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ABSTRACT

Time series analysis of medium-resolution multispectral satellite imagery is critical to investigate 
forest disturbance dynamics at the landscape scale. In particular, the spatial, temporal, and radio-
metric consistency of Landsat time series data provides unprecedented insight into past distur-
bances that occurred over the last four decades. Several Landsat time series-based algorithms have 
been developed to automate the detection of forest disturbances. However, automated detection 
of non-stand-replacing disturbances based on Landsat time series remains a challenging task due 
to the di'culty of e�ectively separating them from spectral noise. Here, we present the High- 
dimensional detection of Landscape Dynamics (HILANDYN) algorithm, which exploits spatial and 
spectral information provided by Landsat time series to detect forest disturbance dynamics retro-
spectively. A novel and unsupervised procedure for changepoint detection in high-dimensional 
time series allows HILANDYN to perform the temporal segmentation of inter-annual time series 
into linear trends. The algorithm embeds a noise .lter to remove spurious changepoints caused by 
residual spectral noise in the time series. We tested HILANDYN to detect disturbances that occurred 
in the forests of the European Alps over a period of 39 years, i.e. between 1984 and 2022, and 
evaluated its accuracy using a validation dataset of 3000 plots randomly located inside and outside 
the disturbed patches. We compared HILANDYN with the Bayesian Estimator of Abrupt change, 
Seasonality, and Trend (BEAST), which is a well-established and high-performing time series-based 
algorithm for changepoint detection. The quantitative results highlighted that the number of 
bands, i.e. original Landsat bands and spectral indices, included in the high-dimensional time series 
and the threshold controlling the signi.cance of changepoints strongly in9uenced the user’s 
accuracy (UA). Conversely, changes in the combinations of bands primarily a�ected the producer’s 
accuracy (PA). HILANDYN achieved an F1 score of 0.801, which increased to 0.833 when we 
activated the noise .lter, allowing the algorithm to balance UA (83.1%) and PA (83.5%). The 
qualitative results showed that disturbed forest patches detected by HILANDYN were characterized 
by a high spatio-temporal consistency, regardless of the disturbance severity. Furthermore, our 
algorithm was able to detect forest patches associated with secondary disturbances, such as 
salvage logging, that occur in close succession with respect to the primary event. The comparison 
with BEAST evidenced a similar sensitivity of the algorithms to non-stand-replacing events, as both 
achieved comparable PA. However, BEAST struggled to balance UA and PA when using a single 
parameter set, achieving a maximum F1 score of 0.717. Moreover, the computational e'ciency of 
BEAST in processing high-dimensional time series was very limited due to its univariate nature 
based on the Bayesian approach. The adaptability of HILANDYN to detect a wide range of 
disturbance severities using a single parameter set and its computational e'ciency in handling 
high-dimensional time series promotes its scalability to large study areas characterized by hetero-
geneous ecological conditions.
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1. Introduction

Disturbances such as wild.res, windthrows, and 

insect or pathogen outbreaks are key components 

of forest ecosystems (Turner 2010). They alter the 

state and trajectories of ecosystems and generate 

heterogeneity in space and time. The intensi.cation 

of climate-driven changes in disturbance regimes has 

been observed globally, with negative impacts on the 

structure, functions, and composition of forests 

(Forzieri et al. 2021; Seidl et al. 2017). Shifts in distur-

bance patterns toward more frequent, larger and 

more severe events can drastically impair the 
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resilience of forests and trigger transitions to a non- 

forest state (Johnstone et al. 2016; Seidl et al. 2016). 

Besides stand-replacing disturbances, long-term stu-

dies based either on .eld (Andrus et al. 2021; 

Camarero et al. 2015) or remote sensing data (Cohen 

et al. 2016; Senf et al. 2018) highlighted increasing 

trends in tree mortality rates, associated with gradual, 

non-stand-replacing disturbances. Warming tempera-

tures and increases in severe and prolonged droughts 

driven by climate change resulted in extensive forest 

decline globally (Allen, Breshears, and McDowell  

2010, 2015). Apart from the direct e�ects of climate 

change, modi.cations of the interactions between 

disturbance agents (Seidl et al. 2017) and land-use 

change patterns, such as land abandonment 

(Mantero et al. 2020), further drove shifts in distur-

bance regimes. Identifying changes in disturbance 

regimes that occurred over the last decades has cru-

cial implications for current and future management 

policies (Leverkus et al. 2021).

Satellite-based remote sensing is a fundamental 

data source for forest ecologists as it enables 

a comprehensive understanding of ecological pro-

cesses both in the spatial and temporal dimensions 

(Kennedy et al. 2014; Senf 2022). In particular, con-

tinuously acquired data by Landsat satellites over the 

last four decades provide a unique opportunity to 

reconstruct long-term forest disturbance dynamics 

at the landscape scale (Senf 2022; Wulder et al.  

2019). The opening of the U.S. Geological Survey 

(USGS) Landsat archive in 2008 prompted a rapid 

increase in the use of time series for analyzing forest 

ecosystem dynamics from regional to global scales 

(Banskota et al. 2014; Wulder et al. 2012).

Several Landsat time series-based change detec-

tion algorithms have been developed so far, either 

to explicitly map forest dynamics or target a broader 

range of land cover changes (Zhu 2017). Some of 

these algorithms, such as LandTrendr (Landsat- 

based Detection of Trends in Disturbance 

and Recovery; Kennedy, Yang, and Cohen 2010) and 

CCDC (Continuous Change Detection and 

Classi.cation; Zhu and Woodcock 2014), gained con-

siderable popularity, thanks also to their implementa-

tion in the Google Earth Engine platform (Pasquarella 

et al. 2022). Both LandTrendr and CCDC perform 

a temporal segmentation, i.e. they partition time ser-

ies into discrete intervals based on the similarity 

between consecutive observations, at the pixel level 

(Pasquarella et al. 2022). Whilst, based on a similar 

theoretical framework, these algorithms present fun-

damental di�erences in the characteristics of the 

input time series and the mathematical approaches 

they rely on. LandTrendr is an oHine algorithm, i.e. it 

operates on completely available time series, that 

segments inter-annual data into linear trends. 

Conversely, CCDC is an online algorithm, i.e. it pro-

cesses continuously acquired data, that .ts harmonic 

functions for modeling intra-annual phenological 

cycles. LandTrendr is univariate as it can segment 

one band, i.e. original re9ectance bands and spectral 

indices, sensu Cohen et al. (2020), at each run, while 

CCDC is multivariate as it simultaneously analyzes 

multiple bands (Zhu 2017). C2C (Composite2Change; 

Hermosilla et al. 2015) and VeRDET (Vegetation 

Regeneration and Disturbance Estimates through 

Time; Hughes, Kaylor, and Hayes 2017) are among 

the algorithms that share characteristics with 

LandTrendr, as they are oHine, univariate, and seg-

ment inter-annual time series into linear trends. On 

the contrary, EWMACD (Exponentially Weighted 

Moving Average Change Detection; Brooks et al.  

2014) and COLD (COntinuous monitoring of Land 

Disturbance; Zhu et al. 2019) are similar to CCDC, as 

they model phenological cycles using continuously 

acquired data.

The sensitivity of Landsat time series-based algo-

rithms to non-stand-replacing disturbances, i.e. those 

causing partial canopy loss, has been reported to be 

somewhat limited compared, for example, to visual 

interpretation of spectral-temporal pro.les (Cohen 

et al. 2017) or bi-temporal burn severity indices 

(Rodman et al. 2021). Indeed, extracting the weak 

signals associated with non-stand-replacing distur-

bances is hindered by noise in Landsat time series, 

which is generated by uncertainties in pre-processing 

operations like georeferencing and atmospheric cor-

rection (Cohen et al. 2017; Rodman et al. 2021; 

Vogelmann et al. 2016). A key issue when targeting 

non-stand-replacing disturbances is the proper opti-

mization of the parameters of an algorithm in order to 

balance omission and commission errors (Cohen et al.  

2017; Ye et al. 2021).

Various ensemble approaches have been proposed 

in the context of Landsat time series-based algorithms 

as they improved the accuracy of disturbance maps, 

primarily by increasing the sensitivity to low-severity 

events (Cohen et al. 2018; Healey et al. 2018; Schultz 
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et al. 2016). Algorithm ensembles are built by aggre-

gating results from multiple change detection algo-

rithms that are executed in parallel (Cohen et al. 2020; 

Healey et al. 2018; Hislop et al. 2019). Conversely, 

multispectral ensembles (Cohen et al. 2018; Marzo 

et al. 2021; Schultz et al. 2016) involve the analysis 

of several bands through parallel runs of a univariate 

algorithm, which outputs are then dissolved into 

a single result using a supervised classi.er, e.g. ran-

dom forest. Considering individual algorithms, BEAST 

(Bayesian Estimator of Abrupt change, Seasonality, 

and Trend; Zhao et al. 2019) employs an ensemble 

learning technique termed Bayesian model averaging 

(BMA). BMA involves combining the estimates of 

many candidate models by quantifying their useful-

ness according to a Bayesian posterior probability. 

