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Abstract
In this article, densities (and their derivatives) of sub-
ordinators and inverse subordinators are considered.
Under minor restrictions, generally milder than the
existing in the literature, employing a useful modi-
fication of the saddle point method, we obtain the
large asymptotic behaviour of these densities (and their
derivatives) for a specific region of space and time and
quantify how the ratio between time and space affects
the explicit speed of convergence. The asymptotics is
governed by an exponential term depending on the
Laplace exponent of the subordinator and the region
represents the behaviour of the subordinator when it is
atypically small (the inverse one is larger than usual).
As a result, a route to the derivation of novel general
or particular fine estimates for densities with explicit
constants in the speed of convergence in the region
of the lower envelope/the law of iterated logarithm is
available. Furthermore, under mild conditions, we pro-
vide a power series representation for densities (and
their derivatives) of subordinators and inverse subordi-
nators. This representation is explicit and based on the
derivatives of the convolution of the tails of the cor-
responding Lévy measure, whose smoothness is also
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investigated. In this context, the methods adopted are
based on Laplace inversion and strongly rely on the the-
ory of Bernstein functions extended to the cut complex
plane. As a result, smoothness properties of densities
(and their derivatives) and their behaviour near zero
immediately follow.
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1 INTRODUCTION

Subordinators are Lévy processes, that is, cádlág stochastic processeswith stationary and indepen-
dent increments, whose paths are almost surely non-decreasing. For this reason, they constitute
a special class of Lévy processes of fundamental interest in probability theory. In this paper,
wherever possible, we consider potentially killed subordinators, that is to say that for any proper
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3 of 58 ASCIONE et al.

subordinator 𝜎 ∶= (𝜎(𝑥))𝑥⩾0, we allow for killing at an exponentially distributed random variable
𝐞𝑞, 𝑞 ⩾ 0 (𝐞0 = ∞) that is independent of 𝜎, by setting 𝜎(𝑥) = ∞, provided 𝑥 ⩾ 𝐞𝑞 and keeping the
original process until 𝐞𝑞. With each potentially killed subordinator, one defines the (right-)inverse
process through the passage times 𝐿 ∶= (𝐿(𝑡))𝑡⩾0. In this work, our main aim is to offer a detailed
study of the densities of 𝐿. In more detail, under mild and natural conditions, we prove that such
densities are smooth in both variables and we provide for them and their derivatives a series rep-
resentation and precise non-classical Tauberian asymptotics (with explicit speed of convergence).
The latter is obtained bymeans of Laplace inversion, as, indeed, the Laplace transform of the den-
sity of 𝐿(𝑡) with respect to the variable 𝑡 admits a simple form in terms of the Laplace exponent
of the subordinator 𝜎. Furthermore, we also extend the results to densities (and their derivatives)
of the subordinators themselves. Our results expand uniformly the existing knowledge on these
quantities and allow for specific applications. We shall discuss the literature, offer motivation for
our study and outline our methodology below.
We first mention that, in recent years, the interest in subordinators and their hitting times has

grown fast and has reached an increasingly larger audience also outside the probability commu-
nity, involving many areas of mathematics. This is due, in particular, to the connection with the
so-called anomalous processes (or anomalous diffusion) and semi-Markov processes. Indeed, if
we take a Markov process 𝑋 = (𝑋(𝑡))𝑡⩾0 and consider the time-changed process 𝑌 = (𝑌(𝑡))𝑡⩾0,
with 𝑌(𝑡) ∶= 𝑋(𝐿(𝑡)), for any 𝑡 ⩾ 0, then the process 𝑌 has intervals of constancy, induced by the
time change, that are distributed according to the jumps of 𝜎 (which are not necessarily exponen-
tials). Under suitable assumptions, these time-changed processes are prototypes of semi-Markov
processes (e.g. [19, 37, 51, 63]). The importance of these processes arises in several applications in
very different fields, among others: they are scaling limit of continuous time random walks (e.g.
[5, 8, 48, 51]), they are useful to model anomalous diffusion and fractional kinetics (e.g. [2, 9, 30,
33, 41, 42, 49, 52, 55, 62, 63, 67, 70]), they appear in economics and mathematical finance (e.g. [35,
64, 65, 69]) and recently also in neuronalmodelling (e.g. [3, 4]). Furthermore, the relation between
these processes and solutions of some time-non-local equations is now well established (see [7,
15] for the most modern recent theory, [49] for a review of applications and [31] for analysis of
fractional-type equations). It is clear that in this context, the one-dimensional distributions of the
random variables 𝐿(𝑡) play a central role. For instance, if we assume that𝑋 admits as a state space
ℝ𝑑, for some 𝑑 ⩾ 1, and we denote by 𝑝(𝑥, 𝑦, 𝑡) the transition densities of 𝑋, then one can show
that

(ℝ𝑑) ∋ 𝐸 ↦ ℙ(𝑌(𝑡) ∈ 𝐸 ∣ 𝑌(0) = 𝑥) = ∫𝐸 ∫
∞

0
𝑝(𝑥, 𝑦, 𝑠)𝑓(𝑠; 𝑡)𝑑𝑠 𝑑𝑦,

where, for any 𝑡 > 0,𝑓(𝑠; 𝑡) is the density of 𝐿(𝑡) and(ℝ𝑑) is the Borel𝜎-algebra ofℝ𝑑. In practice,
the time-changed process admits a density that can be written in terms of the one-dimensional
distributions of 𝐿(𝑡). Hence, in order to determine some features of the one-dimensional dis-
tribution of 𝑌, it may be necessary to rely also on some specific properties of the ones of 𝐿(𝑡)
itself. Therefore, a more detailed study of the main features of the densities of inverse subor-
dinators is needed. This point of view inspired several other works on this topic (e.g. [20, 43,
44, 50, 71]). The asymptotic behaviour of the density of subordinators and inverse subordinators
already revealed to be a strong tool, for example, to study solutions of time-non-local equations.
Two-sided estimates for densities of subordinators and inverse subordinators and their derivatives
have been obtained, by differentmeans, for instance, in [16, 17] under restrictive scaling condition,
where they have been employed to provide a two-sided bound for the fundamental solution of a
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 4 of 58

time-non-local Poisson equation. Similarly, small-time asymptotics of the derivative of the den-
sity of inverse subordinators has been employed in [2] to derive the regularity of the fundamental
solution of a time-non-local heat equation with a moving boundary. Furthermore, asymptotics of
the distributions of subordinators and inverse subordinators have been used in [39, 40] to deduce
the spectral heat content of some time-changed processes, which play a role in the stochastic
representation of the solution of time-non-local partial differential equations.
Two of the key objectives in the study of the one-dimensional distributions of random pro-

cesses are to understand the asymptotic behaviour in time and space of their tails and to find
representations for their densities and those of related quantities, for example, such as passage
times. This information is usually in the form of explicit asymptotic terms at zero and/or at infin-
ity, series expansions, integral representations, and so on. In this work, we provide results for
densities (and their derivatives) of inverse subordinators and, via interchangeability, of subordi-
nators. These include the derivation of precise, universal and explicit form of the large asymptotic
behaviour with speed of convergence and general series expansions. The results go well beyond
the current state-of-art which we briefly review below.
On the large asymptotics, the first papers, see [29, 36], offered results for lower tails of sub-

ordinators. They have been subsequently refined for densities with the most up-to-date results
contained in [22, 32]. General upper and lower bounds with conditions in the spirit of [22] are
derived in [32]. Particular cases of estimates on densities for a class of subordinators can be found
in the recent work [18]. Asymptotic results that are similar to ours (without speed of convergence)
are contained in [60] which deals with densities (and their derivatives) of spectrally negative Lévy
processes with necessarily positive Brownian component. Overall, at asymptotic level, our results
in Theorem 3.10(i) relax the assumptions of the general [32, Theorem 3.3] and [22, Theorem 3.2
(iii)]. In the setting of Theorem 3.10 (iii), our general condition is of different nature than those
in [32, Theorem 3.3] and [22, Theorem 3.2 (iii)], whereas in the case of Theorem 3.10(ii), our con-
dition is slightly more restrictive but easier to verify than [22, Theorem 3.2 (iii)]. However, in all
cases, we provide uniform results with explicit speed of convergence that deal not only with den-
sities but with all their derivatives too. Besides, all results for densities of subordinators have their
counterparts for densities of inverse subordinators. Detailed discussion is given in Section 3.1.1.
To derive our large asymptotic results, we use the saddle point method, as applied in [54], with
a modification which allows us to measure the speed of convergence. We must emphasise that
the very precise general asymptotic results with speed of convergence coming from an applica-
tion of the classical saddle point method, see [56, 57], are not directly applicable in our setting for
two reasons: firstly, the integrals we study do not have separation of variables as 𝑧 and 𝑡 in [57,
(1.0.1)] and second the contour we integrate on varies, whereas it is fixed in [57, Condition (ii)].
Also, the steepest descent as described in [57] requires very precise knowledge on locations of real
values of differences of Bernstein functions. This is usually unavailable. Continuing the discus-
sion of our results, note that the obtained speed of convergence depends on the ratio of time and
space, that is, 𝑡∕𝑥, in ℙ (𝐿(𝑡) ∈ 𝑑𝑥; 𝜎(𝐿(𝑡)) > 𝑡) = 𝑓(𝑥, 𝑡)𝑑𝑥, as it ranges between the drift of 𝜎 and
𝔼 [𝜎(1)], and the closer 𝑡∕𝑥 is to the drift the faster the speed of convergence is. As a result, under
conditions generally milder than the existing in the literature, we present in Theorems 3.2, 3.6,
3.8 and 3.10 explicit expressions for the aforementioned densities (and their derivatives) which
are dominated by rather explicit exponential terms stemming from the Laplace exponent of 𝜎. It
is important to highlight once again that these representations are valid for 𝑡∕𝑥 < 𝔼 [𝜎(1)] and
therefore capture non-typical slow growth of 𝜎 or equivalently fast growth of 𝐿. For example,
when the subordinator has a finite second moment, our results capture the region below that
of the central limit theorem, see Section 6 for more details. If 𝔼 [𝜎(1)] = ∞, then our estimates
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5 of 58 ASCIONE et al.

capture the region of the lower envelope of subordinators, and therefore, one can obtain more
precise local estimates for densities including explicit constants in the speed of convergence and
hence furnish estimates for the probabilities that lead up to the law of the iterated logarithm as
in [11, 29], see Section 6. One is also able to study particular classes of subordinators for which
our main results can be further specialised. Also, given the nature of the saddle point method,
we can derive under milder assumptions concrete bounds for fixed times as in [18, 32]. These are
directions for further investigations.
On representations of densities with series expansions, the literature is mainly concerned with

subordinators and, in general, Lévy processes. Series representations for stable laws can be found,
for example, in [25, Chapter XVII.6]. In the more specific case of the stable subordinator, a series
representation for its density has been provided in [61]. It is clear that such a representation can be
extended to the density of the inverse stable subordinator by means of the relation that links the
two quantities, as, for instance, highlighted in [47, Corollary 3.1]. A similar result has been proved
for the inverse tempered stable subordinator in [44], while a further integral representation for
the density of the inverse gamma subordinator has been provided in [45] and further improved in
[20]. To the best of our knowledge, these very last contributions are the only ones, which provide
series representation for the density of (very specific) inverse subordinators. We remark that in
both cases, the results have been widely used, especially in applications regarding anomalous
diffusion (see, e.g. [53] and references therein) and in the context of governing equations of time-
changed processes (see, e.g. [70] and references therein). Differently from the case of the inverse
subordinators, series expansion and small-time asymptotics of general Lévy processes have been
widely studied. The more recent paper [26] provides small-time polynomial expansions of the
distribution of a general Lévy process (later extended to some stochastic volatility models [27, 28])
under some technical assumptions concerning the regularity of its Lévy measure and density.
In [14], the authors obtained explicit representations for some subordinators of the Thorin class.
Despite, in general, such explicit representations do not provide power-series expansions, some of
them can be still rewritten in thisway, aswe do in Subsection 6.2. In [38], the authors provide some
small-time bounds and ‘bell-like’ estimates for the density of Lévy processes under a technical
condition on the characteristic function. Following the proof, one can observe that the authors
employ a preliminary estimate in terms of a compound kernel estimate, which is indeed expressed
in terms of a series of convolution powers.
Here, under mild assumptions on the Laplace exponent of the subordinator, we obtain an

explicit power series representation for the density (and its derivatives) of the inverse subordina-
tor, in Theorem 3.15, and of the subordinator itself, in Theorem 3.20. We highlight that our power
series representation holds, in particular, when the Laplace exponent of 𝜎 is a complete Bernstein
function, thus covering also the cases discussed in [44, 61], for which comparison is carried on
in Subsection 6.2. The assumption on the completeness of the Laplace exponent is sufficient, but
not necessary, as the power-series representation can be applied on awider class of subordinators,
as discussed in Section 3.2.1. From the point of view of polynomial expansion, we use our series
representation to obtain a result for inverse subordinators which is similar to that in [26] men-
tioned above: precisely, we provide the asymptotics for small 𝑥, uniformly for 𝑡 in compact sets,
for the density of inverse subordinators and its derivatives (under quite general and easy-to-check
conditions).
As already mentioned, both the asymptotic behaviour and the power-series representation are

obtained via Laplace inversion. On the one hand, the assumptions used to derive the asymptotic
behaviour first lead to the absolute convergence of the integral involved in the Laplace inversion
(see [1, Theorem 4.1.21]). On the other hand, the assumptions adopted to obtain the power-series
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 6 of 58

representation allow us to consider a suitable keyhole-type contour, on which the inversion inte-
gral becomes absolutely convergent. Furthermore, as a consequence, we get the smoothness of
the involved densities starting from any of the two sets of assumptions. Finally, let us remark that
the proofs of themain results presented in Section 3 are given separately in Sections 4 and 5, while
Section 6 offers examples and further discussion for the two sets of results.

2 PRELIMINARIES

We assume everywhere that we work on the standard (for subordinators) probability space,
namely the space of cádlág functions on [0,∞] endowed with the Skorohod topology, the sigma-
algebra generated by it and a suitable probability measure on the latter. Also, because our paper
focuses on the inverse subordinators, we use 𝑡 for its time variable and 𝑥 for its space variable.
This choice of notation imposes that for the subordinator 𝑡 is the space variable and 𝑥 is the time
variable, which is unusual, but still in line with the main focus of the paper.
Let 𝜎 = (𝜎(𝑥))𝑥⩾0 be a potentially killed one-dimensional subordinator, that is to say that there

exists a conservative subordinator 𝜎▵ ∶=
(
𝜎▵(𝑥)

)
𝑥⩾0

and an independent exponential random
variable 𝐞𝑞 with parameter 𝑞 ⩾ 0 (where, if 𝑞 = 0, we set 𝐞0 = ∞) such that 𝜎(𝑥) = 𝜎▵(𝑥) for any
𝑥 < 𝐞𝑞, while 𝜎(𝑥) = ∞ for any 𝑥 ⩾ 𝐞𝑞. Each 𝜎 is uniquely determined (in law) by a Bernstein
function in the following manner:

− log 𝔼
[
𝑒−𝑧𝜎(1)

]
= 𝜙(𝑧) = 𝑞 + 𝔟𝑧 + ∫

∞

0
(1 − 𝑒−𝑧𝑦)𝜇𝜙(𝑑𝑦)

= 𝑞 + 𝔟𝑧 + 𝑧 ∫
∞

0
𝑒−𝑧𝑦�̄�𝜙(𝑦)𝑑𝑦, 𝚁𝚎(𝑧) ⩾ 0,

(2.1)

where 𝑞, 𝔟 ⩾ 0, 𝜇𝜙 is a Radon measure on (0,∞) satisfying ∫ ∞
0 min {𝑦, 1} 𝜇𝜙(𝑑𝑦) < ∞ (called the

Lévy measure of 𝜎) and �̄�𝜙(𝑡) = 𝜇𝜙 ((𝑡,∞)) = ∫ ∞
𝑡 𝜇(𝑑𝑦), 𝑡 ⩾ 0, is the tail of 𝜇𝜙. In fact, the right-

hand side of (2.1) serves as an equivalent definition of Bernstein functions, and thus, they are in
bijectionwith the potentially killed subordinators. Due to their importance in other areas ofmath-
ematics, Bernstein functions have been studied in detail. An exposition on the current knowledge
of their properties can be found in [66] and some additional information is scattered in references
such as [6, 58, 59]. Classical references for Lévy processes and subordinators, in particular, are the
books [10, 11, 46].
With each 𝜎 one defines the (right-)inverse subordinator 𝐿 ∶= (𝐿(𝑡))𝑡⩾0 via the passage times

𝐿(𝑡) ∶= inf {𝑥 > 0 ∶ 𝜎(𝑥) > 𝑡}. (2.2)

Note that ℙ (𝐿(𝑡) = ∞) = 0 for every 𝑡 ∈ [0,∞), even if 𝑞 > 0, since for 𝑡 > 𝜎(𝐞𝑞−), the process
𝐿(𝑡) remains stuck in the position 𝐞𝑞. Also, note that the paths of 𝐿 are almost surely continuous
if and only if 𝔟 ≠ 0 or �̄�𝜙(0) = ∞, that is, 𝜎 is not a pure-jump compound Poisson process. When
𝑞 = 𝔟 = 0 and �̄�𝜙(0) = ∞, it is well known, see [48, Theorem 3.1], that, for any 𝑡 > 0, 𝐿(𝑡) admits
density on (0,∞) and the requirement 𝑞 = 0 is immediately seen to be unnecessary. Indeed, it is
not hard to check, by a conditioning argument using the independence between 𝐞𝑞 and 𝜎▵ that

ℙ(𝐿(𝑡) ⩽ 𝑥) = 1 − 𝑒−𝑞𝑥 + 𝑒−𝑞𝑥ℙ
(
𝐿Δ(𝑡) ⩽ 𝑥

)
= 1 − 𝑒−𝑞𝑥ℙ

(
𝜎▵(𝑥) ⩽ 𝑡

)
, (2.3)
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7 of 58 ASCIONE et al.

where 𝐿▵ stands for the inverse of 𝜎▵. Furthermore, if 𝑞 = 0, then 𝜎▵ = 𝜎 and 𝐿▵ = 𝐿, and the
measure ℙ

(
𝐿▵(𝑡) ∈ 𝑑𝑥, 𝜎▵(𝐿▵(𝑡)) > 𝑡

)
has a density on (0, 𝑡∕𝔟), where we set 𝑡∕0 = ∞ (see [21,

Lemma 11] and [22, prior to Theorem 2.3]), given by the relation

ℙ
(
𝐿▵(𝑡) ∈ 𝑑𝑥, 𝜎▵(𝐿▵(𝑡)) > 𝑡

)
= ∫

𝑡

0
�̄�𝜙(𝑡 − 𝑦)ℙ

(
𝜎▵(𝑥) ∈ 𝑑𝑦

)
𝑑𝑥 =∶ 𝑓▵

𝜙
(𝑥, 𝑡)𝑑𝑥. (2.4)

