ 0\ \ 8\ 0.08209\ 0.95177\ 0.82934\ 1\ 1.18747$
180	$015\ 0\ \ 8\ 0.18749\ 0.12182\ 0.6202\ 1\ 1.18747$
181	$016\ 0\ 8\ 0.51058\ 0.85716\ 0.72233\ 1\ 1.18747$
182	$017\ 0\ 8\ 0.38619\ 0.84149\ 0.76505\ 1\ 1.18747$
183	$018\ 0\ \ 4\ 0.41872\ 0.75\ 0.63177\ 1\ 1.18747$
184	$019\ 0\ 8\ 0.30285\ 0.83633\ 0.93471\ 1\ 1.18747$
185	020 0 8 0.26869 0.85066 0.77783 1 1.18747
186	$021\ 0\ \ 4\ 0.2929\ 0.75\ 0.06923\ 1\ 1.18747$
187	$022\ 0\ 8\ 0.20104\ 0.84232\ 0.03074\ 1\ 1.18747$
188	$023\ 0\ \ 4\ 0.10189\ 0.75\ 0.08314\ 1\ 1.18747$
189	$024\ 0\ 8\ 0.09039\ 0.84462\ 0.89158\ 1\ 1.18747$
190	$025\ 0\ 8\ 0.13191\ 0.84056\ 0.71896\ 1\ 1.18747$
191	$026\ 0\ \ 4\ 0.19078\ 0.75\ 0.64474\ 1\ 1.18747$
192	
193	Structural Data for TS-1B
194	data_TS1B
195	_cell_length_a 20.11951
196	_cell_length_b 19.93614
197	_cell_length_c 13.40944
198	_cell_angle_alpha 90
199	_cell_angle_beta 90
200	_cell_angle_gamma 90
201	_cell_volume 5378.59837

202	_symmetry_space_group_name_H-M Pnma
203	loop_
204	_symmetry_equiv_pos_as_xyz
205	'x, y, z '
206	'-x, y+1/2, -z '
207	'-x+1/2, -y, z+1/2 '
208	'-x+1/2, y+1/2, z+1/2 '
209	'x, -y+1/2, z '
210	'-x, -y, -z '
211	'x+1/2, -y+1/2, -z+1/2 '
212	'x+1/2, y, -z+1/2 '
213	loop_
214	_atom_site_label
215	_atom_site_type_symbol
216	_atom_site_symmetry_multiplicity
217	_atom_site_fract_x
218	_atom_site_fract_y
219	_atom_site_fract_z
220	_atom_site_occupancy
221	_atom_site_B_iso_or_equiv
222	T1 Si 8 0.42337 0.05726 0.66434 1.00(1) 3.11512
223	T1 Ti 8 0.42337 0.05726 0.66434 0.00(1) 3.11512
224	T2 Si 8 0.30885 0.03277 0.82512 0.96(2) 3.11512
225	T2 Ti 8 0.30885 0.03277 0.82512 0.04(2) 3.11512
226	T3 Si 8 0.27543 0.05924 0.0289 0.94(2) 3.11512
227	T3 Ti 8 0.27543 0.05924 0.0289 0.06(2) 3.11512
228	T4 Si 8 0.1171 0.05959 0.02442 0.99(1) 3.11512
229	T4 Ti 8 0.1171 0.05959 0.02442 0.01(1) 3.11512
230	T5 Si 8 0.06765 0.02995 0.81398 1.00(1) 3.11512
231	T5 Ti 8 0.06765 0.02995 0.81398 0.00(1) 3.11512
232	T6 Si 8 0.18878 0.06218 0.66938 1.00(1) 3.11512
233	T6 Ti 8 0.18878 0.06218 0.66938 0.00(1) 3.11512
234	T7 Si 8 0.42575 0.82452 0.67561 1.00(1) 3.11512

235	T7 Ti 8 0.42575 0.82452 0.67561 0.00(1) 3.11512
236	T8 Si 8 0.31301 0.86692 0.81718 0.99(1) 3.11512
237	T8 Ti 8 0.31301 0.86692 0.81718 0.01(1) 3.11512
238	T9 Si 8 0.27836 0.82789 0.03609 0.95(2) 3.11512
239	T9 Ti 8 0.27836 0.82789 0.03609 0.05(2) 3.11512
240	T10 Si 8 0.12056 0.82351 0.0312 0.96(2) 3.11512
241	T10 Ti 8 0.12056 0.82351 0.0312 0.04(2) 3.11512
242	T11 Si 8 0.07216 0.86605 0.81435 1.00(1) 3.11512
243	T11 Ti 8 0.07216 0.86605 0.81435 0.00(1) 3.11512
244	T12 Si 8 0.18772 0.82382 0.68346 0.98(2) 3.11512
245	T12 Ti 8 0.18772 0.82382 0.68346 0.02(2) 3.11512
246	$01\ 0\ \ 8\ 0.49968\ 0.0474\ 0.7254\ 1\ 1.70372$
247	$02\ 0\ 8\ 0.3758\ 0.05452\ 0.77144\ 1\ 1.70372$
248	$03\ 0\ \ 8\ 0.41589\ 0.12968\ 0.6149\ 1\ 1.70372$
249	$04\ 0\ 8\ 0.39923\ \text{-}0.01064\ 0.56554\ 1\ 1.70372$
250	$05\ 0\ 8\ 0.30484\ 0.06086\ 0.92226\ 1\ 1.70372$
251	$06\ 0\ \ 8\ 0.30679\ 0.93821\ 0.81954\ 1\ 1.70372$
252	$07\ 0\ 8\ 0.24149\ 0.0535\ 0.73224\ 1\ 1.70372$
253	$08\ 0\ 8\ 0.29944\ 0.13191\ 0.09788\ 1\ 1.70372$
254	$09\ 0\ 8\ 0.20296\ 0.05638\ 0.02151\ 1\ 1.70372$
255	$010\ 0\ \ 8\ 0.30691\ 0.00226\ 0.10747\ 1\ 1.70372$
256	$011\ 0\ \ 8\ 0.09816\ 0.13034\ 0.0628\ 1\ 1.70372$
257	$012\ 0\ \ 8\ 0.09411\ 0.07159\ 0.9199\ 1\ 1.70372$
258	$013\ 0\ \ 8\ 0.11437\ 0.05647\ 0.71946\ 1\ 1.70372$
259	$014\ 0\ \ 8\ 0.07691\ 0.95857\ 0.82327\ 1\ 1.70372$
260	$015\ 0\ \ 8\ 0.18925\ 0.12906\ 0.61275\ 1\ 1.70372$
261	$016\ 0\ \ 8\ 0.51352\ 0.85497\ 0.73171\ 1\ 1.70372$
262	$017\ 0\ \ 8\ 0.38779\ 0.84167\ 0.77013\ 1\ 1.70372$
263	$018\ 0\ \ 4\ 0.42081\ 0.75\ 0.64017\ 1\ 1.70372$
264	$019\ 0\ \ 8\ 0.30228\ 0.83654\ 0.91724\ 1\ 1.70372$
265	$020\ 0\ \ 8\ 0.26665\ 0.8581\ 0.77136\ 1\ 1.70372$
266	$021\ 0\ \ 4\ 0.29358\ 0.75\ 0.07517\ 1\ 1.70372$
267	$022\ 0\ \ 8\ 0.18754\ 0.83728\ 0.0356\ 1\ 1.70372$

- 268 023 0 4 0.09892 0.75 0.08848 1 1.70372
- $269 \qquad 024\ 0 \quad 8\ 0.09272\ 0.84568\ 0.90517\ 1\ 1.70372$
- $270 \qquad 025\ 0 \ 8\ 0.13492\ 0.83467\ 0.72451\ 1\ 1.70372$
- 271 026 0 4 0.19067 0.75 0.62769 1 1.70372

272 Table S3. Linear Regression Coefficients of Unit Cell Parameters

	m*	q*	R ²
a	2.28384 Å	20.08841 Å	0.99324
b	3.12303 Å	19.89479 Å	0.98899
с	1.96537 Å	13.38359 Å	0.99511
V	2302.123 Å ³	5347.450 Å ³	0.99570

273 *Y=mx+q, where Y=a, b, c, and V

274 **Pair Distribution Function**

The radially-averaged distribution of distances between titanium atoms that 275 belong to T3 and/or T9 sites(s) has been analyzed by the pair distribution function (PDF) 276 method based on 50keV total scattering data (Supplementary Figure 5A). The G(r) 277 function of each sample was correctly reproduced by the respective structural model 278 derived from AXRD, after relaxing atomic positions to account for correlated atomic 279 displacements and peak broadening. The G(r) observed for the reference defect-free Ti-280 free silicalite-1 (S-1) was subtracted from the G(r) for TS1A and TS-1B (Supplementary 281 282 Figure 5B). The resulting Differential Pair Distribution Function (dPDF) highlighted the signal from a diluted dopant by excluding any interatomic distances shared by all 283 samples.¹⁰ The real-space distance 1.84 Å corresponds clearly to Ti-O bond length and 284 negative peaks 1.62 Å and 3.11 Å indicate the deficiency of Si-O and Si-O-Si pairs 285 respectively. This confirms that titanium substitutes silicon as a heteroatom in the TS-1 286 structure. The remaining peaks either overlap with those generated by $\Delta G(r)$ calculated 287 by subtracting the reference S1 from the defected silicalite-1 (DS-1), hence can be 288 assigned to the defect sites, or result from peak broadening of G(r) from both TS-1, which 289 290 is associated with local disorder in the structures.

Supplementary Figure 5. (A) Pair distribution functions of titanium silicalite-1 (TS-1A and TS-1B), defected titanium-free silicalite-1 (DS-1), defect-free titanium-free silicalite1 (S-1), and refined P1 models. (B) Differential pair distribution function generated by subtracting the PDF of S-1 from those of TS-1A, TS-1B, and DS-1.

