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1 Introduction

The study of twist-two operators of spin-N for quarks and gluons in quantum chromodynamics
(QCD) and their renormalization dates to the origins of QCD as the gauge theory of the
strong interaction [1–6]. The renormalization of off-shell operator matrix elements (OMEs)
in QCD, i.e. Green’s functions with off-shell external momenta and insertions of these quark
and gluon operators, gives access to their anomalous dimensions. These coincide with the
Mellin transforms of the standard QCD splitting functions, that govern the scale evolution of
the parton distribution functions. It is well-known that the twist-two operators of spin-N mix
under renormalization with a set of gauge-variant operators of the same quantum numbers,
which involve equation-of-motion (EOM) and ghost operators. The latter, often referred to in
summary as alien operators, can be constructed systematically, by employing a generalized
gauge symmetry of the QCD Lagrangian in covariant gauge with the addition of the physical
quark and gluon operators [1, 4, 7, 8]. The generalized gauge symmetry can be promoted to
a generalized BRST (gBRST) symmetry [4, 8]. This provides an algebraic approach for the
derivation of a complete set of operators to be considered in the renormalization of the off-shell
OMEs at a given loop order in perturbative QCD in an expansion in the strong coupling gs,
αs = g2

s/(4π). The complete set of operators required up to four loops has been listed in [8, 9].
Each alien operator features a coupling constant that can be interpreted as the renor-

malization constant that generates mixing of the gauge-invariant operators into each alien.
In order to renormalize the physical OMEs, these coupling constants must be computed
order-by-order in perturbation theory. The required couplings to renormalize the two-loop
OMEs were computed in [1, 7] in closed form for all values of N . A method to determine the
alien counterterms, i.e. the Feynman rules obtained by summing all the alien operators with
their associated couplings, was presented in [10] together with results up to the three-loop
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level for a covariant gauge and all values of N . From this, the n2
f contributions to the

pure-singlet splitting functions were obtained at four loops [11]. Beyond three loops, ref. [8]
determined a set of all-order constraints on the couplings, induced by gBRST and generalized
anti-BRST symmetries [12–14]. In [8, 9], these constraints were solved at arbitrary loop
order for fixed N ≤ 20, leaving the systematic study of the alien operators at arbitrary
spin N as an open problem. In this paper, we follow a different strategy. Namely, we will
solve the constraints on the alien couplings to leading order in αs but for all values of N .
The main results of our study are:

• The all-N structure of the couplings is fixed in terms of a small set of constants. The
latter can be determined by explicitly computing the couplings for some fixed values
of N .

• The structure of the couplings of alien operators with n+ 1 gluons is related to the ones
with n gluons, allowing for a bootstrap in the determination of complicated higher-order
couplings in terms of simpler lower-order ones.

The outline of the article is as follows. In section 2 we set the stage, review the generalized
gauge symmetry and provide a brief summary of the set of relevant alien operators. In
section 3 we study the identities that exist among the couplings of the alien operators and
show how they can be used to restrict the all-N structure of the couplings. The results of this
analysis are then used in section 4 to derive the Feynman rules of the alien operators, suitable
for the renormalization of OMEs at all N up to four loops in QCD. Finally, in section 5, we
summarize our findings and provide an outlook on further developments.

2 Setting the stage

In this section, we review the construction of the alien operators and summarize our con-
ventions. The complete gauge-fixed QCD action is written as

S =
∫

dDx (L0 + LGF+G) . (2.1)

Here L0 represents the classical part of the QCD Lagrangian

L0 = −1
4 F

µν
a F a

µν +
nf∑

f=1
ψ

f (i /D −mf )ψf , (2.2)

with the field strength defined as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν . (2.3)

fabc are the standard QCD structure constants. The covariant derivative in eq. (2.2) is
/D = γµ(∂µ − igsT

aAa
µ) with T a the generator of the gauge group in the fundamental

representation. The gauge-fixing and ghost terms are

LGF+G = − 1
2ξ (∂µAa

µ)2 − ca ∂µDab
µ cb (2.4)
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with ξ the covariant gauge parameter and ca and ca the anti-ghost and ghost fields, respectively.
The covariant derivative in the adjoint representation is Dac

µ = ∂µδ
ac + gsf

abcAb
µ. The QCD

Lagrangian can be extended to also include spin-N gauge-invariant operators of twist two,
which we define as

O(N)
g (x) = 1

2Tr
[
Fν(x)DN−2F ν(x)

]
,

O(N)
q (x) = 1

2Tr
[
ψ(x) /∆DN−1ψ(x)

]
.

(2.5)

Here ∆µ is a lightlike vector and we introduced the notation

Fµ;a = ∆ν F
µν;a, Aa = ∆µA

µ;a, D = ∆µD
µ, ∂ = ∆µ∂

µ . (2.6)

Under renormalization the operators in eq. (2.5) mix with operators proportional to the
(classical) EOM and with BRST-exact operators [1, 4]. Following [8, 9], we begin by
presenting the EOM aliens in the form

O(N)
EOM =

(
D · F a + gsψT

a /∆ψ
)
Ga(Aa, ∂Aa, ∂2Aa, . . . ) (2.7)

with D · F a = DνF
ν;a and Ga a generic local function of the gauge field and its derivatives.

It is convenient to expand Ga in a series of contributions with an increasing number of
gauge fields. This leads to

O(N)
EOM = O(N),I

EOM + O(N),II
EOM + O(N),III

EOM + O(N),IV
EOM + . . . (2.8)

with

O(N),I
EOM = η(N)

(
D · F a + gsψ /∆T aψ

) (
∂ N−2Aa

)
, (2.9)

O(N),II
EOM = gs

(
D · F a + gsψ /∆T aψ

) ∑
i+j=N−3

Cabc
ij (∂iAb)(∂jAc), (2.10)

O(N),III
EOM = g2

s

(
D · F a + gsψ /∆T aψ

) ∑
i+j+k=N−4

Cabcd
ijk (∂iAb)(∂jAc)(∂kAd), (2.11)

O(N),IV
EOM = g3

s

(
D · F a + gsψ /∆T aψ

) ∑
i+j+k+l=N−5

Cabcde
ijkl (∂iAb)(∂jAc)(∂kAd)(∂lAe). (2.12)

The coefficients Ca1...an
i1...in−1

appearing in eqs. (2.10)–(2.12) can be written in terms of a set
of independent colour tensors, each of them multiplying an associated coupling constant,
as follows

Cabc
ij = fabcκij , (2.13)

Cabcd
ijk = (f f)abcdκ

(1)
ijk + dabcd

4 κ
(2)
ijk + dabcd

4̂ff
κ

(3)
ijk, (2.14)

Cabcde
ijkl = (f f f)abcdeκ

(1)
ijkl + dabcde

4f κ
(2)
ijkl (2.15)
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with

(f f)abcd = fabef cde, (2.16)

(f f f)abcde = fabmfmcnfnde, (2.17)

dabcd
4 = 1

4! [Tr(T a
AT

b
AT

c
AT

d
A) + symmetric permutations], (2.18)

dabcd
4ff = dabmn

4 fmcef edn, (2.19)

dabcd

4̂ff
= dabcd

4ff − 1
3CAd

abcd
4 , (2.20)

dabcde
4f = dabcm

4 fmde. (2.21)

Here (TA)b
ac = ifabc are the generators of the adjoint representation of the colour group. We

now extend the classical Lagrangian L0 in eq. (2.2) to include the gauge-invariant operators
of twist two as well as the EOM aliens

LGGI = L0 + wi O(N)
i + O(N)

EOM, (2.22)

where wi is a coupling for the operator Oi with i = g, q, playing the same role as the
coefficients η(N), κij , . . . defined in eqs. (2.13)–(2.15). The Lagrangian LGGI is invariant
under the generalized gauge transformation [8] Aa

µ → Aa
µ + δωA

a
µ + δ∆

ω A
a
µ, where

δωA
a
µ = Dab

µ ω
b(x),

δ∆
ω A

a
µ = −∆µ

η(N) ∂N−1ωa + gs

∑
i+j=N−3

C̃aa1a2
ij

(
∂iAa1

) (
∂j+1ωa2

)
+g2

s

∑
i+j+k=N−4

C̃aa1a2a3
ijk

(
∂iAa1

) (
∂jAa2

) (
∂k+1ωa3

)

+g3
s

∑
i+j+k+l=N−5

C̃aa1a2a3a4
ijkl

(
∂iAa1

) (
∂jAa2

) (
∂kAa3

) (
∂l+1ωa4

)
+ O(g4

s)