However, since ℙ
(
𝜎▵(𝐿▵(𝑡)) > 𝑡

)
< 1 if and only if 𝔟 > 0, see [11, Propositions 1.7 and 1.9], we

observe that if 𝔟 = 0, then, for 𝑡 > 0, 𝑓▵
𝜙
(⋅, 𝑡) is the density of 𝐿▵(𝑡). Otherwise, if 𝔟 > 0, 𝑓▵

𝜙
(⋅, 𝑡)

stands for the density of 𝐿▵(𝑡) on the event that 𝜎▵ jumps across 𝑡. On the event that 𝜎▵ creeps
up across 𝑡, that is, on {𝜎▵(𝐿▵(𝑡)) = 𝑡}, 𝐿▵(𝑡) does not necessarily admit a density. However, it has
been shown in the proof of [22, Lemma 3.3], that if 𝜎▵(𝑥) admits a density g▵

𝜙
(𝑥, ⋅) on (𝔟𝑥,∞),

then, on the event {𝜎▵(𝐿▵(𝑡)) = 𝑡}, 𝐿▵(𝑡) admits a density in (0, 𝑡∕𝔟) given by

𝑓𝑐,▵
𝜙
(𝑥, 𝑡)𝑑𝑥 ∶= ℙ

(
𝐿▵(𝑡) ∈ 𝑑𝑥, 𝜎▵(𝐿▵(𝑡)) = 𝑡

)
= 𝔟g▵

𝜙
(𝑥, 𝑡)𝑑𝑥. (2.5)

Plugging (2.4) and (2.5) into (2.3), we get on [0, 𝑡∕𝔟)

ℙ(𝐿(𝑡) ⩽ 𝑥) = 1 − 𝑒−𝑞𝑥 + 𝑒−𝑞𝑥 ∫
𝑥

0

[
∫

𝑡

0
�̄�𝜙(𝑡 − 𝑦)g▵

𝜙
(𝑠, 𝑦)𝑑𝑦 + 𝔟g▵

𝜙
(𝑠, 𝑡)

]
𝑑𝑠. (2.6)

Furthermore, if 𝜎▵(𝑥) admits a density g▵
𝜙
(𝑥, ⋅) on (𝔟𝑥,∞), so does 𝜎(𝑥) with density given by

g𝜙(𝑥, 𝑡)𝑑𝑡 ∶= ℙ(𝜎(𝑥) ∈ 𝑑𝑡) = 𝑒−𝑞𝑥g▵
𝜙
(𝑥, 𝑡)𝑑𝑡. (2.7)

Differentiating (2.6) in 𝑥, we get that 𝐿(𝑡) admits a density on (0, 𝑡∕𝔟), which is given by

ℙ(𝐿(𝑡) ∈ 𝑑𝑥) = 𝑞ℙ(𝜎(𝑥) ⩽ 𝑡)𝑑𝑥 =∶ 𝑓k
𝜙
(𝑥, 𝑡)𝑑𝑥 (2.8)

+

(
∫

𝑡

0
�̄�𝜙(𝑡 − 𝑦)g𝜙(𝑥, 𝑦)𝑑𝑦

)
𝑑𝑥 =∶ 𝑓𝜙(𝑥, 𝑡)𝑑𝑥 (2.9)

+ 𝔟g𝜙(𝑥, 𝑡)𝑑𝑥 =∶ 𝑓c
𝜙
(𝑥, 𝑡)𝑑𝑥, (2.10)

where we have used (2.3) to identify the double integral in (2.6). The functions 𝑓𝜙, 𝑓k𝜙 and 𝑓
c
𝜙
are

defined on the set

𝔻 ∶=
{
(𝑡, 𝑥) ∈ ℝ2 ∶ 𝑡 > 0, 0 < 𝑥 <

𝑡

𝔟

}
(2.11)

and then extended to 0 outside 𝔻.
Our main results focus on the quantities in (2.7) and (2.9), but the extension of such properties

to (2.8) and (2.10) will be clear.
Despite the fact that the formulations of𝑓k

𝜙
,𝑓𝜙 and𝑓c𝜙 in (2.8), (2.9) and (2.10) are quite implicit,

their Laplace transforms in the variable 𝑡 can be expressed in terms of 𝜙 in a simple way. Indeed,
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 8 of 58

for any 𝑧 ∈ ℂ with 𝚁𝚎(𝑧) > 0, we have

∫
∞

0
𝑓k
𝜙
(𝑥, 𝑡)𝑒−𝑧𝑡𝑑𝑡 =

𝑞

𝑧
𝑒−𝑥𝜙(𝑧), ∫

∞

0
𝑓c
𝜙
(𝑥, 𝑡)𝑒−𝑧𝑡𝑑𝑡 = 𝔟𝑒−𝑥𝜙(𝑧) (2.12)

and

∫
∞

0
𝑓𝜙(𝑥, 𝑡)𝑒

−𝑧𝑡𝑑𝑡 =
𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧), (2.13)

where

𝜙†(𝑧) ∶= 𝜙(𝑧) − 𝑞 − 𝔟𝑧. (2.14)

Expression (2.13) is the starting point of our study.
Let us now fix some notation. Here and hereafter, we use ℂ for the complex plane and we

write 𝑧 = 𝑎 + 𝑖𝑏 = 𝚁𝚎(𝑧) + 𝑖𝙸𝚖(𝑧). For any 𝑎 ∈ ℝ, we setℍ𝑎 ∶= {𝑧 ∈ ℂ ∶ 𝚁𝚎𝑧 > 𝑎}. For any𝛼, 𝛽 ∈
(−𝜋, 𝜋] with 𝛽 < 𝛼, we put

ℂ(𝛼, 𝛽) ∶= {𝑧 ∈ ℂ ∶ 𝛽 < Arg(𝑧) < 𝛼, |𝑧| > 0}

and ℂ(𝛼) ∶= {𝑧 ∈ ℂ ∶ |Arg(𝑧)| < 𝛼, |𝑧| > 0} when 𝛼 > 0.
Throughout the paper, we use 𝐶 to denote any constant whose value is inessential. If needed,

we underline the dependence of 𝐶 on some parameters 𝑝1, 𝑝2, … by using 𝐶(𝑝1, 𝑝2, … ).
We use o (⋅) , O (⋅) in the standard fashion with, for example, o (g(𝑥)), as 𝑥 → 𝑎, denoting

a generic function 𝑓 such that lim𝑥→𝑎 |𝑓(𝑥)|∕|g(𝑥)| = 0, while O (g(𝑥)), as 𝑥 → 𝑎, meaning a
generic function 𝑓 with lim sup𝑥→𝑎 |𝑓(𝑥)|∕|g(𝑥)| < ∞. The same notation is also reserved for
functions on regions of ℂ. Furthermore, we say that 𝑓 ≍ g , as 𝑥 → 𝑎, if 𝑓 = O (g(𝑥)) and g =

O (𝑓(𝑥)), as 𝑥 → 𝑎. For any two functions 𝑓, g ∶ [0, +∞) → ℝ, we denote the convolution product
of 𝑓 and g as

(𝑓 ∗ g)(𝑡) = ∫
𝑡

0
𝑓(𝑠)g(𝑡 − 𝑠)𝑑𝑠, 𝑡 ⩾ 0.

Furthermore, we denote the convolution powers as

𝑓∗0(𝑡) = 𝛿0 𝑓∗1(𝑡) = 𝑓(𝑡) 𝑓∗𝑛(𝑡) = (𝑓 ∗ 𝑓∗(𝑛−1))(𝑡), 𝑛 ⩾ 2.

The next lemma collects well-known properties of Bernstein functions used throughout this
paper.

Lemma 2.1. Let 𝜙 be a non-zero Bernstein function. Then,

(1) 𝜙 is non-decreasing on [0,∞) with 𝜙(∞) = ∞ ⟺ �̄�𝜙(0) = ∞ or 𝔟 > 0;
(2) for any 𝑧 ∈ ℍ0, we have that 𝚁𝚎𝜙(𝑧) ⩾ 0 and

𝚁𝚎(𝜙(𝑧)) ⩾ 𝜙(𝚁𝚎(𝑧)); (2.15)

 20524986, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.70004 by B

runo T
oaldo - C

am
bridge U

niversity L
ibrary , W

iley O
nline L

ibrary on [06/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



9 of 58 ASCIONE et al.

(3) 𝜙′ is completely monotone on (0,∞), that is, for all 𝑛 ⩾ 1, (−1)𝑛−1𝜙(𝑛)(𝑥) ⩾ 0 on (0,∞), and
lim
𝑥→∞

𝜙′(𝑥) = 𝔟; as a result 𝜙′′ < 0 and 𝜙′′′ > 0 on (0,∞) and 𝜙′(0+) < ∞ ⟺ ∫ ∞
0 𝑦𝜇𝜙(𝑑𝑦) <

∞;
(4) for all 𝑥 > 0, it holds that 𝑥𝜙′(𝑥) ⩽ 𝜙(𝑥) and −𝑥2𝜙′′(𝑥) ⩽ 2𝜙(𝑥);
(5) for any 𝑧 ∈ ℍ0 and any 𝑛 ⩾ 1, it holds that |𝜙(𝑛)(𝑧)| ⩽ |𝜙(𝑛)(𝚁𝚎(𝑧))|;
(6) for any 𝜙, it holds that |𝜙(𝑧)| = 𝔟|𝑧|(1 + o(1)), as 𝑧 → ∞ uniformly on ℍ0, and if 𝜙(0) = 𝑞 >

0, 𝜙(𝔲𝜙) = 0, where 𝔲𝜙 is the first zero of 𝜙 on (−∞, 0) and 𝜙 extends analytically (continuously
at the boundary) at least to ℍ𝔲𝜙 , then |𝜙(𝑧)| = 𝔟|𝑧|(1 + o(1)), as 𝑧 → ∞ uniformly on the same
region ℍ𝔲𝜙 ;

(7) if𝜙1, 𝜙2 are twoBernstein functions, then 𝑧 ∈ [0, +∞) ↦ 𝜙1(𝜙2(𝑧))) ∈ ℝ is aBernstein function;
(8) if (𝜙𝑛)𝑛⩾0 is a sequence of Bernstein functions and𝜙 ∶ [0, +∞) → ℝ is such that lim𝑛→∞ 𝜙𝑛(𝑧) =

𝜙(𝑧) for any 𝑧 > 0, then 𝜙 is a Bernstein function;
(9) for any 𝑎 > 0, 𝑏 ∈ ℝ, it holds that

|𝙸𝚖(𝜙(𝑎(1 + 𝑖𝑏)))|
𝜙(𝑎)

⩽ |𝑏|𝑎𝜙′(𝑎)
𝜙(𝑎)

⩽ |𝑏|, 𝚁𝚎(𝜙(𝑎(1 + 𝑖𝑏))) − 𝜙(𝑎)

𝜙(𝑎)
⩽
𝑏2𝑎2

2

−𝜙′′(𝑎)

𝜙(𝑎)
⩽ 𝑏2.

(2.16)

Remark 2.2. Items (1), (3), (7) and (8) are standard and can be found in [66]. Item (2) is [58, Propo-
sition 3.1, Item (9)]. Item (4) can be located in [58, (3.3) of Proposition 3.1], whereas Item (5) is
contained in [6, (3.11) of Proposition 3.3]. Item (6) is taken from [58, Proposition 3.1, Item (4)].
Item (9) is the content of [59, (4.25), (4.26)] combined with 𝑎𝜙′(𝑎) ⩽ 𝜙(𝑎) and 𝑎 ||𝜙′′(𝑎)|| ⩽ 2𝜙(𝑎)

from Item (4).

We will always make use of the following property.

Proposition 2.3. For any Bernstein function 𝜙 and for any 𝑎 > 0, 𝑏 ∈ ℝ, it holds true that||||𝜙(𝑎(1 + 𝑖𝑏))

𝜙(𝑎)

|||| ⩽ 3max
{
1, 𝑏2
}
. (2.17)

Proof. Using |1 + 𝑧| ⩽ 1 + ||𝚁𝚎(𝑧)|| + ||𝙸𝚖(𝑧)|| and (2.15), we get||||𝜙(𝑎(1 + 𝑖𝑏))

𝜙(𝑎)

|||| = ||||1 + 𝚁𝚎(𝜙(𝑎(1 + 𝑖𝑏))) − 𝜙(𝑎)

𝜙(𝑎)
+ 𝑖

𝙸𝚖(𝜙(𝑎(1 + 𝑖𝑏)))

𝜙(𝑎)

||||
⩽ 1 +

𝚁𝚎(𝜙(𝑎(1 + 𝑖𝑏))) − 𝜙(𝑎)

𝜙(𝑎)
+
|𝙸𝚖(𝜙(𝑎(1 + 𝑖𝑏)))|

𝜙(𝑎)
.

This together with Item (9) of Lemma 2.1 gives (2.17). □

In this paper and its examples, we use the class of complete Bernstein functions. Recall that a
Bernstein function 𝜙 is said to be complete if the Lévy measure 𝜇𝜙 admits a completely monotone
density. The next lemma collects some well-known facts on complete Bernstein functions.

Lemma 2.4. The following properties hold true.

(1) A non-negative function 𝜙 ∶ (0, +∞) → [0, +∞) is a complete Bernstein function if and
only if it admits an analytic continuation on ℂ ⧵ (−∞, 0] (that we still denote by 𝜙)
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 10 of 58

such that 𝙸𝚖(𝑧)𝙸𝚖(𝜙(𝑧)) ⩾ 0 for any 𝑧 ∈ ℂ ⧵ (−∞, 0] and such that lim(0,+∞)∋𝑧→0 𝜙(𝑧)

exists.
(2) A non-negative function 𝜙 ∶ (0, +∞) → [0, +∞) is a complete Bernstein function if and only if

it admits an analytic continuation on ℂ(0, 𝜋) (that we still denote as 𝜙) such that 𝙸𝚖(𝜙(𝑧)) ⩾ 0

for any 𝑧 ∈ ℂ(0, 𝜋) and such that lim(0,+∞)∋𝑧→0 𝜙(𝑧) exists.
(3) If𝜙1, 𝜙2 are two complete Bernstein functions, then 𝑧 ∈ [0, +∞) ↦ 𝜙1(𝜙2(𝑧))) ∈ ℝ is a complete

Bernstein function.
(4) If (𝜙𝑛)𝑛⩾0 is a sequence of complete Bernstein functions and 𝜙 ∶ [0, +∞) → ℝ is such that

lim𝑛→+∞ 𝜙𝑛(𝑧) = 𝜙(𝑧) for any 𝑧 > 0, then 𝜙 is a complete Bernstein function.
(5) If 𝜙 is a complete Bernstein function, then for any 𝛼 ∈ (0, 𝜋), one has limℂ(𝛼)∋𝑧→∞

𝜙(𝑧)

𝑧
= 𝔟.

Remark 2.5. All the items of the previous lemma can be found in [66, Chapter 6 and 7].

We give here a further characterisation of complete Bernstein functions, which is a direct
consequence of the previous lemma.

Proposition 2.6. Let 𝜙 be a Bernstein function and denote for any 𝛼 ∈ (0, 1), 𝜙𝛼(𝑧) ∶= 𝜙(𝑧𝛼) for
𝑧 ⩾ 0. Then, the following two properties are equivalent:

(i) 𝜙 is a complete Bernstein function;
(ii) There exists a sequence (𝛼𝑛)𝑛⩾0 in (0,1) with 𝛼𝑛 → 1 such that 𝜙𝛼𝑛 is a complete Bernstein

function for any 𝑛 ∈ ℕ.

Proof. Clearly, (i) implies (ii) by Item (3) of Lemma (2.4). To show that (ii) implies (i), observe that
𝜙(𝑧) = lim𝑛→+∞ 𝜙𝛼𝑛(𝑧), and then, we obtain the desired result by Item (4) of Lemma 2.4. □

3 MAIN RESULTS CONCERNING DENSITIES AND THEIR
DERIVATIVES

In this section, we present results concerning 𝑓𝜙 (𝑥, 𝑡), see (2.9), which in the case of 𝔟 =
𝑞 = 0 is the (entire) density of 𝐿(𝑡). The results are in two directions — series expansion and
behaviour at zero, and large asymptotics together with speed of convergence for 𝑓𝜙 (𝑥, 𝑡) and
its derivatives. We complement the latter results by providing information about 𝑓𝑘

𝜙
(𝑥, 𝑡) and

𝑓𝑐
𝜙
(𝑥, 𝑡) (see respectively (2.8) and (2.10)). We also furnish results for the density of 𝜎(𝑥) and its

derivatives.

3.1 Behaviour at infinity of densities and their derivatives of the
inverse subordinator and of the subordinator itself

In this part, we offer results concerning the large asymptotic behaviour of densities (and their
derivatives) of inverse subordinators and subordinators themselves. Since, via the saddle point
method, we prove the results for all derivatives simultaneously, we impose a condition which
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11 of 58 ASCIONE et al.

may not be optimal but is general enough and easy to implement. For this purpose, we set

Δ(𝑥) ∶= ∫
1
𝑥

0
𝑦2𝜇𝜙(𝑑𝑦), 𝑥 > 0, (3.1)

for the truncated second moment of the unkilled and driftless version of 𝜎. Then, the main
condition in our work is

lim
𝑥→∞

𝑥2Δ(𝑥)

ln(𝑥)
= 𝐿 ∈ (0,∞]. (𝔸1)

The mild requirement

lim
𝑥→∞

𝑥𝜙′′′(𝑥)

−𝜙′′(𝑥)
= 𝐾 < ∞ (𝔸2)

plays a role only in some results. We discuss these conditions in Section 3.1.1, where we present
alternative formulation of (𝔸2) and demonstrate that they are generally milder than those in the
literature. The proofs of all the results in this section are given in Section 4. First of all, let us
underline that condition (𝔸1) is related to the regularity of the function 𝑓𝜙 defined in (2.9) with
domain 𝔻, see (2.11), which is the content of our first result.