This approach allows BEAST to explicitly quantify 

model uncertainty and deal with complex nonlinear 

signals in the seasonal and trend components. BEAST 

exhibited solid performance in detecting both stand- 

replacing and non-stand-replacing disturbances 

using time series of medium-resolution satellite data, 

such as Landsat (Hu et al. 2021; Moreno-Fernández 

et al. 2021) and Sentinel-2 (Giannetti et al. 2021; 

Mulverhill, Coops, and Achim 2023).

Spectral information from the spatial context has 

been integrated into Landsat time series-based algo-

rithms, either before or after temporal segmentation 

(Hermosilla et al. 2015; Hughes, Kaylor, and Hayes  

2017; Meng et al. 2021). Moving window-based 

approaches have been employed before temporal 

segmentation to increase the accuracy of forest dis-

turbance (Hamunyela, Verbesselt, and Herold 2016) 

and recovery (Meng et al. 2021) maps. Object-based 

image analysis (OBIA) is another e�ective approach 

for analyzing change processes in forest landscapes at 

di�erent spatial scales (Gómez, White, and Wulder  

2011). In this sense, the VeRDET algorithm (Hughes, 

Kaylor, and Hayes 2017) spatially segments individual 

bands into patches of constant values to reduce the 

heterogeneity within the same land cover class prior 

to perform temporal segmentation. Applying spatial 

context approaches after temporal segmentation is 

also e�ective for enhancing forest disturbance maps. 

The C2C algorithm (Hermosilla et al. 2015), for exam-

ple, performs postprocessing operations based on 

moving windows to improve the spatial-temporal 

consistency of disturbance patches. In a similar fash-

ion, spatial .ltering operations allowed Senf and Seidl 

(2020) and Ye et al. (2021) to reduce omission and 

commission errors associated with small patches in 

the disturbance maps. Recently, Ye et al., (2023) have 

integrated OBIA into a COLD-like algorithm for identi-

fying change objects, i.e. regions of homogeneous 

change in space and time, at di�erent spatial scales.

A marked increase in the availability of statistical 

methods for changepoint detection in multivariate 

and high-dimensional time series, i.e. time series 

with dimensions of the same order of magnitude of 

the observations or even larger, has been observed in 

recent years (Cho et al. 2021; Truong, Oudre, and 

Vayatis 2020). To deal with the complexity associated 

with multivariate time series, one common approach 

is to aggregate a test statistic (Groen, Kapetanios, and 

Price 2013) or project the time series to a single 

dimension and then process the data with 

a univariate method (Wang and Samworth 2018). 

Assumptions on the proportion of time series that 

undergo a change determine the most appropriate 

aggregation method (Groen, Kapetanios, and Price  

2013). For example, the widely used CUSUM statistic 

for detecting structural changes (Brown, Durbin, and 

Evans 1975) has been aggregated across time series 

using either the average or the maximum (Groen, 

Kapetanios, and Price 2013; Jirak 2015). Generally, 

the average of a test statistic performs better when 

a change occurs in the majority of the time series, i.e. 

a dense change, while the maximum is more appro-

priate for changes occurring only in a fraction of 

them, i.e. a sparse change (Groen, Kapetanios, and 

Price 2013; Jirak 2015). Changepoint methods have 

primarily focused on detecting changes in the mean 

associated with constant signals, though some 

approaches use piecewise polynomial models to seg-

ment time series (Cho et al. 2021).

Here, we aimed to develop a Landsat time series- 

based algorithm for retrospectively mapping forest 

disturbance and recovery dynamics that overcomes 

some of the major limitations posed by existing 

approaches. These include the ability to simulta-

neously analyze all the dimensions of Landsat data, 

i.e. spatial, temporal, and spectral, the need for exten-

sive parametrization tuning, and the balancing of 

omission and commission errors while targeting non- 

stand-replacing events. The algorithm, named High- 

dimensional detection of Landscape Dynamics 

(HILANDYN), harnesses an oHine and unsupervised 

temporal segmentation procedure for detecting 
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changes in linear trends derived from high- 

dimensional time series containing multispectral 

and spatial context information. Though HILANDYN 

can detect changes associated with forest distur-

bances and recovery processes, here, we focused 

only on disturbance detection. In particular, we 

aimed to (i) assess the sensitivity of HILANDYN to 

stand-replacing and non-stand-replacing distur-

bances both quantitatively and qualitatively, and 

(ii) to compare the proposed approach with the 

BEAST algorithm.

The remainder of the article is organized as follows. 

In Section 2, we provide details on the study area and 

a technical description of the algorithm. In Section 3, 

we present quantitative and qualitative results on 

forest disturbance detection obtained with 

HILANDYN, including the comparison with a recent 

time series-based algorithm. In Section 4, we discuss 

the strengths and weaknesses of the proposed algo-

rithm and how it compares to state-of-the-art change 

detection algorithms.

2. Materials and methods

2.1. Study area

Our study area encompasses the core mountainous 

area of the European Alps as de.ned by the Alpine 

Convention (Plangger 2020); its area is 190,706 km2, 

of which 51% is covered by forests according to the 

Copernicus Dominant Leaf Type 2018 map (European 

Environmental Agency 2020; Figure 1). Elevation 

ranges between 0 and 4807 m a.s.l. (Mont Blanc), 

with an average altitude of 1293 m a.s.l. According 

to the o'cial European biogeographical regions 

(European Environment Agency 2016), the study 

area includes Alpine, Continental, and 

Mediterranean regions. Climate ranges from oceanic 

to dry, with mean temperatures ranging from less 

than 0° to 10° (Nigrelli and Chiarle 2023) and annual 

precipitation from 400 to 3000 mm (Isotta et al. 2014). 

Forests dominated by broadleaved species occupy 

45,088 km2, while those dominated by conifers 

amount to 52,694 km2, according to the Dominant 

Figure 1. Geographic location of the study area and validation plots with information from the Dominant Leaf Type 2018 forest cover 
layer (European Environmental Agency 2020) and Landsat Path/Row coverage (World Reference System 2). The base layer corresponds 
to the hill shade derived from the 25 m EU-DEM digital surface model.
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Leaf Type 2018 map (European Environmental 

Agency 2020). Oaks (Quercus spp.) dominate the for-

ests at lower elevations, while silver .r (Abies alba 

Mill.), beech (Fagus sylvatica L.), and Scots pine 

(Pinus sylvestris L.) dominate in the montane belt. 

The most common species in the subalpine belt are 

European larch (Larix decidua Mill.), Norway spruce 

(Picea abies (L.) H. Karst.), and Swiss stone pine (Pinus 

cembra L.).

Natural disturbances in the European Alps mainly 

include windthrows, wild.res, insect outbreaks, and 

snow avalanches (Bebi et al. 2017). Windthrows are by 

far the most important disturbances in terms of size 

and severity (Kulakowski et al. 2016) and are usually 

associated with winter storms. Wild.res, which occur 

primarily in the southern and central Alps, are largely 

driven by the land abandonment of rural areas, which 

has led to fuel accumulation and increased connec-

tivity (Bebi et al. 2017). Bark beetle outbreaks are the 

most important biotic disturbances in the European 

Alps and typically occur shortly after a windthrow. 

A strong increasing trend in damage to timber 

volume caused by bark beetles has been observed 

in the Alps over the last decades due to favorable 

climatic conditions, such as warming temperatures 

and prolonged drought periods (Patacca et al. 2023).

2.2. Landsat data

Our Landsat dataset included Collection 2 imagery 

acquired in 30 scenes (Figure 1) between 1984 and 

2022 by the Thematic Mapper (TM), Enhanced 

Thematic Mapper + (ETM+), and Operational Land 

Imager (OLI) sensors. We retrieved all Level 2 Tier 1 

imagery with <80% cloud cover acquired between 

May and October from the U.S. Geological Survey 

EarthExplorer tool. We removed pixels contaminated 

by clouds, cloud shadows, and snow using the Quality 

Assessment (QA) band bundled with each Landsat 

image and produced through the C Function of 

Mask (CFmask) algorithm (Foga et al. 2017).

We created a total of 39 pixel-based annual re9ec-

tance composites using the weighted geometric 

median (Morresi et al. 2022; Roberts, Wilford, and 

Ghattas 2019) based on the six re9ectance bands 

(Blue, Green, Red, NIR, SWIR1, and SWIR2) of the TM/ 

ETM+ sensors and the corresponding OLI bands rela-

tive to the growing season, i.e. from June 1 to 

September 30. Following Morresi et al. (2022), the 

compositing time window iteratively widened up to 

20 days on both of its sides until at least three clear 

observations were found in order to minimize data 

gaps. To reduce the presence of artifacts generated 

by residual clouds and cloud shadows in re9ectance 

composites, we computed pixel-wise weights relative 

to the NDVI value (wNDVI) and the Euclidean distance 

to clouds and cloud shadows (wDIST ) for each valid 

observation within the compositing time window. In 

particular, the compositing algorithm prioritized 

observations with a high NDVI, as these were typically 

not contaminated by clouds or cloud shadows (Qiu 

et al. 2023). Furthermore, wNDVI increased the impor-

tance of those observations acquired close to the 

peak of the growing season, when NDVI typically 

reaches its maximum. The inclusion of wDIST in the 

compositing algorithm limited the in9uence of unde-

tected cloud shadows, which can exhibit high NDVI 

values due to low re9ectance of both the Red and NIR. 

