
Neurocomputing 613 (2025) 128699

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Improving rule-based classifiers by Bayes point aggregation
Luca Bergamin a,∗, Mirko Polato b, Fabio Aiolli a

a Department of Mathematics, University of Padova, Via Trieste 63, Padova, 35121, PD, Italy
b Department of Computer Science, University of Turin, Corso Svizzera, 185, Turin, 10149, TO, Italy

A R T I C L E I N F O

Communicated by R. Zhu

Dataset link: https://github.com/BouncyButton
/bayes-point-learning

Keywords:
Interpretability
Rule learning
Bayesian learning
Ensemble methods

A B S T R A C T

The widespread adoption of artificial intelligence systems with continuously higher capabilities is causing
ethical concerns. The lack of transparency, particularly for state-of-the-art models such as deep neural networks,
hinders the applicability of such black-box methods in many domains, like the medical or the financial ones,
where model transparency is a mandatory requirement, and hence white-box models are largely preferred over
potentially more accurate but opaque techniques.

For this reason, in this paper, we focus on ruleset learning, arguably the most interpretable class of learning
techniques. Specifically, we propose Bayes Point Rule Classifier, an ensemble methodology inspired by the
Bayes Point Machine, to improve the performance and robustness of rule-based classifiers. In addition, to
improve interpretability, we propose a technique to retain the most relevant rules based on their importance,
thus increasing the transparency of the ensemble, making it easier to understand its decision-making process.

We also propose FIND-RS, a greedy ruleset learning algorithm that, under mild conditions, guarantees to
learn hypothesis with perfect accuracy on the training set while preserving a good generalization capability
to unseen data points.

We performed extensive experimentation showing that FIND-RS achieves state-of-the-art classification
performance at the cost of a slight increase in the ruleset complexity w.r.t. the competitors. However, when

paired with the Bayes Point Rule Classifier, FIND-RS outperforms all the considered baselines.
1. Introduction

In the early years of machine learning, rule learning dominated
the research scene, with work dating back to the 1960s [1]. These
rule learning systems peaked in early 2000 as one of the most popular
machine learning schemes.

Nowadays, modern statistical machine learning methods, like Sup-
port Vector Machines (SVMs) and neural networks, define the go-to
approach in most real-world tasks due to their performance. However,
their inner workings are (usually) complex and lack transparency,
which leads to poor comprehensibility [2]. Recently, there has been an
increasing awareness of the importance of having the ability to explain
the decisions of artificial intelligence (AI) systems [3].

With the advent of deep learning techniques, many efforts have
been devoted to interpreting neural networks with numerous inter-
esting results, especially on images and texts [4–7]. However, when
working with tabular data, explanation rules are by far the most
appreciated and effective in delivering a human-readable justification
for the prediction outcome of AI algorithms [8].

Within interpretable machine learning methods, decision rule learning
represents, by design, a direct approach to learning explainable models.

∗ Corresponding author.
E-mail address: bergamin@math.unipd.it (L. Bergamin).

Their inner working is transparent: each instance is classified into
a class if and only if at least one rule is satisfied. These rules inher-
ently serve as a natural and intuitive explanation for the classification
outcome.

Moreover, decision rule-based classifiers lend themselves to a con-
cise representation through a Disjunctive Normal Form (DNF) for-
mula, essentially an OR combination of many AND conjunctive terms.
This formal structure is well-established in machine learning litera-
ture [9] and is studied in discrete mathematics [10], providing a robust
foundation for understanding and interpreting the model.

One distinctive advantage of decision rule learning is the inherent
inspectability of the entire classifier. This attribute allows for the identi-
fication of anomalies in the learned model, contributing to the model’s
transparency and facilitating trust in the decision-making process. Im-
portantly, this transparency can lead to performance improvements
over time, as insights derived from the model may inform and enhance
the data acquisition process [11]. Other popular models, such as SVMs
or Random Forests (RFs), do not offer these important features.

The most iconic decision rule learning method is the Decision Tree
(DT, [12]), which has been widely applied in many contexts, such as
the medical field [13].
https://doi.org/10.1016/j.neucom.2024.128699
Received 17 August 2023; Received in revised form 5 May 2024; Accepted 1 Octob
vailable online 16 October 2024
925-2312/© 2024 The Authors. Published by Elsevier B.V. This is an open access a
er 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
https://github.com/BouncyButton/bayes-point-learning
mailto:bergamin@math.unipd.it
https://doi.org/10.1016/j.neucom.2024.128699
https://doi.org/10.1016/j.neucom.2024.128699
http://creativecommons.org/licenses/by/4.0/

L. Bergamin et al.

l
a
p
r

w
b
e
t

s

t

p
c

e
t
i

a

m

t
a

a
t
S

u
r

u

t
w

Neurocomputing 613 (2025) 128699
Besides DTs, rule set learning algorithms are also appreciated thanks
to their natural interpretation [14]; however, such models usually
ack effectiveness and/or scalability. Many of these rule set learning
pproaches are based on sequential covering [1,15], which is a general
rocedure that iterates over the training examples learning, rule by
ule, a set of rules that covers the entire dataset.

Along with interpretability and effectiveness, robustness and stabil-
ity are other essential features for a classifier, especially in scenarios

ith few training examples or applications, such as medicine and
iology. Generally, robustness is not a strong suit for sequential cov-
ring algorithms, given their usual sensitivity to the order in which
he training instances are considered. Yet, when data is scarce, the

rules obtained strongly depend on the particular training data. In other
words, the variance of rule-based algorithms is generally high. Aggrega-
tion methods, such as Bagging and Random Forest, have already been
employed to reduce variance [16] in DTs. However, the resulting model
is not interpretable.

In this paper, we propose a technique for aggregating rule sets. We
ummarize our contributions below.

• Leveraging Bayesian learning theory [17], we provide a princi-
pled methodology to construct a rule set aggregation that aims to
improve performance while being more robust and interpretable.
We call this technique the Bayes Point rule classifier, or BP
classifier for short. The BP classifier embeds both the rule sets
and the instances into a vector space, allowing us to model a
rule set decision as a linear function. Starting from this new
representation, we can aggregate the rule sets obtained with mul-
tiple executions of any rule-producing algorithm using a simple
average. This technique is related to bagging: it reduces variance,
thus improving the robustness, stability, and overall performance.

• To improve the interpretability of the resulting rule sets of the
BP classifier, we define an importance metric that enables us to
perform rule pruning safely. We provide a principled pruning
heuristic that reduces the complexity of the final rule set while
retaining good generalization capabilities.

• Further, to fully exploit the BP classifier, we propose FIND-RS,
a novel concept learning algorithm that excels in this setting.
FIND-RSis a sequential covering algorithm that always produces
consistent hypotheses and produces rules with high variance.
Such characteristic makes FIND-RSa very good fit when used in
conjunction with the BP classifier;

• We experimentally show that a committee of rule sets generally
improves the performance of rule-based classifiers. Our experi-
ments also show that FIND-RS, when coupled with the BP clas-
sifier, achieves better performance than several state-of-the-art
interpretable techniques.

2. Related works

We present a brief taxonomy of popular works used in rule induc-
ion. A summary of the main features of these methods are reported in

Table 1.

Heuristic methods. Early research in rule learning focused on heuristic
methods, such as Iterative Dichotomiser 3 (ID3, [18,19]) and Classi-
fication and Regression Trees (CART, [20]), which utilize a greedy
artitioning approach based on different impurity measures. Sequential
overage algorithms are another class of methods that iteratively learn

new rules to explain a subset of the training data and remove cov-
ered examples from the training process. Some well-known sequential
covering algorithms include AQ [1], CN2 [21], and RIPPER [15].

RIPPER, based on the work of IREP [22], overcomes overfitting by
mploying a more effective pruning phase while maintaining computa-
ional efficiency, making it a fast method with good performance that
s still considered state-of-the-art [23]. However, sequential covering
2
algorithms may struggle with processing efficiency when dealing with
modern datasets that continue to grow in size. Additionally, they
cannot cover the entire search space, with OPUS being a notable
exception [24].

The method proposed in its base form uses a sequential coverage
strategy similar to RIPPER. It is also driven by some heuristics: in
particular, we focus on extracting rules with high specificity that can
be refined later in a post-processing step.

Probabilistic methods. A different class of rule-based algorithms em-
ploys Bayesian methods to evaluate the proper rules in a probabilis-
tic framework. These rules are generally more apt to be resilient
to noise and uncertainty. Notable examples are Bayesian Rule Lists
(BRL, [25]), the subsequent Scalable Bayesian Rule Lists (SBRL, [26]),
nd Bayesian Rule Sets (BRS, [27]). Although their foundations are

solid, their main weakness is the required computation of frequent
itemsets, which increases training time. Moreover, high memory is a
common requirement. Therefore, these methods do not scale well.

Our FIND-RS does not extract frequent item sets and can be exe-
cuted to extract longer rules and to analyze high-dimensional datasets

ore efficiently.
The Bayes Point method proposed can be viewed in a probabilistic

framework as well: it can provide a probability estimate of belonging
o the positive class, enabling us to view any rule-extracting method as
 probabilistic classifier.

Ensemble methods. A common way to improve machine learning meth-
ods is to use multiple instances of a simpler classifier. Both SLIP-
PER [28] and Random Forest [29] are algorithms that leverage this
idea. The former opts for RIPPER as the base learner, while the latter
uses decision trees. Decision trees are also at the core of RuleFit [30],
CRE [31], and SIRUS [32], which are rule ensemble algorithms focused
on improving interpretability. A voting strategy is a simple but effective
way to boost performance while improving generalization.

Our Bayes Point technique leverages ensembles to boost the per-
formance of a base rule classifier, and we provide a simple way to
aggregate and prune rule sets to preserve interpretability.

Optimization-based methods. There has been growing interest in learn-
ing optimal rule lists using mathematical optimization techniques. For
example, CORELS [33] uses an empirical risk minimization formulation
to learn certifiably optimal rule lists by reducing the search space using
 variety of computational techniques (e.g., branch and bound), which
hey demonstrate can outperform heuristic approaches such as RIPPER.
imilarly, Yu et al. [34] use Boolean satisfiability (SAT) solvers to

learn optimal decision sets and lists. These methods effectively find
an optimal solution, but they can require high computing power, and
sually, they constrain their search space to limited/shorter conjunctive
ules.

Our FIND-RS uses a different approach: we do not optimally explore
the whole DNF space, which would be infeasible for a large number of
conjunctive terms, but an inductive bias drives us to find more specific
rules that describe the positive training examples.

Gradient-based methods. Rule learning has recently seen a resurgence,
sing neural architectures based on gradient descent. Nowadays, thanks

to the notable endeavors of the deep learning research community,
hese methods are competitive with heuristic models. These recent
orks span from learning DNFs using neural networks [35,36] to learn-

ing weighted DNFs (Wang et al. [37]). Using neural architectures brings
advantages like reusable and modular structures. Additionally, these
approaches benefit from scalability and adaptability, making them
effective in capturing complex, non-linear patterns and dependencies
in data.

These promising methods have typical pitfalls of deep learning, such
as sensitivity to hyperparameters, high computing requirements, higher
number of samples required, and convergence issues. Neural networks,
primarily tailored for continuous data, face difficulties when handling

L. Bergamin et al.

t
n
o

u

t
t
O
p

a
v
m
g
s
m
s

t
o

i
o
w
i
c
o
r

{


c
W
i


o
1

c
r

c

𝑎
𝑎
1

F
j
l

b
a

Neurocomputing 613 (2025) 128699
discrete problems. Achieving good performance often requires addi-
ional structures like embeddings, highlighting that adapting neural
etworks to these problems is not trivial and can incur in additional
verhead during training.

This resurgence contributes to giving new life to rule learning and
nique perspectives on the nature of concept learning, e.g., DRNC [38],

which considers a hierarchical rule structure. Compared to the other
considered methods, DRNC favors reusable structures, akin to ID3,
moving from trees to a multilayered structure.

Post-hoc interpretability methods. Many popular works were published
to improve the interpretability of black-box methods. It is possible
o train an interpretable model (e.g., a decision tree, or FIND-RS) on
he prediction of a black-box classifier to obtain a surrogate classifier.
ther methods that do not use surrogate classifiers were recently
roposed; LIME [39] is a notable example. This method tackles the

interpretability requirements by solving a different problem: it provides
a reasonable explanation for a single instance by giving importance
scores to important features used by a black-box classifier. This method
has been extended to large neural networks and it has been applied to
both images and text, and it is often the only viable approach to provide
an amount of explainability to an existing application. Computing these
scores requires additional time that can be high in non-trivial tasks.

SHAP [40] extends LIME and other interpretable methods under
 joint framework. SHAP explanation is based on feature importance
alues. It assumes feature independence and learns an additive linear
odel to explain a specific input instance. Under these assumptions,

ame theory is used to identify some theoretical guarantees of the
olution found. Its runtime can be higher compared to LIME, and some
odel-specific implementations have been proposed to improve speed,

uch as TreeSHAP [41].
Any rule learning method (and, by extension, FIND-RS) has a differ-

ent approach. A post-hoc explanation will not ever be fully adherent to
he underlying model but will provide an interpretation of the model
utputs. A model that is explainable by design is a valid alternative

where it is required to show how the model has processed a certain
nstance. In fact, a rule learning model can provide an exact rule (or set
f rules, in the case of rule lists) that locally describes a given instance,
ith no additional computation required. Finally, LIME lacks a global

nterpretation that can be provided by rule learning methods. SHAP
an provide a global interpretation by aggregating Shapley values, thus
nly providing a measure of feature importance, and not symbolic
ules.

