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Abstract

Animal movements are a key factor in the spread of pathogens. Consequently, network

analysis of animal movements is a well-developed and well-studied field. The relationships

between animals facilitate the diffusion of infectious agents and, in particular, shared envi-

ronments and close interactions can facilitate cross-species transmission. Cattle are often

the focus of these studies since they are among the most widely distributed and traded spe-

cies globally. This remains true for Italy as well, but with an important additional consider-

ation. Indeed, another important productive reality in the peninsula is buffalo farming. These

farms have an interesting characteristic: approximately two-thirds of them also rear cattle.

This coexistence between cattle and buffalo could have an impact on the diffusion of patho-

gens. Given that buffalo farms are often overlooked in the literature, the primary goal of this

work is to investigate the potential consequences of omitting buffalo from cattle network

analyses. To investigate this impact, we will focus on Q fever, a disease that can infect both

species and is present on the Italian territory and for which the impact of the buffalo popula-

tion has not been thoroughly studied, and simulate its spread to the farms of both species

through compartmental models. Our analysis reveals that despite the significant difference

in network sizes, the unique characteristic of Italian buffalo farms makes the buffalo network

essential for a comprehensive understanding of bovine disease dynamics in Italy.

Introduction

Network modeling of animal diseases

Network analysis of animal movements is one of the most developed fields that studies and

tries to understand the dynamics of disease diffusion. Animals, both wild and domestic, play a

key role as they can act as reservoirs, vectors, or hosts for various pathogens. Modeling those

interactions as complex networks allows us to obtain a comprehensive understanding of how

the diseases spread within or between different populations. In addition to this, it can help to

develop strategies for disease control or prevention [1–6].

So, animal networks play a crucial role in the diffusion of diseases as they create pathways

for the spread of pathogens between species. The interconnected relationships among animals
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facilitate the transmission of infectious agents, with the movement of infected individuals con-

tributing to the geographical dissemination of diseases. Cross-species transmission is facili-

tated by shared environments and close interactions, making animal networks key

contributors to the emergence and persistence of diseases. Their role is indeed crucial, espe-

cially given the impact various pathogens can have on both animals and humans. Several path-

ogens have been studied with this approach.

In the context of brucellosis, a contagious zoonotic disease caused by Brucella bacteria,

domestic animals such as cattle, sheep, and goats can spread the bacteria, leading to the con-

tamination of their fluids, like milk or reproductive discharges. This poses a risk not only to

other animals within the same herd but also to humans who come into contact with infected

animals or consume untreated dairy products. Additionally, bovine brucellosis harms the farm

economy, due to decreased fertility, increased abortion rates, and reduced milk and meat pro-

duction [7–9].

Tuberculosis, caused by Mycobacterium tuberculosis, is another example where animal net-

works play a significant role. While tuberculosis primarily affects humans, it can also infect a

variety of animals, including cattle (bovine tuberculosis) and wildlife. Cattle are the primary

hosts, but the disease can spread among various animals, including buffaloes and wildlife.

Close contact between humans and animals in certain regions facilitates disease transmission

between species [10–14].

Bovine Viral Diarrhea (BVD) is a widespread viral infection affecting cattle worldwide. It is

caused by the Bovine Viral Diarrhea Virus (BVDV) and the virus primarily targets the gastro-

intestinal and respiratory systems of cattle, leading to symptoms such as diarrhea, respiratory

distress, reduced milk production, and reproductive disorders. BVDV poses a significant eco-

nomic threat to the livestock industry due to its ability to cause persistent infections, immuno-

suppression, and reproductive failures while being difficult to diagnose [15–17].

Bovine Infectious Rhinotracheitis (IBR) is a highly contagious viral disease affecting cattle.

It is caused by bovine herpesvirus type 1 (BoHV-1) and primarily manifests as upper respira-

tory tract infections. It is caused by an alphaherpesvirus, thus establishing a lifelong latent

infection. The latent virus can be reactivated by stressful stimuli, including environmental

heat, transporting cattle long distances, and restriction of water and food [18]. IBR can have

significant economic consequences for the livestock industry, as it can compromise the health

and well-being of cattle, leading to reduced milk production, growth rates, and meat quality

[19–21].

