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Abstract 27 

This study provides a metataxonomic analysis of the fungal communities in soils under slash-28 

and-burn agroforestry system and offers new insights into the relationships between fungal 29 

populations and soil physicochemical features such as pH, the particle size distribution, easily 30 

oxidizable organic carbon, total nitrogen, available phosphorus, and the mineralogical composition. 31 

Soils from three locations in central Mozambique—Vanduzi, Sussundenga, and Macate—that are 32 

subjected to slash and burn were considered to assess the effects of the forest fallow length (temporal 33 

variation) and of the land use (charcoal kiln, crop field, and forest; meaning horizontal variation) on 34 

the fungal community. The fungi of the genetic horizons (vertical variation) were also considered.  35 

Most of the detected fungi were decomposers, antagonists of plant pathogens, and plant-growth 36 

promoters; they were differently distributed in relation to the soil’s physicochemical properties and 37 

the soil use. The variations in the fungi distribution among the locations and between the horizons 38 

were considerable, while there were few variations between the different land-use types. The limited 39 

differences between land uses indicate the inability of a forest fallow period shorter than 50 years to 40 

improve soil fertility and induce changes in the fungal community. The pedological approach used to 41 

identify and sample soil horizons allowed us to clearly distinguish the fungal community of the A 42 

horizons, those richest in organics and nutrients, and that of the Bo horizons, which have poor fertility.  43 

 44 

  45 

Keywords: soil genetic horizons; Illumina sequencing; land-use change; soil fungi; 26S rRNA gene 46 

sequencing   47 
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1. Introduction 48 

Slash and burn is a rotational agroforestry system that is widespread in the tropical and 49 

subtropical regions of the world (Mertz et al., 2009), where poorly fertile soils such as Oxisols occur 50 

(Soil Survey Staff, 2015). In rural areas, farmers use the slash-and-burn approach to a segment of 51 

forest to convert it into a cultivated field; to do so, they distribute several charcoal kilns per hectare 52 

where stems and branches are used to produce charcoal for the family. The burning activity and the 53 

charcoal production produce ashes as a byproduct; these are roughly distributed across the field. Such 54 

distribution has the effect of temporarily increasing soil fertility and boosting microbial activity (Gay-55 

des-Combes et al., 2017). After two to four years of cultivation, when crop production is insufficient 56 

to maintain family supplies, the field is abandoned and natural reforestation is allowed to occur for 57 

decades until the land is cultivated again. Due to the absence of chemical fertilization (Rafael et al., 58 

2018), the forest fallow period is considered essential to restoring a certain level of soil fertility 59 

(Gonçalves Lintemani et al., 2019) through soil organic matter (SOM) accumulation and 60 

mineralization (Andriamananjara et al., 2020; Silva-Forsberg and Fearnside, 1997). For centuries, the 61 

duration of the forest fallow was approximately 50–100 years or more, but the population growth and 62 

socio-economic changes that occurred in the second half of the 20th century shortened this period by 63 

a significant amount (Chowdhury et al., 2020; Nath et al., 2016), also reducing the ecosystem services 64 

provided by forests (Wood et al., 2016). Indeed, studies have established that gradual soil degradation 65 

(Gay-des-Combes et al., 2017; Thomaz et al., 2013; Zwartendijk et al., 2020) and the loss of flora, 66 

fauna, and microbial diversity (Aguilar-Fernández et al., 2009; Randriamalala et al., 2019) are 67 

triggered by the intense deforestation caused by the intensification of the slash-and-burn practice 68 

(Curtis et al., 2018).  69 

After the effects of a slash-and-burn system on the soil bacterial community in Mozambique were 70 

studied (Serrani et al., 2023), it was considered useful to assess the fungal community’s diversity in 71 

the same context. In fact, as argued by Arévalo-Gardini et al. (2020), due to the influence of microbial 72 
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activity on ecosystems’ stability and fertility, variations in the fungal community may constitute a 73 

valid indicator of changes in soil health caused by land management. Fungi are significantly affected 74 

by physiographic conditions, environmental contexts related to climate and land management, and 75 

soil properties such as the SOM content and fertility level (Shah et al., 2016; Spurgeon et al., 2013; 76 

Oehl et al., 2017). Important soil fungi, such as saprotrophic varieties, are fundamentally important 77 

decomposers of lignocellulosic remnants (Clocchiatti et al., 2020, van der Wal et al., 2013), while 78 

entomopathogenic fungi are endophytes that can enhance plant defenses against harmful insects 79 

(Deaver et al., 2019; Vega, 2018). Many studies describe the diversity in the soil fungal population, 80 

but few consider fungi in soils submitted to slash and burn. To the best of our knowledge, only 81 

Aguilar-Fernández et al. (2009), Adeniyi (2010), Sharmah et al. (2014), and Barraclough and Olsson 82 

(2018) have studied fungi variations in soils subjected to slash and burn; these studies have mainly 83 

focused on the arbuscular mycorrhizal fungi (AMF) community, a group of fungi that have obligate 84 

symbiotic relationships with many plants and which play a specific role in nutrient uptake (e.g., 85 

Deveautour et al., 2018; Yang et al., 2011; Saliou Sarr et al., 2019; Rożek et al., 2020). Improving 86 

our knowledge of soil fungal diversity would allow us to understand the complexity of specific 87 

ecosystems and their responses to slash-and-burn practice.  88 

The aim of this work was therefore to use a metataxonomic approach to evaluate the fungal diversity 89 

in the soils of three locations in central Mozambique that are subject to slash and burn, considering 90 

the effect of i) the three locations as representing different durations of the forest fallow period 91 

(temporal variation); ii) the land uses forming the slash-and-burn system: charcoal kiln, crop field, 92 

and forest (horizontal variation); and iii) the development of genetic soil horizons (vertical variation). 93 