3. Background and notation

We consider binary classification problems with training sets  ≡
(𝐱(𝑖), 𝑦(𝑖))}𝑛𝑖=1, where 𝐱(𝑖) ∈  are categorical feature vectors, with
 ≡ ×𝑚

𝑗=1𝑗 for some finite (symbolic) attribute/variable domains 𝑗 ,
and 𝑦(𝑖) ∈ {−1,+1}.

We call  ≡ {𝐱 ∣ (𝐱, 𝑦) ∈ ∧𝑦 = +1} the set of positive instances, and
onversely,  ≡ {𝐱 ∣ (𝐱, 𝑦) ∈  ∧ 𝑦 = −1} the set of negative instances.
hen not specified differently, we assume that ∄𝐱 ∈  , 𝐳 ∈  ∣ 𝐱 = 𝐳,

.e., the training set does not contain contradictory examples.
To handle categorical features, we employ two different encodings:

attribute-value (AV) and one-hot (OH) encoding. Given an attribute
(i.e., feature) with domain 𝑖, |𝑖| = 𝑑, AV associates a specific value of
𝑖 to the attribute, while OH converts the attribute into a binary vector
f size 𝑑 where only the index associated to the actual value is set to
.

3.1. Rule learning background

To formalize the terminology used by the rule learning research
ommunity, we report some simple definitions useful to understand the
est of the paper.
3
Definition 3.1 (Rule). Given an input space  ≡ ×𝑚
𝑗=1𝑗 , a (conjunctive)

rule is a set of indexed values (or constraints). It is denoted as 𝐫 =
{(𝑖, 𝑣𝑖), 𝑖 ∈ 𝐶}, where 𝐶 ⊆ [1, 𝑚] is a subset of feature indices and 𝑣𝑖 ∈ 𝑖
is the constraint for the 𝑖th feature.

The choice of attributes’ encoding (AV vs. OH) can be crucial for
the success of learning. In particular, the number and nature of possible
rules change.

Example. For an attribute 𝑎 with three possible values {1, 2, 3}, a
onstraint in the AV and OH encodings are defined as in the following:

• (𝑎AV = 1), (𝑎AV = 2), (𝑎AV = 3), (𝑎AV =?) for the AV encoding,
• 𝑎OH = (1, 0, 0), 𝑎OH = (0, 1, 0), 𝑎𝑂 𝐻 = (0, 0, 1), 𝑎OH = (0, ?, ?),
𝑎OH = (?, 0, ?), 𝑎OH = (?, ?, 0), 𝑎OH = (?, ?, ?) for the OH encoding,

where ? is a wildcard that means any value for the variable. If we
also include the negation, we would have rules like 𝑎OH = (?, 0, ?) or

AV ≠ 1. Note that constraints such as 𝑎𝑂 𝐻 = (1, 0, ?) are identical to
𝑂 𝐻 = (1, 0, 0), since a one-hot encoded value can contain only a single
.

We call specificity of a rule 𝐫 the number of conjunctive terms
involved in 𝐫, i.e., |𝐶|.

Definition 3.2 (Rule Coverage). We say that a rule 𝐫 covers an instance
𝐱 ∈  (or 𝐱 satisfies 𝐫) whether:

𝐫 ⪰ 𝐱 ⟺
⋀

𝑖∈𝐶

(

𝐱𝑖 = 𝑣𝑖
)

, (1)

i.e., if 𝐱 satisfies all the constraints in 𝐫.

Definition 3.3 (Rule Generalization). A rule 𝐫1 generalizes another rule
𝐫2 iff:

𝐫1 ≥ 𝐫2, ⟺ ∀𝐱 ∈  , (𝐫2 ⪰ 𝐱) ⇒ (𝐫1 ⪰ 𝐱) (2)

It is noteworthy that an instance 𝐱 can be seen as a very specific
rule in which every variable is constrained, i.e., ∀𝑖, 𝐱𝑖 = 𝑣𝑖.

Definition 3.4 (Rule Set). A rule set (or ruleset) is a set of rules,
i.e.,  ≡ {𝐫1,… , 𝐫𝑘}. A set  of (conjunctive) rules covers an instance
𝐱 ∈  iff:

 ⪰ 𝐱 ⟺ ∃𝐫 ∈  ∣ 𝐫 ⪰ 𝐱. (3)

Therefore, a rule set  can be interpreted as a Disjunctive Normal
orm (DNF) logical formula, as it consists of a disjunction of con-
unctions of literals. Similarly, a rule can be seen as a conjunction of
iterals.

Given a rule set , we refer to its cardinality || as complexity of
. A high complexity score means that a rule sets has many different
rules.

Definition 3.5 (Rule Set as Classification Function). A rule set ℎ is a
binary classification function ℎ ∶  → {0, 1}. It classifies an instance
𝐱 as positive iff ℎ ⪰ 𝐱, that is, at least a rule covers the given instance.
Equivalently, an instance 𝐱 is classified as negative iff there are no rules
that cover the given instance.

Finally, [[𝑏]] ∈ {0, 1} denotes the indicator function, which is 1 iff
the condition 𝑏 is true, 0 otherwise.

3.2. Bayesian learning background

A Bayesian perspective is useful to operate in noisy situations. It can
e used to incorporate prior knowledge, make probabilistic predictions,
nd aggregate classifications of different predictors. It is also useful to

develop and understand algorithms that do not explicitly manipulate
probabilities, such as many concept learning methods [9].

L. Bergamin et al.

h
w

p
m

o

t

s

s

z

o
E
t

Neurocomputing 613 (2025) 128699
Table 1
Features of the main rule learning models in the literature. The Type column uses the following acronyms. DT: Decision Tree; RS: Rule Set; RL: Rule
List; H: Hierarchical; W: Weighted.
Name Full name Type Opt. Metrics Pruning

ID3 [18] Iterative Dichotomiser 3 DT Divide and conquer Information Gain None
AQ [1] Algorithm Quasi-Optimal RL Sequential covering Coverage Not specified
RIPPER [15] Repeated Incremental

Pruning to Produce Error
Reduction

RS Sequential covering FOIL’s Information
Gain

Reduced Error
Pruning

BRL [25] Bayesian Rule List RL MCMC sampling Posterior distribution
scores

Prior distribution over
rules

SBRL [26] Scalable Bayesian Rule
List

RL MCMC sampling,
branch and bound

Posterior distribution
scores

Prior distribution over
rules

BRS [27] Bayesian Rule Set RS MCMC sampling,
simulated annealing

Posterior distribution
scores

Prior distribution over
rules

CORELS [33] Certifiably Optimal Rule
Lists

RL Branch and bound Regularized empirical
risk

Regulariz. term

Net-DNF [35] Net Disjunctive Normal
Form

RL Backpropagation Cross Entropy Loss Regulariz. term

RRL [37] Rule-based
Representation Learning

WRL Backpropagation Cross Entropy Loss Regulariz. term

DRNC [38] Deep Rule Network
Classifier

HRS Greedy mini-batch
learning

Accuracy None

FIND-RS (Ours) Find Rule Set RS Sequential covering Coverage Generalization
procedure

x-BP (Ours) Bayes Point WRS Ensemble learning – Importance-based rule
pruning
f
a

r

a

w
c

Given a finite hypothesis space  and data , we can define the
most probable classification and, consequently, the so-called Bayes
optimal classifier as follows:

Definition 3.6 (Bayes Optimal Classifier).

ℎ𝑏𝑜(𝐱) = ar g max
𝑦∈

∑

ℎ𝑖∈
𝑃 (𝑦|ℎ𝑖)𝑃 (ℎ𝑖|) (4)

In practice, we can weight the classification probability of each
ypothesis by its posterior probability, i.e., after seeing the data, and
e can pick the most probable option. It is proven that no other

classification method that uses the same hypothesis space and the same
rior knowledge can outperform this method on average. This method
aximizes the probability that the new instance is correctly classified

given the available data, hypothesis space, and the prior probability
ver the hypotheses. In Eq. (4), the prior knowledge is inside the

posterior probability 𝑃 (ℎ𝑖|), and we can exploit Bayes’ theorem to
highlight it: 𝑃 (ℎ|) = 𝑃 (|ℎ)𝑃 (ℎ)

𝑃 () .
In the binary classification setting, when the hypothesis space is

large, it is possible to resort to sampling, that is,
ℎ𝑏𝑜(𝐱) = sign

(

Eℎ∼ [ℎ(𝐱)]
)

(5)

where the expectation is taken by sampling hypotheses according to
heir posterior probability 𝑃 (ℎ|) ∝ 𝑃 (|ℎ)𝑃 (ℎ).

When the classifiers are linear (e.g., the perceptron), it has been
hown [17] that, under mild conditions, an approximation of the

optimal classifier can be defined as follows.

Definition 3.7 (Bayes Point Classifier). The Bayes point classifier is a
urrogate of the optimal classifier, in which the center of mass of the

version space is selected as a classifier. This corresponds to considering
a uniform probability of the hypotheses 𝑊 in the version space and a
ero probability outside the version space. Thus, it can be shown that

ℎ𝑏𝑝(𝐱) = sign(⟨𝐱,𝐰𝑐 𝑚⟩),where 𝐰𝑐 𝑚 = E𝑊 [𝑊]. (6)

The advantage of having such an approximation is that we obtain
ne classifier instead of an ensemble. To compute the expectation
𝑊 [𝑊], the authors propose running the Perceptron algorithm many

imes, starting from different permutations of the training dataset.
 n

4
4. Bayes Point rule classifiers

As pointed out in the introduction of the paper, robustness is a key
eature of rule-based classifiers. In this section, we propose two rule set
ggregation techniques inspired by the Bayes setting.

4.1. Bayes optimal approximation

Ensembles are popular methods to reduce variance in classifiers
[42]. For rule-based classifiers this is quite relevant, as their rules are
generally learned by greedy-like algorithms that often present high
variance, i.e., the rule sets obtained by different executions can differ
substantially. Hence, combining these rule sets can improve the perfor-
mance and stability of the final rule-based classifier. A trivial approach
to lower their variance would be to average the classifications of differ-
ent classifiers, similarly to Random Forests [16]. Rule-based classifiers
are often used for their high interpretability, but using them naively to
form an ensemble would dramatically decrease their interpretability,
in exchange for higher accuracy. Therefore, our contribution is two-
fold: first, we propose an ensemble method inspired by Bayes’ theory,
giving it a probabilistic interpretation; second, we provide a technique
to improve its interpretability.

In the following, we will call a base learner ‘‘weak’’ learner, bor-
owing the term from the ensemble learning theory.

According to the Bayesian theory described in the previous section,
we can consider rule sets obtained by different runs of a rule-based
learner as weak hypotheses and then combine them according to the
bove-mentioned theory.

More formally, Bayes Optimal (BO) rule set runs 𝑇 instances of the
eak learner, obtaining 𝑇 rule sets {ℎ1,… , ℎ𝑇 }. Then, an instance is

lassified according to the following aggregated decision:

𝐻𝑏𝑜(𝐱) = sign
(𝑇
∑

𝑡=1
ℎ𝑡(𝐱)

)

.

Unfortunately, this aggregated hypothesis is not interpretable. For
this, in the following, we propose an alternative, inspired by the Bayes
Point classifier idea, that improves interpretability of the BO rule set
while maintaining its accuracy. With this purpose in mind, we need a
way to embed a rule set (i.e., a weak hypothesis) in a vector space.

We consider an (𝑅 + 1)-dimensional vector space where 𝑅 is the
umber of possible rules. A rule set  can be embedded in a vector

L. Bergamin et al.

𝐰

v

r

m
T

f
a

b

p
i
t

a
r
e
e

s
p
t
i
i
s
𝑃

a
p
r
c
t

s

a
r
b
w
p

t
p

Neurocomputing 613 (2025) 128699
̂ ∈ R𝑅+1 where 𝑤̂𝑟 = 1, 1 ≤ 𝑟 ≤ 𝑅 iff the rule indexed by 𝑟 is present in
the rule set, and 𝑤̂0 = − 1

2 . An instance can be represented in the same
ector space as the vector 𝐱̂ ∈ R𝑅+1 where 𝑥̂𝑟 = [[𝐫 ⪰ 𝐱]], 1 ≤ 𝑟 ≤ 𝑅,

and 𝑥̂0 = 1. It can be easily verified that the decision of the rule set can
now be expressed as

ℎ(𝐱) = sign(⟨𝐰̂, 𝐱̂⟩) = sign
(

∑

𝐫∈
[[𝐫 ⪰ 𝐱]] − 1

2

)

,

i.e., 𝐱 is classified as positive iff ∃𝐫 ∈  ∣ 𝐫 ⪰ 𝐱.
Now, the Bayes Point (BP) rule set is obtained by taking the ap-

proximate Bayes point as the average of the hypotheses 𝐰̂(𝑡) found by
unning the weak learner 𝑇 times:

𝐻𝑏𝑝(𝐱) = sign
(

1
𝑇

𝑇
∑

𝑡=1
(⟨𝐰̂(𝑡)

1∶𝑅, 𝐱̂1∶𝑅⟩ −
1
2
)

)

> 0

⇔
𝑇
∑

𝑡=1
⟨𝐰̂(𝑡)

1∶𝑅, 𝐱̂1∶𝑅⟩ >
𝑇
∑

𝑡=1

1
2
= 𝑇

2
.