To compute wDIST , we used the sigmoid function 

proposed by Frantz et al. (2017), which can assume 

values in the interval [0, 1] depending on the 

requested distance (dreq) parameter. We set dreq 

equal to 1500 m, i.e. 50 Landsat pixels, as proposed 

by White et al. (2014).

We tested HILANDYN using the six Landsat bands 

included in the annual re9ectance composites and 

eight spectral indices (Table 1).

2.3. Overview of the algorithm

HILANDYN aims to map forest patches characterized 

by disturbance and recovery dynamics through 

a changepoint analysis based on linear trends derived 

from high-dimensional Landsat time series. 

Speci.cally, a procedure called High-dimensional 

Trend Segmentation (HiTS, Maeng 2019, publicly 

available at https://github.com/hmaeng/HiTS) is at 

the core of our algorithm. The HiTS procedure is 

a generalization to higher dimensions of the 

TrendSegment procedure (Maeng and Fryzlewicz  

2023), which was developed to detect multiple chan-

gepoints in linear trends for univariate data 

sequences.

HILANDYN builds high-dimensional time series 

by extracting data from time-ordered sequences 

of raster cubes using a three-dimensional spatial 

kernel (Figure 2). The number of variables in the 

high-dimensional time series corresponds to the 
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product between the number of pixels in the spa-

tial kernel and the number of bands. Here, we 

employed a three-by-three kernel, i.e. nine con-

nected Landsat pixels. Our preliminary tests 

showed that this kernel dimension was adequate 

to provide spatial context information when detect-

ing forest dynamics with Landsat data. Other stu-

dies (Hermosilla et al. 2015; Meng et al. 2021) used 

the same kernel dimension with Landsat time ser-

ies-based change detection algorithms. Although 

not speci.ed in the HiTS procedure, we recom-

mend that high-dimensional time series contain at 

least six valid observations for the algorithm to 

work properly.

Initially, HILANDYN removes gaps with one-year 

length from high-dimensional time series while dis-

cards those with longer gaps. It then employs an 

iterative procedure to discern between changepoints 

associated with forest dynamics and those caused by 

impulsive noise, i.e. outliers in the spectral signal that 

are caused, for example, by undetected clouds, cloud 

shadows, or haze (Hermosilla et al. 2015; Kennedy, 

Yang, and Cohen 2010, Figure 2). If changepoints 

and gaps co-occur in a multispectral time series, 

Table 1. List of the spectral indices used in this study.

Index Formulation
Direction of change  

caused by a disturbance Reference

Normalized Difference Vegetation 
Index (NDVI)

(NIR – Red)/(NIR + Red) decrease (Rouse et al. 1973)

Normalized Difference Moisture 
Index (NDMI)

(NIR – SWIR1)/(NIR + SWIR1) decrease (Wilson and Sader 2002)

Normalized Burn Ratio (NBR) (NIR – SWIR2)/(NIR + SWIR2) decrease (García and Caselles 1991)
Moisture Stress Index (MSI) NIR/SWIR1 increase (Hunt and Rock 1989)
Tasseled Cap Brightness (TCB) 0.3037*Blue+0.2793*Green+0.4743*Red+0.5585*NIR 

+0.5082*SWIR1+0.1863*SWIR2
increase (Crist 1985)

Tasseled Cap Greenness (TCG) −0.2848*Blue−0.2435*Green−0.4743*Red+0.7243*NIR 
+0.0840*SWIR1−0.1800*SWIR2

decrease (Crist 1985)

Tasseled Cap Wetness (TCW) 0.1509*Blue+0.1973*Green+0.3279*Red+0.34065*NIR 
−0.7112*SWIR1−0.4572*SWIR2

decrease (Crist 1985)

Tasseled Cap Angle (TCA) arctan(TCB/TCG) decrease (Powell et al. 2010)

Figure 2. Flowchart of the main operations performed by HILANDYN. Input data consist of four-dimensional raster cubes where bands 
and time form the third and fourth dimensions, respectively. A three-dimensional spatial kernel is employed on a pixel basis to build 
n-dimensional time series with a matrix form of the dimension n � T . The core operations performed by HILANDYN on n-dimensional 
time series are described in the orange box.
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HILANDYN updates the corresponding year of change 

depending on the number of gaps preceding each 

changepoint. It imputes data gaps using values of 

linear segments previously estimated by the HiTS 

procedure. Speci.cally, gaps located at the vertices 

of segments of at least 3 years in length are imputed 

using linear extrapolation based on the two preced-

ing values. Otherwise, gaps are .lled using the pre-

ceding value. Gaps located in the middle of a segment 

are .lled using linear interpolation.

HILANDYN classi.es changepoints as disturbances 

or growth events if at least half of the bands (Table 1) 

in the focal pixel follow the pattern of the spectral 

change associated with that event. In particular, the 

algorithm evaluates only those bands whose original 

and estimated values feature the same direction of 

spectral change. The spectral change magnitude of 

each event corresponds to the median of the relative 

change magnitudes among bands, using all the pixels 

in the spatial kernel. Following Cohen et al. (2016), 

change magnitudes are relativized using pre- 

disturbance values.

The implementation of HILANDYN in the C++ lan-

guage through the Application Programming 

Interface (API) provided by the Armadillo open- 

source linear algebra library (Sanderson and Curtin  

2016) ensured computational e'ciency even when 

the number of variables in high-dimensional time 

series was high, e.g. more than 100.

2.4. HiTS procedure

The changepoint model proposed in the HiTS proce-

dure (Maeng 2019) considers a high-dimensional time 

series data containing n variables of length T as 

follows: 

where fi ¼ fi;1; . . . ; fi;T

� �

` 

is the piecewise linear 

signal of the time series Xi ¼ Xi;1; . . . ; Xi;T

� �

`

and 

εi ¼ εi;1; . . . ; εi;T

� �

` 

is the independent Gaussian 

random error with mean zero and variance σ2. 

The model assumes that the signal vectors fif gn
i¼1 

have the form of a piecewise linear function and 

share N distinct changepoints at unknown loca-

tions η1; . . . ; ηN in the sense that at each change-

point, at least one signal vector undergoes 

a change in its linear trend, whether in the 

intercept or the slope or both. HiTS was designed 

to work well in detecting multiple changepoints 

corresponding to linear trend changes or point 

anomalies, which are large deviations of the signal 

from its neighboring segments. It consists of four 

main steps: (1) High-dimensional Tail-Greedy 

Unbalanced Wavelet (HiTGUW) transform, (2) 

thresholding, (3) inverse HiTGUW transformation, 

and (4) post-processing.

The standard deviation of the error, σ, can vary 

across the n time series, and it is estimated using the 

median absolute deviation (Hampel 1974), which is 

adjusted for achieving asymptotic normal consistency 

(Equation 2).  

At the beginning of the processing, the HiTS proce-

dure normalizes each time series Xi by its estimated 

standard deviation σ̂i. Values are transformed back to 

their original scales at the end of the processing.

The core ingredient of the HiTS procedure is the 

HiTGUW transform, which employs a bottom-up 

approach to construct a data-driven wavelet basis 

common to all the variables in the high-dimensional 

time series. Starting from the .nest scale, i.e. using 

raw input data of dimension n × T , the HiTGUW trans-

form recursively merges neighboring regions of the 

data from bottom to top and is completed after T − 2 

local orthonormal transformations that result in 

a multiscale decomposition of the input matrix with 

n × (T − 2) detail-type coe'cients and n × 2 smooth- 

type coe'cients. The detail coe'cient plays an 

important role in deciding which region should be 

merged .rst, as its size indicates the strength of local 

linearity; the detail coe'cient becomes zero only 

when the raw observations in the corresponding 

merged region have a perfect linear trend. The 

merges are performed by giving priority to the region 

whose aggregated detail coe'cient has the smallest 

size, as they unlikely contain changepoints. The 

aggregation strategy of detail coe'cients at a given 

time step is computed as the column-wise maximum 

value over n variables. Thanks to its bottom-up 

approach, the HiTGUW transform encodes the bulk 

of the variance of the input data in only a few detail 

coe'cients obtained at later merges, thus enabling 

the sparse representation of the data. This latter jus-

ti.es thresholding as a way of deciding the 
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signi.cance of each aggregated detail coe'cient, i.e. 

the strength of the local deviation from linearity.

In the thresholding step, the n × (T − 2) detail coe'-

cient matrix produced by the HiTGUW transform is 

aggregated column-wise using the maximum value 

over the n time series. A changepoint is detected 

when, at a given time step, the size of the aggregated 

detail coe'cient is greater than a pre-speci.ed thresh-

old. The threshold used to detect signi.cant deviations 

from linearity is computed as follows: 

where n is the number of time series, T is their length 

and C is a constant value.