Theorem 3.1. Let 𝜙 be the Laplace exponent of some potentially killed subordinator and assume
that condition (𝔸1) holds. Then, for any 𝑛 ⩾ 0, there exists 𝑥0(𝑛, 𝐿) ⩾ 0 such that, for any 𝑘, 𝑙 ⩾ 0

with 𝑘 + 𝑙 ⩽ 𝑛, and for any 𝑥 > 𝑥0(𝑛, 𝐿) and (𝑥, 𝑡) ∈ 𝔻, 𝜕𝑘

𝜕𝑥𝑘
𝜕𝑙

𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) is well defined and for any

𝑎 > 0,

𝜕𝑙

𝜕𝑡𝑙
𝜕𝑘

𝜕𝑥𝑘
𝑓𝜙(𝑥, 𝑡) = (−1)𝑘 ∫

+∞

−∞

𝜙†(𝑎 + 𝑖𝑏)(𝜙(𝑎 + 𝑖𝑏))𝑘

(𝑎 + 𝑖𝑏)1−𝑙
𝑒𝑡(𝑎+𝑖𝑏)−𝑥𝜙(𝑎+𝑖𝑏)𝑑𝑏, (3.2)

where the integral is absolutely convergent. If 𝐿 = ∞ in (𝔸1), then for any 𝑛 ⩾ 0, 𝑥0(𝑛,∞) = 0.

Theorem 3.1 is needed for the study of the asymptotic behaviour of 𝑓𝜙. The next theorem is the
first result in this direction and considers the behaviour of 𝑓𝜙(𝑥, 𝑡) when 𝑡∕𝑥 ↓ 𝔟, as 𝑥 → ∞.

Theorem3.2. Let𝜙 be the Laplace exponent of somepotentially killed subordinator andassume that
conditions (𝔸1) and (𝔸2) hold true. Let also 𝑡(𝑥) be such that 𝑡(𝑥)∕𝑥 ∈

(
𝔟, 𝜙′(0+)

)
and lim

𝑥→∞
𝑡(𝑥)∕𝑥 =

𝔟. Consider

𝑎∗ ∶= 𝑎∗(𝑥) = (𝜙′)−1
(
𝑡(𝑥)

𝑥

)
∈ (0,∞), (3.3)

that is well defined since 𝜙′ is decreasing. Define also the set

𝔻′ = {(𝑡, 𝑥) ∶ 𝑥𝔟 < 𝑡 ⩽ 𝑡(𝑥) < 𝑥𝜙′(0+)} (3.4)
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 12 of 58

and, for (𝑡, 𝑥) ∈ 𝔻′, let 𝑐 ∶= 𝑐(𝑡, 𝑥) = (𝜙′)−1(𝑡∕𝑥) ⩾ 𝑎∗. Then, for any 𝑘 ⩾ 0, 𝑙 ⩾ 0, as 𝑥 → ∞,

sup
𝑥𝔟<𝑡⩽𝑡(𝑥)

||||||(−1)𝑘
√
2𝜋

𝑐1−𝑙
√
−𝜙′′(𝑐)𝑥

𝜙†(𝑐)𝜙𝑘(𝑐)
𝑒−𝑐𝑡+𝑥𝜙(𝑐)

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) − 1

|||||| = O

⎛⎜⎜⎜⎜⎝
sup

𝑐⩾𝑎∗(𝑥)

√
ln
(
𝑐
√
−𝜙′′(𝑐)𝑥

)
𝑐
√
−𝜙′′(𝑐)𝑥

⎞⎟⎟⎟⎟⎠
= O

(√
ln(𝑥)

𝑥 ln(𝑎∗(𝑥))

)
.

(3.5)

Furthermore, 1∕𝑎∗ = o (𝑡(𝑥)∕𝑥 − 𝔟), as 𝑥 → ∞.

Remark 3.3. In Section 3.1.1, we show that (𝔸1) and (𝔸2) are generally milder than those in [22].
(𝔸2) holds for some compound Poisson processes, for example, when 𝜇𝜙(𝑑𝑦) = 𝑒−𝑦𝑑𝑦 and cannot
be deduced from (𝔸1) which implies 𝜙(∞) = ∞. (𝔸1) often holds with 𝐿 = ∞ as in the example
in Section 3.1.1.

Remark 3.4. For this theorem and all others concerning the large asymptotic behaviour, one can
labouriously track the constants in the speed of convergence, see (3.5), and thereby obtain strict
upper bounds on the densities and its derivatives in linewith [18, 32]. For lower bounds, the saddle
point method is expected to work too. For more information, see the discussion in Section 3.1.1.

Next, for the sake of clarity, we formulate a corollary which deals with themost usual case, that
is, when 𝔟 = 𝑞 = 0 and 𝐿 = ∞ in (𝔸1).

Corollary 3.5. Let 𝜙 be a Laplace exponent of a subordinator with 𝔟 = 𝑞 = 0, let (𝔸2) hold and (𝔸1)
be valid with 𝐿 = ∞. Then, 𝑓𝜙(𝑥, 𝑡) is infinitely differentiable on ℝ+ × ℝ+. Furthermore, fix 𝑡∗ > 0

and consider

𝑎∗ ∶= 𝑎∗(𝑥) = (𝜙′)−1
(
𝑡∗
𝑥

)
, (3.6)

which is well defined since 𝜙′ is decreasing. Define the set

𝔻′ = {(𝑡, 𝑥) ∶ 0 < 𝑡 ⩽ 𝑡∗ < 𝑥𝜙′(0+)}

and, for (𝑡, 𝑥) ∈ 𝔻′, let 𝑐 ∶= 𝑐(𝑡, 𝑥) = (𝜙′)−1(𝑡∕𝑥) ⩾ 𝑎∗. Then, 1∕𝑎∗ = 𝑜(1∕𝑥) as 𝑥 → ∞, and, for
any 𝑘 ⩾ 0, 𝑙 ⩾ 0, as 𝑥 → ∞,

sup
0<𝑡⩽𝑡∗

||||||(−1)𝑘
√
2𝜋

𝑐1−𝑙
√
−𝜙′′(𝑐)𝑥

𝜙𝑘+1(𝑐)
𝑒−𝑐𝑡+𝑥𝜙(𝑐)

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) − 1

|||||| = O

(√
1

𝑥

)
. (3.7)

Next, we consider the case when 𝑡∕𝑥 does not converge to 𝔟 or 𝜙′(0+).
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13 of 58 ASCIONE et al.

Theorem 3.6. Let 𝜙 be the Laplace exponent of some potentially killed subordinator and assume
that (𝔸1) holds. For all [𝑡1, 𝑡2] ⊂

(
𝔟, 𝜙′(0+)

)
, define correspondingly

𝔻′ = {(𝑡, 𝑥) ∈ 𝔻 ∶ 𝑥𝑡1 ⩽ 𝑡 ⩽ 𝑥𝑡2}, and 𝑐 ∶= 𝑐(𝑡, 𝑥) = (𝜙′)−1(𝑡∕𝑥), for (𝑥, 𝑡) ∈ 𝔻′.

Then, for any 𝑘 ⩾ 0, 𝑙 ⩾ 0, we have, as 𝑥 → ∞

sup
𝑥𝑡1⩽𝑡⩽𝑥𝑡2

||||||(−1)𝑘
√
2𝜋

𝑐1−𝑙
√
−𝜙′′(𝑐)𝑥

𝜙†(𝑐)𝜙𝑘(𝑐)
𝑒−𝑐𝑡+𝑥𝜙(𝑐)

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) − 1

|||||| = O

(√
ln(𝑥)

𝑥

)
. (3.8)

Remark 3.7. For 𝑓𝜙 only, such a result is contained in [22, Theorem 3.2]. It will be discussed in
detail in Section 3.1.1.

Finally, we consider case when 𝑡∕𝑥 converges from below to 𝜙′(0+). Then, we need a local
condition which is a modification of (𝔸2), namely

lim
𝑥→0+

𝑥𝜙′′′(𝑥)

−𝜙′′(𝑥)
= 𝐾 < ∞. (𝔸′

2
)

In this case, we can prove the following result.

Theorem 3.8. Let 𝜙 be the Laplace exponent of some potentially killed subordinator and
assume that conditions (𝔸1) and (𝔸′

2
) hold true. If 𝑡 = 𝑡(𝑥) is such that 𝑡(𝑥)∕𝑥 ∈

(
𝔟, 𝜙′(0+)

)
and

lim
𝑥→∞

𝑡(𝑥)∕𝑥 = 𝜙′(0+). Assume further that 𝑎∗ ∶= 𝑎∗(𝑥) = (𝜙′)−1(𝑡(𝑥)∕𝑥) satisfies

lim
𝑥→∞

−𝑥𝜙′′(𝑎∗)𝑎
2
∗ = ∞, lim

𝑥→∞

− ln (𝑎∗)

𝑥
< ∞, and ∀𝛿 > 0 lim

𝑥→∞
𝑒−𝛿𝑥𝑥𝜙′′(𝑎∗)𝑎

2
∗ = 0. (3.9)

Then, for any 𝑘 ⩾ 0, 𝑙 ⩾ 0, we have, as 𝑥 → ∞,

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) =

(−1)𝑘√
2𝜋

𝑒𝑎∗𝑡−𝑥𝜙(𝑎∗)
𝜙†(𝑎∗)𝜙

𝑘(𝑎∗)

𝑎1−𝑙∗

√
−𝜙′′(𝑎∗)𝑥

⎛⎜⎜⎜⎜⎝
1 + O

⎛⎜⎜⎜⎜⎝

√
ln
(
𝑎∗
√
−𝜙′′(𝑎∗)𝑥

)
𝑎∗
√
−𝜙′′(𝑎∗)𝑥

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
. (3.10)

Remark 3.9. Condition (3.9) is not so restrictive, as will be observed in Section 3.1.1. We also men-
tion that if 𝜙′′(0+) < ∞, then (𝔸′

2
) holds true and the last two conditions in (3.9) follow from the

first, which actually becomes lim
𝑥→∞

𝑥𝑎2∗ = ∞.

Next, in the spirit of Theorem 1 in [22], we use the results above to obtain information for the
densities of the subordinators themselves. Recall that ℙ (𝜎(𝑥) ∈ 𝑑𝑡) = g𝜙(𝑥, 𝑡)𝑑𝑡, provided that g𝜙
exists (see (2.7)). Furthermore, set 𝐺𝜙(𝑥, 𝑡) = ℙ (𝜎(𝑥) ⩽ 𝑡). The proof of the next result uses the
relation

∫
∞

0
𝑒−𝑧𝑡𝐺𝜙(𝑥, 𝑡)𝑑𝑡 =

𝑒−𝑥𝜙(𝑧)

𝑧
=

1

𝜙†(𝑧) ∫
∞

0
𝑓𝜙(𝑥, 𝑡)𝑒

−𝑧𝑡𝑑𝑡
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 14 of 58

and is therefore identical to the ones of Theorem 3.2, Theorem 3.6 and Theorem 3.8 including the
existence of g𝜙, which is the derivative of 𝐺𝜙 in 𝑡, and its derivatives. We only state the following
result.

Theorem 3.10. Let 𝜙 be the Laplace exponent of some potentially killed subordinator and assume
that condition (𝔸1) holds. Then, for any 𝑛 ⩾ 0, there exists 𝑥0(𝑛, 𝐿) ⩾ 0 such that, for any 𝑘, 𝑙 ⩾ 0

with 𝑘 + 𝑙 ⩽ 𝑛 and (𝑥, 𝑡) ∈ 𝔻 with 𝑥 > 𝑥0(𝑛, 𝐿),
𝜕𝑘

𝜕𝑥𝑘
𝜕𝑙

𝜕𝑡𝑙
𝐺𝜙(𝑥, 𝑡) is well defined. If 𝐿 = ∞ in (𝔸1),

then 𝑥0(𝑛,∞) = 0. In particular, the density g𝜙 is well defined for 𝑥 > 𝑥0(1, 𝐿) and
𝜕𝑘

𝜕𝑥𝑘
𝜕𝑙

𝜕𝑡𝑙
g𝜙(𝑥, 𝑡) is

well defined for 𝑥 > 𝑥0(𝑘 + 𝑙 + 1, 𝐿). Furthermore, the following three statements hold true.

(i) Under the conditions and the notation of Theorem 3.2, set 𝑡 = 𝑡(𝑥) with 𝑡(𝑥)∕𝑥 ∈ (𝔟, 𝜙′(0+))

and 𝑡(𝑥)∕𝑥 → 𝔟, as 𝑥 → ∞. Then, as 𝑥 → ∞,

sup
𝑥𝔟<𝑡⩽𝑡(𝑥)

|||||||𝜙
†(𝑐)

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝐺𝜙(𝑥, 𝑡)

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡)

− 1

||||||| = O

⎛⎜⎜⎜⎜⎝
sup

𝑐⩾𝑎∗(𝑥)

√
ln
(
𝑐
√
−𝜙′′(𝑐)𝑥

)
𝑐
√
−𝜙′′(𝑐)𝑥

⎞⎟⎟⎟⎟⎠
= O

(√
ln(𝑥)

𝑥 ln 𝑎∗

)
,

(3.11)

where

𝔻′ = {(𝑡, 𝑥) ∶ 𝑥𝔟 < 𝑡 ⩽ 𝑡(𝑥) < 𝑥𝜙′(0+)}, 𝑐 ∶= 𝑐(𝑡, 𝑥) = (𝜙′)−1(𝑡∕𝑥), for (𝑡, 𝑥) ∈ 𝔻′

and 𝑎∗ ∶= 𝑎∗(𝑥) = 𝑐(𝑡(𝑥), 𝑥).
(ii) Under the conditions of Theorem 3.6 for all [𝑡1, 𝑡2] ⊂ (𝔟, 𝜙′(0+)) it holds, as 𝑥 → ∞,

sup
𝑥𝑡1⩽𝑡⩽𝑥𝑡2

|||||||𝜙
†(𝑐)

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝐺𝜙(𝑥, 𝑡)

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡)

− 1

||||||| = O

(√
ln(𝑥)

𝑥

)
, (3.12)

where

𝔻′ = {(𝑡, 𝑥) ∶ 𝑥𝑡1 ⩽ 𝑡 ⩽ 𝑥𝑡2}, and 𝑐 ∶= 𝑐(𝑡, 𝑥) = (𝜙′)−1(𝑡∕𝑥) for (𝑡, 𝑥) ∈ 𝔻′.

(iii) Under the conditions of Theorem 3.8, set 𝑡 = 𝑡(𝑥) with 𝑡(𝑥)∕𝑥 ∈ (𝔟, 𝜙′(0+)) and 𝑡(𝑥)∕𝑥 →

𝜙′(0+) as 𝑥 → ∞. Then, as 𝑥 → ∞,

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝐺𝜙(𝑥, 𝑡) =

1

𝜙†(𝑎∗)

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡)

(
1 + O

(√
ln(𝑥)

𝑥 ln(𝑎∗(𝑥))

))
, (3.13)

where 𝑎∗ ∶= 𝑎∗(𝑥) = (𝜙′)−1(𝑡(𝑥)∕𝑥).

In particular, under (𝔸1), we have 𝑓k𝜙(𝑥, 𝑡) = 𝑞𝐺𝜙(𝑥, 𝑡) and 𝑓c𝜙(𝑥, 𝑡) = 𝔟g𝜙(𝑥, 𝑡), see (2.8) and
(2.10). Hence, the conclusions of Theorem 3.10 can be transferred to 𝑓c

𝜙
and 𝑓k

𝜙
.

Corollary 3.11. Under the conditions of Theorem 3.10, the asymptotics given in (3.11),(3.12) and
(3.13) hold for 𝑞−1𝑓k

𝜙
and 𝔟−1𝑓c

𝜙
, provided 𝔟, 𝑞 > 0.
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15 of 58 ASCIONE et al.

3.1.1 Discussion and comparison to existing results

Firstly, we consider general asymptotic results in the literature for which we need the following
lemmas. Recall the definition of Δ(𝑥) in (3.1).

Lemma 3.12. Let 𝜙 be a Bernstein function. Then, for any 𝑥 > 0, it holds that

𝑒−1Δ(𝑥) ⩽ −𝜙′′(𝑥) ⩽ Δ(𝑥) +
𝑒−1

𝑥2
�̄�𝜙

(
1

𝑥

)
. (3.14)

Introduce the condition

lim
𝑦→∞

𝑦2Δ(𝑦)

�̄�𝜙(𝑦
−1)

= lim
𝑦→0+

Δ(𝑦−1)

𝑦2�̄�𝜙(𝑦)
> 0, (3.15)

which implies 𝜙(∞) = ∞ and resembles the well-known positive increase condition, see [54, eq
(6)].

Lemma 3.13. Let 𝜙 be a Bernstein function with 𝜙(∞) = ∞. If

lim
𝑥→∞

𝜙′′(2𝑥)

𝜙′′(𝑥)
> 0, (𝔸∗

2
)

then (𝔸2) holds true. Condition (3.15) implies the validity of (𝔸∗
2
), (𝔸2), (𝔸1) with 𝐿 = ∞ and the

existence of a 𝛽 > 0 small enough such that

lim
𝑥→∞

Δ(𝑥)

𝑥−2+𝛽
> 0, lim

𝑥→∞

−𝜙′′(𝑥)

𝑥−2+𝛽
> 0 and Δ(𝑥) ≍ −𝜙′′(𝑥), as 𝑥 → ∞. (3.16)

The lemmas above are proved in Section 4.4.
Now we are ready to compare the conditions and the results of Theorem 3.10 to the ones in the

literature. The conditions, of course, match those in the theorems concerning densities and their
derivatives of inverse subordinators but those seem to have not been studied in such detail prior
to our work. All results below relate to subordinators.
One of the most general results in the literature is [32, Theorem 3.3] which contains the

following non-uniform version of (3.11), (3.12) and (3.13) of Theorem 3.10

g𝜙(𝑥, 𝑡) =
1√

−2𝜋𝑥𝜙′′(𝑎∗)
𝑒𝑎∗𝑡−𝑥𝜙(𝑎∗)(1 + o(1)),

where 𝑎∗ = (𝜙′)−1(𝑡∕𝑥) and 𝑡, 𝑥 are admissible as in our claims. The main condition of [32, The-
orem 3.3] implies via the notion of almost increasing functions, see [32, p.6] and [32, Lemma
2.8] that, for some 𝛼 > 0, −𝑥2−𝛼𝜙′′(𝑥) is almost increasing and all claims of (𝔸∗

2
) and (3.16) hold.