Noticing that ∑

𝑡⟨𝐰̂
(𝑡)
1∶𝑅, 𝐱̂1∶𝑅⟩ equals the number of rules in the 𝑇

rulesets that 𝐱 satisfies, then 𝐻𝑏𝑝 classifies a new instance as positive
whenever the number of rules 𝐱 satisfies exceeds 𝑇 ∕2. Moreover, let 𝐺
be the set of unique rules discovered, then the decision can be rewritten
as
∑

𝐫∈𝐺
𝛼𝐫 [[𝐫 ⪰ 𝐱]] > 1∕2 (7)

where 0 < 𝛼𝐫 ≤ 1 is the fraction of times that the rule 𝐫 has been
discovered.

4.1.1. Rule pruning
By leveraging the weights 𝛼𝐫 in Eq. (7), we can provide a principled

ethod for ordering the rules discovered according to these weights.
he coefficient 𝛼𝐫 represents the importance of a rule 𝐫 in the decision,

providing an indicator that can be used to perform rule pruning. Rule
pruning is a common strategy to reduce the complexity of a hypothesis,
thus improving the interpretability of the underlying method.

Note that when pruning is performed, for example, retaining the
irst 𝐾 rules 𝐺𝐾 , then the discriminant function needs to be changed
ccordingly. Namely, 𝐻𝐾 (𝐱) = +1 iff
∑

𝐫∈𝐺𝐾

𝛼𝐫 [[𝐫 ⪰ 𝐱]] >
𝛾𝐾
2
, where 𝛾𝐾 =

∑

𝐫∈𝐺𝐾
𝛼𝐫

∑

𝐫∈𝐺 𝛼𝐫
.

Note that the above formula can be rewritten as

𝑣(𝐱) =
∑

𝐫∈𝐺𝐾

𝛼̄𝐫 [[𝐫 ⪰ 𝐱]] > 1, where 𝛼̄𝐫 = 2 𝛼𝐫
𝛾𝐾

giving an interesting link between rule-based classification and proba-
ility. Consider the ratio 𝑃 (+|𝐱)

𝑃 (−|𝐱) = 𝑃 (+|𝐱)
1−𝑃 (+|𝐱) , also called the odds ratio.

If we set this to be equal to 𝑣(𝐱), we can calculate the probability of
the positive class 𝑃 (+|𝐱) in terms of 𝑣(𝐱), obtaining 𝑃 (+|𝐱) = 𝑣(𝐱)

𝑣(𝐱)+1 . In
ractice, this probability checks the confidence 𝛼𝑟 of each satisfied rule
n the rule set 𝐺𝐾 . If there are more rules that match the instance, or
he 𝛼𝑟 value is high, the probability is increased.

5. FIND-RS

Common sequential covering algorithms, such as RIPPER, can find
simple rules and have a moderate resiliency to noise. Hence, the
variance of these rules is limited. This is beneficial for the base method
but decreases its effectiveness when combined into an ensemble, such
as the Bayes Point. Hence, we propose FIND-RS, a sequential covering
lgorithm that always produces consistent hypotheses and produces
ules with high variance. Akin to decision trees in a Random For-
st, high-variance classifiers can be successfully exploited to form an

nsemble. s

5
According to the Bayesian theory, hypotheses, i.e., rule sets, are
ampled according to their posterior probability 𝑃 (ℎ|) which is pro-
ortional to the posterior 𝑃 (|ℎ) and the prior 𝑃 (ℎ). Put in probabilistic
erms, FIND-RS will find a hypothesis such that it is always consistent,
.e., 𝑃 (|ℎ) > 0 iff its error is zero on the training set . Moreover,
t will be defined in a greedy way to have an inductive bias towards
impler (less complex) rule sets, i.e., if ℎ1 is less complex than ℎ2 then
(ℎ1) > 𝑃 (ℎ2).

FIND-RS computes the classification rule set hypothesis by building
 rule at a time. Each rule is initially defined as a randomly picked
ositive training instance 𝐬 ∈  (not already covered by the running
ule set). Then, FIND-RS tries to greedily generalize the current rule
onsidering the remaining uncovered positive instances in a fashion
hat may resemble the FIND-S algorithm [9].

FIND-RS generalizes a rule by removing one or more attribute-
value constraints (i.e., setting it equal to the wildcard) while keeping
the overall hypothesis consistent with the negative examples. Greedily
building a rule at a time, makes FIND-RS biased towards building less
complex formulas, that is, with as few disjunctions as possible, thus
providing more interpretable hypotheses.

It is worth noticing that, by design, FIND-RS will always find a rule
et that correctly classifies all the examples in the training set if there

are no contradictory examples, that is ∄(𝐱1, 𝑦1), (𝐱2, 𝑦2) ∈  ∣ (𝐱1 =
𝐱2) ∧ (𝑦1 ≠ 𝑦2). In the worst case, FIND-RS will return a hypothesis
of the form ⋁

𝐩∈ 𝐩 that clearly overfits the training set.
Algorithm 1 provides a detailed description of FIND-RS, while Fig. 1

depicts an overview of the algorithm execution on a toy example. The
algorithm uses two lists of lists, 𝐵 and 𝐷. The former, 𝐵, defines a list
of bins, where each bin has all examples that share a rule. The latter,
𝐷, is used to encode the rule associated to each bin.

The algorithm follows the usual structure of a sequential covering
algorithm: it processes examples from the positive dataset  until it is
empty (line 2). A starting example 𝐬 is chosen, and it is removed from
 (line 3). We instantiate the starting rule as the most specific rule, i.e.,
a rule that matches only the chosen example. Then, for each positive
example 𝐩 left (line 7), we attempt to insert it in the new bin, creating
 new generalized rule which covers the new example 𝐩. If the new
ule does not cover any negative example, the positive example 𝐩 can
e added to the bin, and the rule is updated accordingly. Otherwise,
e continue. At the end of the algorithm, simplification procedures are
erformed, described in the following subsections.

5.1. Rule set simplification

Being FIND-RS a greedy algorithm, at the end of the training pro-
cess, the produced hypothesis may contain superfluous rules, i.e., rules
hat can be removed without losing consistency. Thus, a simplification
hase is performed to remove such redundant rules, reducing the

complexity of the final rule set. To speed up this process, we rely on
the following proposition, proven in Appendix.

Proposition 1. At every iteration 𝑡 of FIND-RS it holds that
∀𝑗 < 𝑖 ∈ [𝑘], ∄𝐱 ∈ 𝐵𝑖 ∣ 𝐫𝑗 ⪰ 𝐱,

where the current hypothesis is 𝐷𝑡 = {𝐫1,… , 𝐫𝑘}.
The proof is available in Appendix. Proposition 1 provides a ‘‘back-

ward incompatibility’’ between rules; however, it does not say anything
in the other direction. In particular, it may happen that every instance
in 𝐵𝑖, for some 𝑖, can be covered by other conjunctive rules 𝐫𝑗 for 𝑗 > 𝑖.
In practice, this post-processing step (function simplify in Algorithm
1) checks, for all bins, if a bin 𝐵𝑖 can be emptied by distributing all of
its examples into any of the following bins 𝐵𝑗 , where 𝑗 > 𝑖. If this event
occurs (line 11), it means that the corresponding conjunctive term 𝐷𝑖
can be safely removed from the current hypothesis (line 12, 13), thus
creating a more specialized one that is still consistent with the training
et.

L. Bergamin et al.

𝐛

1

1

1

1

1

Neurocomputing 613 (2025) 128699
Fig. 1. We show the FIND-RS algorithm through a toy example of binary classification with 8 3-dimensional instances (𝑎, 𝑏, 𝑐) with 𝑎, 𝑏, 𝑐 ∈ {0, 1}, where the target concept is
≠ 𝐜, i.e., (𝑏 ∧ ¬𝑐) ∨ (¬𝑏 ∧ 𝑐).
f
s

r
w
m
n
u
P

n
t

t

o
s
i

e
w

Algorithm 1: FIND-RS
Input:  : set of positive examples;  : set of negative

examples;
𝑝𝑔 𝑒𝑛: generalization probability

Output: Disjunctive Normal Form rule

1 𝐵 , 𝐷 , 𝑘 ← [], [], 0
2 while  is not empty do
3 𝐬 ← pop() ⊳ Pick a starting example
4 𝐵 , 𝐷 ← 𝐵 + {𝐬}, 𝐷 + 𝐬
5 𝐵𝑘 ← 𝐵𝑘 ∪ {𝐬}
6 𝑄 ← [] ⊳ Examples not covered by the rule
7 for 𝐩 ∈  do
8 𝐫′ ← generalize(𝐷𝑘,𝐩)
9 if ∄𝐧 ∈  ∣ 𝐫′ ⪰ 𝐧 then
10 𝐵𝑘 ← 𝐵𝑘 ∪ {𝐩}
11 𝐷𝑘 ← 𝐫′ ⊳ Update the last rule
12 else
13 𝑄 ← 𝑄 + 𝐩

4  ← 𝑄
5 𝑘 ← 𝑘 + 1
6 𝐵 , 𝐷 ← simplify(𝐵 , 𝐷) ⊳ see Algorithm 2
7 𝐵 , 𝐷 ← generalize( , 𝐷 , 𝑝𝑔 𝑒𝑛) ⊳ see Algorithm 3
8 return 𝐵 , 𝐷

5.2. Rule set generalization

FIND-RS finds a partition of positive examples (i.e., the sets 𝐵𝑖 in
Algorithm 1) that is generally dependent on the order in which exam-
ples are seen. For each partition, a rule is built corresponding to the
most specific hypothesis, encoding the constraints that are necessary
to cover all the examples in the partition.

Since FIND-RS is a greedy algorithm, usually a small number of
general bins is found. Alongside these bins, a high number of bins
is found, each one having small size, yielding more specific rules.
Intuitively, there is room for improvement: it is possible to generalize
further, maintaining the consistency of the classifier. Observe that
exhaustive algorithms are unfeasible: in fact, the set of most general
hypotheses can be extracted only in exponential time (e.g., using the
Candidate Elimination algorithm [9]).
 f

6
Hence, we employ a simple, greedy strategy to increase general-
ization, relaxing each rule independently with a stochastic approach.
Specifically, during the generalization process, constraints are dropped
from the maximally specific rule, as described by Algorithm 3. We
navigate each rule and each constraint (line 1, 3). The primary criterion
for dropping a constraint is that it should not cover negative examples.
Additionally, we empirically found that adding a degree of stochasticity
into the generalization procedure improved performance. If a constraint
can be dropped, we do so with 𝑝 ≤ 1 (line 6). The value of 𝑝 can be
ine-tuned as a hyperparameter during experimentation or manually
et.

Although the strategy does not guarantee to extract the most general
ule, it provides a good approximation in quadratic time. Additionally,
e speculate that is helpful to use hypotheses that are neither maxi-
ally general nor specific: the most general rule could include unseen
egative examples, while the most specific rule could not include
nseen positive examples. This hypothesis is supported by the Bayes
oint theory [17], since it promotes classifiers closer to the center of

mass of the version space, and the size principle [43], that observes
how more specific rules are more effective where there is a sufficient
umber of examples observed. In fact, the proposed method explores
he version space, moving in the neighborhood of the initial rule set.

Finally, we report in Fig. 2 a simplifying example to illustrate
both the Bayes Point, computed using FIND-RS, and the generalization
procedure.

5.3. Computational complexity

The computational complexity of Algorithm 1 can be expressed in
terms of the number of positive and negative examples, where 𝑃 is
he number of positive examples and 𝑁 is the number of negative

examples. Hence, the algorithm runs in 𝑂(𝑃 2𝑁 𝑑) time. In fact, we
iterate over  in two nested cycles (cfr. line 2 and line 7), and iterate
ver  to check if negative examples are covered (cfr. line 9). The
implify procedure in Algorithm 2 takes 𝑂(𝑃 3𝑑) time, given we iterate
n three nested cycles (cfr. line 2, line 3, and line 6). Finally, the

generalize procedure in Algorithm 3 takes 𝑂(𝑃 𝑁 𝑑) time (cfr. line 1, line
3, and line 6). Note that these complexities are in practice lower, since
the number of bins is much less than the number of positive examples
unless the method drastically overfits.

We can conclude that the complexity is cubic in the number of
xamples, and in the worst case, it runs no worse than 𝑂(𝑀3𝑑) time,
here 𝑀 is the total number of examples and 𝑑 is the number of

eatures.

L. Bergamin et al. Neurocomputing 613 (2025) 128699
Fig. 2. The Bayes Point algorithm through a toy example. In 1⃝, each path represents a permutation of the training examples, leading to a different ruleset. In 3⃝, each path
shows an outcome of the generalization procedure, leading to a different rule.
6. Experiments

In this section, we discuss how we tested the proposed techniques
on different datasets and models. We provide all the code used to
implement the models.1

6.1. Models

To build the baselines and the weak learners, we considered the fol-
lowing decision rule learning algorithms: FIND-RS (Ours), RIPPER [15],
ID3 [19], AQ [1], and BRS [27].