Next, the inverse HiTGUW transformation performs 

inverted, i.e. transposed, orthonormal transforma-

tions in reverse order to that in which they were 

initially performed. This step uses the thresholded 

detail coe'cients to produce the estimated piecewise 

linear signal composed of best linear regression .ts 

(i.e. minimizing the sum of squared errors) for each 

estimated segment. Lastly, in the post-processing 

step, non-signi.cant changepoints are removed by 

performing the .rst three steps of the HiTS procedure 

using the estimated functions computed by the 

inverse HiTGUW transformation as input data.

The outputs of the procedure include n × T estimated 

values of the high-dimensional time series, the position 

of changepoints in time, and a matrix of dimension 

n × T with the position of changepoints among 

n variables. This latter is obtained by applying the thresh-

old (Equation 3) to the detail coe'cients of each variable 

in the high-dimensional time series. The reader is 

referred to Maeng (2019) for more details on the HiTS 

procedure.

2.5. Modi"cations of the HiTS procedure

The original HiTS procedure prioritizes the detection 

of high-magnitude and possibly ephemeral changes 

that are highly sparse across the time series (Maeng  

2019). This characteristic is mainly related to the 

aggregation strategy of the detail coe'cients in the 

HiTGUW transform and thresholding steps 

(Section 2.4). To detect forest patches characterized 

by disturbance and recovery dynamics, HILANDYN 

accounts for the similarity in spectral-temporal infor-

mation from adjacent Landsat pixels. Indeed, within 

the spatial kernel, changes may occur in a subset of 

pixels, for example, when the focal pixel lies at the 

edges of a disturbed forest patch (Figure 3a) or 

belongs to a linear feature (Figure 3b–c). We have 

therefore modi.ed the HiTS procedure to fully exploit 

the spectral information in the spatial neighborhood 

included in high-dimensional Landsat time series.

First, in the HiTGUW transformation, we modi.ed 

the aggregation strategy of the detail coe'cients so 

that the merging order of the time intervals depends 

on the sum of their maximum and average. This pro-

cedure delays the merging of those time intervals that 

contain both large and dense deviations from linear-

ity among the n variables of the high-dimensional 

time series, thus favoring the detection of true chan-

gepoints in the thresholding step.

Second, in order to preserve the spatial pattern of 

disturbed patches, we embedded the spectral- 

temporal information provided by the neighboring 

pixels in the HiTGUW transformation. Speci.cally, 

the wavelet basis is constructed by prioritizing the 

detail coe'cients of those neighboring pixels that 

are more similar to the focal pixel, taking into account 

the spectral and temporal characteristics. In particular, 

Figure 3. Examples of the spatial arrangement of disturbed pixels (orange) within the spatial kernel used by HILANDYN where the 
focal pixel is surrounded by non-disturbed pixels (grey).
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for each band, we computed the spectral angle map-

per (SAM; Equation 4; Kruse et al. 1993) between 

vectors p and r, corresponding to one neighboring 

and focal Landsat pixel, respectively, and having 

length T , i.e. the length of time series. 

The weight assigned to each neighboring pixel, wngb, 

falls in the interval [0, 1] and is computed as the sum 

of the SAM values obtained for each band 

(Equation 5). 

Where N is the number of bands and C is the number 

of neighboring pixels, i.e. eight.

Third, the column-wise aggregation of the 

n � T � 2ð Þ detail coe'cient matrix in the threshold-

ing step of the HiTS procedure is performed using two 

alternative strategies, depending on which one pro-

duces the highest aggregated detail coe'cient. One 

approach is based on the mean of the detail coe'-

cients relative to all the n variables in the high- 

dimensional time series, where each band is weighted 

using the pixel-wise weights, computed as in 

Equation 5. The alternative approach involves com-

puting the mean of the detail coe'cients considering 

only the bands in the focal pixel. HILANDYN can use 

these two approaches interchangeably, as the thresh-

old for evaluating the signi.cance of the deviation 

from linearity depends solely on the number of 

bands included in the high-dimensional time series 

(Equation 3). Finally, we applied the .nite sample bias 

correction factor proposed by Park et al. (2019) to the 

MAD (Equation 2) to improve the estimation of the 

standard deviation.

2.6. Noise "lter

HILANDYN typically ignores impulsive noise caused 

by artifacts in re9ectance composites when it is sparse 

among the time series (Figure 4a) thanks to the mod-

i.cations to the HiTS procedure. Nevertheless, chan-

gepoints caused by dense impulsive noise (Figure 4b) 

can be confounded with those associated with real 

changes such as forest disturbances (Figure 4c). 

Therefore, we designed a two-stage noise .lter that 

is iteratively applied to remove spurious 

Figure 4. Example of time series of three focal pixels containing sparse noise (a), dense noise (b) or spectral changes caused by 
a wildfire (c). HILANDYN ignored sparse noise (a) while detected the dense ones in 1986 and 2002 (b). The wildfire occurred in 1991 (c) 
caused a changepoint characterised by a spike similar to impulsive noise though some bands, i.e. SWIR1, SWIR2 and TCW, did not 
exhibit a rapid spectral recovery.
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changepoints (Figure 2). At each iteration, the noise 

.lter .rst identi.es candidate changepoints, i.e. chan-

gepoints potentially caused by impulsive noise, and 

then processes them. The activation of the noise .lter 

and the maximum number of iterations allowed for 

processing impulsive noise are controlled through the 

noise itermax parameter.

During the initial stage (Figure 5), the noise .lter 

searches for spurious changepoints by analyzing indi-

vidual intervals, t1; . . . ; tn, which include one or multi-

ple consecutive changepoints and the preceding time 

point. When t1 is at the beginning of the time series, 

HILANDYN evaluates the reliability of changepoints in 

the interval through condition C1(Equation 6, 

Figure 5).

Where nob1 and nob2 are the number of observations 

available at t1 and t2, and nob initmin is a constant 

corresponding to the minimum number of clear 

observations required for producing re9ectance com-

posites. The number of clear observations available 

for each time point is computed as the median of the 

per-pixel clear observations within the spatial kernel. 

The value assigned to nob initmin should maximize the 

reliability of re9ectance composites while not exceed-

ing the maximum number of observations 

theoretically available for a given location and time 

period. Therefore, nob initmin primarily depends on 

the compositing approach, on the temporal fre-

quency of Landsat data at the beginning of the time 

series, i.e. 8 or 16 days, and whether the study area is 

located where Landsat tiles overlap.

When condition C1 is not satis.ed, the noise .lter 

.nds a time point, maxi, in each band, whose values in 

the spatial kernel di�er the most from the reference 

ones. For a single band, given a set of n vectors, 

A = v1; . . . ; vnf g, where vi 2 R
P, with P corresponding 

to the number of pixels in the spatial kernel, the noise 

.lter .nds the vector vmax that maximizes the 

Euclidean distance to the reference vector vref 

(Equation 7). 

Where :kk denotes the Euclidean norm and vref con-

tains the spectral values estimated by the HiTS proce-

dure at the time point preceding t1 or at that 

following tn, depending on the position of t1. The 

vectors in the set A contain values .tted through the 

HiTS procedure except for v1, which contains original 

input values.

A time point maxi becomes a candidate time point, 

chki, if at least one band at that location satis.es both 

conditions C2 (Equation 8) and C3 (Equation 9). 

Figure 5. Diagram of the operations performed by the noise filter during the screening stage for each interval. The number of 
observations per year and the parameter nob initmin are required for evaluating condition C1. Original and estimated spectral values 
are required for evaluating conditions C2 and C3. Time points at the beginning of the time series are first processed through condition C1. 
Conditions C2 and C3 are checked on time points that exhibit the maximal spectral deviation from a reference value. Blue boxes indicate 
input data, black boxes indicate processing and green boxes indicate outputs.

10 D. MORRESI ET AL.



where v 2 R
P, with P corresponding to the number of 

pixels within the spatial kernel, and sgn is the sign 

function.

Condition C2 (Equation 8) requires that the spectral 

distance between the time points preceding and fol-

lowing maxi is lower than that between maxi and the 

following time point. Condition C3 (Equation 9) 

requires that at least one pixel in the spatial kernel 

has to form a spike at maxi.

During the processing stage, the noise .lter ana-

lyzes candidate time points individually, by iteratively 

reprocessing a subset of the high-dimensional time 

series (Figure 5). The algorithm removes all the data at 

chki and selects the variables relative to those bands 

that exhibited a signi.cant change. Speci.cally, we 

deemed a changepoint in a speci.c band signi.cant 

if the number of changed pixels within the spatial 

kernel is equal to or greater than the median number 

of changed pixels among all the bands. 

A changepoint is labeled as an actual change if 

a new changepoint is detected at the beginning of 

the interval. Spectral values within unreliable intervals 

are replaced with the average of the two observations 

following the interval, while time points associated 

with spurious changepoints are replaced through lin-

ear interpolation.