Q fever is an infectious disease caused by the bacterium Coxiella burnetii [22–24]. This

pathogen can infect a wide range of animals, including mammals (also humans), birds, rep-

tiles, and others. In animals, the disease usually does not cause visible symptoms but, when it

manifests clinically, it can induce abortions or infertility and so can generate a significant eco-

nomic impact for affected farms [25, 26]. Infected ruminants excrete Coxiella burnetii through

different biological fluids including milk, feces, urine, as well as birth or abortion products

[27–29] and it can survive several weeks in nature (eg. in contaminated hay) and be spread by

the wind. Animals can be infected through the fluids just mentioned, by inhaling the bacteria,

or through tick bites.

Cattle, sheep, and goats are considered among the primary reservoirs for human contami-

nation [22, 30, 31]. Aerosol is the primary mode of human contamination, it may occur

directly from fluids of infected animals and human-to-human transmission is extremely rare,

although there have been cases of this through blood transfusions [32]. Many infected people

have no symptoms but it can cause fever, headache, diarrhea, and vomiting. In some severe

cases, it can result in pneumonia or hepatitis. Women infected during pregnancy may risk

miscarriage or preterm delivery [27]. A small percentage of people (� 5%) develop a more
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serious infection known as chronic Q fever. This can lead to endocarditis and may be fatal if

not treated properly. In 2021, there was an outbreak of 14 cases among tourists in Italy caused

by an infected calf. This incident highlighted the problem of animal-to-human transmission

and the challenges of diagnosing the disease [33]. Due to its zoonotic effects and economic

implications for livestock [25], Q fever represents a significant concern that impacts both pub-

lic and animal health.

In the above-mentioned studies, usually, the disease is treated considering only one species.

For example, cattle are often mentioned because they are among the most widely distributed

and traded species globally. Narrowing the analysis to Italy, this fact remains true. However,

some peculiarities might be important to consider.

Potential role of buffalo farms

Buffalo farms constitute a significant productive reality in the peninsula and possess an inter-

esting characteristic: approximately two-thirds of these farms also rear cattle. Henceforth, we

will refer to these farms as mixed farms.

Fig 1 illustrates with blue dots the geographical distribution of the farms exclusively housing

buffaloes, and with red squares the distribution of mixed farms in Italy. It is possible to see

how the disposition of the farms is similar, with a higher density of those in the southern

region of the Italian peninsula, therefore excluding a possible regional-restricted presence of

mixed farms.

This coexistence of cattle and buffalo within the same environment raises questions about

the potential impact it may have on the transmission and survival of different pathogens

between these two species. Hence, the often overlooked movements associated with the buffalo

industry may significantly contribute to the dissemination of pathogens.

Given these considerations, the primary objective of this study is to understand the impact

resulting from the omission of the presence of buffaloes, leading to potential inaccuracies in

the evaluation of the overall situation.

In recent times, studies on the prevalence of Coxiella burnetii among buffaloes in Italy [26,

34, 35] have found a wide distribution of this pathogen. Thus, considering the particular situa-

tion of mixed farms and the presence of this pathogen in both cattle and buffalo, a relevant role

of the latter can be assumed. Therefore, not considering the totality of movements could lead

to underestimating the prevalence of this pathogen or to making incorrect or inefficient

decisions.

Q fever is a disease that can infect both species and is present on the Italian territory and for

which the impact of the buffalo population has not been thoroughly studied. If their role is

confirmed through this analysis, one should contemplate incorporating the buffalo network

into network models, particularly those focused on bovine diseases in Italy.

Methods

To analyse the role that the buffalo population could have in the spreading of this disease, we

considered the movements related to the trades of both cattle and buffaloes in Italy. We

extracted data from the Italian National Animal Identification and Registration Database

(NDB) of the Ministry of Health, obtaining the starting point, ending point, and date of each

movement. We restricted our analysis to national movements for 4 years, from 2017 to 2020,

the period in which the data are more stable and solid. We also removed movements to slaugh-

terhouses because of no epidemiological interest.
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Fig 1. Geographical distribution of buffalo farms in Italy. Blue dots: Farms that raise only buffaloes. Red squares: mixed farms. Shapefile of Italy from

GADM data under a CC-BY license https://gadm.org/license.html.

https://doi.org/10.1371/journal.pone.0313657.g001
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Dataset description

For each movement, along with the date, we have information on the type of departure and

arrival points, as well as their geographic locations. Our analysis will focus on the farms, cate-

gorized by the species they contain. We will examine the number of movements related to

each species, taking a network approach to analyse the number of movements arriving at

(indegree) or starting from (outdegree) a farm.