In terms of classification performance, we also compare our method-
ology with state-of-the-art models such as Support Vector Machines
(SVM) [44] and Random forests (RF) [29]. Additionally, we consider
TabNet [45], a state-of-the-art neural model, specifically designed for
tabular data. Despite these models can provide some interpretability
(e.g., feature importance metrics), they cannot be described using
rulesets. Therefore, their performance is just reported to quantify the
loss in accuracy of rule-based classifiers.

1 https://github.com/BouncyButton/bayes-point-learning
7
6.2. Datasets

We selected 19 datasets from the UCI Machine Learning Reposi-
tory.2 The datasets are summarized in Table 2. They are split into four
sections, according to their size. All datasets are discrete, except for
ADULT and MARKET, which have also continuous features that have
been discretized using 5 quantile binning. The methods have been
trained using both attribute-value and one-hot encoding, if possible. We
also consider a high-dimensional continuous dataset, RNA-SEQ, that
considers a gene expression task. We discretized it using two quantile
binning, considering its high number of features.

Since we work with binary classification, multiclass datasets have
been converted into binary classification datasets by selecting the most
frequent class as the positive class. We removed inconsistent examples,
that is, pairs of identical instances that were labeled with different
classes. In particular, we kept only one example for each duplicate,
relabeling it according to their most frequent class (or the positive class,
in case of parity).

2 https://archive.ics.uci.edu/ml/index.php

https://github.com/BouncyButton/bayes-point-learning
https://archive.ics.uci.edu/ml/index.php

L. Bergamin et al.

1

1

1

h

s

u

h

l

(
t

d

Neurocomputing 613 (2025) 128699
Algorithm 2: simplify - FIND-RS simplification procedure
Input: 𝐵: set of bins; 𝐷: set of rules
Output: 𝐵: simplified set of bins; 𝐷: simplified set of rules

1 𝑖 ← 0
2 while 𝑖 < 𝑙 𝑒𝑛(𝐷) do
3 for 𝑗 ∈ [𝑖 + 1, 𝑙 𝑒𝑛(𝐷)] do
4 𝐫′ ← 𝐷𝑗
5 𝑘 = 0
6 for 𝐩 ∈  do
7 if 𝐫′ ⪰ 𝐩 then
8 𝐵𝑖.pop(𝑘)
9 else
10 𝑘 ← 𝑘 + 1

1 if 𝐷𝑖 is empty then
12 remove(𝐵𝑖)
13 remove(𝐷𝑖)
4 else
15 𝑖 ← 𝑖 + 1
6 return 𝐵 , 𝐷

Algorithm 3: generalize - FIND-RS generalization procedure
Input:  : set of negative examples
𝐷: set of rules
𝑝𝑔 𝑒𝑛: generalization probability (default: 0.9)
Output: 𝐷: generalized set of rules

1 for 𝐷𝑖 ∈ 𝐷 do
2 𝐫 ← 𝐷𝑖
3 for 𝑐 ∈ 𝐷𝑖 do
4 𝐫′ ← 𝐫 − 𝑐 ⊳ Remove a constraint in a random order
5 𝑝 ← random()
6 if ∄𝑛 ∈  ∣ 𝐫′ ⪰ 𝑛 ∧ 𝑝 ≤ 𝑝𝑔 𝑒𝑛 then
7 𝐫 ← 𝐫′

8 𝐷𝑖 ← 𝐫
9 return 𝐷

Table 2
Benchmark datasets for the rule learning task.
Size Dataset #instances #feat. ⊕ class

Small AUDIO 198 69 class = cochlear_a
BREAST 265 9 class = recurrence
CAR 1727 6 class = unacc
COMPAS 804 27 recidiva = 1
HIV 745 8 class = 1
LYMPHOGRAPHY 147 18 class = 2
MONKS1 431 6 class = 1
MONKS2 431 6 class = 1
MONKS3 431 6 class = 1
PRIMARY 281 17 class = 1
SOYBEAN 302 35 class = frog-eye-l
SPECT 217 22 class = 1
TTT 957 9 class = positive
VOTE 341 16 class = republican

Medium KR-VS-KP 3195 36 class = won
MUSH 8123 22 class = e

Large ADULT 32 535 14 class = ≥ 50K
CONNECT-4 67 556 42 class = win
MARKET 45 211 16 y = yes

High dimensional RNA-SEQ 801 20 531 class = BRCA
8
6.3. Metrics

To evaluate the classification performance of the methods, we used
the F1-score, defined as follows.

F1−scor e = TP
TP + 1

2 (FP + FN)

where TP, TN, FP, FN are the number of true positives, true negatives,
false positives, and false negatives predicted.

We argue this metric is preferable to the accuracy since it can
ighlight a predominance of false positives or false negatives, using

a single metric. This is especially important for rule-based classifiers,
which may identify rules that cover all (or no) examples.

The complexity and specificity of the rule sets are calculated accord-
ing to their definitions; given a rule set , its complexity is ||, and its
pecificity is the average specificity of the rules in .

We also define some metrics to measure the effectiveness of individ-
al rules. Rule coverage is defined as 𝑃𝐫

𝑃 , and rule precision is defined
as 𝑃𝐫

𝑃𝐫+𝑁𝐫
, considering 𝑃𝐫 and 𝑁𝐫 as the number of positive and negative

examples classified by the rule 𝐫, and 𝑃 the number of all the positive
examples.

Finally, we use two ranking strategies to compare FIND-RS to
baseline rule-based classifiers.

• The overall Average Rank (AvgRank) first averages all F1-scores
for each dataset and method, and then it ranks all classifiers using
the averaged F1-score. The best classifier has rank 1, while the
worst has rank 𝑁 . Finally, we average all the rankings across
different datasets.

• The run-based Average Rank (AvgRank-run) does not compute
the average F1-score but considers each run independently. This
second metric gives a lower score to a less robust method, i.e., it
has more variability by changing its initialization only.

6.4. Experimental procedure

To train and test our baselines, we used the following procedure:

1. the data set is randomly divided into training and test sets. We
considered a training-test proportion equal to 0.5;

2. the model is trained using the full training set;
3. we iterated each base method 𝑇 times to create the BP classifier.

4. accuracy and F1-score are calculated using the test set;
5. the process (from (1) to (3)) is repeated 10 times to compute the

average and the standard deviation of the metrics;
6. if applicable, we report the results for the best-performing en-

coding on average (AV or one-hot encoding).

Finally, for the biggest datasets (ADULT, CONNECT-4, and MAR-
KET), we repeated the experiments 3 times, instead of 10, due to the
igh computing time.

6.5. Statistical analysis

We employed a robust statistical analysis to highlight any significant
difference between FIND-RS and all the baselines. We applied a popular
procedure proposed by Demšar et al. [46] and popularized by deep
earning reviews [47].

First, we apply a Friedman test [48] to reject the null hypothesis
𝛼 < 0.05). Secondly, we perform a pairwise post-hoc analysis called
he Wilcoxon signed-rank test [49]. Each classifier is compared to

the others, considering each independent run and each dataset, and
a 𝑝-value is computed. Then, we apply Holm’s correction to the p-
values [50] to address the multiple testing problem and to produce
the corrected p-values. Finally, we display a critical difference (CD)
iagram to summarize the corrected p-values [46]. A CD diagram

connects any clique of non-significantly different classifiers with a
straight line. We also display the AvgRank-run metric.

L. Bergamin et al.

c
d
o
f

E
f
t

o
b
r
t
t

t

t
p
p

e

f
a

w
b
m
w
w

r
o
p

t
s

c
d
b

p

a

Neurocomputing 613 (2025) 128699
Table 3
Hyperparameters considered in our experiments. For some hyper-parameters, a
range of values is presented. These values are used for performing a 5-fold CV
grid search.

Baseline Hyper-parameters

FIND-RS 𝑝𝑔 𝑒𝑛 = 0.9
RIPPER 𝑘 = 2, prune_size = 0.33

dl_allowance = 64
AQ maxstar = 3
BRS maxlen = 3

max_iter = 100
TabNet batch_size = 64, epochs = 500 (small)

batch_size = 256, epochs = 250 (medium)
batch_size = 1024, epochs = 100 (large)

RF n_estimators ∈ {10, 100, 500}
max_depth ∈ {None, 5, 10}

SVM kernel ∈ {linear, rbf},
𝐶 ∈ {0.01, 0.1, 1, 10}
𝛾 ∈ {‘scale’, ‘auto’}
max_iter = 1e6

6.6. Hyperparameters

We summarized our chosen hyperparameters selected for the meth-
ods in Table 3. For all methods, 𝑇 has been set to 100. Since AQ is more
omputationally demanding, we used 𝑇 = 20 and ran it only on smaller
atasets. For BRS, we limit the rule length to 3, trading off the accuracy
f a more specific rule with faster training. Finally, we selected 𝑇 = 20
or the bigger datasets to speed up training.

To run Tabnet, we use the original implementation provided by the
authors [45] with the parameters recommended. We adjusted the batch
size and the number of epochs according to the size of the dataset.

6.7. Initialization strategies for Bayes Point classifiers

The proposed method requires many iterations of a base method.
nsuring sufficient diversity in the rules produced is essential. There-
ore, each iteration preprocesses the training set with some simple
echniques. We found that the following techniques were satisfactory:

• Permutating the training set. Covering algorithms usually con-
sider a single example at a time and grow new rules by check-
ing other examples. Therefore, the order of the examples can
influence the rules created.

• Using bootstrap. Entropy-based algorithms, such as ID3 and BRS,
do not grow rules starting from a single example, but compute
overall statistics on the dataset. Hence, the previous strategy
would be ineffective. Instead, the training set can be sampled with
replacement, similarly to Random Forests.

6.8. Pruning strategy for Bayes Point classifiers

As pointed out in Section 5.1, we suggest a strategy for the selection
f a good number 𝐾 of rules to keep. Specifically, by ordering the rules
y decreasing importance 𝛼, we can select the minimum number of
ules such that the training accuracy is above the training accuracy of
he BP method, multiplied by a threshold. In the following experiments,
he threshold is set to 0.99.

7. Results

Here, we present a range of experiments reported in the paper.
In Section 7.1, we discuss the performance of base methods, showing
hat FIND-RS is competitive with the state-of-the-art rule learning
 t

9
algorithms. In Sections 7.2 and 7.3, we consider a subset of datasets
o clarify the inner workings of the model and to show both their
otential and limitations. Section 7.4 discusses the impact of the hyper-
arameters of FIND-RS. Section 7.5 shows that the BP gives a tangible

performance boost to the base methods, and in particular to FIND-RS,
and in Section 7.6 we discuss how performance changes depending on
the number of iterations 𝑇 . In Section 7.7, we clarify what rule sets are
xtracted using the BP strategy. In Sections 7.8–7.10, we show how

to improve the interpretability of the BP model, and the trade-off in
interpretability and accuracy for the BP method. In Section 7.11 we
showcase how FIND-RS works applied to a high-dimensional dataset
or the gene expression domain. Finally, in Section 7.12 we compare
n explanation provided by a rule vs. an explanation extracted with

LIME for a selected dataset.

7.1. Performance of base learners

In order to assess the effectiveness of our proposed FIND-RS method,
e compare it against several baseline methods commonly used in rule-
ased classification. In Table 4, we report the performance of these base
ethods on various datasets. We observe that RIPPER performs quite
ell, managing to achieve performance close to SVM and RF. However,
e also notice that FIND-RS outperforms RIPPER on datasets that are

governed by a noise-free rule, such as the MONKS and TTT datasets.
This suggests that our approach is particularly well-suited for datasets
where rules play a dominant role in classification. According to the
Friedman test for the ranks, we found a significance of more than 95%,
that also holds for all the following experiments.

These results highlight the strengths and weaknesses of different
ule-based classifiers and demonstrate the potential benefits of using
ur proposed FIND-RS method in scenarios where a noise-free rule is
resent.

7.2. Similarity to ground truth rulesets

In the previous subsection, one could wonder if the ruleset pre-
sented corresponds to the ground truth ruleset that generated the data.
While this is unfeasible for real-world datasets, it is possible to show
this for artificial datasets that can be described using a DNF formula.

We employ the intersection-over-union metric (IoU), also known as
he Jaccard distance, to compute the similarity of two different rule
ets.

𝐽 (1,2) =
|1 ∩2|

|1 ∪2|
(8)

In Table 5 we show how the rule sets found by different methods
ompare, on average, to the ground truth rule set, also considering
ifferent dataset sizes. Since each method suggests a different inductive
ias, only some algorithms can be effective in discovering the under-

lying rules. In particular, FIND-RS is mostly effective with exact and
specific rules. Finally, finding the right representation is fundamental
for some datasets since a one-hot representation can expand the hy-
othesis space to include rules such as not 𝑥𝑖, as shown by the MONKS2

dataset.
Here, FIND-RS is able to find some rules that partially correspond

to the target concept: as reported by Table 6, the method is able to
find rules that match exactly to a portion of a target concept (i.e., four
‘‘≠ 𝟷’’ and two ‘‘= 𝟷’’), or rules that are more specific (i.e., two ‘‘= 𝟷’’
and some more specific constraints).

7.3. Complexity of base learners

In our experiment, we evaluated the complexity of the rulesets
extracted by different classification methods. Table 7 compares the
verage complexity of the rulesets produced by each method.