In so doing, we hypothesized that the soil fungal community can differentiate horizontally and/or 94 

vertically, according to land management and soil changes. 95 

 96 
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2. Materials and methods 97 

2.1. Locations and morphological description of the studied areas  98 

Three locations from the Manica province, central Mozambique, were selected: Vanduzi, 99 

Sussundenga, and Macate (see Fig. S1 of Supplementary Materials in Serrani et al., 2023). The 100 

selected locations all fall into the Agro-Ecological Zone R4, which includes areas between 200 and 101 

1000 m above sea level (Maria and Yost, 2006), with the mean annual rainfall ranging from 1000 to 102 

1200 mm and the mean annual air temperature around 21°C (Climate Data, 2019). The geology of 103 

the zone is dominated by the Mesoproterozoic Southern Irumide Belt (950-1060 Ma), a litho-tectonic 104 

unit made up of metamorphic rocks (Chaúque et al., 2019). The predominant soil type belongs to the 105 

order of Oxisols, which is characterized by primary low fertility and strong erosion due to the 106 

topography of the terrain (Maria and Yost, 2006). Furthermore, the soils were recognized as having 107 

an aridic moisture regime and a thermic temperature regime (Soil Survey Staff, 2014). Such 108 

pedoclimatic conditions have led to the formation of typical tropical woodland (open forest), which 109 

is common in the studied locations, comprising savannas and shrublands made up of sparse trees of 110 

the leguminous trees Brachystegia spiciformis Benth., Brachystegia tamarindoides Benth., and 111 

Julbernardia globiflora (Benth.) with a more or less thick grass understorey of Themeda triandra 112 

Forssk., Panicum maximum Jacq., Hyparrhenia filipendula (Hochst.) Stapf, and Andropogon gayanus 113 

Kunth, referred to as miombo (Sitoe, 2004). 114 

The three locations were chosen as the slash-and-burn system has been and is still being practised 115 

there, but with forest fallow periods of different durations (temporal variation), so as to form the 116 

following chronosequence: i) in Vanduzi, the forest was ≈25 years old, the crop field was 1 year old, 117 

and the charcoal kiln was 4 years old; ii) in Sussundenga, the forest was ≈35 years old, the crop field 118 

was 2 years old, and the charcoal kiln was 1 year old; iii) in Macate, the forest was ≈50 years old, the 119 

crop field was 16 years old, and the charcoal kiln was 16 years old (see Table S1 of Supplementary 120 

Materials in Serrani et al., 2023). In each location, we took into consideration the soils under the 121 
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charcoal kiln, the crop field, and forest (horizontal variation), and soil samples from each pedogenic 122 

horizon were collected (vertical variation). 123 

Further details on the study areas, slash-and-burn systems, and study sites are reported in Serrani et 124 

al. (2023). 125 

 126 

2.2. Sampling campaigns and soil characteristics 127 

After a brief geomorphological and soil survey was conducted in March 2017, the sampling 128 

sites were selected in a relatively flat area (plateau) with a gentle slope (2–4%), featuring mostly 129 

Oxisols (Soil Survey Staff, 2014) developed from similar metamorphic parent rocks (Chaúque et al., 130 

2019; Wijnhoud, 1997) (see Table S1 of Supplementary Materials in Serrani et al., 2023). To account 131 

for the eventual differences in terms of the fungal community across the agricultural seasons, the first 132 

sampling campaign was run in March 2017 (autumn) and the second one in November 2017 (spring). 133 

For each sampling campaign, soil profiles were opened in a representative area after the preliminary 134 

manual opening of mini-pits and auger holes. In the charcoal kilns and agricultural fields, the soil 135 

profiles were opened in approximately the middle of their extension, while those in the miombo were 136 

opened at ≈1 m from the trunk of one of the biggest Brachystegia spiciformis trees. Once excavated, 137 

each profile was described according to Schoeneberger et al. (2012) and sampled according to genetic 138 

horizons. In all sites, the studied soils were constituted by a brownish A horizon (umbric) and a 139 

reddish Bo (oxic) horizon with a coarse texture, a good degree of aggregation, and the absence of the 140 

redoximorphic feature, indicating good drainage and, consequently, a low water-holding capacity 141 

(e.g., Agrawal 1991; Suzuki et al., 2007) (see Table S1 of Supplementary Materials in Serrani et al., 142 

2023). About 4 kg of samples were collected from each horizon and stored inside a portable fridge 143 

during the field operations. Once in the laboratory, the samples were air-dried and then sieved at 2 144 

mm to remove the skeletal particles and coarse vegetal residues. 145 

To summarize, for each location (Vanduzi, Sussundenga, and Macate), 12 soil samples were collected 146 

(3 land uses x 2 horizons x 2 replicates) from each campaign, for a total of 36 samples.  147 
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 148 

2.3. Soil analyses and microbial DNA extraction and sequencing 149 

The physicochemical and mineralogical analyses run on the soil samples are reported in Table 150 

1, which synthesizes information that is fully explained in Serrani et al. (2023). 151 

Table 1. Methods adopted to assess physicochemical properties of each soil sample collected according to 
locations, land uses, and horizons within Manica province, central Mozambique. 

Property Procedure Bibliography 

pH in water Potentiometric method, using a combined glass-calomel 
electrode immersed into the suspension (1:2.5 solid:liquid ratio). 

Thomas, 1996 

Particle-size distribution After dissolution of organic cements by Na-hypochlorite 
(NaOCL)solution at 6% of active chlorine adjusted to pH 9 with 
HCL, sand (2-0.05 mm) was recovered by wet sieving, while silt 
(0.05-0.002 mm) was separated from clay (< 0.002 mm) by 
sedimentation maintaining the columns at 19-20°C. 

Lavkulich and Wiens, 1970 

Easily oxidizable organic 
carbon (EOOC) 

Walkley-Black method by K-dichromate digestion without 
application of heating. 