297 **DFT calculations**

Supplementary Table 4. Cell parameters (a, b, c) and volumes (V), minimal Ti-Ti distances (dTi-Ti), average Ti-O distance (<dTi-O>) multiplicities of Ti pair models and relative energies (Δ E) for the 22 models (including SDA) featuring 2 Ti at T3/T9 sites. For sites labelling refer to the cif of DFT optimized Silicalite-1 (vide infra). Cell parameters and distances in Å, cell volume in Å3, relative energies in kJ/mol.

Ti-sub. sites	Μ	а	b	С	V	d Ti-Ti	<d<sub>Ti-0></d<sub>	ΔΕ
T9(g)-T9(h)	4	20.436	20.273	13.527	5604.5	9.646	1.89±0.03	5.5
T9(f)-T9(h)	4	20.390	20.294	13.501	5586.5	11.897	1.89±0.03	4.1
T9(f)-T9(g)	4	20.462	20.311	13.517	5617.8	13.517	1.89±0.04	18.2
T9(d)-T9(h)	4	20.455	20.301	13.523	5615.6	12.168	1.89±0.04	0.0
T9(d)-T9(g)	4	20.448	20.297	13.547	5622.3	12.226	1.90±0.04	9.2
T9(d)-T9(f)	4	20.476	20.282	13.528	5618.2	12.177	1.89±0.03	23.4
T9(d)-T9(e)	4	20.451	20.280	13.540	5615.6	3.363	1.89±0.06	56.2
T3(h)-T9(h)	8	20.393	20.245	13.576	5605.1	4.733	1.90±0.04	36.2
T3(h)-T9(g)	8	20.361	20.236	13.581	5595.4	7.180	1.89±0.04	38.7
T3(h)-T9(f)	8	20.391	20.273	13.562	5606.4	13.562	1.89±0.03	21.2
T3(h)-T9(e)	8	20.415	20.283	13.566	5617.2	10.583	1.89±0.04	22.7
T3(h)-T9(d)	8	20.406	20.275	13.584	5620.1	9.444	1.89±0.04	38.9
T3(h)-T9(c)	8	20.388	20.276	13.567	5608.2	12.067	1.89±0.04	12.1

T3(h)-T9(b)	8	20.364	20.251	13.568	5595.2	8.595	1.89±0.04	28.6
T3(h)-T9(a)	8	20.398	20.222	13.591	5606.2	7.933	1.89±0.04	53.3
T3(g)-T3(h)	4	20.359	20.227	13.588	5595.6	7.393	1.89±0.05	44.9
T3(f)-T3(h)	4	20.393	20.201	13.595	5600.7	13.595	1.89±0.03	17.9
T3(f)-T3(g)	4	20.394	20.173	13.618	5602.8	13.379	1.89±0.03	11.8
T3(d)-T3(h)	4	20.348	20.236	13.596	5598.2	8.811	1.89±0.04	20.3
T3(d)-T3(g)	4	20.319	20.219	13.590	5583.3	11.661	1.89±0.04	24.2
T3(d)-T3(f)	4	20.353	20.212	13.628	5606.5	12.302	1.89±0.04	22.6
T3(d)-T3(e)	4	20.343	20.159	13.649	5597.2	7.713	1.89±0.04	66.3

Supplementary Table 5. Cell parameters (a, b, c) and volumes (V), minimal Ti-Ti distances (dTi-Ti), average Ti-O distance (<dTi-O>) multiplicities of Ti pair models and relative energies (Δ E) for the 22 models (not including SDA) featuring 2 Ti at T3/T9 sites. For sites labelling refer to the cif of DFT optimized Silicalite-1 (vide infra). Cell parameters and distances in Å, cell volume in Å3, relative energies in kJ/mol.

Ti-sub. sites	М	а	b	С	V	d ti-ti	<d<sub>Ti-0></d<sub>	ΔΕ
T9(g)-T9(h)	4	20.229	19.950	13.375	5398.0	9.649	1.799±0.006	20.8
T9(f)-T9(h)	4	20.215	19.961	13.386	5401.4	11.925	1.798±0.007	15.3
T9(f)-T9(g)	4	20.211	19.968	13.376	5398.0	13.376	1.800±0.010	18.7
T9(d)-T9(h)	4	20.222	19.958	13.386	5402.4	11.525	1.799±0.006	14.3
T9(d)-T9(g)	4	20.220	19.963	13.380	5401.2	11.515	1.799±0.007	15.2
T9(d)-T9(f)	4	20.227	19.957	13.388	5404.3	12.048	1.797±0.007	18.9
T9(d)-T9(e)	4	20.229	19.935	13.376	5394.0	3.259	1.801±0.010	22.1
T3(h)-T9(h)	8	20.243	19.916	13.393	5399.1	4.492	1.803±0.009	7.9
T3(h)-T9(g)	8	20.245	19.925	13.382	5398.2	6.948	1.803±0.008	1.0
T3(h)-T9(f)	8	20.240	19.927	13.391	5401.0	13.391	1.800±0.008	12.8
T3(h)-T9(e)	8	20.238	19.928	13.398	5403.7	10.645	1.800±0.005	10.1
T3(h)-T9(d)	8	20.240	19.931	13.397	5404.3	9.482	1.800±0.005	8.0
T3(h)-T9(c)	8	20.237	19.928	13.388	5399.2	12.212	1.800±0.008	12.9
T3(h)-T9(b)	8	20.235	19.919	13.389	5396.6	8.485	1.802±0.009	8.0
T3(h)-T9(a)	8	20.239	19.917	13.397	5400.3	7.660	1.804±0.006	3.6
T3(g)-T3(h)	4	20.248	19.888	13.402	5396.9	7.131	1.806±0.008	1.2
T3(f)-T3(h)	4	20.253	19.891	13.407	5400.8	13.407	1.803±0.005	4.2
T3(f)-T3(g)	4	20.262	19.901	13.407	5406.1	13.407	1.802±0.006	5.9
T3(d)-T3(h)	4	20.255	19.900	13.396	5399.5	9.367	1.802±0.006	5.7
T3(d)-T3(g)	4	20.251	19.894	13.405	5400.5	11.283	1.802±0.006	7.6
T3(d)-T3(f)	4	20.249	19.900	13.401	5400.0	12.031	1.802±0.007	6.2
T3(d)-T3(e)	4	20.256	19.888	13.402	5399.0	7.798	1.804 ± 0.004	0.0

Supplementary Figure 6. Graphical representation of DFT optimized models with Ti substituted at sites: T3(d)-T3(e), T3(h)-T9(g), T3(g)-T3(h), T3(h)-T9(a) and T9(d)-T9(e). Both Si and O atoms as grey sticks, Ti at T3 as magenta sphere, Ti at T9 as green sphere. TPA⁺ omitted for clarity.

313	Structural Data for DFT optimized Silicalite-1 (with TPA+OH-)							
314	data_S1-DF	Т						
315	_cell_length	_cell_length_a 20.448540						
316	_cell_length_b 20.198196							
317	_cell_length	ı_c 13.567860						
318	_cell_angle_	alpha 90						
319	_cell_angle_	beta 90						
320	_cell_angle_	gamma 90						
321	_cell_volum	ie						
322	_symmetry	_space_group_name_H	I-M P1					
323	loop_							
324	_syn	nmetry_equiv_pos_as_	xyz					
325	'x, y	, Z '						
326	loop_							
327	_atom_site_	label						
328	_atom_site_	_type_symbol						
329	_atom_site_	_fract_x						
330	_atom_site_	_fract_y						
331	_atom_site_	_fract_z						
332	T1(a) Si	0.421724152864	0.063246950104	0.658756290159				
333	T1(b) Si	0.305644945189	0.028612190450	0.807202337414				
334	T1(c) Si	0.280843446412	0.059406776580	0.029949371220				
335	T1(d) Si	0.122148756102	0.059121618852	0.025366805104				
336	T1(e) Si	0.068261256344	0.031083858821	0.808124192135				
337	T1(f) Si	0.183589903088	0.062194504296	0.670459345320				
338	T1(g) Si	0.419524013348	0.827836983531	0.672058136972				
339	T1(h) Si	0.303617507402	0.867823528463	0.815717980993				
340	T2(a) Si	0.266802018354	0.826831518785	0.033429625107				
341	T2(b) Si	0.120114790068	0.818807028534	0.018988148153				
342	T2(c) Si	0.067173171292	0.872135792033	0.810533430851				
343	T2(d) Si	0.183722977861	0.825887814679	0.677735901166				
344	T2(e) Si	0.578275851401	0.936753056852	0.341243703436				
345	T2(f) Si	0.694355057109	0.971387820378	0.192797660427				