2.7. Accuracy assessment

Our de.nition of forest disturbance was as broad as 

possible and included changes associated with either 

stand-replacing, e.g. high-severity crown .res and 

windthrows, or non-stand-replacing events, e.g. 

drought-induced mortality and defoliating insect out-

breaks. We considered individual events in space, i.e. 

at the scale of a Landsat pixel, and time, i.e. per year, 

following other studies (Bullock, Woodcock, and 

Holden 2020; Cohen et al. 2017). Therefore, we trea-

ted consecutive disturbances, e.g. windthrows fol-

lowed by salvage logging, as separate events. Our 

validation dataset included 3000 plots (Figure 1, 

Table 2), each corresponding to a Landsat pixel, that 

were forested at any time during the analysis period. 

To locate validation plots, we used a strati.ed random 

sampling based on two strata delineated for each 

disturbed patch detected using an initial version of 

HILANDYN. Each stratum corresponded to either 

detected disturbed patches, i.e. the inner stratum, or 

a two-pixel positive bu�er around these patches, i.e. 

the outer stratum. We classi.ed disturbance events as 

stand-replacing or non-stand-replacing using the 

relative TCW change magnitude and a threshold of 

50%, as proposed by Cohen et al. (2018). The number 

of stand-replacing disturbance events in the inner 

stratum was noticeably higher than that in the outer 

stratum (Table 2, Figure S2).

Using a bu�er stratum was recommended for 

applications involving classifying rare phenomena 

such as forest disturbances (Olofsson et al. 2020). To 

discriminate between noise and disturbances, we 

considered only those events that occurred until 

the second-last year of the time series, i.e. until 2021.

Operationally, one operator determined the occur-

rence of a disturbance by simultaneously visualizing 

temporal pro.les of annual Landsat time series at the 

plot-level and raster data in QGIS software, using the 

RasterDataPlotting and RasterTimeseriesManager plu-

gins (https://raster-data-plotting.readthedocs.io/en/ 

latest/index.html). Raster data comprised RGB false- 

color composites derived from Landsat yearly re9ec-

tance data (R = SWIR2, G = NIR, B = Red), nationwide 

aerial orthophotos, and high-resolution satellite ima-

gery provided free-of-charge by Google, Bing, and 

Esri. By evaluating individual years for each plot, we 

obtained 111,000 sample units, of which 2802 were 

disturbance events as some plots were disturbed 

multiple times. Using a confusion matrix, we com-

puted three accuracy metrics relative to the disturbed 

Table 2. Information on the validation dataset based on the validation strata. We discriminated between stand-replacing and 
non-stand-replacing events using a threshold of 50% of the relative TCW change magnitude.

Validation stratum Total plots Disturbed plots Stand-replacing events Non-stand-replacing events

Inner 1500 1439 1268 632
Outer 1500 706 408 494
Inner and outer 3000 2145 1676 1126
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class: user’s accuracy (UA; Equation 10), i.e. precision, 

producer’s accuracy (PA; Equation 11), i.e. recall, and 

F1 score (Equation 12). 

2.8. Algorithm parametrization

HILANDYN requires a few parameters for processing 

high-dimensional Landsat time series. The primary 

ones are the bands to include in the time series and 

the constant factor C (Equation 3). The constant factor 

C and the number of bands in9uence the threshold λ 

(Figure S1; Section 2.5), which controls the sensitivity 

toward deviations from linearity in the HiTS proce-

dure. Furthermore, the selection of bands is crucial as 

they are characterized by di�erent sensitivities to for-

est disturbances (Cohen et al. 2018; DeVries et al.  

2016; Schultz et al. 2016). We assessed how the para-

meters required by HILANDYN (Table 3) a�ected the 

accuracy metrics across the two validation strata 

(Section 2.7). Speci.cally, we .rst searched for the 

best performing combination of input bands 

(Table 1) and constant C in terms of F1 score and 

then tested the parameters for con.guring the noise 

.lter. The latter is controlled by the parameters 

noise itermax and nob initmin (Section 2.6).

2.9. Comparison with BEAST

We selected BEAST (Zhao et al. 2019) to perform 

a comparison with HILANDYN based on our validation 

dataset. BEAST builds additive models by considering 

time series as linear combinations of seasonality, trend, 

abrupt changes, and noise, similar to BFAST (Breaks For 

Additive Seasonal and Trend; Verbesselt et al. 2010). 

Here, we employed the beast123 function provided in 

the Rbeast (version 0.9.9) R package to analyze the 

annual Landsat time series (Section 2.2) that included 

data from the spatial and spectral dimensions. 

Speci.cally, we tested time series that included data 

relative to one band and one pixel, one band and nine 

pixels, i.e. within a three-by-three spatial kernel, multiple 

bands and one pixel, and multiple bands and nine pixels. 

Input time series included either NBR due to its e�ective-

ness in disturbance detection, e.g. Cohen et al. (2020), or 

those bands that achieved the best F1 score in the 

sensitivity analysis of HILANDYN (Section 2.8).

Since our time series have annual frequency, we 

excluded the seasonal component, forcing BEAST to 

estimate linear trends, i.e. a polynomial order of one. As 

pointed out by Zhao et al. (2019), BEAST is sensitive to 

two hyperparameters: the maximum number of seaso-

nal and trend changepoints and the minimum distance 

in time between two neighboring changepoints in 

a model. We therefore tested the maximum number of 

trend changepoints (trendMaxKnotNum) for values in the 

interval [1, 10], while we set 1 year as the minimum 

distance in time between two neighboring change-

points. This latter parameter allowed us to make 

a direct comparison with HILANDYN. We used the pre- 

de.ned values of the algorithm for all the other 

parameters.

Though BEAST can handle high-dimensional time 

series, being a univariate algorithm, it computes the 

probability distributions associated with the number of 

trend changepoints (ncpPr) and their position in time 

(cpOccPr) separately for each variable. Therefore, we 

used the mean to summarize these probability distribu-

tions among the variables in the high-dimensional time 

series. To .nd the position of the most probable chan-

gepoints, we followed the approach proposed by the 

authors of the algorithm. That is, we .rst obtained the 

mean number of changepoints, ncp, using the corre-

sponding mean probability distribution. We then 

selected a set of changepoints, whose number was 

equal to ncp, among those with the highest mean occur-

rence probability. Finally, we used the same approach 

employed by HILANDYN (Section 2.3) for identifying 

trend changepoints associated with disturbances.

We compared BEAST and HILANDYN in terms of 

computation time by including from 1 to 14 

Table 3. List of the main parameters required by HILANDYN and 
values tested for the sensitivity analysis.

Parameters Tested alternatives or values

Input bands All the unique combinations with length in the interval  
[1, 14], obtained using six original Landsat bands (Blue, 
Green, Red, NIR, SWIR1, SWIR2) and spectral indices 
listed in Table 1.

Constant C Values in the interval [0.6, 1.2] increased by 0.2.
noise itermax Values in the interval [0, 4] increased by 1.
nob initmin Values in the interval [2, 10] increased by 1.
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bands in the high-dimensional time series within 

a three-by-three spatial kernel. Each combination 

of bands included those that performed best with 

HILANDYN in terms of producer’s accuracy 

when the constant factor C was equal to one 

(Table S1).

3. Results

3.1. Quantitative assessment: detection 

capabilities and sensitivity analysis of the 

parameters

The constant factor C and the number of bands 

included in the high-dimensional Landsat time series 

in9uenced the accuracy metrics noticeably (Figure 6, 

Table S1). Increasing the value of C and the number of 

bands markedly gained UA while partly reduced PA, 

though this latter remained stable until the number of 

bands was equal or lower than seven. The highest 

increase in UA occurred when more than one band 

was included in the high-dimensional time series 

(Figure 6, Table S1). Without the noise .lter, 

HILANDYN achieved the highest PA (93.3%) with the 

constant C equal to 0.6 and seven bands in the high- 

dimensional time series, while it achieved the highest 

UA (85.5%) with C equal to 1.2 and 12 band. The 

algorithm achieved the highest F1 score (0.802) 

when we set C equal to 1 and included seven bands 

(Figure 6, Table S1).

The selection of bands to include in the high- 

dimensional time series in9uenced primarily the PA, 

while the UA was mainly determined by their number 

(Figure 7). Considering the results obtained with the 

constant factor C in the interval [0.6, 1.2] and all the 

unique combinations of bands, seven of them were 

included most often in the best-performing combina-

tions in terms of PA (Figure 8). Speci.cally, MSI, NBR, 

SWIR2, TCW, SWIR1, TCA, and NDMI emerged as the 

most e�ective bands for forest disturbance detection 

(Figure 8). Di�erences with the remaining bands in 

terms of selection frequency were noticeable.

Using the con.guration that produced the best 

performance in terms of F1 score, i.e. the combination 

of SWIR1, SWIR2, NDMI, NBR, MSI, TCW, and TCA, and 

C equal to one (Figure 6, Table S1), the noise .lter 

signi.cantly increased UA while marginally decreased 

Figure 6. Maximum values of user’s accuracy (UA), producer’s 
accuracy (PA) and F1 score based on the validation dataset and 
computed from all the unique combinations of bands with 
lengths from one to 14. The value of the constant C ranged 
from 0.6 to 1.2. The noise filter was deactivated.