The following definitions will be used:

• Cattle farms: all the farms that house cattle, visible in Fig 2.

• Cattle network: a network that considers all the movements between different entities hous-

ing cattle (i.e., cattle farms and mixed farms).

• Buffalo farms: all the farms that house buffaloes.

• Buffalo network: a network that considers all the movements between different entities hous-

ing buffaloes (i.e., buffalo farms and mixed farms).

• Mixed farms: farms that house both buffaloes and cattle.

Table 1 considers the cattle network, so it displays the aggregate count of movements asso-

ciated with either the origin or destination being a cattle farm, along with the count of active
cattle farms. Active cattle farms are those farms that are either the origin or destination for at

least one movement in a given time span. The data is grouped by year, revealing a gradual

decline in both the overall number of movements and the count of active cattle farms through-

out the years.

Table 2 displays the same data as the previous one but considers the buffalo network. Here,

“active mixed farms” are those mixed farms that are either the origin or destination for at least

one movement of buffaloes in a given period.

Here can be seen how the Italian reality of this species has a different order of magnitude

than that of cattle. This adds significance to our research question. While the size of this net-

work might suggest it is negligible, the seroprevalence of Q fever, as discussed in the introduc-

tion, appears to conflict with this idea.

It is also interesting to note how the number of movements is significantly increasing

despite a small rise in the number of active farms, suggesting a growing average number of

movements per farm.

In 2017, movements to or from buffalo mixed farms accounted for more than 90% of the

total buffalo movements. By 2020, this percentage had decreased to 80%.

One possible explanation for this shift is that in the past, companies with existing cattle

facilities could easily expand to include buffaloes without a significant initial investment. As

the market for buffalo milk products, such as buffalo mozzarella, grew in Italy [36], there was a

trend toward establishing farms exclusively dedicated to buffaloes.

In Table 3 we have a brief statistical analysis of the yearly aggregated, directed, and with

possible multiple edges between the same nodes network [37]. The weight of the edges is the

number of animals moved in a single movement. In this table, mixed farms (buffalo network)

denotes the subset of mixed farms that are either the origin or destination for at least one

movement of buffaloes in a given period. The mean degrees are computed on nodes that have

that degree different from 0.

Also from this data, we can see the different sizes of the networks of the two species and the

increasing trend related to the buffalo farms.
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Fig 2. Geographical distribution of cattle farms in Italy. Shapefile of Italy from GADM data under a CC-BY license https://gadm.org/license.html.

https://doi.org/10.1371/journal.pone.0313657.g002
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Disease model

We will then simulate the spread of Q fever, using a compartmental model in discrete time as

it allows us to maintain the movement generated network structure and it is widely used in lit-

erature [38, 39]. In this model, we consider the farms as the epidemiological units, since the

diagnosis of Q fever is often done at the farm level. Therefore, we employ an SIS model, which

accurately reflects the dynamics at this scale. More complex models, incorporating additional

compartments, are better suited for capturing individual animal-level processes. The model

divides the farms into two compartments: susceptible (S) and infectious (I). A susceptible farm

is a farm where no animals are infected with the disease. An infectious farm is a farm where at

least one animal is infected with the disease. The model assumes that the disease can spread

from an infectious farm to a susceptible farm through the movement of animals. So, a suscepti-

ble farm that receives animals from an infectious farm will also become infectious according to

a defined probability of infection. An infectious farm becomes susceptible again, according to

a defined probability of healing, when all infected animals are removed or healed, and so there

are no animals infected with the disease on the farm. Finally, given the difficulty in accurately

Table 1. Cattle network. Number of active farms and movements by year.

year active cattle farms movements between cattle farms

2017 99641 667315

2018 95657 654527

2019 93107 650713

2020 92491 642949

https://doi.org/10.1371/journal.pone.0313657.t001

Table 2. Buffalo network. Number of active farms and movements by year.

year active buffalo farms movements between buffalo farms active mixed farms movements between mixed farms
2017 1243 4791 853 4390

2018 1242 5327 850 4705

2019 1237 6372 839 5352

2020 1305 8075 870 6609

https://doi.org/10.1371/journal.pone.0313657.t002

Table 3. Statistics of yearly aggregated networks by species.