Considering the average number of rules found, our analysis showed
hat RIPPER and BRS tended to produce the simplest rulesets, followed

L. Bergamin et al.

m
u
o
A

w
R
f
y

Neurocomputing 613 (2025) 128699
Table 4
Average F1-score of base learners. One-hot encoding was used if it was the best-performing one (marked with †). Results are averaged
across 10 runs. Best results across rule-based methods are bolded, best results overall are underlined.

Dataset Find-RS RIPPER ID3 AQ BRS SVM RF TabNet

AUDIO 0.8360.09 0.8300.08 0.8040.07 † 0.6380.10 † 0.8020.10 † 0.8810.04 0.8540.06 0.7720.13
BREAST 0.3910.07 † 0.2860.13 0.3310.11 † 0.4380.04 0.3170.12 † 0.3340.13 0.3910.08 0.3980.08
CAR 0.9890.00 0.9880.00 0.9740.01 † 0.9790.01 † 0.9780.01 † 0.9950.00 0.9810.00 0.9890.01
COMPAS 0.7640.02 0.7070.05 0.7400.03 0.7530.02 0.7190.07 † 0.8250.02 0.8220.02 0.7490.02
HIV 0.8270.02 † 0.8500.03 † 0.8510.02 † 0.7900.03 † 0.8330.03 † 0.9180.01 0.9040.01 0.8540.02
LYMPH. 0.7880.07 0.8310.03 0.7740.06 † 0.7810.07 † 0.7940.05 † 0.8360.04 0.8590.02 0.7650.05
MONKS1 1.0000.00 1.0000.00 0.9340.06 0.9910.01 † 1.0000.00 † 0.9980.00 0.9580.03 0.9750.05
MONKS2 0.7450.09 † 0.1160.11 † 0.4760.10 † 0.3570.05 0.1480.08 † 0.0890.18 0.1480.12 0.8940.08
MONKS3 0.9960.00 † 0.9960.00 † 0.9960.00 0.9960.00 0.9970.00 † 0.9910.01 0.9860.02 0.9940.01
PRIMARY 0.5760.05 0.5850.08 0.5770.12 0.6010.05 0.3270.27 † 0.6230.08 0.6030.06 0.5920.06
SOYBEAN 0.6600.12 0.6890.07 0.6000.11 0.5750.07 † 0.6300.14 † 0.7620.07 0.7670.05 0.6490.21
SPECT 0.8850.04 0.6550.15 0.8880.02 0.9100.02 0.8820.05 † 0.9360.02 0.9360.01 0.8920.03
TTT 1.0000.00 0.9680.02 † 0.9020.03 † 0.8750.02 † 0.9770.02 † 0.9880.00 0.9640.01 0.9720.02
VOTE 0.8580.03 † 0.8980.03 † 0.8800.04 † 0.8820.05 † 0.8430.05 † 0.9100.01 0.9170.03 0.8740.03

KR-VS-KP 0.9880.00 0.9850.00 0.9890.00 † – 0.9540.01 † 0.9870.02 0.9870.00 0.8940.19
MUSH 1.0000.00 1.0000.00 1.0000.00 – 1.0000.00 † 1.0000.00 1.0000.00 0.9630.07

ADULT 0.5320.01 † 0.5340.02 † 0.5420.01 † – 0.6110.01 † 0.3190.00 0.6750.00 0.4700.20
CONNECT-4 0.8600.01 0.7410.05 † 0.8240.02 † – 0.7540.02 † 0.9110.01 0.8960.01 0.8930.01
MARKET 0.4160.01 † 0.2170.02 † 0.4190.02 † – 0.4890.02 † 0.0700.02 0.4600.03 0.2600.16

AvgRank-run 2.31 2.82 3.01 3.57 3.28
AvgRank 2.39 2.84 3.00 3.71 3.05
o
L
K
b
4
i
e
f

b
w
(
g

u
i
a

Table 5
Average ruleset similarity (as IoU) of the rulesets found by the BP methods to the
ground truth rulesets, using AV encoding for all datasets except MONKS2 and MONKS3.
Best results are bolded, second best results are underlined.

Dataset FIND-RS RIPPER ID3 AQ

TTT 1.000 0.011 0.000 0.000
MONKS1 1.000 0.480 0.000 0.050
MONKS2 0.259 0.004 0.010 0.000
MONKS3 0.330 0.333 0.333 0.133

by FIND-RS. This observation can be attributed to the fact that these
ethods are designed to identify rules with imperfect precision: RIPPER
ses an iterative pruning process, and BRS limits a priori the length
f the rules. FIND-RS instead, finds perfect precision rules by design.
s a result, RIPPER is more likely to identify simpler rulesets, whereas

FIND-RS tends to identify more complex rulesets. This characteristic has
important implications that will pointed out in the next experiments.

Regarding the average length of the rules found, all of the methods
e tested were able to identify short conjunctive rules, except for FIND-
S. Again, this shows that the FIND-RS rule-building process, starting

rom a random example and progressively generalizing it, on average
ields more specific rules.

7.4. Generalization of FIND-RS rules

In Fig. 3, we present the impact of removing constraints from the
rules identified in FIND-RS, which leads to performance improvements.
Our experiments demonstrate a consistent enhancement across var-
ious datasets and encodings compared to the baseline (𝑝𝑔 𝑒𝑛 = 0).
With a modest 𝑝𝑔 𝑒𝑛 we observe a significant improvement, and the
performance gradually stabilizes around 0.8. However, in some cases,
setting 𝑝𝑔 𝑒𝑛 = 1 actually reduces the performance. This observation
carries crucial implications. Even if we were to construct maximally
general rules by exhaustively exploring the version space, it would
result in an increased number of false positives and consequently lower
performance. Instead, our study reveals the importance of selecting
rules that strike a balance between generality and specificity. This
methodology offers a rapid and effective solution to the problem.
 e

10
7.5. Performance of Bayes Point classifiers

Table 8 reports the results of BP and non-ruleset-based meth-
ds, with FIND-RS outperforming them on eight datasets (BREAST,
YMPH., MONKS1, MONKS3, PRIMARY, TTT, KR-VS-KP, and MAR-
ET). The performance of FIND-RS is also remarkably close to the
aselines on four other datasets (CAR, SPECT, VOTE, and CONNECT-
). The baseline given by the MONKS datasets suggests that FIND-RS

s able to identify concepts that can be described by a DNF. A prime
xample is MONKS2, whose ground truth concept is ‘‘exactly two
eatures are equal to one’’ [51], which can be described by picking

combinations of two one-hot features. Also, the method seems to be
resilient even using noisy datasets (cfr. MONKS3, which contains 5%
label noise).

Therefore, we argue that FIND-RS is best suited to data that can
e described by a specific ground-truth ruleset, and can perform quite
ell even if this hypothesis is not met. Datasets pertaining to games

i.e., TTT, KR-VS-KP, and CONNECT-4), are particularly well suited,
iven their deterministic nature.

Compared to the base learners’ performance, the results show a clear
performance improvement across all datasets and methods. Addition-
ally, we observed an overall reduction in the standard deviation of the
F1-score, showing how using ensemble methods can reduce the overall
variability in performance.

7.6. Analysis of the improvement of the Bayes Point method

In order to experimentally verify the impact of the Bayes Point
method, we selected some representative datasets and varied the num-
ber of iterations 𝑇 performed, as shown in Fig. 4. We observe a clear
pward trend, that usually stabilizes after 𝑇 = 50. This improvement
s given by the ensemble of rules that cooperate together to provide
 good classification of the test instances, as usually done by other
nsemble methods (e.g., Random Forest).

L. Bergamin et al.

t

Neurocomputing 613 (2025) 128699
Table 6
Example rules extracted from MONKS2 by FIND-RS using one-hot encoding. The ground truth concept is ‘‘exactly two variables
are equal to 1’’. The first four rules are correct, while the last is more specific than necessary (a2 = 3).

Coverage Precision

Train Test Train Test Rule

0.19 0.12 1.00 1.00 a1 ≠ 1 ∧ a2 ≠ 1 ∧ a3 = 1 ∧ a4 ≠ 1 ∧ a5 ≠ 1 ∧ a6 = 1
0.04 0.02 1.00 1.00 a1 = 1 ∧ a2 ≠ 1 ∧ a3 ≠ 1 ∧ a4 ≠ 1 ∧ a5 = 1 ∧ a6 ≠ 1
0.08 0.06 1.00 1.00 a1 ≠ 1 ∧ a2 = 1 ∧ a3 ≠ 1 ∧ a4 ≠ 1 ∧ a5 ≠ 1 ∧ a6 = 1
0.08 0.08 1.00 1.00 a1 = 1 ∧ a2 ≠ 1 ∧ a3 ≠ 1 ∧ a4 ≠ 1 ∧ a5 ≠ 1 ∧ a6 = 1
0.03 0.05 1.00 1.00 a1 ≠ 1 ∧ a2 = 3 ∧ a3 ≠ 1 ∧ a4 = 1 ∧ a5 ≠ 1 ∧ a6 = 1
Table 7
Average ruleset complexity (number of rules, compl.) and average rule specificity (rule length, spec.) for each dataset using the base methods.
Results are averaged across 10 runs.
Method Find-RS RIPPER ID3 AQ BRS

dataset compl. spec. compl. spec. compl. spec. compl. spec. compl. spec.

AUDIO 2.4 9.7 1.7 2.5 2.0 3.8 9.9 2.5 1.4 2.9
BREAST 10.3 8.1 2.2 2.0 12.1 6.5 24.9 3.5 2.7 2.8
CAR 16.6 3.2 11.9 2.7 16.9 7.1 25.0 3.8 7.5 2.6
COMPAS 43.5 6.8 5.6 3.0 48.2 8.1 83.5 4.6 4.8 2.8
HIV 3.8 32.2 8.9 1.6 15.7 7.1 63.4 2.3 7.6 2.7
LYMPH. 7.5 3.1 2.5 1.7 4.3 3.4 11.5 2.2 2.8 2.7
MONKS1 4.0 1.8 4.7 1.9 14.5 3.4 6.7 2.4 4.0 2.8
MONKS2 16.7 5.7 1.5 4.3 24.6 7.0 52.1 5.0 2.1 3.0
MONKS3 2.2 2.2 2.0 2.0 7.2 2.2 2.2 2.2 2.0 2.4
PRIMARY 10.9 4.8 3.1 2.2 10.0 4.4 16.4 3.5 2.9 2.9
SOYBEAN 4.8 6.9 1.3 1.7 5.8 3.3 9.5 3.8 1.4 2.5
SPECT 11.2 3.3 2.1 1.3 9.1 4.8 14.7 2.2 4.6 1.9
TTT 8.0 3.0 9.5 3.3 24.9 6.3 51.5 4.1 8.3 3.0
VOTE 5.2 4.7 2.0 1.8 4.8 4.0 9.0 3.2 2.7 2.7

KR-VS-KP 11.6 7.1 9.0 4.2 11.7 7.9 – – 4.6 2.7
MUSH 6.9 3.2 8.0 2.5 15.5 2.9 – – 4.5 2.9

ADULT 323.5 44.4 22.2 6.7 666.2 16.8 – – 9.0 3.0
CONNECT-4 1911.5 16.1 66.0 7.5 1796.0 17.0 – – 13.3 3.0
MARKET 404.0 24.8 12.3 6.8 630.0 17.5 – – 6.0 3.0

Median 10.3 5.7 4.7 2.5 14.5 6.3 15.5 3.3 4.5 2.8
Fig. 3. Impact of dropping constraints from the rules found by FIND-RS. Each constraint is dropped according to a probability, shown in the 𝑥-axis. We report the F1-score on
he test set alongside its standard deviation (2𝜎, e.g., 95% of the data variance), computed after 10 runs.
t

7.7. Ruleset visualization

In Table 9 we show the rules of a BP classifier sorted by importance,
using 𝛼. We found this visualization to be effective in explaining how
the classifier works. Additionally, it can provide a reasonable explana-
tion for a specific classification. Finally, it can be used to debug a model
and to check that the inferences made are reasonable. In the example
 m

11
reported, we find the two correct rules, and two additional rules with
a very low importance score, that can be effectively pruned using the
echnique shown below.

7.8. Pruning of Bayes Point classifiers

We proposed a pruning strategy for the ruleset generated by our BP
ethod, which can significantly reduce the number of rules without

L. Bergamin et al.

m
t

Neurocomputing 613 (2025) 128699
Table 8
Average F1-score of BP and baseline classifiers. One-hot encoding was used if it was the best-performing one (marked with †). Results
are averaged over 10 runs, with standard deviation reported in smaller size. Best results across interpretable methods are bolded, best
results overall are underlined.