Figure 7. Distribution of values of user’s accuracy (UA), produ-
cer’s accuracy (PA) and F1 score based on the validation dataset 
and computed from all the unique combinations of bands with 
lengths from one to 14. The value of the constant factor C was 
equal to one. The noise filter was deactivated.
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PA (Figure S3, Table S2). Speci.cally, UA increased up 

to 9.7%, i.e. from 73.7% to 83.4%, while PA decreased 

up to 4.6%, i.e. from 87.8% to 83.2%. The noise .lter 

increased the F1 score slightly, from 0.801 to 0.833 

when noise itermax was equal to four and nob initmin 

was equal to .ve (Figure S3, Table S2). HILANDYN 

achieved a substantial balance between UA and PA 

when we activated the noise .lter, and this was con-

sistent across the di�erent validation strata (Table 4). 

The increase in UA caused by the noise .lter was 

greater in the outer stratum than in the inner one, 

with a variation of 13% and 6.6%, respectively 

(Table 4). Similarly, the reduction in PA caused by 

the noise .lter was greater in the outer stratum than 

in the inner one, with a reduction of 6.5% and 3.3%, 

respectively (Table 4). HILANDYN achieved compar-

able accuracies in validation plots dominated by 

either broadleaf or conifer tree species (Table S3).

Overall, the noise .lter allowed HILANDYN to 

reduce the in9uence of spurious changepoints 

caused by impulsive noise, as highlighted by the 

decrease from 23.5% to 14.9% in the median rela-

tive TCW change magnitude of commission errors 

(Figure 9, Table S4). For omission errors, the noise 

.lter did not change the median relative TCW 

change magnitude, as this latter slightly decreased 

from 46.6% to 45.3% when we .ltered noise 

(Figure 9, Table S4).

3.2. Comparison with BEAST

The accuracy of BEAST, especially the PA and F1 score, 

increased when we added both spectral and spatial 

data in the input time series (Table 5).

In particular, the PA peaked at 85.8% and the F1 

score at 0.717, when we used high-dimensional time 

series that included data of the seven best- 

performing bands in terms of PA (SWIR1, SWIR2, 

NDMI, NBR, MSI, TCW, and TCA; Figure 8) extracted 

using a three-by-three spatial kernel. The maximum 

number of trend changepoints markedly in9uenced 

the accuracy of BEAST as changes in its values 

between 1 and 10 caused signi.cant variations of 

UA and PA up to approximately 23% (Table 5). In 

particular, the PA increased when we raised the max-

imum number of trend changepoints, while the UA 

followed the opposite trend. Therefore, we achieved 

the highest F1 score by setting the maximum number 

of trend changepoints equal to three (Table 5).

Overall, the best F1 score provided by BEAST 

(0.717) was lower than that provided by HILANDYN 

(0.801) when the noise .lter was deactivated. With 

regard to the best F1 score, the UA achieved by 

BEAST (67.2%, Table 5) was lower than that of 

HILANDYN (73.7%, Table S2). Similarly, di�erences in 

PA between the algorithms were noticeable, with 

BEAST and HILANDYN achieving 76.9% (Table 5) and 

87.8% (Table S2), respectively.

Figure 8. Frequency count relative to the number of times each 
band was in the best-performing combination in terms of PA, 
using from one to 14 bands in the high-dimensional time series. 
Results obtained with values of the constant factor C ranging 
from 0.6 to 1.2 were pooled together. The noise filter was 
deactivated.

Table 4. User’s accuracy (UA), producer’s accuracy (PA), and F1 score achieved by HILANDYN with the noise filter 
activated or not. Accuracy metrics were computed using either both strata of the validation dataset or a single one. 
High-dimensional Landsat time series included data from seven bands (SWIR1, SWIR2, NDMI, NBR, MSI, TCW, and 
TCA) within a three-by-three spatial kernel. We parametrized the algorithm using C = 1, noise itermax = 4, and 
nob initmin = 5.

Validation stratum

Noise unfiltered Noise filtered

UA (%) PA (%) F1 score UA (%) PA (%) F1 score

Inner 80.9 92 0.861 87.5 88.7 0.881
Outer 60.5 78.9 0.685 73.5 72.4 0.730
Inner and outer 73.7 87.8 0.801 83.1 83.5 0.833
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The distribution of commission, i.e. 100 – UA, and 

omission, i.e. 100 – PA, errors in terms of relative TCW 

change magnitude highlighted slight di�erences 

between HILANDYN and BEAST (Figure 9, Table S4). 

The median relative TCW change magnitude of commis-

sion errors was 23.5% for HILANDYN (noise .lter deacti-

vated) and 25.1% for BEAST. Conversely, for omission 

errors, these values were 46.6% for HILANDYN (noise 

.lter deactivated) and 37.6% for BEAST.

BEAST required considerably more time to process 

Landsat time series of the validation dataset com-

pared to HILANDYN (Figure 10, Table S5).

In particular, di�erences between the two algo-

rithms increased with the number of bands in high- 

dimensional time series, as BEAST required 

proportionally higher computational time compared 

to HILANDYN. For instance, processing high- 

dimensional time series with 63 variables, i.e. the 

values of seven bands extracted from nine con-

nected pixels, required 40 and 1117 seconds for 

HILANDYN and BEAST, respectively (Figure 10, 

Table S5). When we activated the noise .lter, the 

computation time required by HILANDYN increased 

to 64 seconds.

3.3. Qualitative assessment of the detection 

capabilities

HILANDYN was sensitive to a wide range of distur-

bance severities as it detected forest patches 

Figure 9. Distribution of the relative TCW change magnitude of commission (100 – UA) errors and omission (100 – PA) errors for 
HILANDYN and BEAST. High-dimensional Landsat time series included data of seven bands (SWIR1, SWIR2, NDMI, NBR, MSI, TCW and 
TCA) within a three-by-three spatial kernel. We parametrised each algorithm using the settings that provided the best results in terms 
of F1 score. We constrained the relative TCW change magnitude between −50% and 250% by assigning these values to those outside 
that range.

Table 5. User’s accuracy (UA), producer’s accuracy (PA), and F1 score achieved by BEAST with the validation dataset as a function of the 
maximum number of trend changepoints (trendMaxKnotNum) and the data in the time series. Input time series included either data of 
one band (NBR), or seven bands (SWIR1, SWIR2, NDMI, NBR, MSI, TCW, and TCA) of one or nine pixels, i.e. within a three-by-three 
spatial kernel. The highest value of each accuracy metric for every input data type is highlighted in bold.

Maximum number of trend  
changepoints (trendMaxKnotNum)

One band  
(one pixel)

One band  
(nine pixels)

Seven bands  
(one pixel)

Seven bands  
(nine pixels)

UA (%) PA (%) F1 score UA (%) PA (%) F1 score UA (%) PA (%) F1 score UA (%) PA (%) F1 score

1 65.1 53.0 0.584 70.7 57.4 0.634 69.3 58.8 0.636 73.0 62.5 0.674
2 65.0 52.9 0.584 70.9 57.6 0.635 69.0 58.4 0.633 73.1 62.7 0.675
3 58.9 64.1 0.614 64.3 73.2 0.684 62.7 71.9 0.669 67.2 76.9 0.717

4 50.2 68.4 0.579 54.8 78.6 0.646 53.6 77.5 0.633 55.3 82.5 0.662
5 46.0 70.1 0.555 51.1 80.4 0.625 49.4 79.0 0.608 52.7 84.4 0.648
6 44.0 70.7 0.542 48.9 81.2 0.611 47.6 79.4 0.595 50.7 85.3 0.636
7 43.2 70.9 0.537 47.9 81.6 0.604 46.8 79.4 0.589 49.9 85.5 0.630
8 43.1 71.0 0.536 48.1 82.1 0.607 46.8 80.0 0.590 49.6 85.6 0.628
9 43.0 71.2 0.536 48.0 81.7 0.605 46.7 79.7 0.589 49.5 85.8 0.628
10 42.8 70.8 0.534 47.6 81.7 0.601 46.5 79.7 0.587 49.7 85.7 0.629
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disturbed by stand-replacing events, such as wild.res, 

windthrow, and sleet damage, and non-stand- 

replacing events, such as tree crown dieback 

caused by defoliating insects and severe drought 

and heat waves (Figure 11). The spatio-temporal 

pattern of disturbed forest patches detected by 

HILANDYN exhibited a high degree of contiguity 

among pixels, which was consistent across di�er-

ent disturbance agents and severities (Figure 12). 

Moreover, HILANDYN e�ectively detected forest 

patches that were repeatedly disturbed, either 

a few years apart or in close succession, i.e. 

one year apart (Figure 13). Secondary disturbances 

occurring shortly after the main event were often 

associated with salvage logging in our study area. 

In particular, the temporal pro.les of NBR and TCW 

highlighted di�erent sensitivities to the complete 

removal of tree cover associated with salvage log-

ging when it occurred shortly after the natural 

disturbance (Figure 13h–p).