(2.23)

and

C̃abc
ij = fabcηij , (2.24)

C̃abcd
ijk = (f f)abcdη

(1)
ijk + dabcd

4 η
(2)
ijk + dabcd

4̂ff
η

(3)
ijk, (2.25)

C̃abcde
ijkl = (f f f)abcdeη

(1)
ijkl + dabcde

4f η
(2a)
ijkl + daebcd

4f η
(2b)
ijkl . (2.26)

The generalized gauge symmetry implies that the couplings η(k)
n1...nj are related to κ

(k)
n1...nj

in eqs. (2.9)–(2.12)

ηij = 2κij + η(N)
(
i+ j + 1

i

)
, (2.27)

η
(1)
ijk = 2κi(j+k+1)

(
j + k + 1

j

)
+ 2

[
κ

(1)
ijk + κ

(1)
kji

]
, (2.28)
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η
(2)
ijk = 3κ(2)

ijk, (2.29)

η
(3)
ijk = 2

[
κ

(3)
ijk − κ

(3)
kji

]
, (2.30)

η
(1)
ijkl = 2

[
κ

(1)
ij(l+k+1) + κ

(1)
(l+k+1)ji

](l + k + 1
k

)
+ 2

[
κ

(1)
ijkl + κ

(1)
ilkj + κ

(1)
likj + κ

(1)
lkij

]
, (2.31)

η
(2a)
ijkl = 3κ(2)

ij(k+l+1)

(
k + l + 1

k

)
+ 2κ(2)

ijkl, (2.32)

η
(2b)
ijkl = 2κ(2)

lijk. (2.33)

The new gauge transformations in eq. (2.23) are promoted to a nilpotent generalized BRST
(gBRST) operator, by replacing the transformation parameter ωa with the ghost field ca [8].
In turn the ghost alien operator is generated by the action of such gBRST operator on a
suitable ancestor operator [8], giving

O(N)
c = O(N),I

c + O(N),II
c + O(N),III

c + O(N),IV
c + . . . (2.34)

with

O(N),I
c = −η(N)(∂ca)(∂N−1ca), (2.35)

O(N),II
c = −gs

∑
i+j=N−3

C̃abc
ij (∂ca)(∂iAb)(∂j+1cc), (2.36)

O(N),III
c = −g2

s

∑
i+j+k=N−4

C̃astu
ijk (∂ca)(∂iAs)(∂jAt)(∂k+1cu), (2.37)

O(N),IV
c = −g3

s

∑
i+j+k+l=N−5

C̃abcde
ijkl (∂ca)(∂iAb)(∂jAc)(∂kAd)(∂l+1ce). (2.38)

Renormalization. The complete Lagrangian, including the twist-two physical and alien
operators, can be written as

L̃ = L0 +LGF+G +wi Oi +O(N)
EOM +O(N)

c = L0(Aa
µ, gs) +LGF+G(Aa

µ, c
a, c̄a, gs, ξ) +

∑
k

Ck Ok,

(2.39)
where Ck labels all the distinct couplings of the operators, e.g. Ck = (wi, η(N), κ0 1, κ1 2 . . . ).
The ultraviolet (UV) singularities associated with the QCD Lagrangian are absorbed by
introducing the bare fields and parameters

Aa;bare
µ (x) =

√
Z3A

a
µ(x), ca;bare(x) =

√
Zc c

a(x), c̄a;bare(x) =
√
Zc c̄

a(x), (2.40)
gbare

s = µϵ Zggs, ξbare =
√
Z3 ξ. (2.41)

We renormalize the singularities originating from the insertion of the composite operators using

Oren
i (x) = Zij Obare

j (x), (2.42)

where Obare
j indicates the operators in eqs. (2.5), (2.8) and (2.34) written in terms of the bare

fields. Note that throughout this work we use D = 4−2ε dimensional regularization, combined
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with the MS renormalization scheme. Zij is the renormalization matrix of the operators, which
makes the OMEs featuring an insertion of Oren

i finite. The renormalized Lagrangian becomes

L̃ = L0(Aa;bare
µ , gbare

s ) + LGF+G(Aa;bare
µ , ca;bare, c̄a;bare, gbare

s , ξbare) +
∑

k
Cbare

k Obare
k ,

(2.43)
Cbare

i =
∑

k
Ck Zk i, (2.44)

where Ck is the (finite) renormalized coupling of the operator Ok. The UV-finite OMEs
featuring a single insertion of Oren

g are computed by setting the renormalized couplings
Ci = δi g in eq. (2.43), which gives

Cbare
i = Zg i. (2.45)

Similarly, the renormalized OMEs with an insertion of Oq are obtained with Cbare
i = Zq i.

Therefore, the couplings of the bare operators ηbare(N), . . . are interpreted as the renormal-
ization constants that mix the physical operators into the aliens. These quantities can be
extracted from the direct calculation of the singularities of the OMEs with an insertion of
Obare

g (Obare
q ). For instance, the coupling ηbare(N), which is associated to an operator with

a two-point vertex, was determined in [1, 7] from the renormalization of the OMEs of Og
with two external ghosts and it was found to be1

ηbare(N) = Zg c = −as

ϵ

CA

N(N − 1) + O(a2
s), (2.46)

where CA is the quadratic Casimir in the adjoint representation and as = αs/(4π) = g2
s/(4π)2.

The value of η was determined at two loops in [7] and at three loops in [10]. Throughout
this paper we will mainly be interested in the one-loop alien couplings. As such, it will be
convenient to select just the N -dependent part of the one-loop result of ηbare(N), which in
the following we simply denote by η(N), i.e.

η(N) = −1
N(N − 1) . (2.47)

The couplings of the operators featuring multiple fields, e.g., the couplings κij multiply at
least three fields, are determined by renormalizing OMEs with the corresponding external
fields. Recently, a method to compute the counterterms of the OMEs with insertions of the
gauge-invariant operators as a function of the spin N was put forward in ref. [10]. The result
of that paper can be used to extract the coefficients κbare

i j up to O(a2
s) and those of κ(p);bare

ijk ,
for p = 1, 2, at O(as), finding agreement with the low-N values reported in [8]. In addition,
the calculation of the five-point counterterms at O(as), which can be used to determine κ(p)

ijkl,
for p = 1, 2, has been announced recently [15].

In this paper, we would like to determine the renormalization constants Zgi by solving
the constraints on the couplings Cbare

i , which are imposed by the symmetries of eq. (2.43).
1Note that the expression for η in [7] has an additional factor of 2. This is a consequence of the chosen

conventions for dimensional regularization. In particular, we use D = 4 − 2ε while [7] employs D = 4 + ε.
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The latter is the Lagrangian in eq. (2.39) evaluated with bare fields and couplings constants.
Therefore the two Lagrangians share the same symmetry properties, with the obvious
substitutions. For simplicity, in the rest of this paper we drop the superscript ‘bare’, wherever
it does not create any ambiguity.

Independent operators and couplings. The symmetry constraints on the couplings in
eq. (2.43) have been derived in ref. [8]. Without repeating the derivation of that paper,
we distinguish three types of relations, which follow from the way we have constructed the
operators at the beginning of this section.

First of all, the couplings introduced in the EOM operators, see eqs. (2.9)–(2.12)
and (2.13)–(2.15), are chosen to inherit the properties of the colour structures they multiply.
For example, because of the anti-symmetry of the structure constants, we take

κij = −κji. (2.48)

This implies, e.g., that at spin N = 4, where i, j = 0, 1, there is only one independent
coupling, e.g., κ0 1.

The second type of constraints regards the couplings that enter the ghost operators,
eqs. (2.35)–(2.38). Because these operators were constructed directly from the EOM ones
using gBRST, the η couplings are connected to the κ ones. The relevant identities have
been listed in eqs. (2.27)–(2.33).

Finally, we impose the invariance of eq. (2.43) under the generalized transformations
of anti-BRST type [12–14], which stem from eq. (2.23), by replacing the transformation
parameter ωa with the anti-ghost field c̄a. This implies the following condition on the ghost
operator O(N)

c defined in eq. (2.34)

O(N)
c (Aa

µ, c
a, c̄a) = O(N)

c (Aa
µ, c̄

a, ca), (2.49)

which translates into a set of constraints on the couplings in eqs. (2.35)–(2.38) and, in turn,
on those of the EOM operators. Taking the example of N = 4, the anti-BRST relation
imposes κ01 = 2η(4), thus reducing the number of independent couplings even further [8].