Nelson and Sommers, 1996 

Total nitrogen (N) Semi-micro Kjeldahl method. Bremmer, 1996 

Potentially plant-available 
phosphorous (P) 

Olsen method. Olsen et al., 1954 

Mineralogical assemblage Assessed by X-ray diffractometry on manually compressed 
powdered samples by using a Philips PW 1830 diffractometer 
(Fe-filtered Co Kα1 radiation, 35 kV and 25 mA). Minerals were 
identified on the basis of their characteristic peaks, and a semi-
quantitative mineralogical composition was obtained by 
estimating the area of the diagnostic peaks by multiplying the 
peak height by its width at half-height. 

Brindley and Brown, 1980; 
Dixon and Schulze, 2002 

 152 

Total microbial DNA was extracted from 250 mg of each soil sample using the E.Z.N.A. ® Soil DNA 153 

Kit (Omega Bio-Tek, Inc., Georgia, USA), following the manufacturer's instructions. The extracted 154 

DNA was quantified using a Qubit dsDNA assay kit (Life Technologies, Milan, Italy) and 155 

standardized to 5 ng µL-1. Then, 2.5 µL were used as a template to amplify the D1 domain of the 26S 156 

rDNA gene by using the primers and the protocol described by Mota-Gutierrez et al. (2019); a 157 

negative control was included in the PCR reactions by replacing the DNA solution with water. The 158 

26S gene region provides a higher alpha diversity index and greater fungal rRNA taxonomic depth 159 

and robustness results compared with ITS2 (Mota-Gutierrez et al., 2019). The PCR amplicons were 160 
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purified, tagged, and sequenced according to the Illumina metagenomic pipeline instructions. The 161 

sequencing was performed using a MiSeq Illumina instrument (Illumina, San Diego, USA) with V3 162 

chemistry and generated 2x250 bp paired-end reads, according to the manufacturer’s instructions.  163 

 164 

2.4. Bioinformatic analysis 165 

After sequencing, reads were analyzed using the Quantitative Insights into Microbial Ecology 166 

QIIME2 (Bolyen et al., 2019). Primers and adapters were trimmed using Cutadapter and then filtered 167 

for quality using the DADA2 algorithm (Callahan et al., 2016), removing low-quality bases and 168 

chimeric sequences with the DADA2 denoise-paired plug-in of QIIME2. A total of 3.820.038 clean 169 

reads were used for downstream analysis (99% of the sample coverage). Amplicon Sequence Variants 170 

(ASVs) generated by DADA2 were used for a taxonomic assignment using the QIIME feature-171 

classifier plug-in against the SILVA-implemented database for fungi (Mota-Gutierrez et al., 2019). 172 

Briefly, the database was obtained using the large subunit rRNA gene sequences from the Silva 173 

database and from NCBI. The fungi taxonomic assignment was double-checked using BLAST suite 174 

tools. The QIIME2 diversity script was used to perform alpha diversity analysis. The data generated 175 

by sequencing were deposited in the NCBI Sequence Read Archive (SRA) and are available under 176 

the Bioprojects Accession Number PRJNA631872: biosample accession numbers from 177 

SAMN14895437 to SAMN14895491 and from SAMN14895517 to SAMN14895548. 178 

 179 

2.5. Statistical treatment of the data 180 

Statistical analyses of the soil’s physicochemical properties are reported in Serrani et al. (2023) 181 

and briefly reported below. Physicochemical soil data were statistically treated using the R program 182 

(vv 1.3.1093) workspace. ANOVA was used to test the similarity of the two sampling campaigns for 183 

physicochemical soil properties [pH, particle size distribution, easily oxidizable organic carbon 184 

(EOOC), total N, and available P] (see Table S2 of Supplementary Materials in Serrani et al., 2023; 185 

P > 0.05). Once it was confirmed that the samples collected in the two sampling campaigns were 186 
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replicates, ANOVA was run to test significative differences for sampling locations, land uses, and 187 

horizons (see Table S3 of Supplementary Materials in Serrani et al., 2023; P > 0.05). The contrasted 188 

results of the whole profiles were obtained from the weighted mean of each outcome for the thickness 189 

of the A and Bo horizons of each soil sample. To apply the parametric test, we verified the normal 190 

distribution of the data using the Shapiro–Wilk statistical test (stats R package) and the equal 191 

variances using Levene's test (car R package), both at a 5% of significance level. When the data were 192 

non-normally distributed, each numerical variable was transformed using the Box–Cox procedure 193 

(Meloun et al., 2005). When the normality assumption was validated, a post hoc Tukey's Honest 194 

Significant Difference (HSD) test with P≤0.05 was used to compare the means; in contrast, the 195 

Kruskal–Wallis non-parametric test was used to assess the significance of the differences. In the case 196 

of heteroscedasticity, the Welch one-way ANOVA test was used (P≤0.05), while, in case of 197 

heteroscedasticity and non-normality, the Friedman test (rstatix package) combined with Kendall’s 198 

W were used to measure the Friedman test effect size and pairwise Wilcoxon signed-rank tests.  199 

Fungal α-diversity was assessed using the Chao1 index and the Shannon diversity index, calculated 200 

using the diversity function of QIIME2 on an ASV table rarefied at the lowest feature count/sample. 201 

A Bray–Curtis distance matrix was generated by QIIME2 and used to build the principal coordinate 202 

analysis (PCoA) and to perform PERMANOVA as a function of location, land use, or horizon. 203 

Variables that were not normally distributed were presented as the median (interquartile range). 204 

Variables were compared using the Mann–Whitney U test or the Kruskal–Wallis test, as appropriate. 205 

An ASVs table was then imported in R to build the heatmap using the made4 function. Spearman 206 

correlation analysis between physicochemical properties and fungi was performed with 207 

the psych package and corrplot() from corrplot R package. The P values were adjusted for multiple 208 

testing using the Benjamini–Hochberg procedure, which assesses the false discovery rate (FDR).  209 