Figure 11. Examples of stand-replacing and non-stand-replacing forest disturbances detected by HILANDYN in the study area 
between 1985 and 2022. Panels A-F depict the following disturbance events: (a) dieback induced by defoliating insect outbreak 
(Asian chestnut gall wasp, Dryocosmus kuriphilus) in 2011; (b) dieback caused by a severe drought and heatwave in 2003; (c) wildfires 
in 1990, 1991, 2003, and 2017; (d) windthrow in 2007; (e) ice storm in 2014; (f) windthrow in 2018. The grey background in the central 
panel indicates the presence of forest cover either in 1990 or 2018 according to the Corine Land Cover within the European Alps 
borders (blue line).

Figure 10. Execution time required by HILANDYN and BEAST to 
process the 39-year high-dimensional time series of the valida-
tion dataset. The total number of variables in each time series 
was equal to the product of the number of bands and nine, i.e. 
the number of pixels within a three-by-three spatial kernel. The 
bands selected in each combination were those that gave the 
best results in terms of PA with HILANDYN when the constant 
C was equal to one (Table S1). We configured the noise filter of 
HILANDYN by setting the noise itermax to four and nob initmin to 
five. For BEAST, we used the predefined prior parameters except 
for trendMaxknotnum and trendMinsepdist that we set to eight 
and one, respectively. Each process ran on a single core of an 
AMD Ryzen 9 5950X processor.
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4. Discussion

4.1. Key features of HILANDYN

Here, we presented a novel, unsupervised algorithm 

for retrospectively mapping forest disturbance 

dynamics, although its capabilities are not limited to 

any speci.c land cover. In the context of Landsat time 

series-based algorithms, the novelty introduced by 

HILANDYN lies in its ability to temporally segment 

high-dimensional Landsat time series containing mul-

tispectral information from adjacent pixels. By inte-

grating information from the spectral and spatial 

domains into the time series, HILANDYN was able to 

achieve satisfactory accuracy (Table 4) while provid-

ing spatio-temporal consistency of disturbed forest 

patches (Figures 12, 13). These results are made pos-

sible by the modi.ed HiTS procedure, which provides 

a computationally sound approach to reduce the 

dimensionality of high-dimensional time series in 

the early stages of the analysis. The construction of 

a unique, data-driven wavelet basis from all the vari-

ables in the time series (Section 2.4) and the aggrega-

tion strategy of the detail coe'cients (Section 2.5) are 

key elements for detecting changepoints by exploit-

ing the spectral and spatial domains. Widely used 

algorithms that can harness information from multi-

ple bands, such as CCDC (Zhu and Woodcock 2014) 

and COLD (Zhu et al. 2019), primarily work in parallel, 

processing data in a band-wise manner and combin-

ing univariate tests to detect changepoints in later 

stages of the analysis. This results in high computa-

tional requirements and the need to run the algo-

rithms on geospatial cloud computing platforms, 

such as Google Earth Engine, to analyze large areas 

(Bullock, Woodcock, and Holden 2020; Pasquarella 

et al. 2022).

Algorithms designed to exploit the spatial correla-

tion between adjacent pixels via OBIA, e.g. VeRDET 

Figure 12. Examples of disturbed forest patches detected by HILANDYN and characterised by different disturbance agents and 
severities. Please refer to the legend in Figure 11 for the colour corresponding to each year in panels a-e. Clearcuts (a, f; 5°45‘18,102“E; 
44°3’9,791“N), debris flows (b, g; 8°1‘54,389“E; 46°46’4,057“N), defoliating insect outbreak (c, h; 7°35‘10,709“E; 45°22’18,178“N), 
wildfire (d, i; 13°16‘54,707“E; 46°28’25,202“N), windthrow (e, j; 7°21‘17,61“E; 44°39’31,641“N). The grey background indicates the 
presence of forest cover either in 1990 or 2018 according to the Corine Land Cover.
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(Hughes, Kaylor, and Hayes 2017) and OB-COLD (Ye, 

Zhu, and Cao 2023), typically perform temporal seg-

mentation either after or before the spatial analysis. In 

addition to increasing computational and algorithmic 

complexity, sequential approaches require appropri-

ate parametrization for each stage of the analysis, 

such as setting the optimal scale for spatial segmen-

tation. Conversely, the inclusion of spectral informa-

tion from the spatial context in high-dimensional time 

series enhanced the capabilities of HILANDYN by 

extending the spatial scale of the analysis without 

increasing the number of parameters. Indeed, the 

pixel-wise weighting scheme and the thresholding 

approach in the modi.ed HiTS procedure 

(Section 2.5) allowed the algorithm to take advantage 

of the spatial context while maintaining its sensitivity 

to changes occurring at the individual Landsat pixel.

The bottom-up, i.e. agglomerative, approach 

employed by the HiTS procedure to construct the 

adaptive wavelet basis has proved to be e�ective 

for the temporal segmentation of high-dimensional 

time series, as demonstrated by the accuracy 

metrics achieved by HILANDYN (Table 4). When 

applied to the segmentation of di�erent types of 

signals, bottom-up approaches outperform those 

based on sliding windows and top-down algo-

rithms (Keogh et al. 2004). They have also been 

successfully used for temporal segmentation in 

Figure 13. Examples of forest patches, depicted in yellow, that were disturbed multiple times during the analysis period. Each row 
shows results from HILANDYN, recent high-resolution satellite imagery, and temporal profiles of NBR and TCW. We parametrised the 
algorithm according to the configuration that achieved the highest F1 score (Section 3.1). Recurrent wildfires (a-d; 7° 9’1.02“E; 45° 
9’35.57“N). Wildfire followed by salvage logging (e-h; 9°39’23.26“E; 46°11’59.51“N). Bark beetle attack followed by salvage logging (i-l; 
14°42’0.63“E; 46°16’1.43“N). Windthrow followed by salvage logging (m-p; 11°21’13.93“E; 46°17’41.66“N).
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other Landsat time series-based algorithms, such as 

in C2C (Hermosilla et al. 2015). The HiTGUW trans-

formation, i.e. the .rst stage of the HiTS procedure, 

focuses on local features in its early stages before 

identifying global features, which enables 

HILANDYN to perform well in detecting abrupt 

local changes, including point anomalies, e.g. 

Figure 4, and consecutive disturbances occurring 

in close succession, e.g. Figure 13. Bottom-up tem-

poral segmentation also proved to be useful in the 

.rst stage of the noise .lter built into HILANDYN, 

i.e. to .nd changepoints potentially caused by 

spectral noise. Indeed, when the noise .lter was 

activated, the UA increased signi.cantly (Table 4) 

and the change magnitude associated with com-

mission errors decreased (Figure 9).

4.2. Algorithm parametrization

HILANDYN proved to scale well to a considerably 

large study area when con.gured with a single set 

of parameters that maximized the F1 score (Table 4, 

Figures 11, 12). Indeed, we achieved an overall bal-

ance between UA and PA while detecting forest 

patches disturbed by di�erent agents and a wide 

range of severity. Landsat time series-based algo-

rithms typically require to .ne-tune the main para-

meters to adapt to di�erent study areas (Pasquarella 

et al. 2022) and speci.c disturbance agents (Ye et al.  

2021). HILANDYN mostly missed non-stand-replacing 

events when using the best performing set of para-

meters, as shown by the relative TCW change magni-

tude for omission errors (Figure 9, Table S4). This 

behavior is common among Landsat time series- 

based automated algorithms, as the detection of low- 

severity disturbances is typically hindered by residual 

spectral noise in Landsat time series (Cohen et al.  

2017; Rodman et al. 2021). Nevertheless, the high PA 

achieved by HILANDYN in the outer validation stra-

tum, i.e. 78.9% with the noise .lter deactivated 

(Table 4), evidenced its overall sensitivity to non- 

stand-replacing events.

Since the threshold λ used by the modi.ed HiTS 

procedure depends directly on the number of bands 

and the constant C (Equation 3), the optimization of 

these parameters is critical to discriminate between 

low-severity disturbances and spurious changepoints. 

In fact, increasing the value of λ reduces the sensitivity 

of HILANDYN to low-severity disturbances, which are 

typically characterized by small and transient devia-

tions from linearity in the linear trends. It is worth 

noting that the optimization of λ in HILANDYN allows 

the user to maximize the balance between UA and PA 

(Figure 6, Table S1), thus reducing the need to post- 

process the disturbance metrics generated by the 

algorithm. In contrast, other temporal segmentation 

algorithms such as LandTrendr, C2C, and BEAST 

require setting a prede.ned maximum number of 

changepoints or linear segments.

When we included the best performing bands in 

the high-dimensional time series, their number and 

the constant C had a signi.cant e�ect on UA, whereas 

PA was less sensitive to their variations (Figure 6, 

Table S1). As observed with other Landsat time series- 

based algorithms, such as LandTrendr (Cohen et al.  