Hence, our (𝔸2), (𝔸1) with 𝐿 = ∞ are satisfied, and thus, (3.11) and (3.12) require less restrictive
conditions and yield uniform estimates with speed of convergence. For (3.13), we cannot derive
(𝔸′

2
) from the condition in [32, Theorem 3.3]. Also [32, Corollaries 3.5 and 3.7] offer uniform

asymptotic equivalences for g𝜙.
Next, we discuss the results in [22, Theorem 3.2 (iii)] which correspond to the claims of (3.11),

(3.12) and (3.13) of Theorem 3.10. We note that the asymptotic results in [22, Theorem 3.2 (iii)]
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 16 of 58

are uniform but lack speed of convergence. The main condition in the setting of (3.11), that is,
𝑡(𝑥)∕𝑥 ↓ 𝔟, is (3.15), which from Lemma 3.13 implies our (𝔸2), (𝔸1) with 𝐿 = ∞. On the other
hand, choosing 𝜇𝜙(𝑑𝑦) = 𝑦−1 ln

(
𝑦−1
)
𝕀{𝑦∈(0,1)}𝑑𝑦, we see that (3.15) is not satisfied, whereas (𝔸1)

and (𝔸2) hold since at infinity 𝑥𝜙′′′(𝑥) ≍ 𝑥−2 ln(𝑥) ≍ −𝜙′′(𝑥) and 𝑥2Δ(𝑥) ≍ ln (𝑥), as 𝑥 → ∞. In
the regime (3.12), [22, Condition H] is implied by our (𝔸1) but we offer explicit asymptotic speed
of convergence and results for all derivatives. For (3.13), the conditions in [22]may not bematched
with ours as they concern (3.15) at zero. Finally, we highlight that [22] employ as a main tool the
Escher transform which although very powerful may not be directly used for the derivatives.
For complete Bernstein functions with 𝔟 = 𝑞 = 0 with Lévy measure that admits density 𝑚𝜙

with asymptotic at zero of the type𝑚𝜙(𝑦) = 𝑐0𝑦
−𝛼0 + 𝑐1𝑦

−𝛼1 +⋯ and lim
𝑦→∞

𝑒−𝜎𝑦𝑚𝜙(𝑦) = 0, 𝜎 > 0,

[24, Theorem 3.6 (ii)] offers, for fixed 𝑡 and 𝑥 → ∞, asymptotic representation as (3.11) with an
explicit speed of convergence. The assumptions are much more restrictive and only fixed space
is considered.
Next, we present some results representing the state-of-the-art for two-sided bounds for g𝜙 and

𝑓𝜙. Under the conditions of [32, Theorem3.3], the authors present explicit upper bounds for g𝜙, see
[32, Theorem 4.7], whereas with some further restrictions, they obtain clear lower bounds, see [32,
Theorem 4.11]. Neat two-sided bounds for g𝜙, 𝑓𝜙 are deducted in [17, Theorem 4.4] by seemingly
very simple, clever approach but undermore restrictive assumptions. Two-sided bounds for g𝜙 are
also obtained in [18, Theorem 1.3] and their form is precisely as the asymptotic term for 𝑘 = 𝑙 = 0

in Theorem 3.10. Again, the restrictions are not mild. It is worth noting that other than [32] the
other papers demand the existence of Lévy density and impose some conditions on it. Bounds are
also presented in [38].

3.2 A power series representation of densities and their derivatives
and their behaviour at zero

Here, we discuss our results concerning the power-series representation of the density of the
inverse subordinator and its derivatives. These will be obtained by assuming that the Laplace
exponent 𝜙 of the involved potentially killed subordinator satisfies the following assumptions:

There exists 𝜃 ∈ (0, 𝜋) such that 𝜙 admits a holomorphic extension

on ℂ
(
𝜋 − 𝜃

2

)
which is continuous on ℂ

(
𝜋 − 𝜃

2

) (𝔹1)

lim
𝑧→+∞

𝜙(𝑧)

𝑧
= 𝔟 uniformly in ℂ

(
𝜋 −

𝜃

2

)
. (𝔹2)

We remark that (𝔹1) and (𝔹2) are very general, since they are satisfied by a wide class of Bernstein
functions (see the discussion in Section 3.2.1 below). The proofs of the results of this section are
provided in Section 5. Upon the validity of (𝔹1) and (𝔹2), we have the following regularity result.

Theorem 3.14. Let 𝜙 be the Laplace exponent of a potentially killed subordinator satisfying
assumptions (𝔹1) and (𝔹2). Then, for any 𝑛 ⩾ 1, �̄�∗𝑛

𝜙
belongs to 𝐶∞(0, +∞) and 𝑓𝜙 ∈ 𝐶∞(𝔻).

Furthermore, under the same conditions, the following power series representation holds.
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17 of 58 ASCIONE et al.

Theorem 3.15. Let 𝜙 be the Laplace exponent of a potentially killed subordinator satisfying
assumptions (𝔹1) and (𝔹2). Then, for any 𝑘, 𝑙 ⩾ 0,

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) =

∞∑
𝑗=0

𝑥𝑗

𝑗!
𝑗,𝑘,𝑙(𝑡), (𝑥, 𝑡) ∈ 𝔻, (3.17)

where

𝑗,𝑘,𝑙(𝑡) ∶= (−1)𝑘+𝑗
∑

𝑘1+𝑘2+𝑘3=𝑘+𝑗

(𝑘 + 𝑗)!

𝑘1!𝑘2!𝑘3!
𝑞𝑘1𝔟𝑘2

𝑑𝑙+𝑘2+𝑘3

𝑑𝑡𝑙+𝑘2+𝑘3
�̄�
∗(𝑘3+1)

𝜙
(𝑡) (3.18)

and the series is absolutely convergent.

Remark 3.16. Note that the series (3.17) which contains the tail of the Lévy measure, its con-
volutions and their derivatives is similar to the series expansion for the potential density of a
subordinator with drift, see [23].

Remark 3.17. Observe that 𝑓𝜙(𝑥, 𝑡) = 0 for any 𝑥 < 0 and 𝑡 > 0, hence the previous theorem shows
that, for fixed 𝑡 > 0, 𝑓𝜙(𝑥, 𝑡) coincides, for 0 < 𝑥 < 𝔟∕𝑡, with an entire function, that is, the right-
hand side of (3.17) for 𝑘 = 𝑙 = 0.

The series representation (3.17) yields information about the behaviour at 0 of 𝑓𝜙 and its
derivatives.

Theorem 3.18. Under the assumptions of Theorem 3.15, for any 𝑘, 𝑙 ⩾ 0 and any [𝑡1, 𝑡2] ⊂ (0, +∞),
we have

sup
𝑡∈[𝑡1,𝑡2]

|||| 𝜕𝑘𝜕𝑙𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) − 𝑛,𝑘,𝑙(𝑥, 𝑡)|||| ⩽ 𝑥𝑛+1

(𝑛 + 1)!
𝑛(𝑥; 𝑡1, 𝑡2), (3.19)

where

𝑛,𝑘,𝑙(𝑥, 𝑡) =
𝑛∑
𝑗=0

𝑥𝑗

𝑗!
𝑗,𝑘,𝑙(𝑡), (3.20)

and sup𝑥∈[0,𝑥1]𝑛(𝑥; 𝑡1, 𝑡2) < ∞ for all 𝑥1 ∈ (0,
𝑡1
𝔟
).

Though conditions (𝔹1) and (𝔹2) depend on suitable 𝜃 ∈ (0, 𝜋), the series representation (3.17)
is independent of 𝜃. Indeed, the result follows once one recognizee some special integral represen-
tations for both the function 𝑓𝜙 and the convolution powers �̄�∗𝑛𝜙 . Note that the series provides an
explicit representation of 𝑓𝜙 whenever the convolution powers �̄�∗𝑛𝜙 can be evaluated. On the other
hand, there could be some cases in which the integral formulation of �̄�∗𝑛

𝜙
can be used to provide

such an evaluation. This is the case, for instance, when we can extend 𝜙 on the whole complex
half-plane ℂ(0, 𝜋) = {𝑧 ∈ ℂ ∶ 𝙸𝚖(𝑧) ⩾ 0}. Let us underline that such a property is not necessarily
verified by all complete Bernstein functions, as, for instance, 𝜙(𝑧) = log(1 + 𝑧) cannot satisfy this.

 20524986, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.70004 by B

runo T
oaldo - C

am
bridge U

niversity L
ibrary , W

iley O
nline L

ibrary on [06/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 18 of 58

Proposition 3.19. Let 𝜙 be a complete Bernstein function and assume that 𝜙 can be extended with
continuity on ℂ(0, 𝜋). Denote by 𝜙+ such extension. Assume further that

lim
𝑧→+∞

𝜙†+(𝑧)

𝑧
= 0 uniformly in ℂ(0, 𝜋).

Then, for any 𝜀, 𝑡 > 0, 𝑟 ⩾ 0 and 𝑛 ⩾ 1, denoting by 𝛾𝜀 the parametrised curve 𝛾𝜀 ∶ 𝑧 = 𝜀𝑒𝑖𝜉 for 𝜉 ∈
[−𝜋, 𝜋], we have that

𝑑𝑟

𝑑𝑡𝑟
𝜇
𝑛⋆
𝜙 (𝑡) =

1

𝜋 ∫
+∞

𝜀
𝙸𝚖

[
(−1)𝑟+𝑛+1

(𝜙†+(−𝜌))
𝑛

𝜌𝑛−𝑟
𝑒−𝑡𝜌

]
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀 𝑒
𝑡𝑧 (𝜙

†(𝑧))𝑛

𝑧𝑛−𝑟
𝑑𝑧. (3.21)

Similarly to what we did for the asymptotic behaviour at infinity, we can use the relation

∫
+∞

0
𝑒−𝑧𝑡𝐺𝜙(𝑥, 𝑡)𝑑𝑡 =

𝑒−𝑥𝜙(𝑧)

𝑧
(3.22)

to obtain, with the same method, results on 𝐺𝜙(𝑥, 𝑡) (see (2.7)). This is stated in the following
theorem.

Theorem 3.20. Under (𝔹1) and (𝔹2), 𝐺𝜙 ∈ 𝐶∞(𝔻) and for any 𝑘 ⩾ 1, 𝑙 ⩾ 0 and (𝑥, 𝑡) ∈ 𝔻

𝐺𝜙(𝑥, 𝑡) = 𝑒−𝑞𝑥 +

+∞∑
𝑗=1

𝑥𝑗

𝑗!
ℑ𝑗,0,0(𝑡), (3.23)

𝜕𝑙

𝜕𝑡𝑙
g𝜙(𝑥, 𝑡) =

+∞∑
𝑗=1

𝑥𝑗

𝑗!
ℑ𝑗,0,𝑙+1(𝑡), (3.24)

and

𝜕𝑙

𝜕𝑡𝑙
𝜕𝑘

𝜕𝑥𝑘
g𝜙(𝑥, 𝑡) =

+∞∑
𝑗=0

𝑥𝑗

𝑗!
ℑ𝑗,𝑘,𝑙+1(𝑡), (3.25)

where

ℑ𝑗,𝑘,𝑙(𝑡) = (−1)𝑘+𝑗+1
∑

𝑘1+𝑘2+𝑘3=𝑘+𝑗−1

(𝑘 + 𝑗)!

𝑘1!𝑘2!(𝑘3 + 1)!
𝑞𝑘1𝔟𝑘2

𝑑𝑘2+𝑘3+𝑙

𝑑𝑡𝑘2+𝑘3+𝑙
�̄�
∗(𝑘3+1)

𝜙
(𝑡). (3.26)

In particular, all the series are absolutely convergent.

As in the previous section, under (𝔹1) and (𝔹2), we know that 𝑓k
𝜙
(𝑥, 𝑡) = 𝑞𝐺𝜙(𝑥, 𝑡) and

𝑓c
𝜙
(𝑥, 𝑡) = 𝔟g𝜙(𝑥, 𝑡), see (2.8) and(2.10). Hence, the results of Theorem 3.20 can be transferred to

𝑓k
𝜙
and 𝑓c

𝜙
.

Corollary 3.21. Under the conditions of Theorem 3.20, (3.23) holds for 𝑓k
𝜙
up to a multiplicative

factor 𝑞. Furthermore, (3.24) and (3.25) hold for 𝑓c
𝜙
up to a multiplicative factor 𝔟.
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19 of 58 ASCIONE et al.

3.2.1 Discussion and comparison to existing results

Our Theorem 3.20 is strongly related with some known results on the small-time polynomial
expansion of the distribution of Lévy processes. More precisely, in [26, Theorem 5.1], the authors
proved that for any (non-killed) Lévy process 𝑌(𝑡) and all 𝑛 ⩾ 0, the following polynomial
expansion holds:

ℙ(𝑌(𝑥) > 𝑡) =

𝑛∑
𝑗=1

𝑑𝑗(𝑡)
𝑥𝑗

𝑗!
+

𝑥𝑛+1

(𝑛 + 1)!
𝑛(𝑥, 𝑡), 0 < 𝑡 < 𝑡0, (3.27)

where 𝑑𝑗(𝑡), 𝑗 = 1,… , 𝑛 are some 𝑡-dependent coefficients and𝑛(𝑥, 𝑡) is bounded for 0 < 𝑥 < 𝑥0.
Their result is true provided that:

(i) the Lévy measure 𝜇𝑌 of 𝑌 admits a density (that we still denote here by 𝜇𝑌);
(ii) for any 𝛿 > 0 and any 𝑘 = 0,… , 2𝑛 + 1, it holds sup|𝑡|>𝛿 | 𝑑𝑘𝑑𝑡𝑘 𝜇𝑌(𝑡)| < ∞;

(iii) for a fixed 𝛿 > 0 and for all 𝑘 = 0,… , 2𝑛 + 1, it holds sup0<𝑥<𝑥0 sup|𝑡|>𝛿 | 𝜕𝑘𝜕𝑡𝑘 𝑝𝑥(𝑡)| < ∞,
where 𝑝𝑥(𝑡)𝑑𝑡 = ℙ(𝑌(𝑥) ∈ 𝑑𝑡).

The theorem also provides an explicit formulation of the remainder term𝑛(𝑥, 𝑡). Furthermore,
in [26, Section 6], the authors discuss some sufficient conditions for (𝑖𝑖𝑖) to be satisfied. In particu-
lar, the statement of [26, Theorem 5.1] holds for stable and tempered stable processes, as observed
in [26, Remark 6.4, Example 6.5 and Proposition 6.7]. The results in [26], when applied to subordi-
nators, are less powerfull than ours in the following sense. On the one hand, we do not have any
restriction on 𝑥 in Theorem 3.20, once one observes that if (𝑥, 𝑡) ∉ 𝔻 then 𝐺𝜙(𝑥, 𝑡) is constant. On
the other hand, conditions (ii) and (iii) are typically hard to be verified, as pointed out also in [26,
Section 6]. Clearly, Theorem 3.20 also provides a polynomial approximation given by, for 𝑞 = 0,

1 − 𝐺𝜙(𝑥, 𝑡) =

𝑛∑
𝑗=1

𝑥𝑗

𝑗!
(−ℑ𝑗,0,0(𝑡)) +

𝑥𝑛+1

(𝑛 + 1)!
𝑛(𝑥, 𝑡),

where

𝑛(𝑥, 𝑡) =

+∞∑
𝑗=𝑛+1

(𝑛 + 1)!

𝑗!
𝑥𝑗−𝑛−1(−ℑ𝑗,0,0(𝑡)).

This gives an alternative representation for the remainder𝑛(𝑥, 𝑡) in (3.27), provided that we are
under the assumptions of [26, Theorem 5.1], together with (𝔹1) and (𝔹2). While these polyno-
mial approximations have been generalised to several other processes (see, e.g. [27, 28]), we are
not aware about results similar to Theorems 3.15 and 3.18 for inverse subordinators except that in
specific cases. It is worth noticing that the latter provides a (locally uniform) polynomial approxi-
mation for small space of the density of an inverse subordinator if 𝑞 = 𝔟 = 0 and can be combined
with Corollary 3.21 to find polynomial approximations for small space in the general case. Due to
the exchange of the roles of time and space when passing from a subordinator to its inverse, these
results are in line with the ones proved in [26]. Let us underline, in particular, that assumptions
(𝔹1) and (𝔹2) cover a wide class of Bernstein functions, and then of subordinators. Indeed, if 𝜙 is a
complete Bernstein function, then Item (1) of Lemma 2.4 guarantees that assumption (𝔹1) is sat-
isfied, while (𝔹2) follows from Item (5) of the same lemma. However, we can find some Bernstein
functions that are not complete but still satisfy (𝔹1) and (𝔹2) for some 𝜃. Indeed, if we consider a
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 20 of 58

Bernstein function 𝜙 that is not complete, we know by Proposition 2.6 that there exists 𝛼 ∈ (0, 1)

such that 𝜙𝛼 is not a complete Bernstein function (but it is still a Bernstein function by Item (7)
of Lemma 2.1). Now, if we consider 𝜃 ∈ (0, 𝜋) so that (𝜋 − 𝜃

2
)𝛼 < 𝜋

2
, that exists since 𝛼 < 1, then

𝑧 ∈ ℂ(𝜋 − 𝜃

2
) ↦ 𝑧𝛼 ∈ ℂ((𝜋 − 𝜃

2
)𝛼) ⊂ ℍ0 is holomorphic. Furthermore, 𝜙 is holomorphic on ℍ0

and thus the composition 𝜙𝛼 is holomorphic on ℂ(𝜋 − 𝜃

2
). The continuity of 𝜙𝛼 over ℂ(𝜋 −

𝜃

2
)

follows similarly, thus obtaining (𝔹1). The uniform limit condition (𝔹2) follows from Item (6) of

Lemma 2.1 and the fact that 𝑧𝛼 ∈ ℍ0 whenever 𝑧 ∈ ℂ(𝜋 − 𝜃

2
), since

𝜙𝛼(𝑧)

𝑧
=
𝜙(𝑧𝛼)

𝑧𝛼
𝑧𝛼−1 → 0.

Thus, if we consider, for example, the Bernstein function 𝜙 whose Lévy measure is given by (6.1),
then there exists a 𝛽 ∈ (0, 1) such that 𝜙𝛽 satisfies (𝔹1) and (𝔹2) and it is not a complete Bern-
stein function. Let us stress that there are functions satisfying (𝔸1) and (𝔸2) but not (𝔹1) and (𝔹2)
and vice versa. For instance, we have already shown that if 𝜇𝜙(𝑑𝑦) = 𝑦−1 log(𝑦−1)𝕀{𝑦∈(0,1)}, then
𝜙 satisfies both (𝔸1) and (𝔸2). Furthermore, we have 𝜙(𝑧) =

𝑧

2
∫ 1
0 𝑒−𝑧𝑦 log2(𝑦)𝑑𝑦, which can be

clearly extended to the whole complex plane; thus, it verifies (𝔹1). However, let us consider any
𝜆 > 0 and the sequence 𝑧𝑛 = −4𝜆𝜋𝑛 + 𝑖4𝜋𝑛, so that, for 𝑛 big enough, since cos(4𝜋𝑛𝑦) > 1

2
for

any 𝑦 ∈ (1
2
− 1

12𝑛
, 1
2
+ 1

12𝑛
),

𝙸𝚖

(
𝜙(𝑧𝑛)

𝑧𝑛

)
⩾
1

2 ∫
1
2
+ 1
12𝑛

1
2
− 1
12𝑛

𝑒4𝜆𝜋𝑛𝑦 cos(4𝜋𝑛𝑦) log2(𝑦)𝑑𝑦 ⩾
𝑒𝜆𝜋𝑛

24𝑛
log2
(
3

4

)
→∞.