It is highly non-trivial to find all-N solutions for all the constraints. In refs. [8, 9], they
were solved only for fixed values of N , in order to fix bases of independent alien operators
up to N = 20. In the following sections, we solve the relations with exact N dependence.
This is done by setting up an ansatz for the function space that enters to leading order in
as. The construction of this ansatz is primarily based on constraints from (anti-)gBRST.
We will see below that the latter allow one to bootstrap the functional form of higher-order
couplings from that of the lower-order ones. The determination of the unknown parameters
in the ansatz is then performed by using the full set of colour, gBRST and anti-gBRST
relations. As will become clear below, this allows one to fix most, but not all, free parameters.
The few that remain then need to be determined from the explicit renormalization of a
limited number of fixed-N operator matrix elements. This is particularly important for
finding any overall N -dependent function.
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3 Identities among the alien couplings

In this section we will discuss in detail the identities between the couplings coming from
the (anti)-gBRST relations. In particular, we will show that they allow one to restrict the
function space of the couplings and hence constrain their generic N -dependence.

3.1 Class II couplings

The class II operators are defined in terms of two couplings, κij and ηij , which obey the
following relations

κij +κji = 0, [anti-symmetry of f ] (3.1)

ηij = 2κij + η(N)

(
i+ j+ 1

i

)
, [gBRST] (3.2)

ηij +
i∑

s=0

(−1)s+j

(
s+ j

j

)
η(i−s)(j+s) = 0. [anti-gBRST] (3.3)

Note that one can generate an equation for the ghost coupling alone by combining the
anti-symmetry of κij , eq. (3.1), with the gBRST relation, eq. (3.2),

ηij + ηji = η(N)
[(
i+ j + 1

i

)
+
(
i+ j + 1

j

)]
. (3.4)

The one-loop value of this coupling was first computed in [1] and later corrected in [7]. In
our conventions it reads2

ηij = −η(N)
4

[
(−1)j − 3

(
N − 2
i+ 1

)
−
(
N − 2
i

)]
(3.5)

which implies

κij = −η(N)
8

[
(−1)j + 3

(
N − 2
i

)
− 3

(
N − 2
i+ 1

)]
. (3.6)

The power of the relations described above is that they can be used to gain valuable information
about the structure of the couplings at arbitrary N . For example, one can use eq. (3.4) to
write down an ansatz for ηij of the form

ηij = η(N)
[
c1

(
i+ j + 1

i

)
+ c2

(
i+ j + 1

j

)]
. (3.7)

Here c1 and c2 are constants to be determined. We assume here that the dependence on η(N)
is factorized at leading order, as suggested by eq. (3.4) and observed in eq. (3.5).

This ansatz can then be substituted in the anti-gBRST consistency relation, eq. (3.3),
yielding

ηij +
i∑

s=0
(−1)s+j

(
s+ j

j

)
η(i−s)(j+s) = c1 η(N)

[
(−1)j +

(
i+ j + 1

i

)]
(3.8)

2Note that there are typos in the corresponding expression in [8]. In particular, the right-hand side of
eq. (4.38) in [8] should be replaced by the right-hand side of eq. (3.5) here.
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for even values of N . Hence we find a consistent solution when c1 = 0, while c2 is unconstrained.
Assuming furthermore that κij lives in the same function space as ηij , which is motivated
by their close relationship due to the generalized BRST symmetry, we posit

κij = η(N)
[
b1

(
i+ j + 1

i

)
+ b2

(
i+ j + 1

j

)]
. (3.9)

Then, requiring the anti-symmetry relation in eq. (3.1) and the gBRST one in eq. (3.2) to
hold actually produces a unique solution for both couplings, which reads

ηij = η(N)
(
N − 2
j

)
, (3.10)

κij = η(N)
2

[(
N − 2
j

)
−
(
N − 2
i

)]
. (3.11)

Note that we used i+ j = N − 3. Next, we compare with some fixed-N evaluation to check
our result. While it is obvious from the actual solution in eq. (3.5) that the result in eq. (3.10)
is in fact incorrect, there is numerical agreement between both for N = 4. So, to determine
that eq. (3.10) does not represent the physical solution, we actually need to evaluate one more
moment, say N = 6, for which the disagreement does become obvious. Hence, we now need to
extend the ansatz, for which we can use the anti-gBRST relation. In particular, note that the
right-hand side of eq. (3.8) suggests the inclusion of a term proportional to (−1)j to the ansatz,

ηij = η(N)
[
c1

(
i+ j + 1

i

)
+ c2

(
i+ j + 1

j

)
+ c3(−1)j

]
. (3.12)

The anti-gBRST relation now becomes

ηij +
i∑

s=0
(−1)s+j

(
s+ j

j

)
η(i−s)(j+s) = η(N)(c1 + c3)

[
(−1)j +

(
i+ j + 1

i

)]
(3.13)

such that c3 = −c1 is a consistent solution. If we now impose also eq. (3.4) then we obtain
the relation c1 + c2 = 1, leaving just one free parameter unconstrained. Hence

ηij = η(N)
[
c1

[(
i+ j + 1

i

)
− (−1)j

]
+ (1 − c1)

(
i+ j + 1

j

)]
. (3.14)

It should be noted that, if an ansatz is generated using (anti-)gBRST relations, one
is in principle free to add non-zero functions that live in the kernel of these relations. For
example, if one adds a term of the form

−f(N)
4

(
(−1)j +

(
N − 2
i+ 1

)
−
(
N − 2
i

))
(3.15)

to eq. (3.5), the corresponding expression for ηij still obeys the constraints. Here f(N)
represents an arbitrary function of N , with the actual solution being recovered by setting
f(N) = 0 for even values of N . In particular, substituting eq. (3.15) in the constraint coming
from anti-symmetry and gBRST, cf. eq. (3.4), one finds[

(−1)i + (−1)j
]
f(N) = 0. (3.16)
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The left-hand side of this expression always vanishes for all physical (even) values of N ,
independent of the functional form of f(N). In general, the exclusion of this type of function
can only be confirmed by comparison with fixed-N computations.

An important consequence is that now we have recovered the full function space of
the actual solution, eq. (3.5), using only the symmetry relations of the couplings. More
generally, note that eq. (3.3) is an example of a conjugation relation, in the sense that a
second application of the sum leads to

i∑
t=0

(−1)t+j

(
t+ j

j

)
η(i−t)(j+t) = −

i∑
t=0

(−1)t+j

(
t+ j

j

)
i−t∑
s=0

(−1)s+j+t

(
s+ j+ t

j+ t

)
η(i−t−s)(j+t+s)

(3.17)
and hence

ηij =
i∑

t=0

(
t+ j

j

)
i−t∑
s=0

(−1)s

(
s+ j + t

j + t

)
η(i−t−s)(j+t+s). (3.18)

The latter identity is actually always true for any discrete two-variable function ηij . This type
of conjugation relation has already been encountered in the computation of the anomalous
dimensions of twist-two operators in non-forward kinematics, see e.g. [16, 17], and holds great
predictive power. In particular, it provides valuable information about the function space of
the object at hand. To take full advantage of such relations, one needs to be able to evaluate
them analytically. This is possible by using principles of symbolic summation, in particular by
application of the creative telescoping algorithm [18]. The latter is a generalization of classical
telescoping and attempts to evaluate the sum of interest by rewriting it as a recursion relation
using Gosper’s algorithm [19]. The closed-form expression of the sum then corresponds to
the linear combination of the solutions of the recursion that has the same initial values as the
sum. This methodology is neatly implemented in the Mathematica package Sigma [20, 21].
For the class III and IV couplings to be described below we will also encounter identities
involving multiple sums, for which the package EvaluateMultiSums [22, 23] can be used.