The arithmetic means and relative standard deviations for physicochemical properties (see Tables S4, 210 

S5, and S6 of the Supplementary Materials in Serrani et al., 2023) and ASVs were calculated for the 211 
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sampling locations (n=12), total land use (n=12), land use of each area (n=4), total horizons (n=18), 212 

and the horizon of each site (n=6). 213 

 214 

3. Results and discussion 215 

3.1. Fungal diversity 216 

Differences in fungal composition as a function of location, land use, and horizons were 217 

examined at the highest taxonomic resolution reached, namely, at the genus or family level (Fig. 1). 218 

ASVs were detected in the dataset and grouped into two main clusters: i) Cluster 1 was characterized 219 

by the highest frequency of Sarcinomyces, Catenulifera, Chaetomium, Zygoascus, Fusarium, 220 

Trichoderma, and Chaetomiaceae and included most of the samples from the Macate and Vanduzi 221 

soils and the A horizons; ii) Cluster 2 exhibited the highest frequency of Aureobasidium, 222 

Cladosporium, Malassezia, Pichia, Aspergillus, Saccharomyces, and Acremonium and included most 223 

of the samples from the Sussundenga soils and the Bo horizons. Toju et al. (2016) analyzed the fungal 224 

network in a cool–temperate forest in Hokkaido (Japan) and found that, as in our case, Malassezia 225 

and Cladosporium had a strong preference for the B horizons. Elsewhere, Chen et al. (2019) found 226 

an abundance of saprotroph fungi in organic soil and an abundance of symbiont fungi in the mineral 227 

topsoil under a subtropical forest.  228 

Analysing the alpha diversity values as a function of the locations, we observed the highest levels of 229 

richness (the Shannon and Chao1 indices) and ASVs in the Macate soils (FDR<0.05, data not shown). 230 

Alpha diversity as a function of land use did not show significant differences, while the comparison 231 

between horizons highlighted greater complexity in the A horizon than in the Bo horizon (FDR<0.05, 232 

data not shown). The alpha diversity comparison referring to horizons showed the fungi to decrease 233 

in both number and species from the A to the Bo horizons, that is, with increasing depth; this finding 234 

was also reported by Warcup (1951) and Jumpponen et al. (2010). Some studies have reported that 235 

soils with high fungal richness and diversity showed a relatively large content of N (Mueller et al., 236 
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2014; Weber et al., 2013), and this could explain why the highest Shannon and Chao1 indexes were 237 

found in the Macate soils and in the A horizons, where relatively high total N content occurred (see 238 

Tables S4 and S6 of the Supplementary Materials in Serrani et al., 2023). Since the physicochemical 239 

changes occurring along the soil profile induce the development of spatial niches that are able to 240 

accommodate different fungal communities (Chen et al., 2019), we assume this happened in our soils 241 

where, from the A to the Bo horizons, nutrients decreased and roots increased (see Tables S1 and S6 242 

of the Supplementary Materials in Serrani et al., 2023). 243 

 244 

3.2. Effect of location (temporal variation) on fungal diversity 245 

PCoA based on the Bray–Curtis distance matrix showed a partial overlapping of fungi for the 246 

Vanduzi and Sussundenga soils, which were separated from the Macate soils (Fig. S1 of 247 

Supplementary Materials, P<0.001). Considering the relative frequency across locations, Vanduzi 248 

soils showed the highest frequency of Cladosporium (Fig. 2, FDR<0.05), while Macate soils were 249 

characterized by the highest frequencies of Catenulifera, Fusarium, Penicillium, Sarcinomyces, 250 

Trichoderma, and Zygoascus (Fig. 2, FDR<0.05).  251 

Cladosporium is a genus that includes 993 heterogeneous and ubiquitous kinds of hyphomycetes that 252 

are well-known as common endophytes (Bensch et al., 2012). Several bioactive molecules that are 253 

active against bacteria and fungi have been isolated from endophytic Cladosporium species, thus 254 

indicating the main role of this group of fungi in producing antimicrobial compounds that are involved 255 

in the control of plant pathogens (Yehia et al., 2020). Additionally, because of the generally higher N 256 

content, the highest prevalence of Cladosporium is often associated with intensive cultivation 257 

systems, but it has been also reported to be an important taxon of the phyllosphere microbial 258 

community (Abdelfattah et al., 2016). Cladosporium is also involved in plant P absorption (Shi et al., 259 

2020), and the highest frequency of these fungi were likely present in the Vanduzi soils due to the 260 

highest content levels of available P in these soils (see Table S4 of Supplementary Materials in Serrani 261 
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et al., 2023), despite no significant correlation to the soil’s physicochemical properties being found 262 

(Fig. 3). 263 

The genus Catenulifera includes anamorph species of Hyphodiscus, a genus of discomycetes that has 264 

been found to be associated with decaying wood and the fruit bodies of other fungi (Bogale et al., 265 

2010; Hosoya et al., 2002). As far as we know, no information exists about the interaction between 266 

Catenulifera requirements and soil properties; however, based on the correlation plot (Fig. 3), 267 

Catenulifera appears to be negatively related to pH and sand, which displayed the lowest values in 268 

the Macate soils. This led us to hypothesize that Catenulifera were abundant in Macate because they 269 

prefer soil environments with acidophilic reactions and relatively high contents of silt and clay; 270 

however, the Macate soils also showed the highest levels of organics and N content (see Table S4 of 271 

Supplementary Materials in Serrani et al., 2023), even though no significant correlation between 272 

Catenulifera and these parameters was found (Fig. 3).  273 

Fusarium is a genus of saprotrophic fungi and/or fast-growing colonizers of the rhizosphere in 274 

response to plant exudates (Goncharov et al., 2020), and its proliferation through the formation of 275 

both macroconidia and ascospores may be favored by soil moisture conditions (Lemmens et al., 276 