Since 𝜆 > 0 is arbitrary, this implies that (𝔹2) cannot be verified for any 𝜃 ∈ (0, 𝜋). On the hand,
if we consider 𝜙(𝑧) = 1 − 𝑒−𝑧, then we know that 𝜙𝛼(𝑧) ∶= 𝜙 (𝑧𝛼) satisfies (𝔹1) and (𝔹2) for some
𝜃 ∈ (0, 𝜋). However, it does not satisfies (𝔸1) since it is a bounded Bernstein function. Indeed, in
Proposition 4.2, we will show that (𝔸1) implies that 𝜙 is unbounded.

4 PROOFS OF RESULTS IN SUBSECTION 3.1

Here, we prove the results contained in Subsection 3.1

4.1 Proof of Theorem 3.1

In order to prove Theorem 3.1, we need some preliminary results. We first show a general con-
dition under which the density 𝑓𝜙 is smooth in 𝔻 for 𝑥 large enough, and at the same time, we
provide an integral representation of 𝑓𝜙 and its derivatives by means of Laplace inversion. Recall
the definition of 𝜙† in (2.14).

Proposition 4.1. Let 𝜙 be the Laplace exponent of a potentially killed subordinator. Assume that
for 𝑛 ⩾ 0, there exist 𝑎 > 0 and 𝑥0 ⩾ 0 such that, for any 𝑥 > 𝑥0,

∫
∞

−∞
|𝑏|𝑛𝑒−𝑥𝚁𝚎𝜙(𝑎+𝑖𝑏)𝑑𝑏 < ∞. (4.1)
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21 of 58 ASCIONE et al.

Then, for any 𝑘, 𝑙 ⩾ 0 with 𝑘 + 𝑙 ⩽ 𝑛, 𝜕𝑘

𝜕𝑥𝑘
𝜕𝑙

𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) is well defined for (𝑥, 𝑡) ∈ 𝔻 with 𝑥 > 𝑥0 and

𝜕𝑙

𝜕𝑡𝑙
𝜕𝑘

𝜕𝑥𝑘
𝑓𝜙(𝑥, 𝑡) = (−1)𝑘 ∫

+∞

−∞

𝜙†(𝑎 + 𝑖𝑏)(𝜙(𝑎 + 𝑖𝑏))𝑘

(𝑎 + 𝑖𝑏)1−𝑙
𝑒𝑡(𝑎+𝑖𝑏)−𝑥𝜙(𝑎+𝑖𝑏)𝑑𝑏, (4.2)

where the integral is absolutely convergent.

Proof. By using (2.13), we compute the inverse Laplace transform as in [1, Item a), Theorem4.2.21].
Precisely, we have, for all fixed 𝑥 > 0 and for almost all 𝑡 > 0, up to a subsequence,

𝑓𝜙(𝑥, 𝑡) = C- lim
𝑟→+∞

1

2𝜋𝑖 ∫
𝑎+𝑖𝑟

𝑎−𝑖𝑟
𝑒𝑧𝑡

𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧) 𝑑𝑧, (4.3)

where 𝑎 > 0 is arbitrary and we denote by C-lim the Cesaro limit, that is,

C- lim
𝑟→+∞∫

𝑎+𝑖𝑟

𝑎−𝑖𝑟
𝑒𝑧𝑡

𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧) 𝑑𝑧 ∶= lim

𝑅→+∞

1

𝑅 ∫
𝑅

0 ∫
𝑎+𝑖𝑟

𝑎−𝑖𝑟
𝑒𝑧𝑡

𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧) 𝑑𝑧 𝑑𝑟.

In particular, it holds by [1, Theorem 4.1.2] that

C- lim
𝑟→+∞∫

𝑎+𝑖𝑟

𝑎−𝑖𝑟
𝑒𝑧𝑡

𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧) 𝑑𝑧 = lim

𝑟→+∞∫
𝑎+𝑖𝑟

𝑎−𝑖𝑟
𝑒𝑧𝑡

𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧) 𝑑𝑧, (4.4)

provided the limit on the right-hand side exists. We set about to prove the latter by noting that

∫
𝑎+𝑖𝑟

𝑎−𝑖𝑟
𝑒𝑧𝑡

𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧) 𝑑𝑧 = 𝑖 ∫

𝑟

−𝑟
𝑒(𝑎+𝑖𝑏)𝑡

𝜙†(𝑎 + 𝑖𝑏)

𝑎 + 𝑖𝑏
𝑒−𝑥𝜙(𝑎+𝑖𝑏)𝑑𝑏.

However, by Item (6) of Lemma 2.1, we know that the function |𝜙†(𝑎 + 𝑖𝑏)|∕|𝑎 + 𝑖𝑏| is continuous
and bounded and then by employing (4.1) for 𝑛 = 0, we get

∫
+∞

−∞

|𝜙†(𝑎 + 𝑖𝑏)||𝑎 + 𝑖𝑏| |||𝑒𝑡(𝑎+𝑖𝑏)−𝑥𝜙(𝑎+𝑖𝑏)|||𝑑𝑏 ⩽ 𝐶𝑒𝑡𝑎 ∫
+∞

−∞
𝑒−𝑥𝚁𝚎𝜙(𝑎+𝑖𝑏)𝑑𝑏 < ∞.

Using (4.4) into (4.3), we get (4.2) for 𝑘, 𝑙 = 0 and (𝑥, 𝑡) ∈ 𝔻 with 𝑥 > 𝑥0. Next, for any 𝑘 + 𝑙 ⩽ 𝑛

and any (𝑥, 𝑡) ∈ 𝔻with 𝑥 > 𝑥0, we prove that
𝜕𝑘

𝜕𝑥𝑘
𝜕𝑙

𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) is well defined and given by (4.2). Let

𝑡 ∈ [𝑡1, 𝑡2], 𝑥 ∈ [𝑥1, 𝑥2]. Without loss of generality, we choose 𝑥1 > 𝑥0 and 𝑥2 < 𝑡1∕𝔟. Then, we
have |||||𝜙

†(𝑎 + 𝑖𝑏)(𝜙(𝑎 + 𝑖𝑏))𝑘

(𝑎 + 𝑖𝑏)1−𝑙
𝑒𝑡(𝑎+𝑖𝑏)−𝑥𝜙(𝑎+𝑖𝑏)

||||| ⩽
|||||𝜙

†(𝑎 + 𝑖𝑏)(𝜙(𝑎 + 𝑖𝑏))𝑘

(𝑎 + 𝑖𝑏)1−𝑙

|||||𝑒𝑎𝑡2−𝑥1𝚁𝚎𝜙(𝑎+𝑖𝑏)
since 𝚁𝚎𝜙(𝑎 + 𝑖𝑏) ⩾ 0 by Item (2) of Lemma 2.1. Furthermore, recall by Item (6) of Lemma 2.1
that

lim
𝑏→±∞

||||𝜙(𝑎 + 𝑖𝑏)

𝑎 + 𝑖𝑏

|||| = 𝔟.

and that ||𝜙(𝑧)|| = 𝔟|𝑧| (1 + o (1)) uniformly on ℍ0. Hence,|||||𝜙
†(𝑎 + 𝑖𝑏)(𝜙(𝑎 + 𝑖𝑏))𝑘

(𝑎 + 𝑖𝑏)1−𝑙

||||| ⩽ 𝐶|𝑎 + 𝑖𝑏|𝑘+𝑙 ⩽ 𝐶(𝑎𝑛 + |𝑏|𝑛),
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 22 of 58

for some 𝐶 > 0. Hence, (4.2) follows by noting that

∫
+∞

−∞

|||||𝜙
†(𝑎 + 𝑖𝑏)(𝜙(𝑎 + 𝑖𝑏))𝑘

(𝑎 + 𝑖𝑏)1−𝑙

|||||𝑒𝑎𝑡2−𝑥1𝚁𝚎𝜙(𝑎+𝑖𝑏) 𝑑𝑏 ⩽ 𝐶 ∫
+∞

−∞
(𝑎𝑛 + |𝑏|𝑛)𝑒𝑎𝑡2−𝑥1𝚁𝚎𝜙(𝑎+𝑖𝑏) 𝑑𝑏 < ∞.

Since 𝑘, 𝑙 ⩾ 0 with 𝑘 + 𝑙 ⩽ 𝑛 are arbitrary, the last inequality implies that we can differentiate
under the integral 𝑘 times in 𝑥 and 𝑙 times in 𝑡 for (𝑥, 𝑡) ∈ 𝔻 with 𝑥 > 𝑥0, starting from (4.2) for
𝑘 = 𝑙 = 0. □

To prove Theorem 3.1, it is clear that we have to show (4.1) for some 𝑥0 = 𝑥0(𝑛, 𝐿) when
assumption (𝔸1) holds. To do this, we need a preliminary result.

Proposition 4.2. Let 𝜙 be the Laplace exponent of a potentially killed subordinator and (𝔸1) holds
for some 𝐿 > 0. Then, 𝜙(∞) = ∞ and we have, for any𝑀 ∈ (0, 𝐿),

lim
𝑥→∞

−𝑥2𝜙′′(𝑥)

ln(𝑥)
> 𝑀𝑒−1, lim

𝑥→∞

𝑥
(
𝜙′(𝑥) − 𝔟

)
ln(𝑥)

> 𝑀𝑒−1. (4.5)

Proof. Wenote from (3.14) that−𝑥2𝜙′′(𝑥) ⩾ 𝑥2𝑒−1Δ(𝑥) and the first claim of (4.5) is valid. The sec-
ond follows by integration of the first inequality and𝜙(∞) = ∞ is a consequence of the integration
of the second expression in (4.5). □

Now we are ready to show the smoothness of 𝑓𝜙 under Assumption (𝔸1).

Proof of Theorem 3.1. Firstly observe that integrability in (4.1) needs to be established only in
neighbourhood of infinity. We have from the inequality 1 − cos(𝑦) ⩾ 𝑐𝑦2, 𝑦 ∈ [0, 1] , 𝑐 > 0, that

𝚁𝚎(𝜙(𝑎 + 𝑖𝑏)) − 𝜙(𝑎) = ∫
∞

0
(1 − cos(𝑏𝑦))𝑒−𝑎𝑦𝜇𝜙(𝑑𝑦) ⩾ 𝑐𝑏2𝑒−

𝑎
𝑏 ∫

1
𝑏

0
𝑦2𝜇𝜙(𝑑𝑦) = 𝑐𝑏2𝑒−

𝑎
𝑏 Δ(𝑏).

Clearly, from Assumption (𝔸1), for any𝑀 ∈ (0, 𝐿), we have, for all |𝑏| > |𝑏0| > 1, that

∫|𝑏|>|𝑏0||𝑏|𝑛𝑒−𝑥𝚁𝚎(𝜙(𝑎+𝑖𝑏))𝑑𝑏 ⩽ 𝑒−𝑥𝜙(𝑎)∫|𝑏|>|𝑏0||𝑏|𝑛𝑒−𝑥𝑐𝑒
− 𝑎|𝑏0| 𝑏2Δ(𝑏)𝑑𝑏

⩽ 𝑒−𝑥𝜙(𝑎)∫|𝑏|>|𝑏0||𝑏|𝑛𝑒−𝑥𝑐𝑒
− 𝑎|𝑏0|𝑀 ln |𝑏|𝑑𝑏.

The latter is finite for 𝑥𝑐𝑒−
𝑎|𝑏0|𝑀 > 𝑛 + 1. Since |𝑏0| and 𝑀 ∈ (0, 𝐿) are arbitrary, we have

integrability of (4.1) for 𝑥 > 𝑛+1

𝑐𝐿
=∶ 𝑥0(𝑛, 𝐿) with 1∕∞ = 0. Theorem 3.1 then follows by

Proposition 4.1. □

4.2 Proof of Theorem 3.2

We start with a preliminary result.
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23 of 58 ASCIONE et al.

Proposition 4.3. Let 𝜙 be the Laplace exponent of a potentially killed subordinator and (𝔸1) holds
for some𝐿 > 0. Let 𝑡(𝑥) be such that 𝑡(𝑥)∕𝑥 ↓ 𝔟, 𝑡(𝑥)∕𝑥 < 𝜙′(0+) and𝑎∗(𝑥) = (𝜙′)−1( 𝑡(𝑥)

𝑥
) ∈ (0,∞).

Then, lim𝑥→∞ 𝑎∗(𝑥) = ∞ and for any fixed𝑀 > 0, it holds for all 𝑥 large enough

𝑎∗(𝑥) >
𝑀𝑒−1

𝑡(𝑥)

𝑥
− 𝔟

. (4.6)

Proof. Note that, since 𝑡(𝑥)∕𝑥 ↓ 𝔟 and 𝜙′ is decreasing with lim𝑧→∞ 𝜙′(𝑧) = 𝔟, then
lim𝑥→∞ 𝑎∗(𝑥) = ∞. Furthermore, for any 0 < 𝐶 < 𝐿, using the second inequality of (4.5) in
Proposition 4.2, we get

𝐶𝑒−1 ⩽ lim
𝑥→∞

𝑎∗(𝑥)
(
𝜙′(𝑎∗(𝑥)) − 𝔟

)
ln 𝑎∗(𝑥)

= lim
𝑥→∞

𝑎∗(𝑥)
(
𝑡(𝑥)

𝑥
− 𝔟
)

ln 𝑎∗(𝑥)
.

This shows that for all 𝑥 and therefore 𝑎∗(𝑥) large enough

𝑎∗(𝑥)

ln 𝑎∗(𝑥)
>
𝐶

2

𝑒−1

𝑡(𝑥)

𝑥
− 𝔟

.

Since lim
𝑥→∞

ln 𝑎∗(𝑥) = ∞, this concludes the proof. □

Now, we are ready to prove the main theorem concerning the asymptotic behaviour.

Proof of Theorem 3.2. Fix 𝑘, 𝑙 ⩾ 0 and assume that 𝑥 > 𝑥0(𝑘 + 𝑙, 𝐿), see Theorem 3.1. Then, for any
𝑎 > 0, by (3.2), it holds, for any 𝑡∕𝑥 > 𝔟, that

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) =

(−1)𝑘

2𝜋 ∫
∞

−∞

𝜙†(𝑎 + 𝑖𝑏)𝜙𝑘(𝑎 + 𝑖𝑏)

(𝑎 + 𝑖𝑏)1−𝑙
𝑒−𝑥𝜙(𝑎+𝑖𝑏)+𝑡(𝑎+𝑖𝑏)𝑑𝑏 =∶ 𝐼(𝑥, 𝑡). (4.7)

Let 𝑡(𝑥) be as in the statement of the theorem and 𝑎∗(𝑥) = (𝜙′)−1( 𝑡(𝑥)
𝑥
), which is well defined

because 𝜙′(𝑥) is decreasing with lim
𝑥→∞

𝜙′(𝑥) = 𝔟, see Item (3) of Lemma 2.1. Since by assumption
𝑡(𝑥)∕𝑥 ↓ 𝔟, we get from Proposition 4.3 that lim

𝑥→∞
𝑎∗(𝑥) → ∞. Recall that in this theorem, we have

set 𝔻′ = {(𝑡, 𝑥) ∶ 𝑥𝔟 < 𝑡 ⩽ 𝑡(𝑥) < 𝑥𝜙′(0+)}, see (3.4), and

𝑐 ∶= 𝑐(𝑡, 𝑥) = (𝜙′)−1
(
𝑡

𝑥

)
, for (𝑡, 𝑥) ∈ 𝔻′. (4.8)

From now on, we work with (𝑡, 𝑥) ∈ 𝔻′ such that 𝑥 > 𝑥0(𝑘 + 𝑙, 𝐿). Since (𝜙′)−1 is decreasing, for
fixed 𝑥, 𝑐(⋅, 𝑥) is decreasing in 𝑡 on 𝔻′ with 𝑐(𝑡(𝑥), 𝑥) = 𝑎∗(𝑥). For (𝑡, 𝑥) ∈ 𝔻′, use (4.7) with 𝑎 = 𝑐

to get

𝐼(𝑥, 𝑡) =
(−1)𝑘

2𝜋
𝑒𝑐𝑡−𝑥𝜙(𝑐) ∫

∞

−∞

𝜙†(𝑐 + 𝑖𝑏)𝜙𝑘(𝑐 + 𝑖𝑏)

(𝑐 + 𝑖𝑏)1−𝑙
𝑒𝑖𝑏𝑡−𝑥(𝜙(𝑐+𝑖𝑏)−𝜙(𝑐)𝑑𝑏, (4.9)

where 𝑐 minimises 𝑎 ∈ (0, +∞) ↦ (𝑎𝑡 − 𝑥𝜙(𝑎)) ∈ ℝ. Next, set

g(𝑐, 𝑥) ∶=

√
2 ln
(
𝑐
√
−𝜙′′(𝑐)𝑥

)
and 𝜀 ∶= 𝜀(𝑐, 𝑥) ∶=

g(𝑐, 𝑥)

𝑐
√
−𝜙′′(𝑐)𝑥

. (4.10)
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 24 of 58

We split the region of integration by setting 𝜀 ∶= [−𝑐𝜀, 𝑐𝜀]. Put

𝐼𝜀(𝑥, 𝑡) ∶=
(−1)𝑘

2𝜋
𝑒𝑐𝑡−𝑥𝜙(𝑐) ∫𝜀 𝐽(𝑐, 𝑏)𝑒

𝑖𝑏𝑡−𝑥(𝜙(𝑐+𝑖𝑏)−𝜙(𝑐))𝑑𝑏, (4.11)

where

𝐽(𝑐, 𝑏) ∶=
𝜙†(𝑐 + 𝑖𝑏)𝜙𝑘(𝑐 + 𝑖𝑏)

(𝑐 + 𝑖𝑏)1−𝑙
. (4.12)

Using Taylor’s formula and the definition of 𝑐 in (4.8), we get

𝑥(𝜙(𝑐 + 𝑖𝑏) − 𝜙(𝑐)) = 𝑖𝑏𝑡 − 𝑥
𝑏2

2
𝜙′′(𝑐) − 𝑈(𝑐, 𝑏), (4.13)

where

𝑈(𝑐, 𝑏) ∶=𝑖𝑏𝑡 − 𝑥(𝜙(𝑐 + 𝑖𝑏) − 𝜙(𝑐)) − 𝑥
𝑏2

2
𝜙′′(𝑐) = 𝑖𝑥 ∫

𝑏

0 ∫
𝑣

0 ∫
𝑤

0
𝜙′′′(𝑐 + 𝑖𝜌)𝑑𝜌𝑑𝑤𝑑𝑣.