3.2 Class III couplings

3.2.1 κ
(1)
ijk and η

(1)
ijk

The couplings η(1)
ijk and κ

(1)
ijk can be thought of as direct generalizations of ηij and κij in the

class II operators. They obey the following relations

κ
(1)
ijk +κ

(1)
ikj =0, [anti-symmetry of f ] (3.19)

κ
(1)
ijk +κ

(1)
jki +κ

(1)
kij =0, [Jacobi identity] (3.20)

η
(1)
ijk =2κi(j+k+1)

(
j +k+1

j

)
+2[κ(1)

ijk +κ
(1)
kji], [gBRST] (3.21)

η
(1)
ijk =

i∑
m=0

j∑
n=0

(m+n+k)!
m! n! k! (−1)m+n+kη

(1)
(j−n)(i−m)(k+m+n). [anti-gBRST] (3.22)

Note that now the indices are constrained as i+ j + k = N − 4. As before, one can combine
the relations of the EOM coupling with the gBRST relation to connect η(1)

ijk to κ
(1)
ijk. In
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particular we find

η
(1)
ijk + η

(1)
ikj = 2κi(j+k+1)

(
j + k + 2
j + 1

)
+ 2[κ(1)

kji + κ
(1)
jki] (3.23)

when combining the anti-symmetry property of κ(1)
ijk with the gBRST identity. Similarly the

combination of the Jacobi identity with gBRST leads to

η
(1)
ijk + η

(1)
kij + η

(1)
jki = 2κi(j+k+1)

(
j+ k+ 1

j

)
+ 2κk(i+j+1)

(
i+ j+ 1

i

)
+ 2κj(i+k+1)

(
i+ k+ 1

k

)
.

(3.24)
The latter identity relates the class III coupling η(1)

ijk, which is O(g2
s), to the class II coupling

κij of O(gs), i.e. at one order lower in perturbation theory. As such, we can use it to determine
the function space of η(1)

ijk. Taking into account all independent permutations of i, j and
k, we find that this function space is 18-dimensional{

(−1)i+j

(
i+j+1

i

)
,

(
N−2
k+1

)(
i+j+1

i

)
,

(
N−2
k

)(
i+j+1

i

)
, (−1)j+k

(
j+k+1

j

)
,

(
N−2
i+1

)(
j+k+1

j

)
,

(
N−2
i

)(
j+k+1

j

)
, (−1)i+k

(
i+k+1

k

)
,

(
N−2
j+1

)(
i+k+1

k

)
,

(
N−2
j

)(
i+k+1

k

)
+ independent permutations of i, j and k

}
. (3.25)

Furthermore, due to the close relationship between η(1)
ijk and κ(1)

ijk, we assume that the functional
form of the latter is constructed from the same functions. Hence in total we have 36 free
parameters. Using the relations described above, cf. eqs. (3.19)–(3.22), we are able to fix
34 of these. The final two free parameters are then determined using the one-loop results
κ

(1)
110 = 0 and κ

(1)
121 = 13 CA/336, which follow from the explicit operator renormalization for

N = 6 and N = 8 respectively. Our final result for κ(1)
ijk then becomes

κ
(1)
ijk = η(N)

48

{
2(−1)i+j

(
i+ j + 1

i

)
+ (−1)i+k

(
i+ k + 1

k

)
+ 3(−1)j+k+1

(
j + k + 1

j

)

+
(
i+ k + 1

i

)[
2(−1)i+k+1 + 5

(
N − 1
j + 1

)]
+
(
j + k + 1

k

)[
3(−1)j+k − 10

(
N − 2
i

)

+ 4
(
N − 2
i+ 1

)]
+
(
i+ j + 1

j

)[
(−1)i+j+1 + 5

(
N − 2
k

)
− 9

(
N − 2
k + 1

)]}
.

(3.26)

To verify this expression, agreement with explicitly computed fixed-N values has been
established up to N = 20. The necessary direct computations at fixed values of N of Feynman
diagrams for the OMEs with (physical or alien) spin-N twist-two operators O(N) inserted
in Green’s functions with off-shell quarks, gluons or ghosts are performed with the setup
used and described in [9, 24–27] for the computation of moments of four-loop QCD splitting
functions. In particular, the Forcer package [28], written in Form [29–31], is used for the

– 11 –



J
H
E
P
1
1
(
2
0
2
4
)
0
8
0

parametric reductions of the two-point functions up to four loops for fixed even integer values
of N . Substituting our result for κ(1)

ijk into the gBRST relation, eq. (3.21), allows one to
also reconstruct the full N -dependence of η(1)

ijk

η
(1)
ijk = −η(N)

24

{
5(−1)i+j+1

(
i+ j + 1

i

)
+ (−1)i+k

(
i+ k + 1

k

)
+ 2(−1)j+k+1

(
j + k + 1

j

)

+
(
i+ k + 1

i

)[
(−1)i+k + 4

(
N − 2
j + 1

)]
+
(
j + k + 1

k

)[
5(−1)j+k+1 − 3

(
N − 2
i

)

+
(
N − 2
i+ 1

)]
+
(
i+ j + 1

j

)[
4(−1)i+j − 15

(
N − 2
k

)
− 5

(
N − 2
k + 1

)]}
. (3.27)

We have verified that eqs. (3.26) and (3.27) are in agreement with the results of ref. [10],
as explained in section 4 below.

3.2.2 κ
(2)
ijk and η

(2)
ijk

The next alien couplings we consider are κ(2)
ijk and η

(2)
ijk, which obey the following relations

κ
(2)
ijk = κ

(2)
jik = κ

(2)
ikj = κ

(2)
kji = κ

(2)
jki = κ

(2)
kij , [symmetry of d4] (3.28)

η
(2)
ijk = 3κ(2)

ijk, [gBRST] (3.29)

η
(2)
ijk =

i∑
m=0

j∑
n=0

(−1)m+n+k (m+ n+ k)!
m!n! k! η

(2)
(i−m)(j−n)(m+n+k). [anti-gBRST] (3.30)

As the anti-gBRST equation has a similar form as the one for η(1)
ijk, cf. eq. (3.22), we assume the

function space for η(2)
ijk and κ(2)

ijk to be the same as above, cf. eq. (3.25). Imposing eqs. (3.28)–
(3.30) then allows one to fix all but one of the unknowns. Hence we find expressions η(2)

ijk

and κ
(2)
ijk with only one (overall) free parameter

κ
(2)
ijk = c

{
(−1)i+j

(
i+ j+ 2
i+ 1

)
+ (−1)i+k

(
i+ k+ 2
i+ 1

)
+
(
j+ k+ 2
j+ 1

)[
(−1)j+k +

(
N − 1
i+ 1

)]}
,

(3.31)

η
(2)
ijk = 3κ(2)

ijk. (3.32)

Note that the c parameter can a priori be some N -dependent function. A computation of
the OMEs at a few fixed values of N with the procedure outlined in section 3.2.1 for the
renormalization of the respective operators fixes c = 1/N/(N − 1) such that

κ
(2)
ijk = 1

N(N−1)

{
(−1)i+j

(
i+j+2
i+1

)
+(−1)i+k

(
i+k+2
i+1

)
+
(
j+k+2
j+1

)[
(−1)j+k +

(
N−1
i+1

)]}
,

(3.33)

η
(2)
ijk = 3κ(2)

ijk. (3.34)
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Noting that
1

N(N − 1) = −η(N) (3.35)

we see that also for these two couplings η(N) factorizes, which is not expected a priori
from the constraints.

3.2.3 κ
(3)
ijk and η

(3)
ijk

The last set of couplings in the class III alien operators, κ(3)
ijk and η

(3)
ijk, obey the following

relations

κ
(3)
ijk =κ

(3)
ikj , [symmetry] (3.36)

κ
(3)
ijk +κ(3)

kij +κ(3)
jki =0, [generalized Jacobi identity]

(3.37)

η
(3)
ijk =2(κ(3)

ijk−κ
(3)
kji), [gBRST] (3.38)

η
(3)
ijk =

i∑
m=0

j∑
n=0

(−1)m+n+k (m+n+k)!
m!n! k! η

(3)
(j−n)(i−m)(m+n+k). [anti-gBRST] (3.39)

As before, we suggest the same function space as for κ(1)
ijk and η

(1)
ijk, cf. eq. (3.25). The above

relations then only leave two parameters unfixed, such that we have

κ
(3)
ijk = c1(−1)i+j

(
i+ j+ 1

i

)
+ c2(−1)i+k

(
i+ k+ 1

k

)
+
(
j+ k+ 1

j

)[
(c1 + c2)(−1)j+k+1

+ (c1 + c2)(−1)j+k+1 + c1

(
N − 2
i+ 1

)]
+
(
i+ k+ 1

i

)[
c1(−1)i+k + (2c1 + c2)

(
N − 2
j

)

+ c2

(
N − 2
j+ 1

)]
+
(
i+ j+ 1

j

)[
c2(−1)i+j − (2c1 + c2)

(
N − 2
k

)
− (c1 + c2)

(
N − 2
k+ 1

)]
(3.40)

with c1, c2 to be determined. We emphasize that, as before, these could be N -dependent
functions.3 The corresponding expression for η(3)

ijk depends on the same parameters through
the gBRST relation, cf. eq. (3.38). Since the couplings κ(3)

ijk and η
(3)
ijk do not appear through

operator mixing in the renormalization of physical OMEs up to four loops, we leave the two
free parameters c1, c2 in eq. (3.40) undetermined, for the time being. We will address this
issue again when extending the computation of low-N non-singlet anomalous dimensions
at five loops [32] to the flavor-singlet sector.