346	T2(g)	Si	0.719156551485	0.940593233519	0.970050622559
347	T2(h)	Si	0.877851249053	0.940878391199	0.974633197962
348	T3(a)	Si	0.931738742698	0.968916153339	0.191875805698
349	T3(b)	Si	0.816410102589	0.937805506096	0.329540645393
350	T3(c)	Si	0.580475993582	0.172163024465	0.327941863868
351	T3(d)	Si	0.696382501719	0.132176484375	0.184282003426
352	T3(e)	Si	0.733197991979	0.173168491498	0.966570368813
353	T3(f)	Si	0.879885229987	0.181192987017	0.981011855753
354	T3(g)	Si	0.932826829969	0.127864212690	0.189466578281
355	T3(h)	Si	0.816277028541	0.174112198476	0.322264095952
356	T4(a)	Si	0.079318267691	0.935018511836	0.159218053798
357	T4(b)	Si	0.195055373714	0.969945199824	0.306611581716
358	T4(c)	Si	0.219947372565	0.940481457869	0.530862528099
359	T4(d)	Si	0.378032844565	0.940260276482	0.525562198431
360	T4(e)	Si	0.430830053001	0.969006603392	0.308125937119
361	T4(f)	Si	0.316734532035	0.936591655225	0.169074971985
362	T4(g)	Si	0.078922708008	0.171847197695	0.171357346125
363	T4(h)	Si	0.196234653335	0.130669218172	0.313860624159
364	T5(a)	Si	0.233031284292	0.171695385504	0.531701333482
365	T5(b)	Si	0.380413286733	0.180885488224	0.518342417426
366	T5(c)	Si	0.433679444259	0.127863326883	0.310543579791
367	T5(d)	Si	0.317122113765	0.173454586410	0.178103179389
368	T5(e)	Si	0.920681727977	0.064981501115	0.840781939827
369	T5(f)	Si	0.804944627748	0.030054804533	0.693388417820
370	T5(g)	Si	0.780052633533	0.059518556256	0.469137469844
371	T5(h)	Si	0.621967157513	0.059739729207	0.474437813760
372	T6(a)	Si	0.569169947928	0.030993402822	0.691874067576
373	T6(b)	Si	0.683265472361	0.063408354439	0.830925016628
374	T6(c)	Si	0.921077289410	0.828152806874	0.828642656248
375	T6(d)	Si	0.803765349859	0.869330795295	0.686139373453
376	T6(e)	Si	0.766968711859	0.828304631929	0.468298665243
377	T6(f)	Si	0.619586711007	0.819114512756	0.481657577208
378	T6(g)	Si	0.566320556382	0.872136686613	0.689456409279

379	T6(h) Si	0.68287	7885683	0.8265	45423136	0.8218	96806925
380	T7(a) Si	0.57890	4973494	0.5650	39303530	0.3411	86451268
381	T7(b) Si	0.69461	3954292	0.5287	14566816	0.1930	73208892
382	T7(c) Si	0.71932	8201955	0.5602	05214396	0.9705	05922710
383	T7(d) Si	0.87818	5659915	0.5595	20398832	0.9743	87279254
384	T7(e) Si	0.93167	5466082	0.5319	98631209	0.1907	67209759
385	T7(f) Si	0.81640	3480058	0.5633	01138572	0.3306	28827206
386	T7(g) Si	0.57987	3018978	0.3278	51300468	0.3291	70772104
387	T7(h) Si	0.69593	9713080	0.3679	00770554	0.1847	23771877
388	T8(a) Si	0.73295	1016087	0.3277	17573446	0.9681	.60496593
389	T8(b) Si	0.87988	8519097	0.3182	05779036	0.9813	82647278
390	T8(c) Si	0.93365	8755261	0.3724	46172341	0.1889	22103125
391	T8(d) Si	0.81627	6926842	0.3268	805247558	0.3220	25074758
392	T8(e) Si	0.42109	5018779	0.4349	60701733	0.6588	813559301
393	T8(f) Si	0.30538	6042842	0.4712	85445299	0.8069	26791174
394	T8(g) Si	0.28067	1810829	0.4397	94780044	0.0294	94076649
395	T8(h) Si	0.12181	4353279	0.4404	79589633	0.0256	512708165
396	T9(a) Si	0.06832	4534241	0.4680	01382371	0.8092	32792821
397	T9(b) Si	0.18359	6515453	0.4366	98867018	0.6693	71166573
398	T9(c) Si	0.42012	6980767	0.6721	48703785	0.6708	329217931
399	T9(d) Si	0.30406	0293987	0.6320	99241368	0.8152	276224519
400	T9(e) Si	0.26704	8966792	0.6722	82430966	0.0318	39499184
401	T9(f) Si	0.12011	1462691	0.6817	94242644	0.0186	517345035
402	T9(g) Si	0.06634	1241443	0.6275	53836937	0.8110	77891834
403	T9(h) Si	0.18372	3072938	0.6731	94761488	0.6779	74924395
404	T10(a)	Si O	.920136783	893	0.435001128	561	0.841332481054
405	T10(b)	Si O	.8052496223	379	0.472130544	886	0.692651280747
406	T10(c)	Si O	.780182622	622	0.441047868	072	0.469894772116
407	T10(d)	Si O	.621746214	585	0.441749172	500	0.475079538394
408	T10(e)	Si O	.5685103143	350	0.469173757	102	0.692148995656
409	T10(f)	Si O	.683532472	754	0.438237650	803	0.830635506852
410	T10(g)	Si O	.9214768002	275	0.672524405	214	0.826505574284
411	T10(h)	Si 0	.8040628048	860	0.632638078	079	0.684869528997

412	T11(a	a)	Si	0.766	67439	0871	0.673	185942	982	0.467	800489	9171
413	T11(l	ɔ)	Si	0.619	58832	4364	0.681	518691	026	0.480	942574	253
414	T11(d	C)	Si	0.566	20048	3947	0.628	479510	893	0.688	975196	6037
415	T11(d	d)	Si	0.682	96542	6397	0.673	655546	891	0.821	870265	5819
416	T11(e	e)	Si	0.079	86321	8274	0.564	998877	459	0.158	667495	5434
417	T11(f	5)	Si	0.194	75036	3669	0.527	869475	799	0.307	348734	133
418	T11(§	g)	Si	0.219	81739	4014	0.558	952143	815	0.530	105239	9809
419	T11(l	n)	Si	0.378	25380	2492	0.558	250818	880	0.524	920447	278
420	T12(a	a)	Si	0.431	48968	4941	0.530	826249	305	0.307	850992	2485
421	T12(l	ɔ)	Si	0.316	46751	7969	0.561	762366	297	0.169	364496	5413
422	T12(d	c)	Si	0.078	52320	5236	0.327	475600	875	0.173	494438	3180
423	T12(d	d)	Si	0.195	93719	7032	0.367	361950	305	0.315	130457	7316
424	T12(e	e)	Si	0.233	32560	1036	0.326	814071	400	0.532	199484	436
425	T12(f	()	Si	0.380	41167	0388	0.318	481326	877	0.519	057448	3234
426	T12(g	g)	Si	0.433	79951	6283	0.371	520517	253	0.311	024862	2602
427	T12(ł	n)	Si	0.317	034584	4049	0.326	344465	238	0.178	129744	ł750
428	01	0	0.369	996361	1246	0.0554	413469	9936	0.7500	07210	1540	
429	02	0	0.309	686095	5839	0.0593	302080)577	0.9181	17736	0276	
430	03	0	0.201	510022	2050	0.0556	668320	0220	0.0312	25048	3282	
431	04	0	0.097	675572	2916	0.0588	387444	4928	0.9116	57798	1185	
432	05	0	0.110	922575	5949	0.0632	296997	7425	0.7189	97007	8612	
433	06	0	0.238	981747	7377	0.0555	531400)983	0.7558	32785	0052	
434	07	0	0.370	004224	4507	0.8402	131858	3083	0.7644	12666	1500	
435	08	0	0.303	056346	6223	0.8403	322039	9077	0.9273	33664	4865	
436	09	0	0.193	674350	0536	0.8574	414473	3233	0.0413	35853	8148	
437	010	0	0.0872	291180)593	0.8542	160377	7169	0.9209	91574	3905	
438	011	0	0.111	073336	5219	0.8370	064463	3123	0.7237	76891	7169	
439	012	0	0.238	343699	9677	0.8405	515347	7465	0.7601	18891	2150	
440	013	0	0.303	338930	0584	0.9482	270564	4168	0.8121	13523	1886	
441	014	0	0.074	117784	4042	0.9512	715593	3705	0.7969	92222	3925	
442	015	0	0.417	435587	7426	0.1352	735855	5668	0.6098	30726	3489	
443	016	0	0.413	902524	4708	0.0006	509098	3704	0.5829	99310	9333	
444	017	0	0.397	779647	7652	0.868	727841	1848	0.5733	39790	3354	

445	018	0	0.188829024913	0.132414399618	0.614247022559
446	019	0	0.188117873002	0.000524614109	0.593579602089
447	020	0	0.195327988526	0.870656404186	0.578785910055
448	021	0	0.993400800346	0.055604524231	0.791504364432
449	022	0	0.991998429115	0.850451928365	0.785579401881
450	023	0	0.417869853496	0.750053042925	0.640008902052
451	024	0	0.188606118398	0.749542629545	0.640014182089
452	025	0	0.278813109728	0.749465405802	0.063056556052
453	026	0	0.158232408240	0.750322013213	0.974318194019
454	027	0	0.437312382322	0.249492463698	0.551981737230
455	028	0	0.630003636450	0.944586534693	0.249927881147
456	029	0	0.690313902357	0.940697924255	0.081822638213
457	030	0	0.798389980928	0.944331690528	0.968749510505
458	031	0	0.902324435524	0.941112569890	0.088322016692
459	032	0	0.889077430369	0.936703009848	0.281029917666
460	033	0	0.761018257059	0.944468605444	0.244172142726
461	034	0	0.629995789054	0.159868147982	0.235573348833
462	035	0	0.696943640671	0.159677967498	0.072663335817
463	036	0	0.806325660355	0.142585540377	0.958641457061
464	037	0	0.912708825628	0.145839632307	0.079084266281
465	038	0	0.888926665576	0.162935548729	0.276231078623
466	039	0	0.761156304827	0.159484660422	0.239811092892
467	040	0	0.696661072981	0.051729446516	0.187864768630
468	041	0	0.925882222413	0.048284414014	0.203077762072
469	042	0	0.582564409591	0.864264146739	0.390192721446
470	043	0	0.586097479590	0.999390906173	0.417006893475
471	044	0	0.602220356974	0.131272158613	0.426602091958
472	045	0	0.811170977639	0.867585613666	0.385752978207
473	046	0	0.811882128920	0.999475397293	0.406420389612
474	047	0	0.804672002519	0.129343609172	0.421214077084
475	048	0	0.006599197434	0.944395492414	0.208495617518
476	049	0	0.008001568762	0.149548077734	0.214420605497
477	050	0	0.582130139834	0.249946964744	0.359991103122