year Nodes Mean indegree Mean outdegree Mean weight Density

2017 cattle farms 8.32 8.83 54.73 5.64e-05

buffalo farms 5.86 5.78 38.48 0.0029

mixed farms (buffalo network) 6.11 6.01 37.78 0.0032

2018 cattle farms 8.37 8.82 56.43 5.90e-05

buffalo farms 6.43 6.14 41.09 0.0031

mixed farms (buffalo network) 6.66 6.27 40.39 0.0033

2019 cattle farms 8.53 8.91 58.05 6.16e-05

buffalo farms 8.65 6.97 45.99 0.0038

mixed farms (buffalo network) 9.03 7.06 44.59 0.0040

2020 cattle farms 8.35 9.04 59.81 6.17e-05

buffalo farms 10.61 8.39 49.09 0.0044

mixed farms (buffalo network) 11.04 8.62 48.21 0.0048

https://doi.org/10.1371/journal.pone.0313657.t003
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estimating infection and recovery rates at the farm level, we conducted a grid search to explore

a range of parameter values in our simulation analysis.

Network analysis

From the extracted data we built weekly temporal networks where the premises of origin and

destination will be the nodes and the movements of the animals will be the edges. In this net-

work, the edges have a direction (from the origin to the destination) and a weight given by the

number of animals moved [40]. We aggregated the movement data by week and created a

series of networks to capture temporal characteristics that would be lost with a static approach

[1, 41–43].

Cross-species interaction

As previously mentioned, the coexistence of cattle and buffaloes in mixed farms establishes a

potential link between the buffalo and cattle networks, providing a pathway for the transmis-

sion of diseases between the two. Nodes, where both species are present, can help the spread of

diseases, facilitated by airborne transmission or through vectors (eg. ticks). In Fig 3 we have a

depiction of this concept. To model this aspect in our disease model and enable the potential

transmission of infection between the buffalo and cattle networks, we created links between

those two through the mixed farms [44].

Cattle network

Fig 4 presents the aggregated indegree and outdegree distributions of the cattle network for

each year. The four plots show similar, highly heterogeneous patterns. Indeed, we can see how

we have some farms with an high indegree while the same is not true regarding the outdegree.

This disparity might indicate a network structure where larger farms buy from different

smaller ones.

This shows also in Fig 5, where the indegree and outdegree for each month, averaged on

the four years, are computed. Consistent with the previous observation, also the average inde-

gree remains slightly higher throughout the months.

In Fig 6, the number of active edges and active nodes per week are plotted. Several oscilla-

tions occur, caused by seasonal movements typical of the Italian scenario, such as summer

Fig 3. Cattle and buffalo networks interaction.

https://doi.org/10.1371/journal.pone.0313657.g003
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grazing in pastures [1, 7, 40]. Despite the fluctuating values, the general behaviour seems to be

constant. Additionally, we observe that the number of active edges is similar to the number of

active nodes, suggesting that while there is a significant number of active farms per week, they

do not engage in a large volume of movements.

In Fig 7, this characteristic is evident. Here, we have plotted, for each week, the mean inde-

gree and outdegree computed among the active nodes, along with the mean number of ani-

mals in each movement (weight). The mean degrees are computed on nodes that have that

degree different from 0. On the main plot, we see that the average number of animals moved is

relatively low. Additionally, on the zoomed plot, we observe how the indegree and outdegree

attain modest values, never exceeding 2. The indegree is higher than the outdegree, suggesting

that smaller farms are moving towards the same node.

That being said, the number of active farms is significantly large, as evident in Fig 2, where

we highlighted the geographical location of all the active farms over the 4 years. These nodes

also exhibit strong connectivity. Indeed, the largest weakly connected component, considering

only movements from farm to farm each year, encompasses 80% of the farms (and more than

95% if we consider also the movements from and towards the pastures). The largest strongly

connected component, instead, is composed by almost 50% of the nodes. This, along with the

total number of movements, needs to be taken into account when analysing the potential

implications for the diffusion of a disease.

Fig 4. Degree distribution—Cattle network, yearly aggregation.

https://doi.org/10.1371/journal.pone.0313657.g004
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Buffalo network

The indegree and outdegree distributions for the buffalo network are also heterogeneous, as

is visible in Fig 8. In this figure, we can find some farms that have a high outdegree. It

should be noted that the values here are much smaller than those related to the bovine

network.