3.3 Class IV couplings

3.3.1 κ
(1)
ijkl and η

(1)
ijkl

We have the following set of relations

κ
(1)
ijkl +κ

(1)
ijlk =0, [anti-symmetry]

(3.41)
3In this case we expect c1 ∼ c2 ∼ η(N).
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κ
(1)
ijkl +κ

(1)
iklj +κ(1)

iljk =0, [Jacobi] (3.42)

κ
(1)
ijkl +κ

(1)
jilk +κ(1)

lkji +κ
(1)
klij =0, [double Jacobi]

(3.43)

η
(1)
ijkl =2[κ(1)

ij(l+k+1) +κ(1)
(l+k+1)ji]

(
l+k+1

k

)

+2[κ(1)
ijkl +κ

(1)
ilkj +κ(1)

likj +κ(1)
lkij ], [gBRST] (3.44)

η
(1)
ijkl =−

i∑
s1=0

j∑
s2=0

k∑
s3=0

(s1 +s2 +s3 +l)!
s1! s2! s3! l! (−1)s1+s2+s3+l

×η(1)
(k−s3)(j−s2)(i−s1)(s1+s2+s3+l) [anti-gBRST]

(3.45)

with now i+ j + k + l = N − 5. Combining the double Jacobi identity, eq. (3.43), with the
gBRST one, eq. (3.39), allows one to write η(1)

ijkl in terms of κ(1)
ijk appearing already in the

class III operators at one order in perturbation theory lower,

(3.46)

η
(1)
ijkl + η

(1)
jilk + η

(1)
lkji + η

(1)
klij = 2[κ(1)

ij(k+l+1) + κ
(1)
(k+l+1)ji]

(
k + l + 1

k

)

+ 2[κ(1)
ji(k+l+1) + κ

(1)
(k+l+1)ij ]

(
k + l + 1

l

)

+ 2[κ(1)
lk(i+j+1) + κ

(1)
(i+j+1)kl]

(
i+ j + 1

j

)

+ 2[κ(1)
kl(i+j+1) + κ

(1)
(i+j+1)lk]

(
i+ j + 1

i

)
.

As such, we can use the expression we have computed for κ(1)
ijk, cf. eq. (3.26), to determine

the function space of η(1)
ijkl. Taking into account all the independent permutations of the

indices i, k, j and l this space is now 264-dimensional. Assuming that the functional form
of κ(1)

ijkl is similar to the one of η(1)
ijkl then implies that in total we now have 528 parameters

to fix. However, after implementing all of the above relations, only 8 remain in the end.
The latter can again be fixed from the explicit renormalization of a few fixed-N matrix
elements. More specifically we extracted them by performing a small momentum expansion
around the limit p3, p4, p5 → 0 of the OME

⟨O(N)
g ; c̄(p1)c(p2)g(p3)g(p4)g(p5)⟩ . (3.47)

This expansion is achieved on a diagram-by-diagram basis using the expansion-by-subgraph
method [33–35] to second order at N = 10 and to third order at N = 12. By expanding
sequentially in the external gluon momenta p3, p4 and p5 the integrals are reduced to simple
one-scale propagator integrals. We have implemented the expansion-by-subgraph in Maple [36]
and then subsequently evaluated the expressions in Form. This methodology was also used to
cross-check the expressions for κ(1)

ij and κ
(r=1,2)
ijk up to N = 20. At one loop the poles of the
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OME, eq. (3.47), are generated purely by the ghost alien operator O(N),IV
c allowing for a clean

extraction of η(1)
ijkl renormalization constants, from which the κ(1)

ijkl values can be obtained. In
particular, in order to determine the remaining constants in the all-N ansatz for κ(1)

ijkl, we use

κ
(1)
0210 = − 1

128CA, κ
(1)
0050 = 109

1440CA, κ
(1)
0104 = − 935

6912CA, κ
(1)
1006 = − 2537

16896CA. (3.48)

We then find

κ
(1)
ijkl =−η(N)

384

{[
6(−1)j+k

(
i+l+1

i

)
−3(−1)j+k

(
i+l+1

l

)
+7(−1)j+k+l

(
j+k+l+2

l

)

+7(−1)j+k+l

(
j+k+l+2
j+k+1

)
−27

(
N−1
i+1

)(
j+k+l+2
j+k+1

)
+2

(
i+j+k+2
j+k+1

)

×
[
2(−1)i+j+k +9

(
N−2
l

)]
−2

(
i+j+k+2

i

)[
4(−1)i+j+k +15

(
N−2
l+1

)]]

×
(
j+k+1

j

)
−
[
5(−1)j+k

(
i+l+1

i

)
−4(−1)j+k

(
i+l+1

l

)

−14(−1)j+k+l

(
j+k+l+2

l

)
+7(−1)j+k+l

(
j+k+l+2
j+k+1

)

+54
(
N−2
i

)(
j+k+l+2
j+k+1

)
+
(
i+j+k+2
j+k+1

)[
−3(−1)i+j+k +4

(
N−1
l+1

)]

+
(
i+j+k+2

i

)[
3(−1)i+j+k +13

(
N−1
l+1

)]](
j+k+1

k

)

+(−1)i+j+k+1
(
i+k+1

k

)(
i+j+k+2

j

)
−2(−1)i+j+k

(
i+j+1

j

)(
i+j+k+2

k

)

−6(−1)j+l

(
i+k+1

i

)(
j+l+1

j

)
+3(−1)j+l

(
i+k+1

k

)(
j+l+1

j

)

+5(−1)j+l

(
i+k+1

i

)(
j+l+1

l

)
−4(−1)j+l

(
i+k+1

k

)(
j+l+1

l

)

+30
(
N−2
k+1

)(
j+l+1

j

)(
i+j+l+2

i

)
−5(−1)i+j+l

(
j+l+1

l

)(
i+j+l+2

i

)

+13
(
N−1
k+1

)(
j+l+1

l

)(
i+j+l+2

i

)
−4(−1)i+j+l

(
i+l+1

i

)(
i+j+l+2

j

)

+12
(
N−2
k

)(
i+l+1

i

)(
i+j+l+2

j

)
+24

(
N−2
k+1

)(
i+l+1

i

)(
i+j+l+2

j

)

−3(−1)i+j+l

(
i+l+1

l

)(
i+j+l+2

j

)
+49

(
N−1
k+1

)(
i+l+1

l

)(
i+j+l+2

j

)

−30
(
N−1
k+1

)(
i+j+1

i

)(
i+j+l+2

l

)
+2(−1)i+j+l

(
i+j+1

j

)(
i+j+l+2

l

)
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−60
(
N−2
k+1

)(
i+j+1

j

)(
i+j+l+2

l

)
+8(−1)i+j+l

(
i+l+1

i

)(
i+j+l+2
i+l+1

)

−6
(
N−2
k+1

)(
i+l+1

i

)(
i+j+l+2
i+l+1

)
−3(−1)i+j+l

(
i+l+1

l

)(
i+j+l+2
i+l+1

)

+71
(
N−1
k+1

)(
i+l+1

l

)(
i+j+l+2
i+l+1

)
−11(−1)k+l

(
i+j+1

i

)(
k+l+1

k

)

+7(−1)k+l

(
i+j+1

j

)(
k+l+1

k

)
+11(−1)k+l

(
i+j+1

i

)(
k+l+1

l

)

−7(−1)k+l

(
i+j+1

j

)(
k+l+1

l

)
+60

(
N−2
j+1

)(
k+l+1

k

)(
i+k+l+2

i

)

−10(−1)i+k+l

(
k+l+1

l

)(
i+k+l+2

i

)
+26

(
N−1
j+1

)(
k+l+1

l

)(
i+k+l+2

i

)

+(−1)i+k+l+1
(
i+l+1

i

)(
i+k+l+2

k

)
−4

(
N−1
j+1

)(
i+l+1

i

)(
i+k+l+2

k

)

−2(−1)i+k+l

(
i+l+1

l

)(
i+k+l+2

k

)
−44

(
N−2
j

)(
i+l+1

l

)(
i+k+l+2

k

)