478	051	0	0.811393877098	0.250457381139	0.359985819569
479	052	0	0.721186885078	0.250534600397	0.936943430298
480	053	0	0.841767594836	0.249677994619	0.025681802657
481	054	0	0.562687633366	0.750507557190	0.448018234069
482	055	0	0.131361024552	0.940828260999	0.250405344815
483	056	0	0.191833266825	0.940971165068	0.418732893456
484	057	0	0.298962298986	0.947964366095	0.531964653969
485	058	0	0.400955854751	0.940855775392	0.411246666505
486	059	0	0.389329604881	0.936916246337	0.217879808769
487	060	0	0.262390772847	0.944309409251	0.255789247678
488	061	0	0.131391901163	0.160167882518	0.260148739986
489	062	0	0.195425306442	0.156596129258	0.426722355382
490	063	0	0.306521083784	0.142197014793	0.536488562854
491	064	0	0.414408782656	0.145947043721	0.421104973621
492	065	0	0.390214664485	0.163363551839	0.223593672348
493	066	0	0.262688677911	0.156305999001	0.260691989289
494	067	0	0.194703198786	0.050318846876	0.307416654432
495	068	0	0.424605745799	0.048427473592	0.296953127022
496	069	0	0.081128247361	0.862510347409	0.109988774184
497	070	0	0.090685906925	0.996410272259	0.082742289197
498	071	0	0.097786329352	0.129037639233	0.073335293783
499	072	0	0.312550512775	0.865450490821	0.114823802641
500	073	0	0.310244123879	0.996436031941	0.089102487069
501	074	0	0.306680905561	0.128500515462	0.079022789976
502	075	0	0.505466577717	0.944156649336	0.291670278850
503	076	0	0.509087101593	0.149459436303	0.286588927716
504	077	0	0.077522033583	0.249889341177	0.140043205959
505	078	0	0.309744214878	0.249914698961	0.140769381170
506	079	0	0.222278840973	0.249263791341	0.562328099568
507	080	0	0.343172656483	0.249895986379	0.474085723452
508	081	0	0.063903710754	0.750190281508	0.051948244027
509	082	0	0.868638975736	0.059171747294	0.749594647299
510	083	0	0.808166740154	0.059028843328	0.581267106839

511	084	0	0.701037705313	0.052035654526	0.468035335712
512	085	0	0.599044138271	0.059144231534	0.588753338242
513	086	0	0.610670399329	0.063083758460	0.782120186544
514	087	0	0.737609233085	0.055690603126	0.744210748276
515	088	0	0.868608102666	0.839832135850	0.739851257619
516	089	0	0.804574683078	0.843403885288	0.573277645465
517	090	0	0.693478906641	0.857802971973	0.463511430985
518	091	0	0.585591218111	0.854052971345	0.578895015868
519	092	0	0.609785330317	0.836636458063	0.776406323503
520	093	0	0.737311320569	0.843694020580	0.739308001122
521	094	0	0.805296803669	0.949681162045	0.692583346954
522	095	0	0.575394257756	0.951572535948	0.703046871231
523	096	0	0.918871765525	0.137489669533	0.890011216979
524	097	0	0.909314094449	0.003589740826	0.917257710553
525	098	0	0.902213675324	0.870962371001	0.926664705363
526	099	0	0.687449494957	0.134549499703	0.885176217716
527	0100	0	0.689755879227	0.003563978536	0.910897502075
528	0101	0	0.693319092366	0.871499491440	0.920977203922
529	0102	0	0.494533427350	0.055843365883	0.708329704227
530	0103	0	0.490912901782	0.850540575643	0.713411070368
531	0104	0	0.922477960451	0.750110665150	0.859956798228
532	0105	0	0.690255801955	0.750085313431	0.859230615410
533	0106	0	0.777721149681	0.750736227968	0.437671908798
534	0107	0	0.656827354985	0.750104024052	0.525914283203
535	0108	0	0.936096290557	0.249809735746	0.948051750799
536	0109	0	0.630105570011	0.555368267042	0.249797619079
537	0110	0	0.690535077287	0.559548467606	0.082252968884
538	0111	0	0.798600185456	0.558167625044	0.968672516808
539	0112	0	0.902424070970	0.562224880088	0.088357629169
540	0113	0	0.889032220110	0.562806912632	0.281333542091
541	0114	0	0.761244398705	0.555488772492	0.244825979948
542	0115	0	0.630636734735	0.340487768125	0.239030057651
543	0116	0	0.694106785228	0.340393927968	0.072805366720

544	0117	0	0.806308105713	0.357864048180	0.964610143604
545	0118	0	0.916143394878	0.351165843786	0.078693324452
546	0119	0	0.888621464965	0.339970067342	0.276318508431
547	0120	0	0.761106622825	0.340540871348	0.239253969233
548	0121	0	0.696715820103	0.448379228274	0.187858174686
549	0122	0	0.926002229817	0.452331172784	0.197548441759
550	0123	0	0.582906931947	0.638798392153	0.386326545174
551	0124	0	0.589076482326	0.505728654470	0.421937695679
552	0125	0	0.598650830949	0.371550833084	0.426409149947
553	0126	0	0.811280705195	0.634458043372	0.384954085250
554	0127	0	0.811410698734	0.503405521176	0.411009422628
555	0128	0	0.804898532971	0.371585926090	0.420934613285
556	0129	0	0.006888336703	0.555705291482	0.207870210814
557	0130	0	0.008259904869	0.350543301268	0.218632483059
558	0131	0	0.369894447667	0.444631755965	0.750202412621
559	0132	0	0.309464924440	0.440451543143	0.917747027225
560	0133	0	0.201399825934	0.441832295399	0.031327460653
561	0134	0	0.097575935817	0.437775128284	0.911642360409
562	0135	0	0.110967780360	0.437193103181	0.718666459442
563	0136	0	0.238755606836	0.444511241885	0.755174000918
564	0137	0	0.369363286156	0.659512227741	0.760969954223
565	0138	0	0.305893201216	0.659606087727	0.927194626898
566	0139	0	0.193691874696	0.642135957484	0.035389850713
567	0140	0	0.083856599097	0.648834168834	0.921306667293
568	0141	0	0.111378539690	0.660029945224	0.723681504305
569	0142	0	0.238893388330	0.659459144213	0.760746015105
570	0143	0	0.303284176587	0.551620782777	0.812141828394
571	0144	0	0.073997774858	0.547668839648	0.802451540840
572	0145	0	0.417093076684	0.361201626814	0.613673432207
573	0146	0	0.410923505546	0.494271321919	0.578062282659
574	0147	0	0.401349176425	0.628449158063	0.573590852529
575	0148	0	0.188719290419	0.365541964015	0.615045904476
576	0149	0	0.188589310053	0.496594492503	0.588990584963

577	0150	0	0.195101465718	0.628414085189	0.579065382802
578	0151	0	0.993111667180	0.444294719692	0.792129785987
579	0152	0	0.991740092075	0.649456706025	0.781367509357
580	0153	0	0.868795368349	0.444132029395	0.750006264997
581	0154	0	0.808076350507	0.440760629712	0.582111020839
582	0155	0	0.700997478382	0.445269434691	0.467999343810
583	0156	0	0.598971265919	0.441070359081	0.589433899097
584	0157	0	0.610667646106	0.437383677324	0.782264538756
585	0158	0	0.737545204748	0.448053852428	0.743978058891
586	0159	0	0.868123072552	0.663364247906	0.738807844406
587	0160	0	0.804486946256	0.659923984523	0.572919825028
588	0161	0	0.693561580401	0.642446092186	0.463406778401
589	0162	0	0.585665077795	0.645832655882	0.578021174865
590	0163	0	0.610050752063	0.663227592380	0.776106615966
591	0164	0	0.737324331903	0.656149824821	0.739325609941
592	0165	0	0.807998122140	0.552307447997	0.687624771069
593	0166	0	0.572456425579	0.548735835334	0.703058012590
594	0167	0	0.915889956760	0.361263071301	0.886427924765
595	0168	0	0.909095811701	0.494076521274	0.922389466364
596	0169	0	0.902558890556	0.628148629373	0.922559956412
597	0170	0	0.690001782827	0.367511152981	0.884842404410
598	0171	0	0.689639076565	0.497311028094	0.911554765984
599	0172	0	0.693072267952	0.628894688283	0.921098888240
600	0173	0	0.493871103409	0.443983217972	0.707987657700
601	0174	0	0.491700284128	0.652482422985	0.713829794190
602	0175	0	0.131204631108	0.555867996107	0.249993726667
603	0176	0	0.191923641908	0.559239386864	0.417888997616
604	0177	0	0.299002537829	0.554730578691	0.532000672612
605	0178	0	0.401028742786	0.558929635265	0.410566092914
606	0179	0	0.389332340015	0.562616319235	0.217735469234
607	0180	0	0.262454789227	0.551946144537	0.256021944419
608	0181	0	0.131876934661	0.336635756822	0.261192163930
609	0182	0	0.195513064610	0.340076026711	0.427080149596