2004). In our soils, the positive correlation of Fusarium with total N and EOOC (Fig. 3), which 277 

abounded in the Macate soils, was ascribed to the accumulation of decaying organic matter provided 278 

by the mulching in the crop field and by the presence of relatively well-developed and poorly 279 

disturbed litter in the forest, with both mulching and dense forest being able to maintain a certain 280 

level of soil moisture.  281 

Penicillium is a common soil fungi genus that includes plant-beneficial microorganisms (Altaf et al., 282 

2018; Das et al., 2021, Efthymiou et al., 2018a,b); it is also known for growing in extreme 283 

environments, including highly acidic soils (Diao et al., 2019; Yadav et al., 2019; Warcup, 1951). 284 

These properties of Penicillium effectively explain our results, since the ASVs of this genus showed 285 

an inverse relation with pH (Fig. 3), which was the lowest in the Macate soils.  286 
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As Sarcinomyces endophytic fungi, their highest frequency in the soils of Macate was ascribed to the 287 

relatively pronounced presence of decaying organic matter due to mulching (in the crop field) and 288 

forest development, as also reported by Li et al. (2018). Moreover, the correlation plot showed that 289 

the frequency of Sarcinomyces was inversely correlated to available P and sand (Fig. 3). Given that 290 

there are no specific indications for Sarcinomyces, since endophytic fungi are often isolated from 291 

sandy soils as they produce growth-promoting metabolites that help the host plants to survive under 292 

soil stress conditions, the observed inverse correlation was ascribed to these fungi’s general resistance 293 

to drought and salinity (e.g., Hamayun et al., 2010; Khan et al., 2012, 2016).  294 

Species belonging to the genus Trichoderma are considered plant-growth promoters, biocontrol 295 

agents (Ji et al., 2020; Oskiera et al., 2017; Zhang et al., 2020a), and improvers of N and P availability 296 

as they increase the activity of urease, phosphatase, catalase, and cellulase (Ji et al., 2020; Makhuvele 297 

et al., 2017). This evidence is aligned with the positive correlation of these fungi with EOOC and 298 

total N (Fig. 3), which were abundant in the soils of Macate.  299 

Members of the genus Zygoascus have been reported to play a role as biofertilizers since they can 300 

solubilize soil phosphates (Das et al., 2021). The highest abundance of Zygoascus in the Macate soils 301 

and their positive correlation with EOOC, total N, and available P (Fig. 3) allowed us to hypothesize 302 

that they have a preference for soil niches enriched with organic matter.  303 

To summarize, the partial overlapping of fungi in the Vanduzi and Sussundenga soils suggested the 304 

irrelevance of the different durations of the forest fallow period for these two locations: 25 and 35 305 

years, respectively. In the Macate soils, the different fungal compositions and the highest ASV 306 

abundance were probably favored by the higher levels of nutrients, which are due to the pedogenic 307 

conditions and soil management (mulching in the crop field, few disturbances in the forest), rather 308 

than the different forest fallow period. Considering the fungi’s ecosystem/ecological functions (Table 309 

2), the most abundant fungi in the Macate soils played important roles, acting as decomposers, 310 

antagonists of plant pathogens, and plant-growth promoters. 311 
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Table 2. The most abundant fungi (ASVs) and their ecosystem/ecological functions in soils according to locations, land uses, 
and horizons within Manica province, central Mozambique. Abundances significantly differ at FDR ≤ 0.05. 

 Clade Family/Genus Ecosystem/ecological functions Bibliography 

Location     
Vanduzi Ascomycota Cladosporium Antagonistics of plant pathogens; 

litter and wood saprotrophs; foliar 
endophytes  

Frac et al., 2018; Yehia et al., 
2020 

Macate Ascomycota Catenulifera Decomposers and fungi pathogens; 
wood saprotrophs 

Bogale et al., 2010; Frac et al., 
2018; Hosoya et al., 2002 

Fusarium Soil-borne root pathogenic fungi; 
litter saprotrophs; foliar endophytes 

Frac et al., 2018; Ge et al., 
2021a,b; Goncharov et al., 2020 

Penicillium Increase in fertilized soils; antagonistics of 
plant pathogens; plant-growth promoters; 
litter saprotrophs; foliar endophytes  

Altaf, 2018; Das et al., 2021; 
Efthymiou et al., 2018a,b; Frac et 
al., 2018 

Sarcinomyces Ectomycorrhizal mutualists; adapted to 
high temperatures and low water activity; 
litter saprotrophs; foliar endophytes 

Li et al., 2018; Sterflinger, 1998; 
Volkmann et al., 2003  

Trichoderma Increase in fertilized soils; antagonistics of 
plant pathogens; improvers of the plant 
health and root growth; litter saprotrophs; 
foliar endophytes 

e.g. Frac et al., 2018; Oskiera et 
al., 2017; Vinale et al., 2008 

Saccharomyceta Zygoascus Biofertilizers Das et al., 2021; Frac et al., 2018  

     

Land use     
Crop field Sordariales Chaetomium On cellulose-rich soil materials or on dung; 

adapted to arid climate; litter saprotrophs; 
foliar endophytes 

Ahmed et al., 2016; Frac et al., 
2018 

     

Forest Sordariales Chaetomium On cellulose-rich soil materials or on dung; 
adapted to arid climate; litter saprotrophs; 
foliar endophytes 

Ahmed et al., 2016; Frac et al., 
2018 

 Ascomycota Penicillium Increase in fertilized soils; antagonistics of 
plant pathogens; plant-growth promoters; 
litter saprotrophs; foliar endophytes 

Altaf, 2018; Das et al., 2021; 
Efthymiou et al., 2018a,b; Frac et 
al., 2018 

     