−26
(
N−2
j+1

)(
i+l+1

l

)(
i+k+l+2

k

)
−15

(
N−1
j+1

)(
i+k+1

i

)(
i+k+l+2

l

)

+(−1)i+k+l

(
i+k+1

k

)(
i+k+l+2

l

)
−30

(
N−2
j+1

)(
i+k+1

k

)(
i+k+l+2

l

)

+5(−1)i+k+l

(
i+l+1

i

)(
i+k+l+2
i+l+1

)
−10

(
N−1
j+1

)(
i+l+1

i

)(
i+k+l+2
i+l+1

)

+(−1)i+k+l

(
i+l+1

l

)(
i+k+l+2
i+l+1

)
−18

(
N−2
j+1

)(
i+l+1

l

)(
i+k+l+2
i+l+1

)

−14(−1)j+k+l

(
k+l+1

l

)(
j+k+l+2

j

)
−7(−1)j+k+l

(
j+l+1

l

)(
j+k+l+2

k

)}
(3.49)

and

η
(1)
ijkl = −η(N)

96

{[[((
j+k+l+2

l

)
+5

(
j+k+l+2
j+k+1

))
(−1)l+1 +3

(
i+l+1

i

)

+3
(
i+l+1

l

)]
(−1)j+k−17(−1)i+j+k

(
i+j+k+2

i

)
+
(
i+j+k+2
j+k+1

)

×
[
13(−1)i+j+k +54

(
N−2
l

)]](
j+k+1

j

)
+
[
−3(−1)j+k

(
i+l+1

i

)

−3(−1)j+k

(
i+l+1

l

)
+17(−1)j+k+l

(
j+k+l+2

l

)
+7(−1)j+k+l

(
j+k+l+2
j+k+1

)
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+6
(
N−2
i

)(
j+k+l+2
j+k+1

)
+
(
i+j+k+2

i

)[
(−1)i+j+k +6

(
N−1
l+1

)]

+
(
i+j+k+2
j+k+1

)[
(−1)i+j+k +6

(
N−1
l+1

)]](
j+k+1

k

)

−12(−1)i+j+k

(
i+j+1

j

)(
i+j+k+2

k

)
+(−1)j+l+1

(
i+k+1

i

)(
j+l+1

j

)

+(−1)j+l+1
(
i+k+1

k

)(
j+l+1

j

)
+(−1)j+l+1

(
i+k+1

i

)(
j+l+1

l

)

+(−1)j+l+1
(
i+k+1

k

)(
j+l+1

l

)
−3(−1)i+j+l

(
i+l+1

i

)(
i+j+l+2

j

)

−18
(
N−2
k

)(
i+l+1

i

)(
i+j+l+2

j

)
+18

(
N−2
k+1

)(
i+l+1

i

)(
i+j+l+2

j

)

−3(−1)i+j+l

(
i+l+1

l

)(
i+j+l+2

j

)
+3

(
N−1
k+1

)(
i+l+1

l

)(
i+j+l+2

j

)

+18
(
N−1
k+1

)(
i+j+1

i

)(
i+j+l+2

l

)
−6(−1)i+j+l

(
i+j+1

j

)(
i+j+l+2

l

)

−30
(
N−2
k+1

)(
i+j+1

j

)(
i+j+l+2

l

)
+3(−1)i+j+l

(
i+l+1

i

)(
i+j+l+2
i+l+1

)

+12
(
N−2
k+1

)(
i+l+1

i

)(
i+j+l+2
i+l+1

)
+3(−1)i+j+l

(
i+l+1

l

)(
i+j+l+2
i+l+1

)

+3
(
N−1
k+1

)(
i+l+1

l

)(
i+j+l+2
i+l+1

)
+7(−1)k+l

(
i+j+1

i

)(
k+l+1

k

)

−5(−1)k+l

(
i+j+1

j

)(
k+l+1

k

)
+17(−1)k+l

(
i+j+1

i

)(
k+l+1

l

)

−13(−1)k+l

(
i+j+1

j

)(
k+l+1

l

)
−18

(
N−2
j+1

)(
k+l+1

k

)(
i+k+l+2

i

)

−2(−1)i+k+l

(
k+l+1

l

)(
i+k+l+2

i

)
−10

(
N−1
j+1

)(
k+l+1

l

)(
i+k+l+2

i

)

+(−1)i+k+l+1
(
i+l+1

i

)(
i+k+l+2

k

)
−5

(
N−1
j+1

)(
i+l+1

i

)(
i+k+l+2

k

)

+(−1)i+k+l+1
(
i+l+1

l

)(
i+k+l+2

k

)
+10

(
N−2
j

)(
i+l+1

l

)(
i+k+l+2

k

)
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−26
(
N−2
j+1

)(
i+l+1

l

)(
i+k+l+2

k

)
+(−1)i+k+l+1

(
i+l+1

i

)(
i+k+l+2
i+l+1

)

−5
(
N−1
j+1

)(
i+l+1

i

)(
i+k+l+2
i+l+1

)
−3(−1)i+k+l

(
i+l+1

l

)(
i+k+l+2
i+l+1

)

−24
(
N−2
j+1

)(
i+l+1

l

)(
i+k+l+2
i+l+1

)
+4(−1)j+k+l

(
k+l+1

l

)(
j+k+l+2

j

)}
.

(3.50)

We have checked the correctness of these expressions by comparing with fixed-N computations
up to N = 14.

3.3.2 κ
(2)
ijkl, η

(2a)
ijkl and η

(2b)
ijkl

For this final set of couplings we have the following relations

κ
(2)
ijkl +κ

(2)
ijlk =0, [anti-symmetry]

(3.51)

κ
(2)
ijkl =κ

(2)
jikl, [symmetry of d4]

(3.52)

η
(2a)
ijkl =3κ(2)

ij(k+l+1)

(
k+l+1

k

)
+2κ(2)

ijkl, [gBRST (a)]

(3.53)

η
(2b)
ijkl =2κ(2)

lijk, [gBRST (b)]
(3.54)

η
(2a)
ijkl =−

i∑
s1=0

j∑
s2=0

k∑
s3=0

(s1 +s2 +s3 +l)!
s1! s2! s3! l! (−1)s1+s2+s3+l

× η
(2a)
(i−s1)(j−s2)(k−s3)(s1+s2+s3+l), [anti-gBRST (a)]

(3.55)

η
(2b)
ijkl =η

(2a)
ikjl −η

(2a)
ijkl +

i∑
s1=0

j∑
s2=0

k∑
s3=0

(s1 +s2 +s3 +l)!
s1! s2! s3! l! (−1)s1+s2+s3+l

× η
(2b)
(i−s1)(j−s2)(k−s3)(s1+s2+s3+l). [anti-gBRST (b)]

(3.56)

Note that eqs. (3.51) and (3.53) can be combined to express η(2a)
ijkl in terms of the class III

coupling κ
(2)
ijk as

η
(2a)
ijkl + η

(2a)
ijlk = 3κ(2)

ij(k+l+1)

(
k + l + 2
k + 1

)
. (3.57)
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Using the expression we derived for κ(2)
ijk, cf. eq. (3.33), this becomes

(3.58)
η

(2a)
ijkl + η

(2a)
ijlk = 3c

{
(−1)i+j

(
i+ j + 2
i+ 1

)
− (−1)i+k+l

(
i+ k + l + 3

i+ 1

)

+
(
j + k + l + 3

j + 1

)[
− (−1)j+k+l +

(
N − 1
i+ 1

)]}(
k + l + 2
k + 1

)

with c to be determined. Likewise one can use eqs. (3.52) and (3.53) to write

η
(2a)
ijkl − η

(2a)
jikl = 0. (3.59)

To obtain this last identity we used the symmetry property of κ(2)
ijk, cf. eq. (3.28). The

complete solution of the gBRST constraints in eqs. (3.51)–(3.55) proceeds in complete analogy
to the previous cases. However, similar to the class III couplings in section 3.2.3, also κ(2)

ijkl,
η

(2a)
ijkl and η

(2b)
ijkl do not enter in the operator renormalization of physical OMEs up to four

loops, hence we will not consider them further here.