Dataset FIND-RS RIPPER ID3 AQ BRS SVM RF TabNet

AUDIO 0.8200.06 0.8300.08 † 0.8700.05 † 0.7410.08 † 0.8720.05 † 0.8810.04 0.8540.06 0.7720.13
BREAST 0.4140.05 † 0.2800.06 0.2730.08 † 0.4770.04 0.2600.05 † 0.3340.13 0.3910.08 0.3980.08
CAR 0.9920.00 † 0.9910.00 0.9850.00 † 0.9910.00 † 0.9880.00 † 0.9950.00 0.9810.00 0.9890.01
COMPAS 0.7920.02 0.8010.02 0.7980.02 0.7970.02 † 0.7960.02 † 0.8250.02 0.8220.02 0.7490.02
HIV 0.8830.02 † 0.8880.02 † 0.8840.01 † 0.8320.03 † 0.8670.03 † 0.9180.01 0.9040.01 0.8540.02
LYMPH. 0.8740.03 0.8260.04 0.8480.03 † 0.8250.04 † 0.8480.02 † 0.8360.04 0.8590.02 0.7650.05
MONKS1 1.0000.00 1.0000.00 0.9950.01 † 1.0000.00 1.0000.00 † 0.9980.00 0.9580.03 0.9750.05
MONKS2 0.8090.08 † 0.0030.01 † 0.5290.11 † 0.3680.03 0.0170.03 † 0.0890.18 0.1480.12 0.8940.08
MONKS3 0.9960.00 † 0.9960.00 0.9960.00 0.9960.00 † 0.9970.00 † 0.9910.01 0.9860.02 0.9940.01
PRIMARY 0.6320.04 0.5500.10 0.6470.07 0.5990.05 0.4880.17 † 0.6230.08 0.6030.06 0.5920.06
SOYBEAN 0.6980.07 0.6640.06 0.6630.06 † 0.7260.05 † 0.7220.06 † 0.7620.07 0.7670.05 0.6490.21
SPECT 0.9290.01 0.7570.09 0.9180.03 0.9190.01 0.9210.03 † 0.9360.02 0.9360.01 0.8920.03
TTT 1.0000.00 0.9970.00 † 0.9740.01 † 0.9250.01 † 0.9980.01 † 0.9880.00 0.9640.01 0.9720.02
VOTE 0.9100.02 † 0.9040.02 † 0.9050.03 † 0.8680.03 † 0.9090.02 † 0.9100.01 0.9170.03 0.8740.03

KR-VS-KP 0.9940.00 0.9880.00 0.9930.00 † – 0.9570.00 † 0.9870.02 0.9870.00 0.8940.19
MUSH 1.0000.00 1.0000.00 1.0000.00 – 1.0000.00 † 1.0000.00 1.0000.00 0.9630.07

ADULT 0.6020.01 † 0.5720.01 † 0.5880.01 † – 0.6260.01 † 0.3190.00 0.6750.00 0.4700.20
CONNECT-4 0.8940.00 0.7240.01 † 0.8820.01 † – 0.7610.01 † 0.9110.01 0.8960.01 0.8930.01
MARKET 0.5240.01 † 0.2060.04 † 0.4280.01 † – 0.4890.01 † 0.0700.02 0.4600.03 0.2600.16

AvgRank-run 2.30 3.18 2.95 3.41 3.17
AvgRank 2.11 3.24 2.95 3.87 2.84
Table 9
Rules extracted from the dataset MONKS3 using FIND-RS (BP). The ground truth concept is (a2 ≠ 3 ∧ a5 ≠ 4) ∨ (a4 = 1
∧ a5 = 3) with 5% label noise.
𝛼 Coverage Precision

Train Test Train Test Rule

1.00 0.94 0.95 1.00 1.00 a2 ≠ 3 ∧ a5 ≠ 4
0.99 0.15 0.17 1.00 1.00 a4 = 1 ∧ a5 = 3
0.01 0.11 0.15 1.00 0.74 a4 = 1 ∧ a5 ≠ 2 ∧ a5 ≠ 4 ∧ a6 = 2
0.01 0.06 0.05 1.00 1.00 a2 = 3 ∧ a4 = 1 ∧ a5 = 3

Total 1.00 0.99 1.00 0.95
p

o

Fig. 4. Effect of changing the hyperparameter 𝑇 of the Bayes Point technique for each
ethod. In the 𝑥-axis, we report the number of iterations 𝑇 in a log scale. We report

he F1-score on the test set alongside its standard deviation (2𝜎, e.g., 95% of the data
variance), computed after 10 runs. We choose the same OH encoding for all datasets
and methods.
 p

12
sacrificing accuracy. By removing redundant or irrelevant rules, the
runed ruleset is more interpretable and easier to understand, while

also reducing the risk of overfitting.
To evaluate the effectiveness of our pruning strategy, we varied the

degree of pruning progressively increasing the number of rules, and
measured the resulting accuracy on both the train and test sets. Fig. 5
presents the results of this experiment for four different datasets.

Our results show that pruning the ruleset can effectively control
verfitting and improve generalization performance. In particular, we

observed that in three out of four datasets, the accuracy on both the
training and test sets increased after adding the most relevant rules
(around 10). Then, we can see that the accuracy plateaued, suggesting
that our pruning strategy can help decrease the classifier’s size. We also
observed that, for the MONKS2 dataset, the classifier clearly overfits
the data. In this case, using pruning is helpful to limit the overfitting
phenomenon.

In summary, our results support the use of pruning as a useful
technique for improving the interpretability and generalization perfor-
mance of rule-based classifiers.

7.9. Performance of pruned Bayes Point classifiers

We compare the performance of the pruned models to the respective
base learners in Table 10. We find that FIND-RS has the most noticeable
improvement, followed by RIPPER and BRS. Moreover, we analyze the
erformance if we consider up to 𝑘 rules for each dataset in Fig. 6.

L. Bergamin et al.

S

C
u

Neurocomputing 613 (2025) 128699
Fig. 5. The plots (log scale) show the behavior of the training and test accuracy varying the number of kept rules in the FIND-RS-BP pruning phase. Rules are sorted in decreasing
order of importance. The black circle highlights the accuracy corresponding to the 99% threshold.
Fig. 6. F1-score (y-axis) for each dataset and method using the BP classifier with the top 𝑘 rules (x-axis, logarithmic), ordered by decreasing 𝛼. FIND-RS is reported in red.
tandard deviation is reported (2𝜎, e.g., 95% of the data variance).
t

t

p

We found 𝛼 to be effective in giving additional information to the
classifier. In fact, performance usually steadily increases and plateaus
without decreasing afterward. Generally, we also found that FIND-RS is
competitive with other classifiers using few rules, except for COMPAS,
ONNECT-4, ADULT, and MARKET, which cannot be easily explained
sing short and specific DNF formulas.

Finally, we present in Table 11 how performance changes by select-
ing a fixed number of rules. Here, we can see that FIND-RS excels con-
sidering smaller datasets, while BRS can more easily identify general
rules in larger datasets.
13
7.10. Complexity of Bayes Point classifiers

We present the average complexity of the extracted rules in
Table 12, comparing it to the baseline and the BP. We observe that
he pruning strategy successfully reduces the number of rules used, but

not always to the same extent as the baseline, particularly in datasets
hat cannot be described by a concise DNF formula.

This is a reasonable outcome, as methods that mine a high number
of rules do so in datasets that lack a concise ground-truth DNF formula,
such as COMPAS, HIV, and KR-VS-KP. In such cases, the proposed
runing strategy may not be as effective, which explains the differences

observed in the average complexity of the rules.

L. Bergamin et al.

d
B
o
F

Neurocomputing 613 (2025) 128699
Table 10
Average F1-score for baseline and pruned classifiers. Pruned classifiers use a subset of rules to reach the 99% training accuracy of the BP classifier. One-hot
encoding was used if it was the best-performing one (marked with †). Results are averaged over 10 runs. Best results are bolded.
Method FIND-RS RIPPER ID3 AQ BRS

dataset base pruned base pruned base pruned base pruned base pruned

AUDIO 0.836 0.816 0.830 0.823 0.804 0.868 † 0.638 0.680 † 0.802 0.871 †
BREAST 0.391 0.408 † 0.286 0.317 0.331 0.271 † 0.438 0.467 0.317 0.277 †
CAR 0.989 0.990 0.988 0.989 0.974 0.986 † 0.979 0.989 † 0.978 0.988 †
COMPAS 0.764 0.788 0.707 0.808 0.740 0.798 0.753 0.785 0.719 0.798 †
HIV 0.827 0.881 † 0.850 0.887 † 0.851 0.885 † 0.790 0.821 † 0.833 0.866 †
LYMPH. 0.788 0.866 0.831 0.825 0.774 0.848 † 0.781 0.822 † 0.794 0.843 †
MONKS1 1.000 1.000 1.000 1.000 0.934 0.987 0.991 1.000 † 1.000 1.000 †
MONKS2 0.745 0.824 † 0.116 0.130 † 0.476 0.590 † 0.357 0.340 0.148 0.066 †
MONKS3 0.996 0.992 † 0.996 0.992 † 0.996 0.992 0.996 0.992 0.997 0.997 †
PRIMARY 0.576 0.635 0.585 0.535 0.577 0.646 0.601 0.605 0.327 0.504 †
SOYBEAN 0.660 0.688 0.689 0.690 0.600 0.653 0.575 0.701 † 0.630 0.718 †
SPECT 0.885 0.928 0.655 0.759 0.888 0.921 0.910 0.914 0.882 0.917 †
TTT 1.000 1.000 0.968 0.998 † 0.902 0.970 † 0.875 0.915 † 0.977 0.998 †
VOTE 0.858 0.912 † 0.898 0.904 † 0.880 0.902 † 0.882 0.869 † 0.843 0.900 †

KR-VS-KP 0.988 0.994 0.985 0.983 0.989 0.991 † – – 0.954 0.957 †
MUSH 1.000 1.000 1.000 0.995 1.000 0.994 – – 1.000 1.000 †

AvgRank-run 2.25 2.98 2.80 3.69 3.28
AvgRank 2.12 2.94 3.09 3.64 3.03
Table 11
Average F1-score for pruned classifiers. One-hot encoding was used if it was the best-performing
one (marked with †). Results are averaged across 10 runs, with standard deviation reported
in smaller size. We selected 𝑘 = 10 rules for small datasets, 𝑘 = 25 rules for medium datasets,
and 𝑘 = 150 rules for large datasets. Best results are bolded.

Find-RS RIPPER ID3 AQ BRS

AUDIO 0.9330.05 0.9130.05 † 0.9330.04 † 0.6240.12 0.9090.05
BREAST 0.5770.06 0.4290.07 0.3870.11 † 0.5050.07 0.4020.12
CAR 0.9920.00 † 0.9910.00 0.9710.01 † 0.9880.00 0.9490.06
COMPAS 0.5120.06 0.6300.03 0.3220.08 0.1980.09 0.4320.11
HIV 0.8440.03 † 0.8670.02 † 0.5180.12 † 0.6160.06 0.6920.07
LYMPH. 0.9090.03 0.8570.04 0.8640.03 † 0.8820.04 † 0.8460.04
MONKS1 1.0000.00 1.0000.00 0.9780.05 1.0000.00 † 1.0000.00
MONKS2 0.8770.02 † 0.1550.13 † 0.8050.07 † 0.2970.04 0.1390.05
MONKS3 0.9880.00 † 0.9880.00 0.9880.00 0.9880.00 0.9880.00
PRIMARY 0.7450.06 0.6400.07 0.6950.05 0.6360.09 0.5630.07
SOYBEAN 0.7830.09 0.6880.03 † 0.7280.06 0.7260.07 † 0.7250.06
SPECT 0.8980.02 0.7630.08 0.8850.02 0.8950.03 0.8260.04
TTT 1.0000.00 0.9990.00 † 0.8280.03 † 0.9050.03 † 0.9980.01
VOTE 0.9590.01 † 0.9470.01 † 0.9410.02 † 0.9630.00 † 0.9470.02

KR-VS-KP 0.9900.01 0.9880.00 0.9880.01 † – 0.9600.00
MUSH 1.0000.00 † 1.0000.00 1.0000.00 – 1.0000.00

ADULT 0.3730.22 † 0.5790.01 † 0.0780.03 – 0.5860.00
CONNECT-4 0.7080.06 † 0.6800.03 † 0.3790.05 – 0.7580.01
MARKET 0.2590.01 † 0.0000.00 0.0640.02 † – 0.2880.00

AvgRank-run 1.89 2.86 3.16 3.67 3.43
AvgRank 2.05 2.74 3.61 3.66 2.95
7.11. Application to high-dimensional datasets

We also report the performance of FIND-RS applied to a high-
imensional dataset. Here, rule-learning methods such as RIPPER and
RS do not finish because they do not scale well for a high number
f features, while other methods such as TabNet struggle to converge.
IND-RS, as discussed in Section 5.3, scales linearly in the number of

features. Hence, it can handle similar datasets much faster.
In Table 13 we reported the performance of FIND-RS using the

F1-score along some baselines. We observed a couple of peculiarities:

• the rule found by FIND-RS is only one: this means that a single
rule can effectively describe the dataset. Because of this reason,
the Bayes Point technique fails to bring any improvement, since
14
a singular bin with the same examples will lead to the same rule;

• instead, using bootstrap for initializing each single Bayes Point
iteration brings a significant improvement while increasing the
number of unique rules;

• the rules found involve many features (i.e., are more specific).
Here, it is necessary to increase 𝑝𝑔 𝑒𝑛 in order to balance the recall
of the classifier (i.e., have fewer false negatives).

7.12. Comparison with LIME explanations

Finally, we want to report a selected example, shown in Fig. 7,
where we compare an explanation given by LIME and FIND-RS, using
the tic-tac-toe dataset. Explanations given by LIME are generally useful:

L. Bergamin et al.

o

d
g
c
g
i
t
n
L

Neurocomputing 613 (2025) 128699
Table 12
Average BP ruleset complexity (number of rules) for each dataset. Results are averaged across 10 runs. Pruned classifiers use a subset of rules to reach the 99% training accuracy
f the BP classifier.
Method AQ BRS Find-RS ID3 RIPPER

dataset base BP pr. base BP pr. base BP pr. base BP pr. base BP pr.