Horizon     
A Dothideomycetes Aureobasidiaceae Fungal endophytes. Dominant in forest soil; 

decomposers in agricultural soils; increase 
after nitrogen fertilization   

Frac et al., 2018; Khan et al., 
2016 

 Sordariales Chaetomiaceae Antagonistics of plant pathogens; degraders 
of complex SOM 

Chovanova and Zamocky, 2016; 
Frac et al., 2018; Mohammed et 
al., 2019  

  Chaetomium On cellulose-rich soil materials or on dung; 
adapted to arid climate; litter saprotrophs; 
foliar endophytes 

Ahmed et al., 2016; Frac et al., 
2018 

 Saccharomyceta Meyerozyma Involved in the solubilization of phosphates 
and xylose fermentation; antagonistics of 
plant pathogens; epiphytes; foliar 
endophytes 

Arumugam et al., 2020; Frac et 
al., 2018; Kim et al., 2016; 
Nakayan et al., 2013; Procópio 
and Barreto, 2021 

 Tremellomycetes Mrakiaceae Adapted to low temperatures; nitrate and 
nitrite utilizers; dominant in forest soil; 
saprotrophic and parasitic fungi 

Frac et al., 2018; Sannino et al., 
2020; Zhang et al., 2020b 

  Papiliotrema Contains species able to interact with 
AMF† to improve plant N and P uptake; 
litter saprotrophs; mycoparasites; fungal 
decomposers 

Frac et al., 2018; Leguina et al., 
2019 
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  Trichoderma Increase in fertilized soils; antagonistics of 
plant pathogens; improvers of the plant 
health and root growth; litter saprotrophs; 
foliar endophytes 

e.g. Frac et al., 2018; Oskiera et 
al., 2017; Vinale et al., 2008 

 Saccharomyceta Zygoascus Biofertilizers Das et al., 2021; Frac et al., 2018  
     

Bo Saccharomyceta Debaryomycetaceae Involved in xylose fermentation; able to 
produce bioethanol 

Arumugam et al., 2020; Hui et al., 
2014 

 Basidiomycota Malassezia Able to colonize a wide range of habitats, 
including oligotrophic soils; soil 
saprotrophs; root-associated fungi 

Amend, 2014; Frac et al., 2018; 
Toju et al., 2016 

 Sordariomycetes Microascaceae Saprobic and plant pathogens; decomposers 
in agricultural soils; increase after nitrogen 
fertilization 

Frac et al., 2018; Sandoval-Denis 
et al., 2016 

 Saccharomyceta Pichia Phosphate- and zinc-solubilizers; 
thermotolerant yeasts; involved in xylose 
fermentation; able to produce bioethanol; 
antagonistics of plant pathogens 

Frac et al., 2018; Chamnipa et al., 
2018; Kumla et al., 2020; 
Pongcharoen et al., 2018; 
Procópio and Barreto, 2021 

  Saccharomyces Phosphate- and zinc-solubilizers; 
thermotolerant yeasts; involved in glucose 
fermentation; able to produce bioethanol  

Frac et al., 2018; Kumla et al., 
2020; Pongcharoen et al., 2018; 

†AMF = Arbuscular micorrhizal fungi 

 312 

3.3. Effect of land-use (horizontal variation) on fungal diversity 313 

The PCoA showed a partial overlapping of fungi as function of land use (Fig. S2, P<0.001). 314 

Comparing the different land uses, only 2 out of 37 fungi showed different ASV distributions, 315 

Chaetomium and Penicillium, which showed the highest frequencies in both crop fields and forest 316 

soils (Fig. 4, FDR < 0.05). Since the samples were small, the frequency of Penicillium for crop field 317 

soils was slightly higher than that of the charcoal kiln soils, but this was not statistically different. 318 

The Chaetomium genus belongs to the Chaetomiaceae family and is known to be a producer of 319 

antimicrobial metabolites against plant pathogens, including fungi and insects (Chovanova and 320 

Zamocky, 2016; Mohammed et al., 2019). The Chaetomiaceae family is also linked to the 321 

degradation of complex SOM (Paula et al., 2020); in particular, the genus Chaetomium abounds in 322 

soils rich in cellulosic biomass because of the cellulose-degrading capabilities of this genus’s 323 

members (Ahmed et al., 2016). These characteristics effectively explain why the highest frequency 324 

of Chaetomium was found in crop fields and forest soils, where they are likely favored by the presence 325 

of crop residues and litter accumulation (Ahmed et al., 2016, Soytong et al., 2001). The highest 326 

Penicillium distribution in the soils under forests (and crop fields) can be ascribed to their adaptability 327 
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to the low pH values that characterized these soils, as previously reported and as suggested by the 328 

correlation analysis (Fig. 3).  329 

Papiliotrema was the only taxon associated with the charcoal kiln soils of Macate (Fig. S3 of 330 

Supplementary Materials, FDR<0.05). Few data are available for Papiliotrema, formerly 331 

Cryptococcus. Members of this genus were found to be predominant in rice-storage granaries (Shi et 332 

al., 2021) while, in soil, Papiliotrema laurentii was observed to develop a synergic interaction with 333 

AMF to improve plants’ uptake of N and P (Leguina et al., 2019) and the solubilization of scarcely 334 

soluble forms of phosphate (apatites) and zinc (ZnO and ZnCO3) (Kumla et al., 2020). The presence 335 

of Papiliotrema in the charcoal kiln soils of Macate can be attributed to the possible presence of 336 

phosphatic minerals, which could have been generated by repeated combustions in the same area; the 337 

higher availability of P in this soil supports this hypothesis.  338 

However, the low number of variations in the fungal composition between charcoal kilns, crop fields, 339 

and forests indicate that the different land uses had little influence. 340 

 341 

3.4. Effect of the horizon (vertical variation) on fungal diversity 342 

As reported above, fungi tend to create distinct networks throughout the soil; indeed, a certain 343 

degree of separation of fungi between the A and Bo horizons was highlighted by the PcoA (Fig. S4, 344 