Fig 9, where the indegree and outdegree for each month, averaged on the four years, are

computed, is consistent with the previous figure. Indeed, also the average outdegree is slightly

bigger than the average indegree for each month.

In Fig 10, we can see an upward trend in the number of active edges and nodes per week,

confirming again the increasing activity of these farms.

In Fig 11, we observe the average outdegree, indegree and number of animals moved

(weight). In the background plot we can see how the number of animals moved is bigger on

average than the cattle network. In the foreground, we observe in a zoomed plot how the

degrees have low and similar values, once again an indication of a network with low

activity.

These nodes are less connected compared to those in the bovine network. Indeed, the larg-

est weakly connected component, encompasses more than 95% of the nodes but the largest

strongly connected component is composed by a bit more than 25% of all the nodes.

Fig 5. Average degree per month—Cattle network. Monthly average across all active nodes for each of the four years.

https://doi.org/10.1371/journal.pone.0313657.g005
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Fig 6. Active nodes and edges—Cattle network, weekly aggregation.

https://doi.org/10.1371/journal.pone.0313657.g006

Fig 7. Cattle network statistics—Weekly aggregation. Main plot: mean outdegree, indegree and weight. Secondary plot: magnification of outdegree and

indegree.

https://doi.org/10.1371/journal.pone.0313657.g007
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Mixed farms in the buffalo network

In Figs 12 and 13, we compare the buffalo network properties, respectively the mean outdegree

and the mean indegree, of mixed farms to farms that raise only buffaloes. The average indegree

of the two networks is similar, while the mixed farms have a higher average outdegree, an

aspect that could, once again, impact the diffusion of a pathogen capable of reaching these

farms.

Therefore, mixed farms are significant not only for providing a link to the cattle network

but also for potentially accelerating the spread of a pathogen, given the above-mentioned

considerations.

Simulations and results

We simulated the diffusion of Q fever in our aggregated network, as seen in Fig 3. As depicted

in Table 4, we considered various probabilities of infection and recovery. Starting the simula-

tions we infected a different number of farms selected among different sets. For the latter, the

percentage is relative to the total number of nodes in the aggregated 4-year network.

In light of the considerations in the previous sections, to assess whether the buffalo network

alone could indeed facilitate the diffusion of a pathogen, we initiated the simulation at week 0

by infecting a randomly selected subset of nodes, choosing from either buffalo farms or buffalo

Fig 8. Degree distribution—Buffalo network, yearly aggregation.

https://doi.org/10.1371/journal.pone.0313657.g008
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farms and mixed farms. The first approach avoids prematurely establishing a link with the cat-

tle network and prevents overestimation of the diffusion due to the higher outdegree associ-

ated with the mixed buffalo nodes. Therefore, we anticipate the second method to result in a

higher diffusion of Q fever in the network. Subsequently, we proceeded to simulate the diffu-

sion of Q fever using real movement data aggregated by week from 2017 to 2020.

Figs 14 and 15 present 112 histograms, representing different scenarios of random selec-

tion, infection, and healing probabilities. The values described by the histograms indicate the

number of infected farms at the end of each simulation among 100 runs and are shown using a

symlog scale on the x-axis. They show the results of the simulations with the parameters in

Table 4 and initial percentage of infected farms equal to 0.05% and 0.5% respectively.

The top grids (blue and orange) show the results of the simulations where the initial set of

infected farms is composed of the buffalo farms without the mixed farms. The bottom grids

(green and red), instead, show the results of the simulations where the initial set of infected

farms is composed of the buffalo farms with the mixed farms.

In the top grid (blue) in Fig 14, we can see how only for a low probability of infection com-

bined with a high probability of healing we do not have infected farms at the end of the simula-

tion. In the other cases, we see how the histograms are located on values bigger than zero,

denoting the presence, at the end of the 4 years, of farms that contain the pathogen. As

expected, the number of infected farms increases when we increase the probability of infection.