AUDIO 9.9 123.3 65.6 1.4 92.1 43.3 2.4 21.2 3.7 2.0 78.1 48.3 1.6 15.3 5.1
BREAST 24.9 418.8 240.9 2.7 192.8 166.4 10.3 877.7 398.4 12.1 1209.6 1011.4 2.2 34.6 8.4
CAR 25.0 257.2 45.0 7.5 74.2 13.6 13.1 201.6 19.2 16.9 639.3 196.2 11.9 28.5 10.2
COMPAS 85.5 1550.5 872.9 4.8 385.7 300.2 43.5 3534.9 1671.7 48.2 4340.6 3399.6 5.6 172.9 68.1
HIV 63.4 665.3 269.6 7.6 458.3 358.7 3.8 370.8 181.7 15.7 1294.0 930.0 8.9 117.2 43.3
LYMPH. 11.5 129.0 55.3 2.8 196.4 157.2 7.5 350.9 72.7 4.3 308.4 199.5 2.5 26.4 7.5
MONKS1 8.2 49.0 4.0 4.0 35.9 13.2 4.0 4.0 4.0 13.4 1044.3 462.2 4.7 23.6 4.0
MONKS2 52.1 408.2 178.4 2.1 120.4 16.4 16.7 103.8 18.3 24.6 2292.3 1690.0 1.5 89.3 11.7
MONKS3 3.1 34.2 2.1 2.0 20.5 3.2 2.2 4.3 1.9 7.2 11.2 6.9 6.8 10.0 7.0
PRIMARY 16.4 193.8 107.5 2.9 185.4 111.6 10.9 507.8 116.4 10.0 490.7 371.0 3.1 42.3 16.7
SOYBEAN 9.5 140.5 78.4 1.4 124.2 73.4 4.8 197.4 45.9 3.9 268.4 210.3 1.3 14.0 2.9
SPECT 14.7 114.4 41.8 4.6 332.1 203.9 11.2 544.1 109.5 9.1 767.0 505.2 2.1 18.6 14.2
TTT 51.5 880.0 247.5 8.3 87.3 11.3 8.0 8.3 8.0 24.9 1962.5 1135.1 9.5 180.8 9.2
VOTE 9.0 157.0 71.5 2.7 139.1 66.7 5.2 306.2 82.3 4.8 251.7 132.5 2.0 32.2 4.5

MUSH – – – 4.5 36.0 15.0 6.9 295.7 47.2 15.5 61.0 12.0 8.0 28.5 6.5
KR-VS-KP – – – 4.6 44.3 15.6 11.6 740.7 239.5 11.7 337.9 84.9 9.0 180.6 37.6

ADULT – – – 9.0 65.2 – 323.5 6453.0 – 666.2 13 318.2 – 22.2 375.2 –
CONNECT-4 – – – 13.3 66.3 – 1911.5 36 546.2 – 1796.0 35 437.0 – 66.0 1087.7 –
MARKET – – – 6.0 82.7 – 404.0 8172.0 – 630.0 12 334.3 – 12.3 215.3 –
Table 13
Average F1-score, rule length (specificity), and distinct rules (complexity) for the dataset
RNA-SEQ, and different experimental settings. Results are averaged across 10 runs, with
standard deviation reported in smaller size.

Method F1-score avg. rule len. Unique rules
SVM 0.998 0.0017 – –
RF 0.996 0.0025 6.063 0.0695 1895.40 71.1498

CART 0.969 0.0152 4.18 0.1659 8.2 0.8367
FIND-RS (T=1, 𝑝𝑔 𝑒𝑛 = 0.0) 0.184 0.0576 9950.30 86.6808 1.00 0.0000
FIND-RS (T=1, 𝑝𝑔 𝑒𝑛 = 0.9) 0.717 0.0318 991.60 23.7590 1.00 0.0000
FIND-RS (T=1, 𝑝𝑔 𝑒𝑛 = 1.0) 0.921 0.0162 17.20 3.5637 1.00 0.0000
FIND-RS (T=10, 𝑝𝑔 𝑒𝑛 = 1.0) 0.921 0.0162 17.20 3.5637 1.00 0.0000
FIND-RS (T=10, 𝑝𝑔 𝑒𝑛 = 1.0, bootstrap) 0.993 0.0013 12.54 1.2198 10.00 0.0000
FIND-RS (T=100, 𝑝𝑔 𝑒𝑛 = 1.0, bootstrap) 0.994 0.0038 13.35 0.4466 100.00 0.0000
Fig. 7. Comparison of rules given by LIME (using an SVM as a base learner) and by FIND-RS.
i

they provide an importance estimation of each feature of a selected test
ata point. Each feature can vote if one class or the other is more likely,
iving a numeric score that can be added or compared. Each score is
omputed by trying to swap a feature value with other values. This is
enerally a good assumption, but, as reported by this example, can fail
n the presence of hard rules, such as the three-in-a-row constraint of
he game. In fact, the score of the middle cell is the highest despite
ot being related to the classification. This is accomplished through
IME’s internal mechanism: by switching the value of the middle cell

from naught (○) to cross (×), the classifier is prompted to predict an
impossible scenario where both players would win. The explanation
provided by FIND-RS (and other rule learning methods) aligns more
to the true rules of the game, without encoding additional constraints.
Rule-based methods have the ability to capture relationships between
multiple variable, and provide sparser explanations.
15
8. Possible extensions

Although FIND-RS has been originally designed for categorical data,
t can also be applied to real-valued data after a discretization step, as it

is done with the ADULT and MARKET datasets. Note that this is a stan-
dard procedure in many rule learning models, including RIPPER, BRS,
and SBRL. In addition, many local explanability methods perform this
type of discretization, such as LIME. Each rule can be made to encode if
an attribute belongs to a bin or not. There are some works [52] which
discuss different techniques for discretizing data more efficiently and
can be considered as a starting point in future extensions of this work.

Another approach to deal with real-valued attributes in FIND-RS
could use interval-based rules. For a given bin, the algorithm would
start from the most specific interval (e.g., 1.23 ≤ 𝑥3 ≤ 1.23) corre-
sponding to the positive seed instance in the bin, and then it would
gradually grow the interval to cover more and more positive examples

L. Bergamin et al.

B
r
i

a
e
i

e

t

p

d
t
W

M

c
i

o

‘
i
f

h

t
c
𝐱

Neurocomputing 613 (2025) 128699
(e.g., −3.21 ≤ 𝑥3 ≤ 4.56) and no negative ones. We want to consider
this case for a future extension of this work.

As is, the method does not support multiclass classification. The
most straightforward way to extend it to multiclass problems would be
to use one classifier (a rule set) for each class, in a one-vs-rest fashion.
Note that, by construction, no more than one of the rule sets associated
with the different classes can cover an instance. However, this could
lead to cases where the classifier is unable to give a classification as
output when all the rule sets associated to the different classes do
not cover the instance (i.e., having a reject option). This is plausible
given the nature of the concept learning methods, which attempt to
summarize only the characteristics of the positive data.

Finally, in the future, we would like to provide an enhanced version
using an optimized implementation, using faster data structures and
caching strategies, as often done with similar rule learning methods.

9. Conclusions

This paper proposed principled aggregation methods based on
ayesian learning theory to improve the classification performance and
obustness of rule-based classifiers while ensuring high interpretabil-
ty. We showed that BP aggregation increases the performance of

state-of-the-art ruleset learning algorithms.
In addition, we proposed FIND-RS a novel sequential covering

lgorithm for ruleset learning. FIND-RS has shown to obtain the great-
st benefit from BP aggregation, achieving performance close to less
nterpretable methods, such as SVM and RF.

High interpretability is achieved by considering only the most rel-
vant rules based on their importance in the decision-making process.

Extracting importance values is highly effective in reducing the size of
he classifier while maintaining performance.

Our methodology is general enough to be applicable to any rule-
based method and enhances performance without losing much in in-
terpretability. We believe that these approaches are a step forward
to gaining the trust and transparency of AI systems and boosting
erformance and portability.

CRediT authorship contribution statement

Luca Bergamin: Writing – review & editing, Writing – original
raft, Visualization, Software, Methodology, Investigation, Data cura-
ion, Conceptualization. Mirko Polato: Writing – review & editing,

riting – original draft, Supervision, Methodology, Investigation, For-
mal analysis. Fabio Aiolli: Writing – review & editing, Supervision,

ethodology, Investigation, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Data availability

The data that support the findings of this study are openly available
n Github at https://github.com/BouncyButton/bayes-point-learning.

Acknowledgment

The work of Mirko Polato has been partially supported by the spoke
‘FutureHPC & BigData’’ of the ICSC – Centro Nazionale di Ricerca
n High-Performance Computing, Big Data and Quantum Computing
unded by European Union – NextGenerationEU.
16
Appendix. Proof of Proposition 1

At every iteration 𝑡 of FIND-RS holds that
∀𝑗 < 𝑖 ∈ [𝑘], ∄𝐱 ∈ 𝐵𝑖 ∣ 𝐫𝑗 ⪰ 𝐱,

where the current hypothesis is 𝐷𝑡 = {𝐫1,… , 𝐫𝑘}.

Proof. We give proof by induction on the number of iterations 𝑡.
Case base: 𝑡 = 0, then, by design, 𝐷0 = ∅, thus Proposition 1 is

ollowly true;
Inductive step: let us assume that Proposition 1 holds up until iter-

ation 𝑡 in which 𝐷𝑡 = ⟨𝐫1,… , 𝐫𝑘⟩ where each conjunction 𝐫𝑖 has been
learnt using FIND-S over 𝐵𝑖. At iteration 𝑡 + 1, a new positive instance
𝐱 is considered, and only one of the following two scenarios must be
true.

(1) 𝐷𝑡  𝐱, i.e., ∄𝐫𝑖 ∣ generalize(𝐫𝑖, 𝐱) returns a hypothesis consistent
with  , thus 𝐷𝑡+1 = 𝐷𝑡 ∨ 𝐫𝑘+1 where 𝐫𝑘+1 = 𝐱. Hence, by construction,
∄𝑖 ≤ 𝑘 ∣ 𝐫𝑖 ⪰ 𝐱, so Proposition 1 holds.

(2) 𝐷𝑡 ⪰ 𝐱, i.e., ∃𝐫𝑖 ∣ 𝐫′ = generalize(𝐫𝑖, 𝐱) ⪰ 𝐱 and 𝐫′ is consistent
with  . Since FIND-RS generalizes each conjunctive term in order,
then ∀𝑗 < 𝑖, 𝐫𝑗 cannot be generalized. After the generalization step,
𝐫′ can be either unchanged (i.e., 𝐫𝑖 ⪰ 𝐱) or it can be a generalization
of 𝐫𝑖, i.e., 𝐫′ ≥ 𝐫𝑖. In the former case, the overall hypothesis does not
change and Proposition 1 holds. In the latter case, we have to show
hat 𝐫′ does not cover any instance in 𝐵𝑗 for 𝑗 > 𝑖. Since 𝐫𝑖 has been
reated before any 𝐫𝑗 >𝑖, then 𝐫𝑖 cannot be generalized to cover any
∈ 𝐵𝑗 >𝑖 (otherwise it would have changed previously to cover 𝐱). Thus,

Proposition 1 holds. □

References

[1] R.S. Michalski, On the quasi-minimal solution of the general covering problem,
in: International Symposium on Information Processing, 1969, pp. 125–128.

[2] D. Martens, B. Baesens, T.V. Gestel, J. Vanthienen, Comprehensible credit scoring
models using rule extraction from support vector machines, New Inst. Econ.
(2007).

[3] F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable machine
learning, 2017, arXiv: Machine Learning.

[4] Y. Zhang, P. Tiňo, A. Leonardis, K. Tang, A survey on neural network
interpretability, IEEE Trans. Emerg. Top. Comput. Intell. 5 (2020) 726–742.

[5] B. Kim, M. Wattenberg, J. Gilmer, C.J. Cai, J. Wexler, F.B. Viégas, R. Sayres,
Interpretability beyond feature attribution: Quantitative testing with concept
activation vectors (TCAV), in: International Conference on Machine Learning,
2017.

[6] S. Vashishth, S. Upadhyay, G.S. Tomar, M. Faruqui, Attention interpretability
across NLP tasks, 2019, ArXiv arXiv:1909.11218.

[7] M. Geva, R. Schuster, J. Berant, O. Levy, Transformer feed-forward layers are
key-value memories, 2020, ArXiv arXiv:2012.14913.

[8] M. Narayanan, E. Chen, J. He, B. Kim, S.J. Gershman, F. Doshi-Velez, How do
humans understand explanations from machine learning systems? An evaluation
of the human-interpretability of explanation, 2018, ArXiv arXiv:1902.00006.

[9] T.M. Mitchell, Machine Learning, first ed., McGraw-Hill, Inc., USA, 1997.
[10] R. O’Donnell, Analysis of Boolean Functions, Cambridge University Press, 2014.
[11] C. Rudin, Stop explaining black box machine learning models for high stakes

decisions and use interpretable models instead, 2019, arXiv:1811.10154 [cs,
stat].

[12] J.R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1986) 81–106.
[13] D. Che, Q. Liu, K.M. Rasheed, X. Tao, Decision tree and ensemble learning

algorithms with their applications in bioinformatics, Adv. Exp. Med. Biol. 696
(2011) 191–199.