610	0183	0	0.306438410640	0.357553927415	0.536593201419
611	0184	0	0.414334932152	0.354167350891	0.421978859606
612	0185	0	0.389949236909	0.336772433375	0.223893448974
613	0186	0	0.262675657592	0.343850189799	0.260674370660
614	0187	0	0.192001843095	0.447692572480	0.312375217234
615	0188	0	0.427543579214	0.451264179430	0.296941996630
616	0189	0	0.084110039440	0.638736941665	0.113572066170
617	0190	0	0.090904196397	0.505923468403	0.077610529531
618	0191	0	0.097441099457	0.371851374747	0.077440043743
619	0192	0	0.309998248163	0.632488861099	0.115157567332
620	N1	Ν	0.484420833072	0.249987119270	0.938070350350
621	N2	Ν	0.515579156199	0.750012878477	0.061929641557
622	N3	Ν	0.015603494166	0.750218583273	0.436989529550
623	N4	Ν	0.984396511912	0.249781439778	0.563010464900
624	C1	С	0.504607900134	0.250136322818	0.830021853586
625	C2	С	0.577641162416	0.250660546779	0.809144636649
626	C3	С	0.588919282741	0.250402618174	0.697129278803
627	C4	С	0.408592720062	0.249846226208	0.948074530464
628	C5	С	0.367745000934	0.249598281807	0.853446906542
629	C6	С	0.294390826406	0.249634352548	0.878554336550
630	C7	С	0.513162035930	0.190731901968	0.993528607017
631	C8	С	0.501478245909	0.121859304247	0.952282927042
632	С9	С	0.541636807449	0.073576754954	0.015925114712
633	C10	С	0.495392093773	0.749863670038	0.169978139655
634	C11	С	0.422358833125	0.749339471010	0.190855366528
635	C12	С	0.411080715445	0.749597417502	0.302870725052
636	C13	С	0.591407269028	0.750153749830	0.051925455680
637	C14	С	0.632254989251	0.750401790373	0.146553077914
638	C15	С	0.705609162229	0.750365673816	0.121445640801
639	C16	С	0.486837960872	0.809268103275	0.006471394944
640	C17	С	0.498521765916	0.878140698179	0.047717074203
641	C18	С	0.458363204087	0.926423252349	0.984074894191
642	C19	С	0.995334113687	0.750426850967	0.328923257367

643	C20	С	0.922267864077	0.750665901044	0.308114400495
644	C21	С	0.910903358758	0.750714473728	0.196097208580
645	C22	С	0.091417718434	0.750171368636	0.446964983712
646	C23	С	0.132262612353	0.749622228069	0.352354754655
647	C24	С	0.205592466548	0.749488247401	0.377633634471
648	C25	С	0.987013910436	0.809412783538	0.492753701792
649	C26	С	0.998520826939	0.878295658142	0.451430691244
650	C27	С	0.958362864747	0.926575280580	0.515070332727
651	C28	С	0.004665891198	0.249573176753	0.671076736825
652	C29	С	0.077732140378	0.249334098719	0.691885596078
653	C30	С	0.089096641697	0.249285517677	0.803902789497
654	C31	С	0.908582288520	0.249828676908	0.553035007562
655	C32	С	0.867737392821	0.250377724887	0.647645236434
656	C33	С	0.794407539228	0.250511750762	0.622366353021
657	C34	С	0.012986086552	0.190587231300	0.507246303868
658	C35	С	0.001479157299	0.121704360885	0.548569320070
659	C36	С	0.041637120675	0.073424732471	0.484929690135
660	C37	С	0.487046306553	0.690756844874	0.006248188624
661	C38	С	0.498716758365	0.621906294745	0.047606323849
662	C39	С	0.458470850168	0.573543276974	0.984230418017
663	C40	С	0.512953670883	0.309243160963	0.993751796636
664	C41	С	0.501283216601	0.378093707572	0.952393650738
665	C42	С	0.541529120822	0.426456728586	0.015769558530
666	C43	С	0.013085402117	0.309099052430	0.507717402103
667	C44	С	0.001344474823	0.377892685837	0.549180069009
668	C45	С	0.041450584834	0.426272250779	0.485664748870
669	C46	С	0.986914616564	0.690900963160	0.492282587129
670	C47	С	0.998655547966	0.622107333289	0.450819910804
671	C48	С	0.958549432091	0.573727764687	0.514335216541
672	0_H1	0	0.310360894039	0.502688971847	0.088445263336
673	0_H2	0	0.306927746069	0.371105303048	0.078901095302
674	0_H3	0	0.506128898190	0.556016765086	0.292012330449
675	0_H4	0	0.508299704913	0.347517580585	0.286170251447

676	H1	Н	0.565940287341	0.199751345615	0.997099337545
677	H2	Н	0.518322508023	0.118540377205	0.875815844842
678	H3	Н	0.543840322693	0.024559710927	0.981856526998
679	H4	Н	0.592162180117	0.091021193556	0.023553919977
680	H5	Н	0.494119836272	0.194848959229	0.068953810992
681	H6	Н	0.449379560629	0.108535965276	0.952616660247
682	H7	Н	0.521314143196	0.068345374582	0.090441804949
683	H8	Н	0.396470088495	0.293623700671	0.991828513288
684	Н9	Н	0.378717209776	0.293265547116	0.808228196525
685	H10	Н	0.265607343258	0.249578031211	0.810195953459
686	H11	Н	0.280529135224	0.293516497275	0.921297192704
687	H12	Н	0.481387252792	0.293741912095	0.797235358214
688	H13	Н	0.601622957262	0.207337044155	0.841486567793
689	H14	Н	0.641515257837	0.250639896761	0.680662340406
690	H15	Н	0.568435914545	0.205878468339	0.662085822569
691	H16	Н	0.469564304972	0.249284776744	0.604809725484
692	H17	Н	0.434059707539	0.800248669262	0.002900670025
693	H18	Н	0.481677511788	0.881459628122	0.124184160192
694	H19	Н	0.456159699343	0.975440297990	0.018143477955
695	H20	Н	0.407837827654	0.908978821178	0.976446104021
696	H21	Н	0.505880155141	0.805151045296	0.931046188153
697	H22	Н	0.550620453265	0.891464028604	0.047383328049
698	H23	Н	0.478685859812	0.931654627671	0.909558197557
699	H24	Н	0.603529895000	0.706376224119	0.008171581406
700	H25	Н	0.621282772599	0.706734573771	0.191771888234
701	H26	Н	0.734392650028	0.750422042097	0.189804018777
702	H27	Н	0.719470835742	0.706483488723	0.078702863782
703	H28	Н	0.518612728483	0.706258069552	0.202764621945
704	H29	Н	0.398377051721	0.792662977723	0.158513426281
705	H30	Н	0.358484740050	0.749360163987	0.319337665343
706	H31	Н	0.431564103824	0.794121562574	0.337914167621
707	H32	Н	0.530435716618	0.750715235935	0.395190233368
708	H33	Н	0.934249122431	0.800362142035	0.496647929629

709	H34	Η	0.981569512836	0.881508968652	0.375015032717
710	H35	Н	0.955979157236	0.975526488187	0.480814591048
711	H36	Н	0.907900278186	0.909016611969	0.522960055469
712	H37	Н	0.006275899913	0.805267368482	0.568049409767
713	H38	Н	0.050598292528	0.891697385866	0.451525267080
714	H39	Н	0.978827947927	0.931984831012	0.589470810555
715	H40	Н	0.103382790297	0.706697342169	0.491484704183
716	H41	Н	0.121140573518	0.705729919682	0.307703009531
717	H42	Н	0.234458981487	0.749232809752	0.309355084715
718	H43	Н	0.219288281007	0.705737122088	0.420795569220
719	H44	Η	0.018109817180	0.706623164163	0.296001655965
720	H45	Н	0.898790332635	0.794368226326	0.340217568224
721	H46	Н	0.858286030616	0.751038350945	0.179767500579
722	H47	Н	0.931875782486	0.794855801711	0.160651171098
723	H48	Н	0.031297314287	0.750382532123	0.104265127441
724	H49	Н	0.065750876014	0.199637863555	0.503352077564
725	H50	Н	0.018430463847	0.118491051770	0.624984982739
726	H51	Н	0.044020818665	0.024473524878	0.519185432802
727	H52	Н	0.092099710356	0.090983394774	0.477039979687
728	H53	Η	0.993724100351	0.194732645896	0.431950594456
729	H54	Η	0.949401689876	0.108302640563	0.548474733082
730	H55	Η	0.021172045838	0.068015184445	0.410529206456
731	H56	Η	0.896617222677	0.293302752716	0.508515389656
732	H57	Η	0.878859441246	0.294269984750	0.692297082384
733	H58	Η	0.765541022880	0.250767134768	0.690644901768
734	H59	Η	0.780711739914	0.294262919926	0.579204505309
735	H60	Η	0.981890204479	0.293376876034	0.703998327113
736	H61	Η	0.101209655697	0.205631764119	0.659782429661
737	H62	Н	0.141713969056	0.248961621716	0.820232503755
738	H63	Н	0.068124200471	0.205144196308	0.839348822187
739	H64	Н	0.968702682441	0.249617484235	0.895734860155
740	H65	Н	0.434269626262	0.699738299099	0.002402241820
741	H66	Η	0.481947838173	0.618708353231	0.124122530325