Fig 9. Average degree per month—Buffalo network. Monthly average across all active nodes for each of the four years.

https://doi.org/10.1371/journal.pone.0313657.g009
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Fig 10. Active nodes and edges—Buffalo network, weekly aggregation.

https://doi.org/10.1371/journal.pone.0313657.g010

Fig 11. Buffalo network statistics—Weekly aggregation. Main plot: mean outdegree, indegree and weight. Secondary plot: magnification of outdegree

and indegree.

https://doi.org/10.1371/journal.pone.0313657.g011
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Fig 12. Comparison of mean outdegree of farms with only buffaloes and mixed farms.

https://doi.org/10.1371/journal.pone.0313657.g012

Fig 13. Comparison of mean indegree of farms with only buffaloes and mixed farms.

https://doi.org/10.1371/journal.pone.0313657.g013
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For example, we can see how in the three plots in the first column of the blue grid, the histo-

grams shift to the right as we move down on the column. The opposite is true as we move right

on a line.

In the bottom grid (green) in Fig 14 is interesting to see how starting from a set that con-

tains also the mixed farms, so those farms that raise both buffaloes and cattle, allows the patho-

gen to spread from the buffalo network to the cattle network, therefore contributing to the

spread to and among cattle farms. The general considerations are similar to the ones related to

the top grid, but here, even when starting with a small percentage of infected farms, with a low

probability of infection and a high probability of healing there are some runs where the patho-

gen is able to spread and survive into the cattle network.

In Fig 15, we can observe a similar behaviour to the one described just above. A higher ini-

tial number of infected farms results in fewer simulations with no infected farms at the end

and a larger number of infected farms overall.

Figs 16 and 17 represent the same runs but the histograms describe the number of infected

buffalo farms. The color scheme and the considerations are similar to the ones related to Figs

14 and 15 respectively, obviously with a different order of magnitude. But what is important to

point out here is how also in a smaller network like the buffalo one, the pathogen is able to

survive.

As anticipated, when the infections starts from both the buffalo farms and the mixed farms,

the infection exhibits an easier diffusion into the cattle network. Nevertheless, the disease can

still spread into the cattle network even with a small number of initially infected farms selected

from the buffalo farms without the mixed farms. Furthermore, even with low infection proba-

bilities, the pathogen, albeit less frequently, spreads into the cattle network, highlighting again

a potential risk for this species.

Fig 18 presents the average number of infected farms over 100 runs with parameters λ=0.5,

μ=0.1 and starting by infecting 0.5% of all the nodes selected among the buffalo farms without

the mixed farms (last row and fourth column in the orange histogram panel). Indeed, the blue

line represents the number of infected farms. So at time 0, it will be composed of only buffalo

farms. The total number of infected farms decreases at the beginning and then, around time

30, increases again. This is because as long as time goes on, while the number of buffalo

infected farms decreases, an increasing number of cattle farms is infected, as we can see from

the increasing behaviour of the red line. So, we can observe that the disease enters the cattle

network and, from that point onward, it is able to spread.

Fig 19 presents the average number of infected farms over 100 runs with the same parame-

ters but the nodes are selected among the buffalo farms with the mixed farms (last row and

fourth column in the red histogram panel). Therefore, at time 0, the blue line represents both

buffalo and mixed farms. Unlike Fig 18, the blue line does not initially decline. Instead, there is

an immediate increase in the number of infected cattle farms due to the presence of the patho-

gen in mixed farms, facilitating its spread within the cattle network.

To summarize, we have observed the capability of Q fever to spread within the cattle net-

work, even when initiated from a small and poorly connected subset of farms that raise only

Table 4. Parameters of the simulations. Starting infected set.

Probability of infection λ 2 {0.075, 0.1, 0.25, 0.5}

Probability of healing μ 2 {0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15}

Infected farms 2 {Buffalo farms, Buffalo farms and mixed farms}

Initial Percentage, among all farms, of infected farms 2 {0.05% (78 nodes), 0.5% (780 nodes)}

https://doi.org/10.1371/journal.pone.0313657.t004
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Fig 14. Number of infected farms, among 100 runs, at the end of each simulation. Symlog scale on the x-axis. Initial

percentage of infected farms equal to 0.05%.

https://doi.org/10.1371/journal.pone.0313657.g014
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Fig 15. Number of infected farms, among 100 runs, at the end of each simulation. Symlog scale on the x-axis. Initial

percentage of infected farms equal to 0.5%.

https://doi.org/10.1371/journal.pone.0313657.g015
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Fig 16. Number of infected buffalo farms, among 100 runs, at the end of each simulation. Symlog scale on the x-axis.