[14] J. Fürnkranz, Rule learning, in: C. Sammut, G.I. Webb (Eds.), Encyclopedia of
Machine Learning, Springer US, Boston, MA, 2010, pp. 875–879, http://dx.doi.
org/10.1007/978-0-387-30164-8_738.

[15] W.W. Cohen, Fast effective rule induction, in: Machine Learning Proceedings
1995, Elsevier, 1995, pp. 115–123.

[16] L. Breiman, Bagging predictors, Mach. Learn. 24 (1996) 123–140.
[17] R. Herbrich, T. Graepel, Large scale Bayes point machines, in: Ad-

vances in Neural Information Processing Systems, vol. 13, MIT Press,
2000, pp. 528–534, URL https://proceedings.neurips.cc/paper/2000/hash/
333222170ab9edca4785c39f55221fe7-Abstract.html.

[18] J.R. Quinlan, Discovering rules by induction from large collections of examples,
Expert Syst. Micro Electron. Age (1979).

[19] J.R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1) (1986) 81–106.

https://github.com/BouncyButton/bayes-point-learning
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb1
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb1
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb1
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb2
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb2
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb2
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb2
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb2
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb3
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb3
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb3
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb4
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb4
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb4
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb5
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb5
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb5
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb5
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb5
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb5
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb5
http://arxiv.org/abs/1909.11218
http://arxiv.org/abs/2012.14913
http://arxiv.org/abs/1902.00006
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb9
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb10
http://arxiv.org/abs/1811.10154
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb12
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb13
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb13
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb13
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb13
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb13
http://dx.doi.org/10.1007/978-0-387-30164-8_738
http://dx.doi.org/10.1007/978-0-387-30164-8_738
http://dx.doi.org/10.1007/978-0-387-30164-8_738
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb15
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb15
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb15
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb16
https://proceedings.neurips.cc/paper/2000/hash/333222170ab9edca4785c39f55221fe7-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/333222170ab9edca4785c39f55221fe7-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/333222170ab9edca4785c39f55221fe7-Abstract.html
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb18
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb18
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb18
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb19

L. Bergamin et al. Neurocomputing 613 (2025) 128699
[20] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and regression
trees, Routledge, 2017.

[21] P. Clark, T. Niblett, The CN2 induction algorithm, Mach. Learn. 3 (4) (1989)
261–283.

[22] J. Fürnkranz, G. Widmer, Incremental reduced error pruning, in: Machine
Learning Proceedings 1994, Elsevier, 1994, pp. 70–77.

[23] J. Fürnkranz, T. Kliegr, A brief overview of rule learning, in: International
Symposium on Rules and Rule Markup Languages for the Semantic Web,
Springer, 2015, pp. 54–69.

[24] G.I. Webb, OPUS: An efficient admissible algorithm for unordered search, J.
Artificial Intelligence Res. 3 (1995) 431–465.

[25] B. Letham, C. Rudin, T.H. McCormick, D. Madigan, Interpretable classifiers using
rules and bayesian analysis: Building a better stroke prediction model, Ann. Appl.
Stat. 9 (3) (2015) 1350–1371.

[26] H. Yang, C. Rudin, M. Seltzer, Scalable Bayesian rule lists, in: International
Conference on Machine Learning, PMLR, 2017, pp. 3921–3930.

[27] T. Wang, C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl, P. MacNeille, A Bayesian
framework for learning rule sets for interpretable classification, J. Mach. Learn.
Res. 18 (2017) 70:1–70:37.

[28] W.W. Cohen, Y. Singer, A simple, fast, and effective rule learner, AAAI/IAAI 99
(335–342) (1999) 3.

[29] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[30] J.H. Friedman, B.E. Popescu, Predictive learning via rule ensembles, Ann. Appl.

Stat. 2 (3) (2008) 916–954, http://dx.doi.org/10.1214/07-AOAS148.
[31] M. Nalenz, T. Augustin, Compressed rule ensemble learning, in: G. Camps-Valls,

F.J.R. Ruiz, I. Valera (Eds.), Proceedings of the 25th International Conference on
Artificial Intelligence and Statistics, PMLR, in: Proceedings of Machine Learning
Research, vol. 151, 2022, pp. 9998–10014, URL https://proceedings.mlr.press/
v151/nalenz22a.html.

[32] C. Bénard, G. Biau, S.D. Veiga, E. Scornet, SIRUS: Stable and Interpretable
RUle Set for classification, Electron. J. Stat. 15 (1) (2021) 427–505, http:
//dx.doi.org/10.1214/20-EJS1792.

[33] E. Angelino, N. Larus-Stone, D. Alabi, M.I. Seltzer, C. Rudin, Learning certi-
fiably optimal rule lists for categorical data, J. Mach. Learn. Res. 18 (2017)
234:1–234:78.

[34] J. Yu, A. Ignatiev, P.J. Stuckey, P.L. Bodic, Learning optimal decision sets and
lists with SAT, J. Artificial Intelligence Res. 72 (2021) 1251–1279.

[35] L. Katzir, G. Elidan, R. El-Yaniv, Net-{dnf}: Effective deep modeling of tabular
data, in: International Conference on Learning Representations, 2021, URL https:
//openreview.net/forum?id=73WTGs96kho.

[36] L. Dierckx, R. Veroneze, S. Nijssen, RL-Net: Interpretable Rule Learning with
Neural Networks, in: H. Kashima, T. Ide, W.-C. Peng (Eds.), Advances in
Knowledge Discovery and Data Mining, in: Lecture Notes in Computer Science,
vol. 13935, Springer Nature Switzerland, Cham, 2023, pp. 95–107, http://dx.
doi.org/10.1007/978-3-031-33374-3_8.

[37] Z. Wang, W. Zhang, N. Liu, J. Wang, Scalable rule-based representation learning
for interpretable classification, Adv. Neural Inf. Process. Syst. 34 (2021).

[38] F. Beck, J. Fürnkranz, An empirical investigation into deep and shallow rule
learning, 2021, arXiv preprint arXiv:2106.10254.

[39] M.T. Ribeiro, S. Singh, C. Guestrin, "Why should I trust you?": Explaining
the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16, As-
sociation for Computing Machinery, New York, NY, USA, 2016, pp. 1135–1144,
http://dx.doi.org/10.1145/2939672.2939778.

[40] S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions,
in: Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS ’17, Curran Associates Inc., Red Hook, NY, USA, 2017,
pp. 4768–4777.

[41] S.M. Lundberg, G.G. Erion, S.-I. Lee, Consistent individualized feature attribution
for tree ensembles, 2019, arXiv:1802.03888.

[42] T.J. Hastie, R. Tibshirani, J.H. Friedman, The Elements of Statistical Learning,
Springer, 2009, p. 282.
17
[43] J.B. Tenenbaum, Bayesian modeling of human concept learning, in: NIPS, 1998.
[44] B. Schölkopf, A.J. Smola, F. Bach, et al., Learning with kernels: support vector

machines, regularization, optimization, and beyond, MIT Press, 2002.
[45] S.O. Arik, T. Pfister, TabNet: Attentive interpretable tabular learning, Proc. AAAI

Conf. Artif. Intell. 35 (8) (2021) 6679–6687, http://dx.doi.org/10.1609/aaai.
v35i8.16826, URL https://ojs.aaai.org/index.php/AAAI/article/view/16826.

[46] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learn. Res. 7 (1) (2006) 1–30, URL http://jmlr.org/papers/v7/demsar06a.html.

[47] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, P.-A. Muller, Deep
learning for time series classification: a review, Data Min. Knowl. Discov. 33
(4) (2019) 917–963, http://dx.doi.org/10.1007/s10618-019-00619-1.

[48] M. Friedman, A comparison of alternative tests of significance for the problem
of m rankings, Ann. Math. Stat. 11 (1) (1940) 86–92, URL http://www.jstor.
org/stable/2235971.

[49] F. Wilcoxon, Individual comparisons by ranking methods, Biom. Bull. 1 (6)
(1945) 80–83, URL http://www.jstor.org/stable/3001968.

[50] S. Holm, A simple sequentially rejective multiple test procedure, Scand. J. Stat.
6 (2) (1979) 65–70, URL http://www.jstor.org/stable/4615733.

[51] S. Thrun, The monk’s problems: A performance comparison of different learning
algorithms, CMU-CS-91-197, sch, 1991.

[52] W. Zhang, Y. Liu, Z. Wang, J. Wang, Learning to binarize continuous features
for neuro-rule networks, in: E. Elkind (Ed.), Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, IJCAI-23, International
Joint Conferences on Artificial Intelligence Organization, 2023, pp. 4584–4592,
http://dx.doi.org/10.24963/ijcai.2023/510, Main Track.

L. Bergamin obtained his M.Sc. in Computer Science from
the University of Padova and is presently enrolled in the
same university’s Ph.D. program in Brain, Mind, and Com-
puter Science. He is currently focusing on the development
of interpretable machine learning technologies. His research
revolves around reasoning and neuro-symbolic techniques,
exploring theoretical foundations and practical applications.
Additionally, he actively collaborates on the development of
machine learning solutions for healthcare research.

M. Polato is an Assistant Professor at the Department of
Computer Science of the University of Turin. He received
his M.Sc. and his Ph.D. in Brain, Mind, and Computer
Science from the University of Padova (Italy) in 2013 and
2018, respectively. He served as a Program Committee
member of several international conferences and as a referee
for several international journals. He authored more than
40 research products, including international peer-reviewed
conferences and journal papers. His research mainly focuses
on federated learning and interpretable machine learning.
More information about Mirko can be found at https://
makgyver.github.io.

F. Aiolli received a Master’s Degree and a Ph.D. in Com-
puter Science both from the University of Pisa. He was
Post-doc at the University of Pisa, Paid Visiting Scholar at
the University of Illinois at Urbana-Champaign (IL), USA,
and Post-doc at the University of Padova. He is currently
Associate Professor at the University of Padova. His research
activity is mainly in the area of Machine Learning and
Information Retrieval.

http://refhub.elsevier.com/S0925-2312(24)01470-X/sb20
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb20
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb20
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb21
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb21
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb21
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb22
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb22
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb22
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb23
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb23
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb23
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb23
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb23
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb24
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb24
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb24
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb25
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb25
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb25
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb25
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb25
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb26
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb26
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb26
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb27
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb27
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb27
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb27
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb27
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb28
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb28
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb28
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb29
http://dx.doi.org/10.1214/07-AOAS148
https://proceedings.mlr.press/v151/nalenz22a.html
https://proceedings.mlr.press/v151/nalenz22a.html
https://proceedings.mlr.press/v151/nalenz22a.html
http://dx.doi.org/10.1214/20-EJS1792
http://dx.doi.org/10.1214/20-EJS1792
http://dx.doi.org/10.1214/20-EJS1792
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb33
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb33
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb33
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb33
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb33
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb34
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb34
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb34
https://openreview.net/forum?id=73WTGs96kho
https://openreview.net/forum?id=73WTGs96kho
https://openreview.net/forum?id=73WTGs96kho
http://dx.doi.org/10.1007/978-3-031-33374-3_8
http://dx.doi.org/10.1007/978-3-031-33374-3_8
http://dx.doi.org/10.1007/978-3-031-33374-3_8
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb37
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb37
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb37
http://arxiv.org/abs/2106.10254
http://dx.doi.org/10.1145/2939672.2939778
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb40
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb40
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb40
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb40
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb40
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb40
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb40
http://arxiv.org/abs/1802.03888
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb42
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb42
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb42
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb43
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb44
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb44
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb44
http://dx.doi.org/10.1609/aaai.v35i8.16826
http://dx.doi.org/10.1609/aaai.v35i8.16826
http://dx.doi.org/10.1609/aaai.v35i8.16826
https://ojs.aaai.org/index.php/AAAI/article/view/16826
http://jmlr.org/papers/v7/demsar06a.html
http://dx.doi.org/10.1007/s10618-019-00619-1
http://www.jstor.org/stable/2235971
http://www.jstor.org/stable/2235971
http://www.jstor.org/stable/2235971
http://www.jstor.org/stable/3001968
http://www.jstor.org/stable/4615733
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb51
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb51
http://refhub.elsevier.com/S0925-2312(24)01470-X/sb51
http://dx.doi.org/10.24963/ijcai.2023/510
https://makgyver.github.io
https://makgyver.github.io

	Improving rule-based classifiers by Bayes point aggregation
	Introduction
	Related works
	Background and notation
	Rule learning background
	Bayesian learning background

	Bayes Point rule classifiers
	Bayes optimal approximation
	Rule pruning

	FIND-RS
	Rule set simplification
	Rule set generalization
	Computational complexity

	Experiments
	Models
	Datasets
	Metrics
	Experimental procedure
	Statistical analysis
	Hyperparameters
	Initialization strategies for Bayes Point classifiers
	Pruning strategy for Bayes Point classifiers

	Results
	Performance of base learners
	Similarity to ground truth rulesets
	Complexity of base learners
	Generalization of FIND-RS rules
	Performance of Bayes Point classifiers
	Analysis of the improvement of the Bayes Point method
	Ruleset visualization
	Pruning of Bayes Point classifiers
	Performance of pruned Bayes Point classifiers
	Complexity of Bayes Point classifiers
	Application to high-dimensional datasets
	Comparison with LIME explanations

	Possible extensions
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	Proof of Proposition 1
	Appendix. Proof of Proposition 1
	References