4 Feynman rules of alien operators

In this section we derive the Feynman rules of the alien operators. These were computed up
to two loops in [7, 37, 38], and an extension to the three-loop level was recently presented
in [10]. The Feynman rules for the gauge-invariant (physical) quark and gluon operators,
up to the four-loop level, can be found e.g. in [8, 10, 24–27, 39–52] and references therein.
The generalization to arbitrary orders in perturbation theory is given in [53].4 We assume
all momenta to be incoming and the total momentum flowing through the operator vertex
to be zero, implying ∑

i

pi = 0. (4.1)

4.1 Ghost operators

The momenta of the ghost fields are taken to be p1 and p2, while p3, p4, . . . denote the
momenta of any additional gluons. As a check, we will compare our Feynman rules against
the known ghost vertices with up to two additional gluons, which were computed in [10].
Because of different conventions for the operator definitions, the rules for the ghost vertices
in the latter have to be divided by iN . We can write the perturbative expansion of the
ghost operator, cf. eq. (2.34), as

4Note that [53] also presents the corresponding rules for the operators with total derivatives, relevant for
non-zero momentum flow through the operator vertex.
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with

εab = 1+(−1)N

2 iN η(N)δab(∆ ·p1)N , (4.2)

εab,c1
µ = 1+(−1)N

2 iN−1∆µ fac1b
∑

i+j=N−3

ηij(∆ ·p1)(∆ ·p3)i(∆ ·p2)j+1, (4.3)

εab,c1c2
µν (p1, p2, p3, p4)= 1+(−1)N

2 iN ∆µ∆ν

×

{
(f f)ac1c2b

∑
i+j+k=N−4

η
(1)
ijk(∆ ·p1)(∆ ·p3)i(∆ ·p4)j(∆ ·p2)k+1

+dac1c2b
4

∑
i+j+k=N−4

η
(2)
ijk(∆ ·p1)(∆ ·p3)i(∆ ·p4)j(∆ ·p2)k+1

+dac1c2b

4̂ff

∑
i+j+k=N−4

η
(3)
ijk(∆ ·p1)(∆ ·p3)i(∆ ·p4)j(∆ ·p2)k+1

}

+[(p3, µ, c1)↔(p4, ν, c2)], (4.4)

εab,c1c2c3
µνρ (p1, p2, p3, p4, p5)=−1+(−1)N

2 iN−1∆µ∆ν∆ρ

×

{
(f f f)ac1c2c3b

∑
i+j+k+l=N−5

η
(1)
ijkl(∆ ·p1)(∆ ·p3)i(∆ ·p4)j(∆ ·p5)k(∆ ·p2)l+1

+dac1c2c3b
4f

∑
i+j+k+l=N−5

η
(2a)
ijkl (∆ ·p1)(∆ ·p3)i(∆ ·p4)j(∆ ·p5)k(∆ ·p2)l+1

+dabc1c2c3
4f

∑
i+j+k+l=N−5

η
(2b)
ijkl(∆ ·p1)(∆ ·p3)i(∆ ·p4)j(∆ ·p5)k(∆ ·p2)l+1

}

+permutations (4.5)

where the ‘+ permutations’ in the O(g3
s) rule in eq. (4.5) denotes the fact that all permutations

of the gluonic quantities (momenta, Lorentz and colour indices) have to be added. Note that
p2 in εab in eq. (4.2) was eliminated using momentum conservation, p2 = −p1. This then
agrees with eq. (5.20) in [10] after dividing the latter by iN , as discussed above. Similarly,
after performing the summation, the O(gs) rule exactly matches eq. (5.21) in [10]. At O(g2

s),
our expression for εab,c1c2

µν (p1, p2, p3, p4) should be compared against eq. (5.22) in [10]. With
η

(1)
ijk given by eq. (3.27) and η(2)

ijk by eq. (3.34), we find exact agreement with that expression.5
Finally the Feynman rule for the d4̂ff

part of the ghost operator is computed using

η
(3)
ijk = 2

{
(c1 − c2)(−1)i+k

[(
i+ k+ 1

i

)
−
(
i+ k+ 1

k

)]
+ (−1)j+k+1

[
(c1 + 2c2)

(
j+ k+ 1

j

)

+ (2c1 + c2)
(
j+ k+ 1

k

)]
+
(
i+ j+ 1

i

)[
(2c1 + c2)(−1)i+j − c1

(
N − 2
k+ 1

)]

5The term in our expression proportional to (f f)ac1c2b should be compared to the fa1a3afa2a4a part of
eq. (5.22) in [10] while our dac1c2b

4 rule should be compared to the one proportional to da1a2a3a4
4 /CA.
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+
(
i+ j+ 1

j

)[
c1(−1)i+j + 2c2(−1)i+j − 2c1

(
N − 2
k

)
− c1

(
N − 2
k+ 1

)

− c2

(
N − 1
k+ 1

)]
+
(
i+ k+ 1

i

)[
2c1

(
N − 2
j

)
+ c2

(
N − 1
j+ 1

)]

−
(
i+ k+ 1

k

)[
2c1

(
N − 2
j

)
+ c2

(
N − 1
j+ 1

)]
+
(
j+ k+ 1

j

)[
2c1

(
N − 2
i

)

+ c1

(
N − 2
i+ 1

)
+ c2

(
N − 1
i+ 1

)]
+ c1

(
N − 2
i+ 1

)(
j+ k+ 1

k

)}
(4.6)

which follows from eqs. (3.38) and (3.40). As discussed in section 3.2.3, the free parameters
c1, c2 can be determined by a computation of fixed-N OMEs.

4.2 Alien gluon operators

Next we derive the Feynman rules for the gluonic EOM operator, whose perturbative
expansion can be written as

with

Gc1c2
µν (p1, p2) = 1 + (−1)N

2 iNη(N)δc1c2(∆ · p1)N−2

× [2p2
1∆µ∆ν − (∆ · p1)(∆µp1ν + ∆νp1µ)], (4.7)

Gc1c2c3
µνρ (p1, p2, p3) = −1 + (−1)N

2 iN−1f c1c2c3

×
{
η(N)(∆ · p1)N−2∆µ[p3ν∆ρ − gνρ(∆ · p3)

+ ∆ρ(p2 + p3)ν ] + ∆ν∆ρ[p2
1∆µ − p1µ(∆ · p1)]

×
∑

i+j=N−3
κij(∆ · p2)i(∆ · p3)j

}
+ permutations, (4.8)

Gc1c2c3c4
µνρσ (p1, p2, p3, p4) = 1 + (−1)N

2 iN−2f c1c2xfxc3c4

{
[∆ν∆ρ∆σ(p1 + 2p2)µ

− gµν∆ρ∆σ(∆ · p2)]
∑

i+j=N−3
κij(∆ · p3)i(∆ · p4)j

− gνρ∆µ∆σ(∆ · p1)N−2 + [p2
1∆µ − p1µ(∆ · p1)]∆ν∆ρ∆σ

×
∑

i+j+k=N−4
κ

(1)
ijk(∆ · p2)i(∆ · p3)j(∆ · p4)j

}
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+ 1 + (−1)N

2 [p2
1∆µ − p1µ(∆ · p1)]∆ν∆ρ∆σ

×
{
dc1c2c3c4

4
∑

i+j+k=N−4
κ

(2)
ijk(∆ · p2)i(∆ · p3)j(∆ · p4)j

+ dc1c2c3c4

4̂ff

∑
i+j+k=N−4

κ
(3)
ijk(∆ · p2)i(∆ · p3)j(∆ · p4)j

}

+ permutations, (4.9)

Gc1c2c3c4c5
µνρστ (p1, p2, p3, p4, p5) = 1 + (−1)N

2 iN−1f c1c2xfxc3yfyc4c5

×
{
− gµρ∆ν∆σ∆τ

∑
i+j=N−3

κij(∆ · p4)i(∆ · p5)j

+ ∆ρ∆σ∆τ [(p1 + 2p2)µ∆ν − (∆ · p2)gµν ]

×
∑

i+j+k=N−4
κ

(1)
ijk(∆ · p3)i(∆ · p4)j(∆ · p5)k

+ [p2
1∆µ − p1µ(∆ · p1)]∆ν∆ρ∆σ∆τ

×
∑

i+j+k+l=N−5
κ

(1)
ijkl(∆ · p2)i(∆ · p3)j(∆ · p4)k(∆ · p5)l

}

+ 1 + (−1)N

2 iN−1dc1c2c3c4c5
4f

{
∆µ∆ν∆ρ[(p4 + 2p5)σ∆τ

− (∆ · p5)gστ ]
∑

i+j+k=N−4
κ

(2)
ijk(∆ · p1)i(∆ · p2)j(∆ · p3)k

+ [p2
1∆µ − p1µ(∆ · p1)]∆ν∆ρ∆σ∆τ

×
∑

i+j+k+l=N−5
κ

(2)
ijkl(∆ · p2)i(∆ · p3)j(∆ · p4)k(∆ · p5)l

}

+ permutations, (4.10)

where again all permutations of gluon momenta, Lorentz and colour indices have to be added,
if indicated by ‘+ permutations’. Note that p2 in Gc1c2

µν (p1, p2) in eq. (4.7) was again eliminated
using momentum conservation. This then agrees with eq. (5.23) in [10] and eq. (243) in [38]
after dividing the latter rules by iN to match to our conventions.