Initial percentage of infected farms equal to 0.05%.

https://doi.org/10.1371/journal.pone.0313657.g016
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Fig 17. Number of infected buffalo farms, among 100 runs, at the end of each simulation. Symlog scale on the x-axis.

Initial percentage of infected farms equal to 0.5%.

https://doi.org/10.1371/journal.pone.0313657.g017
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Fig 18. Average number of infected farms over 100 runs. λ=0.5, μ=0.1. Initial percentage of infected nodes equal to 0.5%. Nodes selected among the

buffalo farms without the mixed farms. SE = Standard Error.

https://doi.org/10.1371/journal.pone.0313657.g018

Fig 19. Average number of infected farms over 100 runs. λ=0.5, μ=0.1, Initial percentage of infected nodes equal to 0.5%. Nodes selected among the

buffalo farms with the mixed farms. SE = Standard Error.

https://doi.org/10.1371/journal.pone.0313657.g019
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buffaloes, so without infecting any cattle or mixed farms at the beginning. This holds even

under a low probability of infection and a high probability of healing. It is also interesting to

add how the pathogen survives also in the buffalo network.

Discussion

While the buffalo network in Italy is considerably smaller than the cattle network, the close

proximity of buffalo and cattle increases the risk of pathogen transmission.

Farms that contain both species effectively connect the two networks, facilitating the spread

of the disease. Despite the substantial difference in the network sizes, the peculiarity of buffalo

farms in Italy renders the buffalo network non-negligible when analysing the Italian bovine

reality.

Indeed, we have seen how a pathogen can spread from the buffalo network to the cattle

one. Excluding the buffalo network would therefore lead to a major loss of information and a

consequent error in the analysis of the cattle network alone.

Given the recent case of Q fever in Italy [33] and its impact on humans, it could be useful to

consider some kind of intervention on the mixed farms, either to obtain an early diagnosis of

the Q fever or to reduce the risk of infection towards the bovine network that is often the cause

of infection towards humans. The latter could be done by forcing the two species of animals

into different spaces, reducing the contact between them, frequently cleaning the shared areas,

and using different hays since they are a possible source of infection [45].

The hypothesis that buffalo farms in Italy act as a reservoir for the Q fever pathogen, Cox-
iella burnetii, is plausible due to several factors. Both cattle and buffalo farms share similar risk

factors for Q fever spread. These include factors related to the animals themselves, such as age,

stressful events, and pregnancies. While control measures for Q fever exist for both cattle and

buffalo, the way they are implemented might differ. On average, buffalo farms tend to be

smaller compared to cattle farms. This could potentially lead to less stringent biosecurity prac-

tices in buffalo farms, allowing for a higher prevalence of Q fever within those herds. Further-

more, the concentration of buffalo farms in southern Italy, where enforcing regulations can be

more challenging, could contribute to a higher prevalence of Q fever. This situation is similar

to what has been observed with other diseases like brucellosis and tuberculosis [46].

The presence of mixed farms, raising both cattle and buffalo, creates a potential transmis-

sion bridge between the species. If buffalo farms, due to the factors mentioned above, act as a

reservoir with a higher prevalence of Q fever, these mixed farms could continuously reintro-

duce the pathogen back into the cattle network, hindering eradication efforts.

Buffalo, raised near cattle, may potentially contribute to the transmission of various diseases

between the two species. Thus, the importance of buffaloes in Italy cannot be underestimated

even in a broader scenario. Careful consideration is essential for understanding disease

dynamics, not only for the specific pathogen under examination but also for different ones. In

addition, the real case scenario of Q fever requires more attention since it can infect also other

species.

Not only this, but also the fact that the pathogen can survive, as seen in most simulations, in

the buffalo network, suggests that it is fundamental to consider both networks when trying to

deal with Q fever.

So, as part of future work, exploring the interaction between buffalo, cattle, and other spe-

cies like goats and ticks could provide a more comprehensive understanding of this phenome-

non. These species could serve as reservoirs for pathogens, playing an important role. While

not considered in this study, their inclusion in the model would contribute to a more accurate

representation of disease spread, surely increasing its diffusion.
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Moreover, the implementation of surveillance or prevention measures could be valuable in

mitigating the risk of pathogen spread and safeguarding both animal and human health. Any

potential control programs should consider all relevant species to effectively address the com-

plexities of disease transmission.
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