P<0.001). The ASVs that were mainly associated with the A horizons were Aureobasidiaceae, 345 

Chaetomiaceae, Chaetomium, Meyerozima, Mrakiaceae, Papiliotrema, Trichoderma, and Zygoascus 346 

(Fig. 5, FDR<0.05), while the Bo horizons displayed the strongest association with 347 

Debaryomycetaceae, Malassezia, Microascaceae, Pichia, and Saccharomyces (Fig. 5, FDR<0.05).  348 

For the A horizons, members of Aureobasidiaceae, Chaetomiaceae, and Chaetomium are endophytic 349 

fungi that are particularly abundant in leaves and stems (Habtewold et al., 2020, Khan et al., 2016), 350 

whereas Meyerozyma, Trichoderma, and Zygoascus were found to play a role in the soil in the 351 

solubilization of phosphates (Gizaw et al., 2017; Kim et al., 2016; Saravanakumar et al., 2013). These 352 

reports agree somewhat with the correlations we found, which highlighted the following positive 353 
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relations: i) Aureobasidiaceae and Trichoderma with EOOC and total N, ii) Chaetomiaceae with 354 

available P, and iii) Zygoascus with EOOC, total N, and available P (Fig. 3). The fungi belonging to 355 

the Mrakiaceae family are known to be able to adapt their physiology to low temperatures (Sannino 356 

et al., 2020) because of their ability to use nitrates and nitrites and to produce enzymes such as lipases, 357 

amylases, proteases, pectinases, cellulases, and chitinases, and ligninolytic enzymes (Zhang et al., 358 

2020b). The presence of Mrakiaceae in the A horizons of all the soils indicated that not all of the 359 

members of this family are adapted to cold environments and that their ability to produce a broad 360 

spectrum of degradative enzymes enables these fungi to perform well where organic matter abounds. 361 

Therefore, it appeared that the group of fungi associated with the A horizons was favored by the 362 

abundance of organic matter and nutrients and, from an ecosystem/ecological point of view (Table 363 

2), that they play the roles of decomposers, antagonists of plant pathogens, and plant-growth 364 

promoters. 365 

For the Bo horizons, the associated fungi showed inverse relations for Debaryomycetaceae and 366 

Saccharomyces with EOOC and total N, Malassezia with total N, and Pichia with available P. 367 

Although little information is available for Debaryomycetaceae, this family of yeasts is involved in 368 

the xylose fermentation of biomass with the potential to produce bioethanol (Hui et al., 2014; 369 

Arumugam et al., 2020). They probably abound in the Bo horizons due to their large number of roots, 370 

which constitute a lignocellulosic substrate from which xylose can be freed during root decay (e.g., 371 

Cheshire et al., 1990; Machinet et al., 2009) and which excrete exudates containing xylose (e.g., 372 

Graystone and Campbell, 1996). For Saccharomyces, the wild species are commonly associated with 373 

tree substrates (bark, leaves, exudates, and litter) and soil (Alsammar and Delneri, 2020), but they are 374 

also known as i) siderophore producers in both bulk and rhizosphere soils, and ii) being responsible 375 

for various processes that are beneficial to plants (Das et al., 2021). Because of this, the presence of 376 

Saccharomyces in the Bo horizons was ascribed to the conspicuous quantity of roots in the sub-377 

surface horizons of several soils (those under the charcoal kilns of Sussundenga and Macate and the 378 

forests of Vanduzi and Macate). Malassezia can colonize a wide range of extreme habitats (Amend, 379 
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2014), but Toju et al. (2016) found that Malassezia diffused in soil, especially in the Bo horizons, as 380 

in our case. The inverse relationship with total N and the abundance in the Bo horizons indicate that 381 

these fungi prefer soil environments with low fertility. Some fungi belonging to the Pichia genus are 382 

known to be able to produce siderophores and, similarly to Saccharomyces, to solubilize zinc and 383 

phosphates (Kumla et al., 2020; Nakayan et al., 2009), thus explaining the inverse relation with 384 

available P. In addition, the Pichia genus was recognized for its ability to ferment xylose and produce 385 

bioethanol (Arumugam et al., 2020, Chamnipa et al., 2018; Pongcharoen et al., 2018), as was the case 386 

for Debaryomycetaceae; because of this, their larger concentrations in the Bo horizons were 387 

explained by the notable presence of roots. Microascaceae is a scarcely known fungi taxon that 388 

includes saprobes and plant pathogens (Sandoval-Denis et al., 2016) and degraders of labile organics 389 

(Lueders et al., 2006; Zhang et al., 2018). This taxon showed no correlation with the analytical 390 

parameters, but its abundance in the Bo horizons was explained by the large number of roots generally 391 

present in these horizons, which provided suitable organic materials during root decay. Therefore, the 392 

group of fungi harboring the Bo horizons is probably favored by the presence of many roots and the 393 

oligotrophic conditions; it also appeared to be involved in xylose fermentation (Table 2). 394 

No significant difference was observed for the vertical variation among land uses, while several 395 

differences were observed between the fungi and soil horizons within each location. In Vanduzi, 396 

Chaetomiaceae, Meyerozima, Papiliotrema, and Zygoascus were associated with the A horizons, 397 

while Debaryomycetaceae, Malassezia, and Pichia were associated with the Bo horizons (Fig. S5 of 398 

Supplementary Materials, FDR<0.05). At Sussundenga, Trichoderma and Zygoascus prospered in 399 

the A horizons (Fig. S6 of Supplementary Materials, FDR<0.05); meanwhile, in Macate, 400 

Aureobasidiaceae and Chaetomiaceae were the most abundant in the A horizons, with Catenulifera, 401 

Malassezia, and Microascaceae predominating in the Bo horizons (Fig. S7 of Supplementary 402 

Materials, FDR<0.05). As mentioned before, Chaetomiaceae, Aureobasidiaceae, Meyerozyma, 403 