For the O(gs) EOM vertex three contributions need to be taken into account,

• the non-Abelian part of the field strength in the class I operator with D → ∂,

• the O(gs) part of the covariant derivative acting on the Abelian part of the field strength
in the class I operator and

• the class II operator, cf. eq. (2.10), with D → ∂ and keeping only the Abelian part of
the field strength.
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Our result matches the corresponding rules in the literature, cf. eq. (5.24) in [10] and eq. (244)
in [38] respectively (again after dividing by the overall iN ).

Next the four-gluon vertex gets four contributions,

• the O(gs) part of the covariant derivative acting on the non-Abelian part of the field
strength in the class I operator,

• the non-Abelian part of the field strength in the class II operator with D → ∂,

• the O(gs) part of the covariant derivative acting on the Abelian part of the field strength
in the class II operator and

• the class III operator, cf. eq. (2.11), with D → ∂ and keeping only the Abelian part of
the field strength.

The second and third contributions depend on the lower-order coupling κij , while the fourth
one is written in terms of the couplings κ(1)

ijk, κ(2)
ijk and κ

(3)
ijk given by eqs. (3.26), (3.33)

and (3.40) respectively. The (f f) and d4 parts of our rule agree with eq. (5.25) in [10],6
while the d4̂ff

part is new.
Finally, as a new result,7 we consider the five-gluon vertex Gc1c2c3c4c5

µνρστ (p1, p2, p3, p4, p5) in
eq. (4.10). Again we need to take into account higher-order contributions of the lower-point
vertices. In particular, the (f f f) part of the five-gluon rule gets four contributions,

• the O(gs) part of the covariant derivative acting on the non-Abelian part of the field
strength in the class II operator,

• the non-Abelian part of the field strength in the class III operator with D → ∂,

• the O(gs) part of the covariant derivative acting on the Abelian part of the field strength
in the class III operator,

• the class IV operator, cf. eq. (2.12), with D → ∂ and keeping only the Abelian part of
the field strength.

On the other hand the d4f part only gets three contributions,

• the non-Abelian part of the field strength in the class III operator with D → ∂,

• the O(gs) part of the covariant derivative acting on the Abelian part of the field strength
in the class III operator and

• the class IV operator, cf. eq. (2.12), with D → ∂ and keeping only the Abelian part of
the field strength.

6Note however that our result proportional to d4 needs to be multiplied by a symmetry factor of 1/4! to
match eq. (5.25) in [10], which is again a consequence of differing conventions.

7The corresponding result within the framework of ref. [10] was recently announced in a conference talk [15].
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4.3 Alien quark operators

Finally in this section we provide the Feynman rules for the alien quark operators presented
in eqs. (2.9)–(2.11). As mentioned above, these operators are written in terms of the same
couplings as those in the gluon EOM operators. Assuming the momenta of the external
quark fields to be p1 and p2 we have the following perturbative expansion

with

Q(p1, p2) = 0, (4.11)

Qc1
µ(p1, p2, p3) = −1 + (−1)N

2 iN η(N)T c1 ∆µ /∆(∆ · p3)N−2, (4.12)

Qc1c2
µν (p1, p2, p3, p4) = [1 + (−1)N ]iN−1T afac1c2 ∆µ∆ν /∆

∑
i+j=N−3

κ
(1)
ij (∆ · p3)i(∆ · p4)j , (4.13)

Qc1c2c3
µνρ (p1, p2, p3, p4, p5) = [1 + (−1)N ]iN T a∆µ∆ν∆ρ /∆

{
fac1xfc2c3x

∑
i+j+k=N−4

κ
(1)
ijk(∆ · p3)i(∆ · p4)j(∆ · p5)k

+ dac1c2c3
4

∑
i+j+k=N−4

κ
(2)
ijk(∆ · p3)i(∆ · p4)j(∆ · p5)k

+ dac1c2c3

4̂ff

∑
i+j+k=N−4

κ
(3)
ijk(∆ · p3)i(∆ · p4)j(∆ · p5)k

}
+ [(p3, µ, c1)↔(p4, ν, c2)]

+ [(p3, µ, c1)→(p5, ρ, c3)→(p4, ν, c2)→(p3, µ, c1)] . (4.14)

The vertices with up to two additional gluons can be compared against the results presented
in eqs. (5.17)–(5.19) of [10]. Dividing the latter by iN to match to our conventions, we find
exact agreement. Note that eqs. (4.13)–(4.14) contain an additional factor of two coming
from the [(p4, ν, c2) ↔ (p5, ρ, c3)] permutation. This directly follows from the (anti-)symmetry
properties of the κ-couplings, cf. eqs. (3.19), (3.28) and (3.36). Finally, because the κ-couplings
enter the quark operator at one order in the strong coupling lower than in the gluon EOM
one, we can push the perturbative expansion of the quark operator to one order higher.
Consequently we also present the quark operator vertex at O(g4

s) with four additional gluons
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We find

Qc1c2c3c4
µνρσ (p1, p2, p3, p4, p5, p6)

= −1 + (−1)N

2 iN−1T a∆µ∆ν∆ρ∆σ /∆
{

(f f f)ac1c2c3c4
∑

i+j+k+l=N−5
κ

(1)
ijkl

× (∆ · p1)(∆ · p3)i(∆ · p4)j(∆ · p5)k(∆ · p2)l+1

+dac1c2c3c4
4f

∑
i+j+k+l=N−5

κ
(2)
ijkl(∆ ·p1)(∆ ·p3)i(∆ ·p4)j(∆ ·p5)k(∆ ·p2)l+1

}
+ permutations

(4.15)

with all permutations of the gluonic quantities (momenta, Lorentz and colour indices) to
be added.

5 Conclusions

The kernels for parton evolution equations in QCD, i.e. splitting functions or the corresponding
anomalous dimensions as their Mellin transforms, can be conveniently determined from the
ultraviolet singularities of off-shell Green’s functions with insertions of gauge-invariant twist-
two spin-N operators. The renormalization of these OMEs, though, requires the computation
of unphysical counterterms for the associated set of alien operators, which effectively describe
vertices of two gluons, ghosts or quarks with any number n ≥ 0 of additional gluons.
The couplings of these alien operators (EOM and ghost operators) are restricted by the
fundamental symmetries, particularly the gBRST relations, which reflect the gauge theory
characteristics of QCD.

The set of constraints for these couplings admits explicit solutions, valid for any spin
N , which can be obtained using algorithms for symbolic summation to solve the recurrence
relations. A small number of boundary conditions in these solutions can be derived from the
computation of the relevant OMEs at specific fixed values of N . In addition, we have observed
that the constraints contain a hierarchy, such that the function space of the couplings of
alien operators with n+ 1 gluons can be derived from that of the n-gluon aliens. Thus, the
basic ingredients in this bootstrap turn out to be the EOM and ghost operators with the
smallest number of additional gluons at a given loop order.

We have provided results for all one-loop alien operator couplings needed in the renormal-
ization of OMEs with physical (gauge-invariant) operators up to four loops, which represents
the current frontier in splitting function computations. This includes in particular the gluon
EOM operator with five gluons attached, which is a new result. The all-N solutions for the
couplings that we have obtained can all be related to the fundamental one-loop counterterm
η(N) for the EOM and ghost operators of class I involving only two gluons or ghosts. We
have also derived the corresponding Feynman rules and, whenever possible, compared them
to those in the literature, finding full agreement.

A Mathematica file with our results for the all-N couplings necessary for the renormal-
ization up to four loops is made available as supplementary material. We note that the
expressions collected in this file have the fundamental one-loop counterterm η(N) divided out.
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The symmetries and the structure of the alien operators, that we have exploited in this
study, are independent of the order of perturbation theory. Thus, we expect also analytic
all-N solutions beyond one loop for the couplings of the alien operators of class II and higher.
We leave this task to future studies.
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