742	H67	Н	0.456174397483	0.524616862511	0.018568575059
743	H68	Н	0.407982151229	0.591054188275	0.976479603666
744	H69	Н	0.506237807242	0.694907720457	0.930910599343
745	H70	Н	0.550809327869	0.608562289375	0.047224804943
746	H71	Н	0.478803054912	0.568073638225	0.909755734044
747	H72	Н	0.603344571378	0.793829465839	0.007828525368
748	H73	Н	0.621223234378	0.794279872589	0.191298247756
749	H74	Н	0.719493006601	0.794150775639	0.078506885832
750	H75	Н	0.517978894611	0.793841722731	0.202690555003
751	H76	Н	0.399056352410	0.705436085747	0.159071062961
752	H77	Н	0.432074085812	0.705542604953	0.338526304251
753	H78	Н	0.565730351947	0.300261712784	0.997597752033
754	H79	Н	0.518052142662	0.381291646467	0.875877446598
755	H80	Н	0.543825579543	0.475383140915	0.981431395607
756	H81	Н	0.592017818270	0.408945814765	0.023520388219
757	H82	Н	0.493762167123	0.305092286331	0.069089383705
758	H83	Н	0.449190645978	0.391437708680	0.952775161919
759	H84	Н	0.521196909535	0.431926373058	0.090244237816
760	H85	Н	0.396655419096	0.206170459763	0.992171351112
761	H86	Н	0.378776766948	0.205720250383	0.808701632881
762	H87	Н	0.280506994998	0.205849208642	0.921493007387
763	H88	Н	0.482021114911	0.206158259460	0.797309444098
764	H89	Н	0.600943627765	0.294563936591	0.840928953895
765	H90	Н	0.567925895912	0.294457427158	0.661473712575
766	H91	Н	0.065876451424	0.300141841707	0.504149698545
767	H92	Н	0.018195581308	0.381095223321	0.625648716990
768	H93	Н	0.043515621277	0.475290064197	0.519736504541
769	H94	Н	0.092023384281	0.408975503882	0.478058266352
770	H95	Н	0.994073108085	0.305091611236	0.432260565078
771	H96	Н	0.949233089991	0.391164024148	0.548950364022
772	H97	Н	0.021166325503	0.431438502597	0.411116195966
773	H98	Н	0.896482312322	0.205896524462	0.509606970377
774	H99	Н	0.878557437279	0.206722324474	0.692980195956

775	H100 H	0.780476364264	0.206604260197	0.579723213462
776	H101 H	0.981658339446	0.205805538643	0.703734771371
777	H102 H	0.101509881693	0.292865198743	0.659780096905
778	H103 H	0.068674119947	0.293704128715	0.839308374482
779	H104 H	0.934123566753	0.699858167472	0.495850300350
780	H105 H	0.981804447183	0.618904800211	0.374351259683
781	H106 H	0.956484399820	0.524709952721	0.480263455807
782	H107 H	0.907976631632	0.591024511798	0.521941689596
783	H108 H	0.005926914997	0.694908401943	0.567739422230
784	H109 H	0.050766932896	0.608835995700	0.451049622557
785	H110 H	0.978833684649	0.568561509563	0.588883772909
786	H111 H	0.103517692158	0.794103568918	0.490392915699
787	H112 H	0.121442558202	0.793277579151	0.307019694941
788	H113 H	0.219523629046	0.793395781529	0.420276684120
789	H114 H	0.018341647770	0.794194502994	0.296265234716
790	H115 H	0.898490140528	0.707134792474	0.340219903294
791	H116 H	0.931325893995	0.706295868275	0.160691626012

793 Structural Data for DFT optimized Silicalite-1 (without TPA+OH-)

- 794 data_S1-DFT
- 795 _cell_length_a 20.223082
- 796 _cell_length_b 19.867162
- 797 _cell_length_c 13.345321
- 798 _cell_angle_alpha 90
- 799 _cell_angle_beta 90
- 800 _cell_angle_gamma 90
- 801 _cell_volume 5361.8196
- symmetry_space_group_name_H-M P1
- 803 loop_
- 804 _symmetry_equiv_pos_as_xyz
- 805 'x, y, z '
- 806 loop_

807	_atom	_site	_label				
808	_atom_site_type_symbol						
809	_atom_site_fract_x						
810	_atom	_site	_fract_y				
811	_atom	_site	_fract_z				
812	T1(a)	Si	0.423253935068	0.071114668310	0.688755454200		
813	T1(b)	Si	0.076775726306	0.928430701199	0.189216467569		
814	T1(c)	Si	0.923224273545	0.428430702709	0.810783532326		
815	T1(d)	Si	0.576746065174	0.571114666851	0.311244545163		
816	T1(e)	Si	0.576746065090	0.928885334000	0.311244541109		
817	T1(f)	Si	0.923224278243	0.071569300703	0.810783535353		
818	T1(g)	Si	0.076775722212	0.571569298911	0.189216465876		
819	T1(h)	Si	0.423253934776	0.428885335762	0.688755458906		
820	T2(a)	Si	0.325323836431	0.033717925902	0.847976718155		
821	T2(b)	Si	0.174388115165	0.966179746513	0.348815209548		
822	T2(c)	Si	0.825611885088	0.466179747606	0.651184789935		
823	T2(d)	Si	0.674676165191	0.533717923969	0.152023284618		
824	T2(e)	Si	0.674676170551	0.966282072981	0.152023291856		
825	T2(f)	Si	0.825611886413	0.033820256673	0.651184788781		
826	T2(g)	Si	0.174388115249	0.533820256044	0.348815209773		
827	T2(h)	Si	0.325323829538	0.466282072512	0.847976707881		
828	T3(a)	Si	0.277864853962	0.054932472580	0.063974523902		
829	T3(b)	Si	0.221899311010	0.945089107055	0.564056684864		
830	T3(c)	Si	0.778100687185	0.445089106386	0.435943314102		
831	T3(d)	Si	0.722135148302	0.554932467400	0.936025478540		
832	T3(e)	Si	0.722135152713	0.945067545707	0.936025478143		
833	T3(f)	Si	0.778100690335	0.054910892099	0.435943314410		
834	T3(g)	Si	0.221899311376	0.554910892527	0.564056685890		
835	T3(h)	Si	0.277864846565	0.445067546140	0.063974520898		
836	T4(a)	Si	0.123315371960	0.051587529170	0.048615456676		
837	T4(b)	Si	0.376545568440	0.947835022118	0.547318647030		
838	T4(c)	Si	0.623454430309	0.447835018983	0.452681351456		
839	T4(d)	Si	0.876684631062	0.551587531808	0.951384542552		

840	T4(e)	Si	0.876684639008	0.948412468731	0.951384544193
841	T4(f)	Si	0.623454434744	0.052164975320	0.452681352318
842	T4(g)	Si	0.376545566907	0.552164978717	0.547318647809
843	T4(h)	Si	0.123315360586	0.448412466189	0.048615456429
844	T5(a)	Si	0.072639489644	0.036516417342	0.824758106778
845	T5(b)	Si	0.427492863991	0.963432470722	0.323744624352
846	T5(c)	Si	0.572507135891	0.463432470259	0.676255374322
847	T5(d)	Si	0.927360510910	0.536516418757	0.175241892900
848	T5(e)	Si	0.927360513971	0.963483581671	0.175241898445
849	T5(f)	Si	0.572507136781	0.036567528608	0.676255374599
850	T5(g)	Si	0.427492863333	0.536567528900	0.323744624929
851	T5(h)	Si	0.072639485950	0.463483579904	0.824758101862
852	T6(a)	Si	0.202511776390	0.067628411350	0.716932987262
853	T6(b)	Si	0.297400991461	0.932444200269	0.216631625729
854	T6(c)	Si	0.702599008583	0.432444197521	0.783368371461
855	T6(d)	Si	0.797488224871	0.567628411914	0.283067014484
856	T6(e)	Si	0.797488229445	0.932371585891	0.283067022704
857	T6(f)	Si	0.702599006724	0.067555820831	0.783368373028
858	T6(g)	Si	0.297400993108	0.567555821944	0.216631623571
859	T6(h)	Si	0.202511770713	0.432371586133	0.716932977258
860	T7(a)	Si	0.419761572791	0.827626064276	0.682386453507
861	T7(b)	Si	0.079847002198	0.172577320460	0.181702212318
862	T7(c)	Si	0.920152998930	0.672577322654	0.818297787314
863	T7(d)	Si	0.580238425829	0.327626061750	0.317613547287
864	T7(e)	Si	0.580238434518	0.172373930625	0.317613538168
865	T7(f)	Si	0.920152999721	0.827422684694	0.818297780675
866	T7(g)	Si	0.079846999795	0.327422682651	0.181702219377
867	T7(h)	Si	0.419761566570	0.672373933343	0.682386461450
868	T8(a)	Si	0.315015242598	0.875963866651	0.836872162153
869	T8(b)	Si	0.184791158969	0.124222634597	0.336593915411
870	T8(c)	Si	0.815208841452	0.624222635664	0.663406084717
871	T8(d)	Si	0.684984756305	0.375963863344	0.163127833606
872	T8(e)	Si	0.684984764241	0.124036132654	0.163127825048

873	T8(f) Si	0.815208842638 0.875777366818 0.663406088321
874	T8(g) Si	0.184791157105 0.375777365615 0.336593912039
875	T8(h) Si	0.315015237074 0.624036132312 0.836872173491
876	T9(a) Si	0.272830531632 0.827832658917 0.042111503320
877	T9(b) Si	0.227368749986 0.172649909947 0.541899219442
878	T9(c) Si	0.772631251241 0.672649911054 0.458100780768
879	T9(d) Si	0.727169468254 0.327832655243 0.957888490813
880	T9(e) Si	0.727169467933 0.172167356485 0.957888484998
881	T9(f) Si	0.772631254450 0.827350088377 0.458100787557
882	T9(g) Si	0.227368746421 0.327350087954 0.541899212248
883	T9(h) Si	0.272830532789 0.672167358045 0.042111511825
884	T10(a) Si	0.117850363540 0.828091797344 0.020377331411
885	T10(b) Si	0.383105410412 0.172598986554 0.521932913865
886	T10(c) Si	0.616894589465 0.672598986921 0.478067084981
887	T10(d) Si	0.882149636000 0.328091798728 0.979622669556
888	T10(e) Si	0.882149627391 0.171908192192 0.979622663411
889	T10(f) Si	0.616894589692 0.827401018701 0.478067082380
890	T10(g) Si	0.383105410476 0.327401019018 0.521932918721
891	T10(h) Si	0.117850373365 0.671908190536 0.020377336993
892	T11(a) Si	0.066572125826 0.879233300997 0.811088192371
893	T11(b) Si	0.433821996998 0.121048108718 0.312434022269
894	T11(c) Si	0.566178003279 0.621048109030 0.687565976982
895	T11(d) Si	0.933427873640 0.379233301541 0.188911808318
896	T11(e) Si	0.933427873496 0.120766697090 0.188911802781
897	T11(f) Si	0.566178004708 0.878951890330 0.687565977416
898	T11(g) Si	0.433821994462 0.378951890320 0.312434023715
899	T11(h) Si	0.066572126983 0.620766696250 0.811088197376
900	T12(a) Si	0.195029973033 0.828692481332 0.707836504660
901	T12(b) Si	0.305039823490 0.171223153936 0.209485719864
902	T12(c) Si	0.694960176644 0.671223152456 0.790514281110
903	T12(d) Si	0.804970026389 0.328692480481 0.292163494846
904	T12(e) Si	0.804970029756 0.171307517953 0.292163499731
905	T12(f) Si	0.694960180778 0.828776855064 0.790514274471