Trichoderma, and Zygoascus were related to the presence of SOM and available nutrients, and their 404 

abundance in the A horizons is explained by their relatively high contents of EOOC, total N, and 405 
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available P. On the contrary, Debaryomycetaceae, Malassezia, and Pichia seemed to prefer 406 

oligotrophic environments, which, in these soils, are represented by the Bo horizons. The tendency 407 

of Microascaceae to proliferate in presence of roots may be explained by the significant amount of 408 

living and dead roots observed in the Bo horizons in Macate (see Table S1 of the Supplementary 409 

Materials in Serrani et al., 2023). In summary, the fungal community exhibited significant vertical 410 

variations with a clear separation between the A and Bo horizons, which was mostly driven by the 411 

distribution of nutrients and roots.  412 

 413 

3.5. Correlation between fungi and the soil’s physicochemical properties 414 

In addition to the above-mentioned correlations, Fig. 3 shows the other relationships between fungi 415 

and soil properties in the studied soils. Specifically, inverse relations were observed for Acremonium 416 

and pH, and for Plectosphaerellaceae and Ogataea with clay content (FDR<0.05), whereas 417 

Aureobasidium showed a negative relation with silt and a positive relation with clay content 418 

(FDR<0.05).  419 

Members of the genus Acremonium include plant pathogens, wood saprotrophs, and mycoparasitic 420 

species (Nguyen et al., 2016), and they were found to be more abundant in N- and P-fertilized soils 421 

with an acidic pH (4.6 and 4.8) than in soils with a higher pH (Zhou et al., 2016). These findings 422 

agree with the results of our corrplot (Fig. 3).  423 

The Plectosphaerellaceae family comprises numerous plant pathogen genera and soil-borne species 424 

that have been detected in sandy and loamy soils (Giraldo and Crous, 2019), thus explaining the 425 

inverse correlation between Plectosphaerellaceae and clay. The genus Ogataea is characterized by 426 

thermotolerant and nitrate-assimilating methylotrophic yeasts (Limtong et al., 2008; Suh and Zhou, 427 

2010) that are probably more suited to coarse-textured soils where nitrate availability is higher than 428 

in clay-rich soils.  429 

Aureobasidium is a genus of hyphomycetes fungi that inhabit various extreme environments (Bozoudi 430 

et al., 2018; Zalar et al., 2008), including the stones and rocks of moderate or humid climates 431 



20 
 

(Sterflinger, 2010). This suggests that their distribution in our soils was enabled by the fine separates, 432 

possibly because of their ability to retain humidity.  433 

 434 

4. Conclusions 435 

This study provides one of the first metataxonomic analyses of soil-associated fungi in soils 436 

undergoing slash-and-burn practices and offers new insights into the relationship between fungal 437 

populations and soil physicochemical properties. The results highlighted the separation of fungi into 438 

two main groups: those affected by temporal, spatial, and vertical soil variations and those that are 439 

homogeneously distributed in all the investigated soils. Within these diverse abundances, the main 440 

differences were found among locations and between horizons. In the first case, the fungal 441 

distribution was ascribed to genetic soil properties and soil management rather than to the different 442 

lengths of the forest fallow period; in the second case, the ecological pressures responsible for fungal 443 

differentiation were recognized in the different dotation of SOM, nutrients, and living and decaying 444 

roots between the A and Bo horizons. In contrast, land use exerted negligible influence in determining 445 

differences in the fungal community, especially for the soils under crop fields and forests. Our 446 

findings indicate that temporal, horizontal, and vertical fungal distributions mainly depend on soil 447 

genesis and management, and that forest fallow is ineffective in producing substantial changes in the 448 

fungal community and, consequently, recovering soil biological fertility. Because of this, the fungi 449 

harbored in different soil environments have the potential to be considered ecosystem/ecological 450 

indicators of soil conditions and health. However, even though our approach is a commonly used 451 

method for characterizing fungi, we are aware of the limitations of our study. For example, the 452 

extraction method is not equally efficient for the different forms of fungi (simple cell, hyphae, or 453 

spore) and significant variation exists between methods. Thus, the metataxonomic technique may 454 

lead to possible biases due to amplification and may produce over- or underestimations of ASVs. In 455 

addition, sexual or asexual forms can produce different classifications in taxonomy. Because of this, 456 
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we believe that additional studies are needed to further disclose the role of fungi in various soil 457 

horizons and the role of well-differentiated soil horizons in stimulating the proliferation of useful 458 

fungi. 459 
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Figure captions 873 

 874 

Fig. 1. Average-linkage clustering of soil samples based on fungal ASVs’ relative abundance at the 875 

highest taxonomical rank for locations, land use, and the A and Bo horizons. Manica province, 876 

central Mozambique. The color scale represents the ASVs’ abundance, denoted as the Z-score, 877 

with brown indicating high abundance and blue indicating low abundance. 878 

Fig. 2. Boxplots showing the differentially abundant fungal ASVs in the soils from Vanduzi, 879 

Sussundenga, and Macate. Manica province, central Mozambique. Boxplots with different 880 

letters significantly differ at FDR≤0.05. 881 

Fig. 3. Correlation between fungi and soil physicochemical properties in the A and Bo horizons of 882 

the soils under charcoal kilns, crop fields, and forests at Vanduzi, Sussundenga, and Macate. 883 

Manica province, central Mozambique. 884 

Fig. 4. Boxplots showing the differentially abundant fungi ASVs in the soils under charcoal kilns, 885 

crop fields, and forests. Manica province, central Mozambique. Boxplots with different letters 886 

significantly differ at FDR≤0.05. 887 

Fig. 5. Boxplots showing the differentially abundant fungi ASVs between the A and Bo horizons. 888 

Manica province, central Mozambique. Boxplots with different letters significantly differ at 889 

FDR≤0.05. 890 
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