Then, recalling (4.10), we have for the integral in (4.11)

∫𝜀 𝐽(𝑐, 𝑏)𝑒
𝑖𝑏𝑡−𝑥(𝜙(𝑐+𝑖𝑏)−𝜙(𝑐))𝑑𝑏 = ∫𝜀 𝐽(𝑐, 𝑏)𝑒

𝑏2

2
𝑥𝜙′′(𝑐)

(
1+2 𝑈(𝑐,𝑏)

𝑥𝑏2𝜙′′(𝑐)

)
𝑑𝑏

=
1√

−𝜙′′(𝑐)𝑥 ∫
g(𝑐,𝑥)

−g(𝑐,𝑥)
𝐽

(
𝑐,

𝑢√
−𝜙′′(𝑐)𝑥

)
𝑒
−𝑢2

2

(
1−2

𝑈(𝑐,𝑢∕
√
−𝜙′′(𝑐)𝑥)
𝑢2

)
𝑑𝑢,

(4.14)

where we have used that 𝜙′′(𝑦) < 0, for 𝑦 > 0, see Item (3) of Lemma 2.1. Here, we need (𝔸2), that
is, lim

𝑦→∞
𝑦𝜙′′′(𝑦)∕(−𝜙′′(𝑦)) = 𝐾 < ∞, which togetherwith ||𝜙′′′(𝑧)|| ⩽ 𝜙′′′(𝚁𝚎(𝑧)), for 𝚁𝚎(𝑧) > 0, see

Item (5) in Lemma 2.1, and the definition of 𝑈(𝑐, 𝑏) yields that for all 𝑥 large enough

�̄�(𝑐, 𝑥) ∶= sup|𝑢|⩽g(𝑐,𝑥) 𝑉(𝑐, 𝑥, 𝑢) ∶= sup|𝑢|⩽g(𝑐,𝑥)
2

𝑢2

||||||𝑈
(
𝑐,

𝑢√
−𝜙′′(𝑐)𝑥

)||||||
⩽ sup|𝑢|⩽g(𝑐,𝑥)

𝑥|𝑢|
3𝑥

3
2 (−𝜙′′(𝑐))

3
2

𝜙′′′(𝑐) ⩽
2𝐾

3

g(𝑐, 𝑥)

𝑐
√
−𝜙′′(𝑐)𝑥

=
2𝐾

3
𝜀(𝑐, 𝑥).

(4.15)

Next, setting

𝐽(𝑐, 𝑢) =
𝐽(𝑐, 𝑢)

𝐽(𝑐, 0)
− 1, (4.16)

we get from (4.14) that

∫𝜀 𝐽(𝑐, 𝑏)𝑒
𝑖𝑏𝑡−𝑥(𝜙(𝑐+𝑖𝑏)−𝜙(𝑐))𝑑𝑏 =

𝐽(𝑐, 0)√
−𝜙′′(𝑐)𝑥 ∫

g(𝑐,𝑥)

−g(𝑐,𝑥)
𝑒−

𝑢2

2
(1+𝑉(𝑐,𝑥,𝑢))𝑑𝑢

+
𝐽(𝑐, 0)√
−𝜙′′(𝑐)𝑥 ∫

g(𝑐,𝑥)

−g(𝑐,𝑥)
𝐽

(
𝑐,

𝑢√
−𝜙′′(𝑐)𝑥

)
𝑒−

𝑢2

2
(1+𝑉(𝑐,𝑥,𝑢))𝑑𝑢 =∶ 𝐻1(𝑐, 𝑥) + 𝐻2(𝑐, 𝑥).

(4.17)
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25 of 58 ASCIONE et al.

Clearly, from (4.12) and (4.15),||||||𝐻1(𝑐, 𝑥) −
√
2𝜋

𝐽(𝑐, 0)√
−𝜙′′(𝑐)𝑥

|||||| =
𝐽(𝑐, 0)√
−𝜙′′(𝑐)𝑥

|||||∫
g(𝑐,𝑥)

−g(𝑐,𝑥)
𝑒−

𝑢2

2
(1+𝑉(𝑐,𝑥,𝑢))𝑑𝑢 − ∫

∞

−∞
𝑒−

𝑢2

2 𝑑𝑢
|||||

⩽
√
2𝜋

𝐽(𝑐, 0)√
−𝜙′′(𝑐)𝑥

(
𝑒�̄�(𝑐,𝑥) − 1 +

1√
2𝜋 ∫|𝑢|>g(𝑐,𝑥) 𝑒−

𝑢2

2 𝑑𝑢

)
.

(4.18)

From the definition of 𝐽, see (4.12), we easily get that

|||| 𝑑𝑑𝑢 log 𝐽(𝑐, 𝑢)|||| ⩽ ||||| (𝜙
†)′(𝑐 + 𝑖𝑢)

𝜙†(𝑐 + 𝑖𝑢)

||||| + 𝑘
|||||𝜙

′(𝑐 + 𝑖𝑢)

𝜙(𝑐 + 𝑖𝑢)

||||| + |𝑙 − 1||||| 1

𝑐 + 𝑖𝑢

|||| ⩽ 𝑘 + 1 + |𝑙 − 1|
𝑐

, (4.19)

where we have used that for any Bernstein function 𝜙 and 𝑐 > 0, 𝑢 ∈ ℝ,|||||𝜙
′(𝑐 + 𝑖𝑢)

𝜙(𝑐 + 𝑖𝑢)

||||| ⩽ 1

𝑐
,

which, in turn, follows from the chain of inequalities

||𝜙′(𝑐 + 𝑖𝑢)|| ⩽ 𝜙′(𝑐) ⩽
𝜙(𝑐)

𝑐
⩽
𝚁𝚎𝜙(𝑐 + 𝑖𝑢)

𝑐
⩽
||||𝜙(𝑐 + 𝑖𝑢)

𝑐

||||
which come from subsequent application of Items (5), (4) and (2) of Lemma 2.1. From (4.19), we
get that

||ln ||1 + 𝐽(𝑐, 𝑢)|||| ⩽ ||log (1 + 𝐽(𝑐, 𝑢))|| = |||||log
(
1 +

(
𝐽(𝑐, 𝑢)

𝐽(𝑐, 0)
− 1

))||||| ⩽ (𝑘 + 1 + |𝑙 − 1|) |𝑢|
𝑐
. (4.20)

From (4.20) with (4.10),

sup|𝑢|⩽ g(𝑐,𝑥)√
−𝜙′′(𝑐)𝑥

||ln ||1 + 𝐽(𝑐, 𝑢)|||| ⩽ (𝑘 + 1 + |𝑙 − 1|)𝜀(𝑐, 𝑥).
(4.21)

However, 𝑐 ⩾ 𝑎∗(𝑥), lim𝑥→∞
𝑎∗(𝑥) = ∞ and lim

𝑥→∞
𝑥
√
−𝜙′′(𝑥) = ∞, see (4.5), imply that

lim
𝑥→∞

𝜀(𝑥) ∶= lim
𝑥→∞

sup
𝑐⩾𝑎∗(𝑥)

𝜀(𝑐, 𝑥) = 0. (4.22)

Thus, for all 𝑥 large enough, (4.21) yields that, for some 𝐶 = 𝐶(𝑘, 𝑙),

sup|𝑢|⩽ g(𝑐,𝑥)√
−𝜙′′(𝑐)𝑥

||𝐽(𝑐, 𝑢)|| ⩽ 𝐶𝜀(𝑐, 𝑥). (4.23)

Hence, from (4.15), (4.16) and (4.17) for all 𝑥 large enough,

𝐻2(𝑐, 𝑥) ⩽ 𝑒�̄�(𝑐,𝑥)
𝐽(𝑐, 0)√
−𝜙′′(𝑐)𝑥 ∫

g(𝑐,𝑥)

−g(𝑐,𝑥)

||||||𝐽
(
𝑐,

𝑢√
−𝜙′′(𝑐)𝑥

)||||||𝑒−
𝑢2

2 𝑑𝑢

⩽
√
2𝜋𝐶𝑒�̄�(𝑐,𝑥)

𝐽(𝑐, 0)√
−𝜙′′(𝑐)𝑥

𝜀(𝑐, 𝑥).

(4.24)
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 26 of 58

Combining (4.15), (4.17), (4.18) and (4.24), we obtain for all large 𝑥

||||||𝐻1(𝑐, 𝑥) −
√
2𝜋

𝐽(𝑐, 0)√
−𝜙′′(𝑐)𝑥

+ 𝐻2(𝑐, 𝑥)

||||||
⩽
√
2𝜋

𝐽(𝑐, 0)√
−𝜙′′(𝑐)𝑥

(
𝐶𝑒�̄�(𝑐,𝑥)𝜀(𝑐, 𝑥) + 𝑒�̄�(𝑐,𝑥) − 1 +

1√
2𝜋 ∫|𝑢|>g(𝑐,𝑥) 𝑒−

𝑢2

2 𝑑𝑢

)

⩽
√
2𝜋

𝐽(𝑐, 0)√
−𝜙′′(𝑐)𝑥

(
𝐶𝑒

2𝐾
3
𝜀(𝑐,𝑥)𝜀(𝑐, 𝑥) + 𝑒

2𝐾
3
𝜀(𝑐,𝑥) − 1 +

1√
2𝜋 ∫|𝑢|>g(𝑐,𝑥) 𝑒−

𝑢2

2 𝑑𝑢

)
.

(4.25)

Applying (4.25) and (4.22) in (4.17), we get with some 𝐶′ = 𝐶(𝑘, 𝑙, 𝐾) > 0 that for all 𝑥 large
enough,

sup
𝑐⩾𝑎∗(𝑥)

|||||| 1√
2𝜋

√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0) ∫𝜀 𝐽(𝑐, 𝑏)𝑒
𝑖𝑏𝑡−𝑥(𝜙(𝑐+𝑖𝑏)−𝜙(𝑐))𝑑𝑏 − 1

||||||
⩽ 𝐶′𝜀(𝑥) +

1√
2𝜋

sup
𝑐⩾𝑎∗(𝑥)

∫|𝑢|>g(𝑐,𝑥) 𝑒−
𝑢2

2 𝑑𝑢.

(4.26)

Plugging this in (4.11), we get for all 𝑥 large enough

sup
𝔟𝑥<𝑡⩽𝑡(𝑥)

||||||
(−1)𝑘√
2𝜋

√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0)
𝑒−𝑐𝑡+𝑥𝜙(𝑐)𝐼𝜀(𝑥, 𝑡) − 1

|||||| ⩽ 𝐶′𝜀(𝑥) +
1√
2𝜋

sup
𝑐⩾𝑎∗(𝑥)

∫|𝑢|>g(𝑐,𝑥) 𝑒−
𝑢2

2 𝑑𝑢.

(4.27)

Using (4.12), we proceed to investigate

𝐽𝜀(𝑥, 𝑡) ∶=
(−1)𝑘

2𝜋
𝑒𝑐𝑡−𝑥𝜙(𝑐) ∫𝑐𝜀

𝜙†(𝑐 + 𝑖𝑏)𝜙𝑘(𝑐 + 𝑖𝑏)

(𝑐 + 𝑖𝑏)1−𝑙
𝑒𝑖𝑏𝑡−𝑥(𝜙(𝑐+𝑖𝑏)−𝜙(𝑐))𝑑𝑏

=
(−1)𝑘

2𝜋
𝑒𝑐𝑡−𝑥𝜙(𝑐) ∫𝜀𝑐⩽|𝑏|⩽𝑑𝑐𝐽(𝑐, 𝑏)𝑒𝑖𝑏𝑡−𝑥(𝜙(𝑐+𝑖𝑏)−𝜙(𝑐))𝑑𝑏

+
(−1)𝑘

2𝜋
𝑒𝑐𝑡−𝑥𝜙(𝑐) ∫|𝑏|⩾𝑑𝑐 𝐽(𝑐, 𝑏)𝑒𝑖𝑏𝑡−𝑥(𝜙(𝑐+𝑖𝑏)−𝜙(𝑐))𝑑𝑏

=∶
(−1)𝑘

2𝜋
𝑒𝑐𝑡−𝑥𝜙(𝑐)(𝐽1(𝑐, 𝑥) + 𝐽2(𝑐, 𝑥)),

(4.28)

where 𝑑 = 𝐾−1. Firstly, we estimate 𝐽1(𝑐, 𝑥). We use the Taylor expansion (4.13) to the expo-
nent in 𝐽1(𝑐, 𝑥), ||𝙸𝚖𝜙′′′(𝑧)|| ⩽ ||𝜙′′′(𝑧)|| ⩽ 𝜙′′′ (𝚁𝚎(𝑧)), lim

𝑦→∞
𝑦𝜙′′′(𝑦)∕(−𝜙′′(𝑦)) = 𝐾 < ∞ to get after
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27 of 58 ASCIONE et al.

a change of variables 𝑏 → 𝑐𝑏, for all 𝑥 and therefore 𝑐 ⩾ 𝑎∗(𝑥) large enough

||𝐽1(𝑐, 𝑥)|| ⩽ 2𝑐 ∫
𝑑

𝜀

||𝐽(𝑐, 𝑐𝑏)||𝑒 𝑥𝑏2𝑐22
𝜙′′(𝑐)+ 𝑥𝑏3𝑐3

6
𝜙′′′(𝑐)𝑑𝑏 ⩽ 2𝑐 ∫

𝑑

𝜀

||𝐽(𝑐, 𝑐𝑏)||𝑒 𝑥𝑏2𝑐22
𝜙′′(𝑐)

(
1− 2𝐾𝑑

3

)
𝑑𝑏

= 2𝑐𝑙 ∫
𝑑

𝜀

|||𝜙†(𝑐(1 + 𝑖𝑏))𝜙𝑘(𝑐(1 + 𝑖𝑏))
||||1 + 𝑖𝑏|1−𝑙 𝑒

𝑥𝑏2𝑐2

6
𝜙′′(𝑐)𝑑𝑏.

To carry on further, we note from (2.17) that |𝜙(𝑐(1+𝑖𝑏))
𝜙(𝑐)

| ⩽ 3max{1, 𝑏2}. Then, we have with the
form of 𝜀, see (4.10), and 𝑑 = 𝐾−1 that||||||

√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0)
𝐽1(𝑐, 𝑥)

|||||| ⩽ 3𝑘+2𝑐
√
−𝜙′′(𝑐)𝑥 ∫

𝑑

𝜀
max
{
1, 𝑏2𝑘+2+𝑙

}
𝑒
𝑥𝑏2𝑐2

6
𝜙′′(𝑐)𝑑𝑏

⩽ 3𝑘+2 max
{
1, 𝑑2𝑘+2+𝑙

}
𝑐
√
−𝜙′′(𝑐)𝑥 ∫

𝑑

𝜀
𝑒
𝑥𝑏2𝑐2

6
𝜙′′(𝑐)𝑑𝑏

⩽ 3𝑘+
5
2 max

{
1, 𝐾−2𝑘−2−𝑙

}
∫

∞

3
− 1
2 g(𝑐,𝑥)

𝑒−
𝑢2

2 𝑑𝑢.

(4.29)

For 𝐽2(𝑐, 𝑥), we change variables 𝑏 → 𝑐𝑏 and use again |𝜙(𝑐(1+𝑖𝑏))
𝜙(𝑐)

| ⩽ 3max{1, 𝑏2} to get

||||||
√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0)
𝐽2(𝑐, 𝑥)

|||||| ⩽ 3𝑘+1𝑐
√
−𝜙′′(𝑐)𝑥 ∫

∞

|𝑏|⩾𝑑
max
{
1, 𝑏2𝑘+2

}
|1 + 𝑖𝑏|−𝑙+1 𝑒−𝑥(𝚁𝚎(𝜙(𝑐(1+𝑖𝑏)))−𝜙(𝑐))𝑑𝑏

⩽ 𝐶1𝑐
√
−𝜙′′(𝑐)𝑥 ∫

∞

𝑑
𝑏2𝑘+1+𝑙𝑒−𝑥(𝚁𝚎(𝜙(𝑐(1+𝑖𝑏)))−𝜙(𝑐))𝑑𝑏

= 𝐶1𝑑
2𝑘+2+𝑙𝑐

√
−𝜙′′(𝑐)𝑥 ∫

∞

1
𝑏2𝑘+1+𝑙𝑒−𝑥(𝚁𝚎(𝜙(𝑐(1+𝑖𝑏𝑑)))−𝜙(𝑐))𝑑𝑏,

where 𝐶1 > 0 is some constant. Then, with some absolute constant 𝑐0 > 0, we have that

𝚁𝚎(𝜙(𝑐(1 + 𝑖𝑏𝑑))) − 𝜙(𝑐) = ∫
∞

0
(1 − cos (𝑏𝑑𝑐𝑦))𝑒−𝑐𝑦𝜇(𝑑𝑦)

⩾ 𝑐20𝑒
− 1
𝑏𝑑 𝑏2𝑑2𝑐2 ∫

1
𝑏𝑑𝑐

0
𝑦2𝜇(𝑑𝑦) = 𝑐20𝑒

− 1
𝑏𝑑 𝑏2𝑑2𝑐2Δ(𝑏𝑑𝑐).

(4.30)

Since lim
𝑦→∞

𝑦2Δ(𝑦)∕ ln(𝑦) = 𝐿 > 0, we choose𝑀 < 𝐿. Set𝑀′ = 𝑀𝑐2
0
𝑒−

1
𝑑 . On 𝑏 ⩾ 1, we get that for

𝑥 and 𝑐 ⩾ 𝑎∗(𝑥) large enough such that𝑀′𝑥 > 2𝑘 + 2 + 𝑙

||||||
√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0)
𝐽2(𝑐, 𝑥)

|||||| ⩽ 𝐶1𝑑
2𝑘+2+𝑙𝑐

√
−𝜙′′(𝑐)𝑥 ∫

∞

1
𝑏2𝑘+1+𝑙𝑒−𝑀

′𝑥 ln (𝑏𝑑𝑐)𝑑𝑏

=
𝐶1𝑑

2𝑘+2+𝑙

𝑀′𝑥 − 2𝑘 − 2 − 𝑙

𝑐
√
−𝜙′′(𝑐)𝑥

(𝑐𝑑)𝑀′𝑥
⩽ 𝐶2

𝐾𝑀′𝑥−2𝑘−2−𝑙

(𝑀′𝑥 − 2𝑘 − 2 − 𝑙)

√
𝑥𝑐

1
2
−𝑀′𝑥,

(4.31)
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 28 of 58

where 𝐶2 > 0 is some constant, we have fixed 𝑑 = 𝐾−1 and we have used −𝑦2𝜙′′(𝑦) ⩽ 2𝜙(𝑦) =

O (𝑦), see Item (4) of Lemma 2.1. Collecting (4.27) and employing (4.29) and (4.31) in (4.28), we
get that, since 𝑐 ⩾ 𝑎∗(𝑥), (4.9) has the following form for all 𝑥 large enough:

sup
𝔟𝑥<𝑡⩽𝑡(𝑥)

||||||(−1)𝑘
√
2𝜋

√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0)
𝑒−𝑐𝑡+𝑥𝜙(𝑐)𝐼(𝑥, 𝑡) − 1

||||||
⩽ 𝐶′𝜀(𝑥) +

1√
2𝜋

sup
𝑐⩾𝑎∗(𝑥)

∫|𝑢|>g(𝑐,𝑥) 𝑒−
𝑢2

2 𝑑𝑢

+ 3𝑘+
5
2 max

{
1, 𝐾−2𝑘−2−𝑙

}
sup

𝑐⩾𝑎∗(𝑥)
∫

∞

3
− 1
2 g(𝑐,𝑥)

𝑒−
𝑢2

2 𝑑𝑢 + 𝐶2
𝐾𝑀′𝑥−2𝑘−2−𝑙

(𝑀′𝑥 − 2𝑘 − 2 − 𝑙)

√
𝑥(𝑎∗)

1
2
−𝑀′𝑥(𝑥).