906	T12(§	g)	Si 0.30503981923	0.3287768559	04 0.209485726173
907	T12(l	h)	Si 0.19502997078	33 0.6713075186	63 0.707836500448
908	01 0)	0.502877307312 0	.072843651152 (0.703672964802
909	02 0)	0.996990951676 0	.926908910523 (0.201711683773
910	03 0)	0.003009048052 0	.426908909214 ().798288316797
911	04 0)	0.497122692985 0	.572843651041 (0.296327035108
912	05 0)	0.497122692901 0	.927156348743 (0.296327035580
913	06 0)	0.003009052779 0	.073091091521 (0.798288318970
914	07 0)	0.996990947844 0	.573091091893 (0.201711681847
915	08 0)	0.502877306763 0	.427156348959 ().703672963925
916	09 0)	0.388753023229 0	.072537380820 ().799393578169
917	010	0	0.110880380958	0.927146647332	0.300493433564
918	011	0	0.889119619018	0.427146647860	0.699506566211
919	012	0	0.611246977261	0.572537378605	0.200606421764
920	013	0	0.611246978833	0.927462621783	0.200606421022
921	014	0	0.889119621708	0.072853352890	0.699506569021
922	015	0	0.110880378708	0.572853352104	0.300493432237
923	016	0	0.388753021973	0.427462622412	0.799393579712
924	017	0	0.399648682679	0.138618996437	0.629564681014
925	018	0	0.100355326597	0.861558222181	0.128077684119
926	019	0	0.899644672360	0.361558225412	0.871922317837
927	020	0	0.600351317574	0.638618994570	0.370435319076
928	021	0	0.600351318103	0.861381005682	0.370435313830
929	022	0	0.899644670333	0.138441776903	0.871922312434
930	023	0	0.100355330018	0.638441774054	0.128077686839
931	024	0	0.399648681418	0.361381007614	0.629564686192
932	025	0	0.399743115570	0.003367719541	0.629631612675
933	026	0	0.100206011977	0.996810533986	0.131924064187
934	027	0	0.899793988869	0.496810536271	0.868075933857
935	028	0	0.600256885024	0.503367717865	0.370368386261
936	029	0	0.600256885088	0.996632280378	0.370368385714
937	030	0	0.899793993378	0.003189465239	0.868075934801
938	031	0	0.100206006448	0.503189463180	0.131924066450

939	032	0	0.399743115703	0.496632282719	0.629631614721
940	033	0	0.326901903919	0.041744333151	0.969195472585
941	034	0	0.172018000080	0.958452735514	0.470284666828
942	035	0	0.827981995336	0.458452738454	0.529715333044
943	036	0	0.673098097669	0.541744332739	0.030804530299
944	037	0	0.673098104517	0.958255668535	0.030804537515
945	038	0	0.827982004766	0.041547264959	0.529715329920
946	039	0	0.172018000827	0.541547262452	0.470284668379
947	040	0	0.326901894924	0.458255668998	0.969195462132
948	041	0	0.329997866181	0.954856764580	0.814776553940
949	042	0	0.169784210859	0.045189084259	0.316626025886
950	043	0	0.830215789102	0.545189085517	0.683373975028
951	044	0	0.670002134655	0.454856761690	0.185223444060
952	045	0	0.670002134932	0.045143236422	0.185223445258
953	046	0	0.830215788716	0.954810917412	0.683373972361
954	047	0	0.169784212031	0.454810916134	0.316626027759
955	048	0	0.329997865029	0.545143236291	0.814776553603
956	049	0	0.256406598524	0.066121403263	0.807562163353
957	050	0	0.243213081557	0.934109072675	0.306913485970
958	051	0	0.756786918433	0.434109074572	0.693086512501
959	052	0	0.743593402138	0.566121402086	0.192437840214
960	053	0	0.743593403874	0.933878594980	0.192437853462
961	054	0	0.756786918997	0.065890929832	0.693086513910
962	055	0	0.243213081463	0.565890929439	0.306913483407
963	056	0	0.256406596151	0.433878595146	0.807562146486
964	057	0	0.288283970955	0.131519053602	0.105385511858
965	058	0	0.211577519445	0.868174464893	0.603590681453
966	059	0	0.788422481173	0.368174465170	0.396409317408
967	060	0	0.711716029416	0.631519047164	0.894614484657
968	061	0	0.711716029846	0.868480966939	0.894614473005
969	062	0	0.788422479709	0.131825535811	0.396409322541
970	063	0	0.211577519846	0.631825535258	0.603590678388
971	064	0	0.288283969797	0.368480968339	0.105385528419

972	065	0	0.201997989055	0.042247084334	0.026533513431
973	066	0	0.297710350050	0.955583761219	0.524542638382
974	067	0	0.702289648249	0.455583754127	0.475457361333
975	068	0	0.798002014189	0.542247083383	0.973466487153
976	069	0	0.798002020864	0.957752916476	0.973466491042
977	070	0	0.702289652814	0.044416237140	0.475457364045
978	071	0	0.297710349120	0.544416243971	0.524542636254
979	072	0	0.201997978394	0.457752915917	0.026533509220
980	073	0	0.295426529913	0.002868451065	0.154139403406
981	074	0	0.204885263230	0.996609541967	0.655566127911
982	075	0	0.795114736423	0.496609541876	0.344433872658
983	076	0	0.704573469603	0.502868446163	0.845860599989
984	077	0	0.704573470176	0.997131571515	0.845860604372
985	078	0	0.795114738752	0.003390458969	0.344433871549
986	079	0	0.204885261871	0.503390459488	0.655566128428
987	080	0	0.295426528825	0.497131572149	0.154139393312
988	081	0	0.107895880213	0.127439445438	0.088848720731
989	082	0	0.392390831694	0.872123116170	0.587996460183
990	083	0	0.607609167431	0.372123112471	0.412003540949
991	084	0	0.892104120415	0.627439449011	0.911151280370
992	085	0	0.892104124816	0.872560552992	0.911151279239
993	086	0	0.607609170991	0.127876881263	0.412003538858
994	087	0	0.392390829954	0.627876884882	0.587996460325
995	088	0	0.107895875787	0.372560549876	0.088848720297
996	089	0	0.082870576740	0.037907487592	0.945850405824
997	090	0	0.416972790537	0.961672602086	0.444580428174
998	091	0	0.583027209216	0.461672600827	0.555419570665
999	092	0	0.917129425203	0.537907489932	0.054149593831
1000	093	0	0.917129428511	0.962092514296	0.054149598455
1001	094	0	0.583027208963	0.038327397033	0.555419569466
1002	095	0	0.416972791244	0.538327399268	0.444580429912
1003	096	0	0.082870571034	0.462092511558	0.945850402040
1004	097	0	0.129853386155	0.079034336172	0.766792901602

1005	098	0	0.370560197313	0.921271235051	0.264767651719
1006	099	0	0.629439802539	0.421271233259	0.735232345779
1007	0100	0	0.870146614824	0.579034336912	0.233207099387
1008	0101	0	0.870146617800	0.920965660319	0.233207101350
1009	0102	0	0.629439798879	0.078728776460	0.735232345539
1010	0103	0	0.370560200409	0.578728773687	0.264767653030
1011	0104	0	0.129853382833	0.420965659403	0.766792899159
1012	0105	0	0.073046258785	0.958959218800	0.784051925210
1013	0106	0	0.427047207518	0.041417050070	0.285692580965
1014	0107	0	0.572952792196	0.541417049894	0.714307420031
1015	0108	0	0.926953741294	0.458959219767	0.215948073681
1016	0109	0	0.926953741838	0.041040780122	0.215948080515
1017	0110	0	0.572952794465	0.958582949422	0.714307420279
1018	0111	0	0.427047206054	0.458582949397	0.285692578950
1019	0112	0	0.073046257964	0.541040778804	0.784051918489
1020	0113	0	0.218892868950	0.131638197454	0.645793024349
1021	0114	0	0.281027097240	0.867624754849	0.147207435790
1022	0115	0	0.718972904353	0.367624751794	0.852792558770
1023	0116	0	0.781107131381	0.631638197907	0.354206975996
1024	0117	0	0.781107130763	0.868361804932	0.354206985085
1025	0118	0	0.718972905312	0.132375264831	0.852792552888
1026	0119	0	0.281027096102	0.632375266946	0.147207445471
1027	0120	0	0.218892869460	0.368361806795	0.645793012645
1028	0121	0	0.492279584111	0.854085119712	0.718798233238
1029	0122	0	0.007580101178	0.145741916908	0.217631097798
1030	0123	0	0.992419899717	0.645741918287	0.782368901752
1031	0124	0	0.507720414114	0.354085116611	0.281201769744
1032	0125	0	0.507720418549	0.145914878220	0.281201764334
1033	0126	0	0.992419898911	0.854258085357	0.782368893412
1034	0127	0	0.007580100234	0.354258083485	0.217631105164
1035	0128	0	0.492279582400	0.645914880651	0.718798235119
1036	0129	0	0.369010895219	0.830340571467	0.777464511809
1037	0130	0	0.131448623405	0.169913207739	0.275720923513