2018, 2020; Pasquarella et al. 2022) and COLD (Cohen 

et al. 2020), the use of a single band introduces 

a signi.cant amount of uncertainty in temporal seg-

mentation, primarily due to increased commission 

errors. The heterogeneity of spectral changes across 

wavelengths associated with disturbance events 

(Pasquarella et al. 2022), and the di'culty of e�ec-

tively distinguishing between low-severity distur-

bances and noise are the main sources of 

uncertainty. Secondary classi.cation models that 

combine the results of multispectral ensembles 

obtained from univariate algorithms, e.g. 

LandTrendr, were primarily aimed to increase UA of 

disturbance maps (Cohen et al. 2018, 2020; Senf and 

Seidl 2020). HILANDYN bene.ted from the increase in 

the number of bands in terms of UA (Figure 6; 

Figure 7) because this likely reduced the in9uence of 

band-dependent noise, as shown in Figure 4a. The 

latter can be caused by several factors, such as the 

presence of cirrus clouds, which alter the surface 

re9ectance unevenly across wavelengths, with 

a smaller e�ect on the SWIR bands than on the others 

(Qiu, Zhu, and Woodcock 2020). Conversely, forest 

disturbances and band-independent noise typically 

cause dense changes in high-dimensional time series 

(Figure 4b–c) and further processing is required to 

correctly separate them (Section 2.6).

Regarding the selection of bands, their e�ective-

ness in detecting forest disturbances largely depends 

on the residual information they carry after the nor-

malization by the estimated standard deviation of the 

random error (σ̂;Equation 3). In this study, the best- 
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performing bands in terms of PA (Figure 8) were 

seven and, except for TCA, they were based on the 

SWIR wavelengths, either the original re9ectance 

bands, i.e. the SWIR2 and SWIR1 bands of the 

Landsat sensors, or the spectral indices contrasting 

the NIR and the SWIR bands (MSI, NBR, TCW, and 

NDMI). The e�ectiveness of the SWIR bands for forest 

disturbance detection has been reported for di�erent 

forest ecosystems and di�erent change detection 

algorithms (Cohen et al. 2018; DeVries et al. 2016; 

Hislop et al. 2019). In particular, algorithms that use 

one image per year appear to rely mostly on SWIR 

bands to detect forest disturbance (Cohen et al. 2018,  

2020). Conversely, algorithms that .t harmonic func-

tions to all the available Landsat images, such as 

COLD, rely primarily on information in the NIR band 

due to its e�ectiveness in reconstructing forest phe-

nology (Cohen et al. 2020). Results in Figure 8 also 

highlighted the usefulness of the TCA band, as it 

complemented the information provided by the 

SWIR-based bands. Consistent with previous studies 

(Cohen et al. 2018, 2020), our results showed that TCA 

outperformed the widely used NDVI in detecting for-

est disturbances when using one image per year due 

to its greater sensitivity at high levels of vegetation 

cover (Cohen et al. 2016).

Optimizing the two parameters required by the 

integrated noise .lter, i.e. noise itermax and 

nob initmin, further improved the balance between 

UA and PA (Table S2, Figure S4), as HILANDYN 

e�ectively discriminated between noise and trust-

worthy changes (Table 4, Figure 9). The nob initmin 

parameter is aimed to reduce over-segmentation at 

the beginning of the time series, which is caused by 

residual noise in the re9ectance composites due to 

data scarcity. Indeed, nob initmin strictly depends on 

the compositing algorithm, as this latter can signi.-

cantly a�ect the quality of the re9ectance compo-

sites (Qiu et al. 2023).

4.3. Comparison with BEAST

Despite being a univariate algorithm, BEAST bene-

.ted from the use of multispectral information and 

from the inclusion of spatial context information in 

the time series, achieving the best results when we 

combined this information (Table 5). In fact, increas-

ing the number of variables in high-dimensional 

time series increased both UA and PA to values 

similar to those achieved by HILANDYN 

(Section 3.1). Nevertheless, BEAST struggled to 

achieve a balance between UA and PA, as evidenced 

by the relatively low F1 score (Table 5). This was 

determined by the strong dependence of UA and 

PA on the maximum number of trend changepoints, 

which are inversely correlated with this parameter. 

In particular, the relatively low UA achieved by 

BEAST, i.e. around 55% or less, when we set the 

maximum number of trend changepoints higher 

than three (Table 5), seems to con.rm the larger 

proportion of commission over omission errors initi-

ally reported by Zhao et al. (2019). The analysis of 

the relative TCW change magnitude associated with 

commission and omission errors showed that BEAST 

and HILANDYN had comparable sensitivity to distur-

bances in terms of severity (Figure 9, Table S4). 

Nevertheless, the relative TCW change magnitude 

of omission errors evidenced that BEAST was slightly 

more sensitive to non-stand-replacing events com-

pared to HILANDYN (Figure 9, Table S4). This high-

lighted the e�ectiveness of the Bayesian approach in 

detecting subtle trend changepoints in Landsat time 

series. Overall, the main limitations associated with 

this approach stem primarily from the signi.cant 

computing power required, which increases linearly 

with the number of variables included in the time 

series (Figure 10). This can be a signi.cant challenge 

for applications over large areas or when using high 

spatial resolution data, unless high-performance com-

puting platforms are used.

4.4. Limitations and future developments

Compared to other Landsat time series-based algo-

rithms, such as BFAST Monitor (DeVries et al. 2015) 

and COLD (Zhu et al. 2019), we developed HILANDYN 

to analyze forest disturbance dynamics retrospec-

tively. Therefore, the algorithm lacks crucial features 

dedicated to real-time monitoring . First, the HiTS 

procedure is a complete oHine approach; thus, 

a reanalysis of the entire time series is required 

when new data is added. A possible solution could 

come from online approaches such as SWAB (Keogh 

et al. 2001), which combine sliding windows and 

bottom-up methods by applying the latter within 

sliding windows of constant size w. Notably, 

a sliding window approach has been adopted by 

Mulverhill et al. (2023) to add monitoring capabilities 
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to BEAST. We note that online algorithms, such as 

CCDC and COLD, need to reinitialize the time series 

model after a disturbance event, which may result in 

the omission of consecutive disturbances occurring in 

close succession. For this reason, backward .tting of 

the data has been proposed after a disturbance event 

for the OB-COLD algorithm (Ye, Zhu, and Cao 2023).

Second, the annual frequency of the time series 

employed by HILANDYN hinders the timely detection 

of forest disturbances, which is a fundamental 

requirement for monitoring purposes. While using 

time series with evenly spaced observations is 

required by the HiTS procedure, seasonal re9ectance 

composites could increase the number of observa-

tions available during the year, as proposed by some 

studies based on LandTrendr (Meng et al. 2021). 

Similarly, approaches for normalizing phenological 

variations o�er the opportunity to model intra- 

annual time series through linear trends (Yang et al.  

2023). An increase in the temporal frequency of high- 

dimensional time series from inter- to intra-annual 

would also limit the reduction in PA caused by the 

noise .lter (Table 4). A higher temporal frequency 

would reduce the omission of low-severity distur-

bances caused by the masking e�ect of post- 

disturbance vegetation recovery (Yang et al. 2023). 

However, Giannetti et al. (2021) reported that the 

optimal time interval required to achieve the highest 

accuracy of disturbance maps, regardless of the algo-

rithm, was between 7 and 12 months.

Third, linear trends may be suboptimal for modeling 

satellite time series as nonlinear trends may be better 

suited to represent forest dynamics (Moisen et al. 2016; 

Senf, Müller, and Seidl 2019). A possible improvement to 

HILANDYN could be the extension to piecewise- 

quadratic signals, as proposed by Maeng and 

Fryzlewicz (2023) for the TrendSegment procedure, i.e. 

the univariate version of the HiTS procedure. 

Nevertheless, changes in linear trends have been 

found to be useful for detecting non-stand-replacing 

disturbances and forest dieback in general (Moreno- 

Fernández et al. 2021; Mulverhill, Coops, and Achim  

2023).

5. Conclusions

As changes in disturbance regimes are critical to 

understand the e�ects of climate change on forest 

ecosystems, automated and accurate methods are 

needed to reconstruct regional-scale forest distur-

bance dynamics from long-term satellite time series. 

HILANDYN o�ers new opportunities to study forest 

disturbance dynamics retrospectively by exploiting 

the temporal, spatial, and spectral domains provided 

by Landsat data. In fact, temporal segmentation of 

high-dimensional time series through the modi.ed 

HiTS procedure is the key element of our algorithm. 

It ensures an accurate detection of disturbance events 

and guarantees computational e'ciency by reducing 

the dimensionality of the time series in the early 

stages of the processing by locating deviations from 

linearity that are common between variables. The 

comparison with BEAST con.rms the robustness of 

HILANDYN for the detection of stand-replacing and 

non-stand-replacing disturbances. Its scalability to 

large study areas is supported by the high computa-

tional e'ciency and 9exibility to heterogeneous con-

ditions when using a single set of parameters. The 

methods implemented in HILANDYN are general 

enough to analyze time series of optical satellite ima-

gery other than Landsat, such as that acquired by the 

Sentinel-2 satellites.
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