Next, recall that g(𝑐, 𝑥) =
√
2 ln(𝑐

√
−𝜙′′(𝑐)𝑥) which converges to infinity thanks to Proposi-

tion 4.3 and the form of 𝜀(𝑐, 𝑥), 𝜀(𝑥), see (4.10) and (4.22). We then yield asymptotically

sup
𝔟𝑥<𝑡⩽𝑡(𝑥)

||||||(−1)𝑘
√
2𝜋

√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0)
𝑒−𝑐𝑡+𝑥𝜙(𝑐)𝐼(𝑥, 𝑡) − 1

||||||
= O

⎛⎜⎜⎜⎜⎝
sup

𝑐⩾𝑎∗(𝑥)

√
ln
(
𝑐
√
−𝜙′′(𝑐)𝑥

)
𝑐
√
−𝜙′′(𝑐)𝑥

+ sup
𝑐⩾𝑎∗(𝑥)

∫
∞√
2
3
ln
(
𝑐
√
−𝜙′′(𝑐)𝑥

) 𝑒−𝑢2

2 𝑑𝑢 +
𝐾𝑀′𝑥(𝑎∗(𝑥))

1
2
−𝑀′𝑥(𝑥)√

𝑥

⎞⎟⎟⎟⎟⎠
.

However, since lim
𝑥→∞

−𝑥2𝜙′′(𝑥) = ∞, see (4.5), and ∫ ∞
𝑥 𝑒−𝑢

2∕2𝑑𝑢 = O(𝑥−1𝑒−𝑥
2∕2), we further get

sup
𝔟𝑥<𝑡⩽𝑡(𝑥)

||||||(−1)𝑘
√
2𝜋

√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0)
𝑒−𝑐𝑡+𝑥𝜙(𝑐)𝐼(𝑥, 𝑡) − 1

||||||
= O

⎛⎜⎜⎜⎜⎝
sup

𝑐⩾𝑎∗(𝑥)

√
ln
(
𝑐
√
−𝜙′′(𝑐)𝑥

)
𝑐
√
−𝜙′′(𝑐)𝑥

+
𝐾𝑀′𝑥(𝑎∗(𝑥))

1
2
−𝑀′𝑥(𝑥)√

𝑥

⎞⎟⎟⎟⎟⎠
.

Since −𝑦2𝜙′′(𝑦) ⩽ 2𝜙(𝑦) = O (𝑦), see Item (4) of Lemma 2.1, we check that the first expression in
the speed of convergence cannot be faster than (𝑥𝑎∗(𝑥))

− 1
2 . Therefore, we conclude that

sup
𝔟𝑥<𝑡⩽𝑡(𝑥)

||||||(−1)𝑘
√
2𝜋

√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0)
𝑒−𝑐𝑡+𝑥𝜙(𝑐)𝐼(𝑥, 𝑡) − 1

|||||| = O

⎛⎜⎜⎜⎜⎝
sup

𝑐⩾𝑎∗(𝑥)

√
ln
(
𝑐
√
−𝜙′′(𝑐)𝑥

)
𝑐
√
−𝜙′′(𝑐)𝑥

⎞⎟⎟⎟⎟⎠
.

which establishes (3.5). Finally, from the first relation of (4.5) of Proposition 4.2, we have for all 𝑥
large enough that 𝑐

√
−𝜙′′(𝑐) ⩾ 𝑀𝑒−1 ln(𝑐) ⩾ 𝑀𝑒−1 ln 𝑎∗(𝑥),𝑀 < 𝐿, which yields

inf
𝑐⩾𝑎∗(𝑥)

𝑐
√
−𝜙′′(𝑐) ⩾ 𝑀𝑒−1 ln(𝑎∗(𝑥)).
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29 of 58 ASCIONE et al.

Employing this and again −𝑦2𝜙′′(𝑦) ⩽ 2𝜙(𝑦) = O (𝑦), we arrive at

sup
𝔟𝑥<𝑡⩽𝑡(𝑥)

||||||(−1)𝑘
√
2𝜋

√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0)
𝑒−𝑐𝑡+𝑥𝜙(𝑐)𝐼(𝑥, 𝑡) − 1

|||||| = O

(√
ln(𝑥)

𝑥 ln 𝑎∗(𝑥)

)
.

Substituting in the latter the expression for 𝐽(𝑐, 0), see (4.12), concludes the proof of (3.5). Relation
1∕𝑎∗ = o (𝑡(𝑥)∕𝑥 − 𝔟) follows from Proposition 4.3. □

4.3 Proofs of Theorems 3.6 and 3.8

Once the proof of Theorem 3.2 has been established, similar arguments will lead to Theorems 3.6
and 3.8. For this reason, wewill be economical with the next proofs, as wewill refer to the previous
arguments while highlighting the necessary changes and adaptations. We proceed with the proof
of the next main theorem.

Proof of Theorem 3.6. We follow closely the proof of Theorem 3.2 using in particular 𝐽(𝑐, 𝑏) defined
in (4.12). By assumption (𝑡, 𝑥) ∈ 𝔻′ = {(𝑡, 𝑥) ∶ 𝑥𝑡1 ⩽ 𝑡 ⩽ 𝑥𝑡2} and since (𝜙′)−1 is decreasing, then

𝑐 ∶= 𝑐(𝑡, 𝑥) = (𝜙′)−1(𝑡∕𝑥) ∈
[
(𝜙′)−1(𝑡2), (𝜙

′)−1(𝑡1)
]
=∶ 𝕍.

From Theorem 3.1, we can write for all 𝑥 large enough and 𝑡∕𝑥 ∈ [𝑡1, 𝑡2]

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) =

(−1)𝑘

2𝜋 ∫
∞

−∞
𝐽(𝑐, 𝑏)𝑒−𝑥𝜙(𝑐+𝑖𝑏)+𝑡(𝑐+𝑖𝑏)𝑑𝑏 =∶ 𝐼(𝑥, 𝑡).

We use g(𝑐, 𝑥) ∶=
√
2 ln(𝑐

√
−𝜙′′(𝑐)𝑥) as defined in (4.10). Since 𝑐 ∈ 𝕍, we can repeat the argu-

ments leading up to (4.14) with the same definition of 𝜀(𝑐) ∶= 𝜀(𝑐, 𝑥) = g(𝑐,𝑥)

𝑐
√
−𝜙′′(𝑐)𝑥

and the estimate

�̄�(𝑐, 𝑥) ∶= sup|𝑢|⩽g(𝑐,𝑥) 𝑉(𝑐, 𝑥, 𝑢) ∶= sup|𝑢|⩽g(𝑐,𝑥)
2

𝑢2

||||||𝑈
(
𝑐,

𝑢√
−𝜙′′(𝑐)𝑥

)|||||| ⩽ 2𝐶

3
𝜀(𝑐, 𝑥), (4.32)

where 𝐶 = 𝐶(𝑡1, 𝑡2) since in the upper bound prior to (4.10), we can employ

𝜙′′′(𝑐) ⩽ 𝜙′′′((𝜙′)−1(𝑡2)), 𝑐 ⩽ (𝜙′)−1(𝑡1), and − 𝜙′′(𝑐) ⩾ (𝜙′)−1(𝑡1),

hence we do not need Assumption 𝔸2. Since (4.22) is valid with the modification

lim
𝑥→∞

𝜀(𝑥) ∶= lim
𝑥→∞

sup
𝑐∈𝕍

𝜀(𝑐, 𝑥) = 0, (4.33)

we similarly arrive at

sup
𝑥𝑡1⩽𝑡⩽𝑥𝑡2

||||||(−1)𝑘
√
2𝜋

√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0)
𝑒−𝑐𝑡+𝑥𝜙(𝑐)𝐼𝜀(𝑥, 𝑡) − 1

|||||| ⩽ 𝐶′𝜀(𝑥) +
1√
2𝜋

sup
𝑐∈𝕍 ∫|𝑢|>g(𝑐,𝑥) 𝑒−

𝑢2

2 𝑑𝑢.

(4.34)
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 30 of 58

The same remainder as (4.28), that is,

𝐽𝜀(𝑥, 𝑡) ∶=
(−1)𝑘

2𝜋
𝑒𝑐𝑡−𝑥𝜙(𝑐) ∫𝑐𝜀 𝐽(𝑐, 𝑏)𝑒

𝑖𝑏𝑡−𝑥(𝜙(𝑐+𝑖𝑏)−𝜙(𝑐))𝑑𝑏

=
(−1)𝑘

2𝜋
𝑒𝑐𝑡−𝑥𝜙(𝑐) ∫𝜀(𝑐)𝑐⩽|𝑏|⩽𝑑𝑐 𝐽(𝑐, 𝑏)𝑒𝑖𝑏𝑡−𝑥(𝜙(𝑐+𝑖𝑏)−𝜙(𝑐))𝑑𝑏

+
(−1)𝑘

2𝜋
𝑒𝑐𝑡−𝑥𝜙(𝑐) ∫|𝑏|⩾𝑑𝑐 𝐽(𝑐, 𝑏)𝑒𝑖𝑏𝑡−𝑥(𝜙(𝑐+𝑖𝑏)−𝜙(𝑐))𝑑𝑏

=∶
(−1)𝑘

2𝜋
𝑒𝑐𝑡−𝑥𝜙(𝑐)(𝐽1(𝑐, 𝑥) + 𝐽2(𝑐, 𝑥)),

(4.35)

is studied similarly with 𝑑 = 𝐶−1, see (4.32). Firstly, following the same computations, one gets||||||
√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0)
𝐽1(𝑐, 𝑥)

|||||| ⩽ 3𝑘+
5
2 max

{
1, 𝐶−2𝑘−2−𝑙

}
∫

∞

3
− 1
2 g(𝑐,𝑥)

𝑒−
𝑢2

2 𝑑𝑢. (4.36)

For the second term, we get||||||
√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0)
𝐽2(𝑐, 𝑥)

|||||| ⩽ 𝐶1𝐶
−2𝑘−2−𝑙𝑐

√
−𝜙′′(𝑐)𝑥 ∫

∞

1
𝑏2𝑘+1+𝑙𝑒−𝑥(𝚁𝚎(𝜙(𝑐(1+𝑖𝑏𝑑)))−𝜙(𝑐))𝑑𝑏,

with as in (4.30)

𝚁𝚎(𝜙(𝑐(1 + 𝑖𝑏𝑑))) − 𝜙(𝑐) ⩾ 𝑐20𝑒
− 1
𝑏𝑑 𝑏2𝑑2𝑐2Δ(𝑏𝑑𝑐) ⩾ 𝐴𝑏2. (4.37)

for some 𝐴 > 0 because 𝑏𝑑𝑐 ⩾ (𝜙′)−1(𝑡2)𝑑 > 0. As in (4.31) for 𝑥 large enough||||||
√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0)
𝐽2(𝑐, 𝑥)

|||||| ⩽ 𝐶1𝐶
−2𝑘−2−𝑙𝑐

√
−𝜙′′(𝑐)𝑥𝑒−

𝐴
2
𝑥
⩽ 𝐶1𝐶

−2𝑘−2−𝑙
√
2𝑐𝑥𝑒−

𝐴
2
𝑥.

Collecting the estimates above and noting that, as 𝑐 ranges in the bounded set 𝕍, 𝜀(𝑥) ≍√
ln(𝑥)𝑥−

1
2 , see (4.10) and (4.22), we deduce

sup
𝑥𝑡1⩽𝑡⩽𝑥𝑡2

||||||(−1)𝑘
√
2𝜋

√
−𝜙′′(𝑐)𝑥

𝐽(𝑐, 0)
𝑒−𝑐𝑡+𝑥𝜙(𝑐)𝐼(𝑥, 𝑡) − 1

|||||| = O

(√
ln(𝑥)

𝑥

)
.

This concludes the proof of the theorem. □

Finally, we only need to provide the proof of Theorem 3.8.

Proof of Theorem 3.8. Since 𝑡∕𝑥 → 𝜙′(0+), then from (3.3), we have that lim
𝑥→∞

𝑎∗ = 0, where 𝑎∗ ∶=
𝑎∗(𝑥). Then, using (3.2) for 𝑥 > 𝑥0(𝑘 + 𝑙, 𝐿) we write, for any 𝑡∕𝑥 > 𝔟,

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) =

(−1)𝑘

2𝜋
𝑒𝑎∗𝑡−𝑥𝜙(𝑎∗)

(
∫𝜀 +∫𝑐𝜀

)
𝐽(𝑎∗, 𝑏)𝑒

𝑖𝑏𝑡−𝑥(𝜙(𝑎∗+𝑖𝑏)−𝜙(𝑎∗))𝑑𝑏, (4.38)
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31 of 58 ASCIONE et al.

where 𝜀 = [−𝜀(𝑎∗)𝑎∗, 𝜀(𝑎∗)𝑎∗], 𝐽 defined as in (4.12) and 𝜀(𝑎∗) as in (4.10). The lattermakes sense
due to the first assumption in (3.9), that is, lim

𝑥→∞
−𝑥𝜙′′(𝑎∗)𝑎

2
∗ = ∞.

We appeal to the proof of Theorem 3.2 with the minor difference that we do not work with
a region for 𝑡 and respectively with 𝑐 ⩾ 𝑎∗ but we use 𝑡 = 𝑡(𝑥) and 𝑎∗ = 𝑎∗(𝑥). Absolutely, the

same estimates hinging on (𝔸1), (𝔸′
2
) and (4.10) and employing g(𝑎∗, 𝑥) =

√
2 ln(𝑎∗

√
−𝜙′′(𝑎∗)𝑥),

which drifts to infinity thanks to the first assumption in (3.9), lead as in the proof of Theorem 3.2
to

∫𝜀 𝐽(𝑎∗, 𝑏)𝑒
𝑖𝑏𝑡−𝑥(𝜙(𝑎∗+𝑖𝑏)−𝜙(𝑎∗))𝑑𝑏 =

√
2𝜋

𝐽(𝑎∗, 𝑥)√
−𝜙′′(𝑎∗)𝑥

(
1 + O

(
g(𝑎∗, 𝑥)

𝑎∗
√
−𝜙′′(𝑎∗)𝑥

))
. (4.39)

Next, we again decompose for some 𝑑 > 0 the remaining term on 𝑐𝜀 to yield

𝐽𝜀(𝑥, 𝑡) ∶=
(−1)𝑘

2𝜋
𝑒𝑎∗𝑡−𝑥𝜙(𝑎∗) ∫𝜀(𝑎∗)𝑎∗⩽|𝑏|⩽𝑑𝑎∗ 𝐽(𝑎∗, 𝑏)𝑒

𝑖𝑏𝑡−𝑥(𝜙(𝑎∗+𝑖𝑏)−𝜙(𝑎∗))𝑑𝑏

+
(−1)𝑘

2𝜋
𝑒𝑎∗𝑡−𝑥𝜙(𝑎∗) ∫|𝑏|⩾𝑑𝑎∗ 𝐽(𝑎∗, 𝑏)𝑒

𝑖𝑏𝑡−𝑥(𝜙(𝑎∗+𝑖𝑏)−𝜙(𝑎∗))𝑑𝑏

=∶
(−1)𝑘

2𝜋
𝑒𝑎∗𝑡−𝑥𝜙(𝑎∗)(𝐽1(𝑎∗, 𝑥) + 𝐽2(𝑎∗, 𝑥)),

(4.40)

and get the same way 𝐽1(𝑎∗, 𝑥) estimated as in (4.29). Also, in the same fashion,

||||||
√
−𝜙′′(𝑎∗)𝑥

𝐽(𝑎∗, 0)
𝐽2(𝑎∗, 𝑥)

|||||| = 𝐶′𝑑2𝑘+2+𝑙𝑎∗

√
−𝜙′′(𝑎∗)𝑥 ∫

∞

1
𝑏2𝑘+1+𝑙𝑒−𝑥(𝚁𝚎(𝜙(𝑎∗(1+𝑖𝑏𝑑)))−𝜙(𝑎∗))𝑑𝑏,

where𝐶′ > 0 is a constant. Here, however, there is a difference in that 𝑎∗ → 0; hence, we estimate
the exponent in two different ways. Pick 𝐴 > 1. Then on 1 ⩽ 𝑏 ⩽ 𝐴∕(𝑑𝑎∗), we have as in (4.30)

𝚁𝚎(𝜙(𝑎∗(1 + 𝑖𝑏𝑑))) − 𝜙(𝑎∗) = ∫
∞

0
(1 − cos (𝑏𝑑𝑎∗𝑦))𝑒

−𝑎∗𝑦𝜇(𝑑𝑦)

⩾ 𝑐20𝑒
− 1
𝑏𝑑 𝑏2𝑑2𝑎2∗ ∫

1
𝑏𝑑𝑎∗

0
𝑦2𝜇(𝑑𝑦) ⩾ 𝑐20𝑒

− 1
𝑏𝑑 𝑏2𝑑2𝑎2∗Δ(𝐴).

Since the right-hand side of the latter is bounded from below by a constant then, for some 𝑎 >
0, 𝐶 > 0,

∫
𝐴
𝑑𝑎∗

1
𝑏2𝑘+1+𝑙𝑒−𝑥(𝚁𝚎(𝜙(𝑎∗(1+𝑖𝑏𝑑)))−𝜙(𝑎∗))𝑑𝑏 ⩽ 𝐶𝑒−𝑎𝑥.