1038	0131	0	0.868551377278	0.669913208102	0.724279076944
1039	0132	0	0.630989101305	0.330340572383	0.222535486700
1040	0133	0	0.630989116095	0.169659431176	0.222535484841
1041	0134	0	0.868551377935	0.830086792708	0.724279075633
1042	0135	0	0.131448621501	0.330086792497	0.275720924248
1043	0136	0	0.369010886160	0.669659430501	0.777464515541
1044	0137	0	0.424071822074	0.749999998772	0.644298719454
1045	0138	0	0.073483457615	0.25000002300	0.142767964030
1046	0139	0	0.926516543003	0.75000004585	0.857232035902
1047	0140	0	0.575928178390	0.249999995857	0.355701279992
1048	0141	0	0.320064874271	0.861502276999	0.956792045249
1049	0142	0	0.180238112039	0.139094206847	0.456202882808
1050	0143	0	0.819761888628	0.639094206525	0.543797116750
1051	0144	0	0.679935125665	0.361502274447	0.043207949835
1052	0145	0	0.679935129433	0.138497730521	0.043207943211
1053	0146	0	0.819761894918	0.860905788466	0.543797124595
1054	0147	0	0.180238104509	0.360905785950	0.456202875143
1055	0148	0	0.320064870147	0.638497727924	0.956792055860
1056	0149	0	0.240391678899	0.857900293817	0.798921198711
1057	0150	0	0.259832275990	0.141972184266	0.300665997791
1058	0151	0	0.740167724539	0.641972187467	0.699334000051
1059	0152	0	0.759608319963	0.357900291884	0.201078800697
1060	0153	0	0.759608328434	0.142099704135	0.201078797115
1061	0154	0	0.740167722576	0.858027813605	0.699333984443
1062	0155	0	0.259832277143	0.358027811421	0.300666017228
1063	0156	0	0.240391673371	0.642099706365	0.798921202435
1064	0157	0	0.294751823970	0.75000007132	0.059501875069
1065	0158	0	0.204745551390	0.2499999999079	0.561357019348
1066	0159	0	0.795254450731	0.75000000111	0.438642983410
1067	0160	0	0.705248175422	0.25000004258	0.940498112732
1068	0161	0	0.197140164506	0.832822751408	0.000916482376
1069	0162	0	0.303686534006	0.170163074167	0.502820204632
1070	0163	0	0.696313466355	0.670163078954	0.497179792258

1071	0164	0	0.802859834386	0.332822752424	0.999083517392
1072	0165	0	0.802859830158	0.167177250616	0.999083511397
1073	0166	0	0.696313467354	0.829836923422	0.497179796327
1074	0167	0	0.303686533131	0.329836925214	0.502820201889
1075	0168	0	0.197140170207	0.667177248492	0.000916488056
1076	0169	0	0.093613310118	0.749999993748	0.020966038044
1077	0170	0	0.409579238372	0.25000001626	0.523337526523
1078	0171	0	0.590420761104	0.75000001943	0.476662474646
1079	0172	0	0.906386691148	0.2499999994921	0.979033961776
1080	0173	0	0.079815563167	0.868307332889	0.930916026928
1081	0174	0	0.420460459786	0.131700887938	0.432407218567
1082	0175	0	0.579539540323	0.631700886805	0.567592779829
1083	0176	0	0.920184436769	0.368307334606	0.069083973349
1084	0177	0	0.920184434633	0.131692665193	0.069083970142
1085	0178	0	0.579539537816	0.868299117725	0.567592778720
1086	0179	0	0.420460461175	0.368299119049	0.432407222404
1087	0180	0	0.079815565847	0.631692663466	0.930916030165
1088	0181	0	0.117840060130	0.836746678182	0.741081302720
1089	0182	0	0.382086587059	0.163427320998	0.243242999033
1090	0183	0	0.617913412960	0.663427322322	0.756756999715
1091	0184	0	0.882159939489	0.336746678066	0.258918697145
1092	0185	0	0.882159941917	0.163253321949	0.258918696973
1093	0186	0	0.617913415824	0.836572679273	0.756756996651
1094	0187	0	0.382086584350	0.336572678861	0.243243003147
1095	0188	0	0.117840058553	0.663253321863	0.741081303852
1096	0189	0	0.211737370713	0.75000000362	0.687608660256
1097	0190	0	0.288249080338	0.25000003971	0.189868239123
1098	0191	0	0.711750919439	0.75000003398	0.810131762923
1099	0192	0	0.788262629208	0.2499999999144	0.312391339579

1100 SEM images

1101 Supplementary Figure 7. SEM image of sample TS-1A (left) and TS-1B (right), as prepared

1102 for the AXRD measurement.

1103 Structure of possible Ti-peroxo species

1104

1105 Supplementary Figure 8. Structure of possible monomeric and dimeric Ti-peroxo species.

1106 Supplementary References

Signorile, M. *et al.* Effect of Ti Speciation on Catalytic Performance of TS-1 in the
 Hydrogen Peroxide to Propylene Oxide Reaction. *J. Phys. Chem. C* 122, 9021–9034
 (2018).

Su, J. *et al.* Amorphous Ti species in titanium silicalite-1: Structural features,
chemical properties, and inactivation with sulfosalt. *J. Catal.* 288, 1–7 (2012).

Guo, Q., Feng, Z., Li, G., Fan, F. & Li, C. Finding the 'missing components' during the
synthesis of TS-1 zeolite by UV resonance raman spectroscopy. *J. Phys. Chem. C* **117**, 2844–2848 (2013).

4.	Zuo, Y. <i>et al.</i> Role of pentahedrally coordinated titanium in titanium silicalite-1 in propene epoxidation. <i>RSC Adv.</i> 5 , 17897–17904 (2015).
5.	Signorile, M. et al. Titanium Defective Sites in TS-1: Structural Insights by
	Combining Spectroscopy and Simulation. Angew. Chemie - Int. Ed. 59, 18145-
	18150 (2020).
6.	Ricchiardi, G. et al. Vibrational structure of titanium silicate catalysts. A
	spectroscopic and theoretical study. J. Am. Chem. Soc. 123, 11409–11419 (2001).
7.	Ohsaka, T., Izumi, F. & Fujiki, Y. Raman spectrum of anatase, TiO2. <i>J. Raman</i> <i>Spectrosc.</i> 7 , 321–324 (1978).
8.	Robson, H., Lillerud, K. P. & Patterns, X. Verified Syntheses of Zeolitic Materials.
	Verified Syntheses of Zeolitic Materials (Elsevier, 2001).
9.	Bordiga, S. et al. Hydroxyls nests in defective silicalites and strained structures
	derived upon dehydroxylation: Vibrational properties and theoretical modelling.
	<i>Top. Catal.</i> 15 , 43–52 (2001).
10.	Li, W. et al. Differential pair distribution function study of the structure of
	arsenate adsorbed on nanocrystalline γ-alumina. <i>Environ. Sci. Technol.</i> 45 , 9687–
	9692 (2011).
1.	Signorile, M. et al. Effect of Ti Speciation on Catalytic Performance of TS-1 in the
	Hydrogen Peroxide to Propylene Oxide Reaction. J. Phys. Chem. C 122, 9021–9034
	(2018).
2.	Su, J. et al. Amorphous Ti species in titanium silicalite-1: Structural features,
	chemical properties, and inactivation with sulfosalt. <i>J. Catal.</i> 288 , 1–7 (2012).
3.	Guo, Q., Feng, Z., Li, G., Fan, F. & Li, C. Finding the 'missing components' during the
	synthesis of TS-1 zeolite by UV resonance raman spectroscopy. J. Phys. Chem. C
	117 , 2844–2848 (2013).
4.	Zuo, Y. et al. Role of pentahedrally coordinated titanium in titanium silicalite-1 in
	propene epoxidation. <i>RSC Adv.</i> 5 , 17897–17904 (2015).
5.	Signorile, M. et al. Titanium Defective Sites in TS-1: Structural Insights by
	 4. 5. 6. 7. 8. 9. 10. 1. 2. 3. 4. 5.

1144 1145		Combining Spectroscopy and Simulation. <i>Angew. Chemie - Int. Ed.</i> 59 , 18145– 18150 (2020)
1146 1147	6.	Ricchiardi, G. <i>et al.</i> Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study. <i>I. Am. Chem. Soc.</i> 123 , 11409–11419 (2001).
1148 1149	7.	Ohsaka, T., Izumi, F. & Fujiki, Y. Raman spectrum of anatase, TiO2. <i>J. Raman Spectrosc.</i> 7 , 321–324 (1978).
1150 1151	8.	Robson, H., Lillerud, K. P. & Patterns, X. Verified Syntheses of Zeolitic Materials. Verified Syntheses of Zeolitic Materials (Elsevier, 2001).
1152 1153 1154	9.	Bordiga, S. <i>et al.</i> Hydroxyls nests in defective silicalites and strained structures derived upon dehydroxylation: Vibrational properties and theoretical modelling. <i>Top. Catal.</i> 15 , 43–52 (2001).
1155 1156 1157	10.	Li, W. <i>et al.</i> Differential pair distribution function study of the structure of arsenate adsorbed on nanocrystalline γ-alumina. <i>Environ. Sci. Technol.</i> 45 , 9687–9692 (2011).
1158		
1159		
1160		
1161		