Next, for any𝑀 < 𝐿, see (𝔸1), choose 𝐴 such that, for 𝑏 > 𝐴∕(𝑑𝑎∗), as in (4.30),

𝚁𝚎(𝜙(𝑎∗(1 + 𝑖𝑏𝑑))) − 𝜙(𝑎∗) ⩾ 𝑐20𝑏
2𝑑2𝑎2∗𝑒

− 1
𝑏𝑑 Δ(𝑏𝑑𝑎∗) ⩾ 𝑀𝐴2𝑐20𝑒

−
𝑎∗
𝐴 ln (𝑏𝑑𝑎∗).
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 32 of 58

Therefore, for all 𝑥 large enough and hence 𝑎∗ small enough, we get with some𝑀′ as large as we
wish

∫
∞

𝐴
𝑑𝑎∗

𝑏2𝑘+1+𝑙𝑒−𝑥(𝚁𝚎(𝜙(𝑎∗(1+𝑖𝑏𝑑)))−𝜙(𝑎∗))𝑑𝑏 ⩽ ∫
∞

𝐴
𝑑𝑎∗

𝑏2𝑘+1+𝑙(𝑏𝑑𝑎∗)
−𝑀′𝑥𝑑𝑏

= 𝑎−2𝑘−𝑙−2∗ 𝑑−𝑀
′𝑥 ∫

∞

𝐴
𝑑

𝑢2𝑘+1+𝑙𝑢−𝑀
′𝑥𝑑𝑢 = 𝑎−2𝑘−𝑙−2∗ 𝑑−2𝑘−2−𝑙𝐴−𝑀′𝑥 1

𝑀′𝑥 − 2𝑘 − 𝑙 − 2
.

Plugging this and the estimate above, we arrive thanks to the second and third requirement of
(3.9), with some 𝐶0 > 0 and 𝑎′ > 0, at the bound which settles the claim

||||||
√
−𝜙′′(𝑎∗)𝑥

𝐽(𝑎∗, 0)
𝐽2(𝑎∗, 𝑥)

|||||| ⩽ 𝐶0𝑎∗

√
−𝜙′′(𝑎∗)𝑥

(
𝑒−𝑎𝑥 +

2

𝑀′𝑥
𝑒
−𝑀′𝑥 ln(𝐴)+(2𝑘+𝑙+2) ln

(
1
𝑎∗

))

⩽ 2𝐶0𝑎∗

√
−𝜙′′(𝑎∗)𝑥𝑒

−𝑎′𝑥 ⩽ 2𝐶0𝑒
−𝑎′′𝑥. □

4.4 Proofs of Lemmae 3.12 and 3.13

We now prove the lemmas that we used in Subsection 3.1 to compare our results with the existing

ones. Recall that Δ(𝑥) ∶= ∫ 1
𝑥

0
𝑦2𝜇𝜙(𝑑𝑦), 𝑥 > 0, see (3.1).

Proof of Lemma 3.12. Since −𝜙′′(𝑥) = ∫ ∞
0 𝑒−𝑥𝑦𝑦2𝜇𝜙(𝑑𝑦), we get that −𝜙′′(𝑥) ⩾ 𝑒−1 ∫ 1

𝑥

0
𝑦2𝜇𝜙(𝑑𝑦)

and the lower bound in (3.14) follows. Then, using 𝑣𝑒−𝑣 ⩽ 𝑒−1, for 𝑣 ⩾ 1, upper bound follows
from

−𝜙′′(𝑥) ⩽ ∫
1
𝑥

0
𝑦2𝜇𝜙(𝑑𝑦) +

1

𝑥2 ∫
∞

1
𝑥

𝑒−𝑥𝑦𝑥2𝑦2𝜇𝜙(𝑑𝑦) ⩽ Δ(𝑥) +
𝑒−1

𝑥2
�̄�𝜙

(
1

𝑥

)
.

□

Proof of Lemma 3.13. From Item (3) of Lemma 2.1, 𝜙′′′ is positive and non-increasing, and
therefore,

−𝜙′′(𝑥) ⩾ ∫
2𝑥

𝑥
𝜙′′′(𝑦)𝑑𝑦 ⩾ 𝑥𝜙′′′(2𝑥).

Hence, (𝔸∗
2
) implies (𝔸2). Let us show that (3.15) triggers (𝔸∗

2
). From (3.14) and (3.15), we get at

infinity −𝜙′′(𝑥) ≍ Δ(𝑥). Also, from [22, eq. (3.3)], we have that

Δ
(
1

𝑥

)
⩽ 2∫

𝑥

0
𝑤�̄�𝜙(𝑤)𝑑𝑤 = Δ

(
1

𝑥

)
+ 𝑥2�̄�𝜙(𝑥), (4.41)

and we arrive from (3.14) that for small 𝑥, we have

∫
𝑥

0
𝑤�̄�𝜙(𝑤)𝑑𝑤 ≍ −𝜙′′(𝑥−1) ≍ Δ(𝑥−1). (4.42)
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33 of 58 ASCIONE et al.

However, from the assumption [SC’] at [22, Page 8], we have, for any 𝜆 > 1, some 𝑐 ⩾ 1 and 𝛼 ∈

(0, 2],

1 ⩽ lim
𝑥→0+

∫ 𝜆𝑥
0 𝑤�̄�𝜙(𝑤)𝑑𝑤

∫ 𝑥
0 𝑤�̄�𝜙(𝑤)𝑑𝑤

⩽ lim
𝑥→0+

∫ 𝜆𝑥
0 𝑤�̄�𝜙(𝑤)𝑑𝑤

∫ 𝑥
0 𝑤�̄�𝜙(𝑤)𝑑𝑤

⩽ 𝑐𝜆2−𝛼.

Setting 𝜆 = 2 and using (4.42) with 𝑥 → 1∕2𝑦, we deduce that at infinity

−𝜙′′(𝑦) ≍ −𝜙′′(2𝑦),

that is, (𝔸∗
2
) holds and hence (𝔸2) follows. From [12, Definition, eq(2.0.7), p. 65] and (4.42), we

get that −𝜙′′(𝑥) is O-regularly varying at infinity, see [12, Corollary 2.0.5]. Then, from [12, 2.1.9
of Theorem 2.1.8], the lower Matuszewska index of −𝜙′′(𝑥) is larger or equal to 𝛼 − 2 > −2 and
the upper index is not greater than 0. Therefore, −𝜙′′(𝑥) is of bounded decrease as in [12, p.71],
and from [12, Proposition 2.2.1], we get that −𝜙′′(𝑥) ⩾ 𝑥−2+𝛼−𝜖 for all 0 < 𝜖 and 𝑥 large enough.
Therefore, from (4.42), we obtain that

Δ(𝑥) ⩾ 𝐶𝑥−2+𝛼−𝜖

for some 𝐶 > 0 and all 𝑥 large enough and (𝔸1) holds with 𝐿 = ∞. Also the stronger (3.16)
holds. □

5 PROOFS OF RESULTS IN SUBSECTION 3.2

Here, we prove the main results contained in Subsection 3.2 based on Assumptions (𝔹1) and (𝔹2).

5.1 Proof of Theorem 3.14

To prove Theorem 3.14, we will make use of the following integral representation, which is a
consequence of the Laplace inversion formula of Proposition 4.1. Recall the definition of 𝔻 in
(2.11).

Proposition 5.1. Let 𝜙 be the Laplace exponent of a potentially killed subordinator satisfying
Assumptions (𝔹1) and (𝔹2) for some 𝜃 ∈ (0, 𝜋). Fix any 𝜀 > 0 and let 𝛾𝜀,𝜃 be the circle arc in ℂ

parametrised as 𝛾𝜀,𝜃 ∶ 𝑧 = 𝜀𝑒𝑖𝜉 for 𝜉 ∈ [𝜃
2
− 𝜋, 𝜋 − 𝜃

2
]. Then, on 𝔻,

𝑓𝜙(𝑥, 𝑡) =
1

𝜋 ∫
+∞

𝜀

𝙸𝚖

⎛⎜⎜⎜⎜⎝
𝜙†
(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
𝜌

𝑒
−𝑥𝜙

(
𝜌𝑒

𝑖(𝜋− 𝜃
2 )
)
+𝑡𝜌𝑒

𝑖(𝜋− 𝜃
2 )
⎞⎟⎟⎟⎟⎠
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃
𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧)+𝑡𝑧𝑑𝑧.

(5.1)
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 34 of 58

F IGURE 1 Sketch of the keyhole-type contour.

Proof. Again, by (4.3) and (4.4) for fixed 𝑎 > 0 and for almost any (𝑥, 𝑡) ∈ 𝔻

𝑓𝜙(𝑥, 𝑡) = lim
𝑏→+∞

1

2𝜋𝑖 ∫
𝑎+𝑖𝑏

𝑎−𝑖𝑏
𝑒𝑧𝑡

𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧) 𝑑𝑧,

provided that the limit on the right-hand side exists. Here, we compute the limit by using Cauchy’s
theorem. For 𝑅 ⩾ 𝑎, let 𝑏(𝑅) =

√
𝑅2 − 𝑎2. Set 𝐴(𝑅) ∶= 𝑎 − 𝑖𝑏(𝑅), 𝐵(𝑅) ∶= 𝑎 + 𝑖𝑏(𝑅) and observe

that |𝐴(𝑅)| = |𝐵(𝑅)| = 𝑅. In particular, note that

lim
𝑏→+∞∫

𝑎+𝑖𝑏

𝑎−𝑖𝑏
𝑒𝑧𝑡

𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧) 𝑑𝑧 = lim

𝑅→+∞∫
𝐵(𝑅)

𝐴(𝑅)
𝑒𝑧𝑡

𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧) 𝑑𝑧. (5.2)

Now define 𝐶(𝑅) ∶= 𝑅𝑒
𝑖
(
𝜋−𝜃

2

)
and 𝐹(𝑅) ∶= 𝑅𝑒

𝑖
(
𝜋+𝜃

2

)
. Furthermore, let 𝜀 > 0 and define𝐷(𝜀) ∶=

𝜀𝑒
𝑖
(
𝜋−𝜃

2

)
and𝐸(𝜀) ∶= 𝜀𝑒

𝑖
(
𝜋+𝜃

2

)
.We letΓ+

𝑅
be the anticlockwise oriented circular arc joining𝐵(𝑅) to

𝐶(𝑅), while we define Γ−
𝑅
the anticlockwise oriented circular arc joining𝐹(𝑅) to𝐴(𝑅). Denote also

𝓁1 to be the oriented segment connecting𝐴(𝑅) to 𝐵(𝑅), 𝓁2 the oriented segment connecting 𝐶(𝑅)
to 𝐷(𝜀) and 𝓁3 the oriented segment connecting 𝐸(𝜀) to 𝐹(𝑅). Finally, let −𝛾𝜀,𝜃 be the clockwise
oriented circular arc joining 𝐷(𝜀) to 𝐸(𝜀). Let 𝜕𝔇 be the closed contour obtained by connecting,
in this order, 𝓁1, Γ+𝑅 , 𝓁2,−𝛾𝜀,𝜃, 𝓁3, Γ

−
𝑅
(see Figure 1). Such a contour is the boundary of an open set

𝔇 of the complex plane in which by assumption

𝔇 ∋ 𝑧 ↦ 𝐹(𝑧; 𝑥, 𝑡) ∶=
𝜙†(𝑧)

𝑧
𝑒𝑧𝑡−𝑥𝜙(𝑧) ∈ ℂ, 𝑥 > 0, 𝑡 > 0,
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35 of 58 ASCIONE et al.

is holomorphic and continuous at the boundary. Hence, we can apply Cauchy’s theorem to
get

∫𝜕𝔇 𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧 = 0.

This implies that

∫
𝐵(𝑅)

𝐴(𝑅)
𝑒𝑧𝑡

𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧) 𝑑𝑧 (5.3)

= − ∫Γ+
𝑅

𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧 − ∫𝓁2

𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧 + ∫𝛾𝜀,𝜃 𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧 − ∫𝓁3

𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧 − ∫Γ−
𝑅

𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧.

(5.4)

Now we deal with various terms separately. To deal with the first integral, let𝑀+(𝑅) = 𝑅𝑖 and
split the curve Γ+

𝑅
into Γ1

𝑅
connecting 𝐵(𝑅) to𝑀+(𝑅) and Γ2

𝑅
connecting𝑀+(𝑅) to 𝐶(𝑅) so that

∫Γ+
𝑅

𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧 = ∫Γ1
𝑅

𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧 + ∫Γ2
𝑅

𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧. (5.5)

We begin with Γ1
𝑅
. Note that by the Estimation Lemma [34, Theorem 5.24],

|||||∫Γ1𝑅 𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧
||||| ⩽ length(Γ1𝑅) max

𝑧∈Γ1
𝑅

||𝐹(𝑧; 𝑥, 𝑡)||, (5.6)

where, with an abuse of notation, we denote by Γ1
𝑅
also the image of the parametrised oriented

curve. To evaluate the maximum appearing in (5.6), we parametrise Γ1
𝑅
as follows:

Γ1𝑅 =
{
𝑧 ∈ ℂ ∶ 𝑧 = 𝑅𝑒𝑖𝜉, 𝜉 ∈

[
𝜉𝐵(𝑅),

𝜋

2

]}
,

where 𝜉𝐵(𝑅) = arctan(𝑏(𝑅)
𝑎
). Then, for 𝑧 = 𝑅𝑒𝑖𝜉 ∈ Γ1

𝑅
, it holds

||𝐹(𝑧; 𝑥, 𝑡)|| = |||𝜙†(𝑅𝑒𝑖𝜉)|||𝑅
𝑒𝑅𝑡 cos 𝜉−𝑥𝚁𝚎𝜙(𝑅𝑒

𝑖𝜉).

Without loss of generality, we can assume 𝜉𝐵(𝑅) >
𝜋

4
. Firstly, observe that 𝚁𝚎(𝑅𝑒𝑖𝜉) = 𝑅 cos 𝜉 ⩾

0, for any 𝜉 ∈ [𝜉𝐵(𝑅),
𝜋

2
], and thus, by Item (2) of Lemma 2.1, we have that 𝚁𝚎𝜙(𝑅𝑒𝑖𝜉) ⩾ 0.

Furthermore, it holds that 𝑅 cos 𝜉 ⩽ 𝑅 cos 𝜉𝐵(𝑅) = 𝑎, for any 𝜉 ∈ [𝜉𝐵(𝑅),
𝜋

2
]. Hence, we get

max
𝑧∈Γ1

𝑅

||𝐹(𝑧; 𝑥, 𝑡)|| ⩽ 𝑒𝑡𝑎 max
𝜉∈
[
𝜋
4
, 𝜋
2

] |||||𝜙
†
(
𝑅𝑒𝑖𝜉
)

𝑅𝑒𝑖𝜉

|||||,
and thus, by Item (6) of Lemma 2.1 and the definition of 𝜙†, see (2.14), it holds

lim
𝑅→+∞

max
𝑧∈Γ1

𝑅

||𝐹(𝑧; 𝑥, 𝑡)|| = 0. (5.7)
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Furthermore, it is not difficult to check that

lim
𝑅→+∞

length(Γ1𝑅) = 𝑎. (5.8)

By combining (5.7) and (5.8) with (5.6), we have that

lim
𝑅→+∞∫Γ1

𝑅

𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧 = 0. (5.9)

Now, we deal with the second term in (5.5), that is, the one on Γ2
𝑅
. Recalling that (𝑥, 𝑡) ∈ 𝔻, let

𝛿 = 𝑡 − 𝔟𝑥 > 0 and choose 𝑝 > 1 such that 𝑡

𝑝
− 𝔟𝑥 > 𝛿

2
, which exists since lim𝑝→1

𝑡

𝑝
− 𝔟𝑥 = 𝛿.

Let also 𝑝′ > 1 be the conjugate exponent of 𝑝 > 1, that is, 1
𝑝
+ 1

𝑝′
= 1. Then, we have

|||||∫Γ2𝑅 𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧
||||| ⩽𝑅

(
max
𝑧∈Γ2

𝑅

|||||𝜙
†(𝑧)

𝑧
𝑒
𝑡
𝑝
𝑧−𝑥𝜙(𝑧)

|||||
)(

∫
𝜋−𝜃
2

0
𝑒−(𝑅𝑡 sin 𝜉)∕𝑝

′
𝑑𝜉

)

⩽
𝑝′𝜋

𝑡

(
max
𝑧∈Γ2

𝑅

|||||𝜙
†(𝑧)

𝑧
𝑒
𝑡
𝑝
𝑧−𝑥𝜙(𝑧)

|||||
)
=

𝑝′𝜋𝑒−𝑥𝑞

𝑡

(
max
𝑧∈Γ2

𝑅

|||||𝜙
†(𝑧)

𝑧
𝑒

(
𝑡
𝑝
−𝔟𝑥
)
𝑧−𝑥𝜙†(𝑧)

|||||
)
,

(5.10)

where in the second inequality, we have used Jordan’s inequality [13, eq (2), page 262]. Now,
consider

g(𝑧) = 𝑒

(
𝑡
𝑝
−𝔟𝑥
)
𝑧−𝑥𝜙†(𝑧)

, (5.11)

and observe that, by hypothesis, g is holomorphic onℂ(𝜋
2
, 𝜋 − 𝜃

2
) and continuous onℂ(𝜋

2
, 𝜋 − 𝜃

2
).

Furthermore, for 𝑧 = 𝑖𝑅, we have

|g(𝑖𝑅)| = 𝑒−𝑥𝚁𝚎𝜙
†(𝑖𝑅) ⩽ 1,

since 𝚁𝚎𝜙†(𝑖𝑅) ⩾ 0 by Item (2) of Lemma 2.1. For 𝑧 = 𝑅𝑒𝑖(𝜋−
𝜃
2
), we have instead

|||||g
(
𝑅𝑒

𝑖
(
𝜋−𝜃

2

))||||| = 𝑒
−𝑅
(
𝑡
𝑝
−𝔟𝑥
)
cos
(
𝜃
2

)
−𝑥𝚁𝚎𝜙†

(
𝑅𝑒

𝑖
(
𝜋− 𝜃

2

))
.

Now let us show that for 𝑅 big enough, |g(𝑅𝑒𝑖(𝜋− 𝜃
2
))| ⩽ 1. Indeed,

|||||g
(
𝑅𝑒

𝑖
(
𝜋−𝜃

2

))||||| = exp

⎛⎜⎜⎜⎜⎝
−𝑅 cos

(
𝜃

2

)⎛⎜⎜⎜⎜⎝
𝑡

𝑝
− 𝔟𝑥 +

𝑥

cos
(
𝜃

2

) 𝚁𝚎𝜙†
(
𝑅𝑒

𝑖
(
𝜋−𝜃

2

))
𝑅

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
.
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Once we observe that

|||||||||
𝚁𝚎𝜙†
(
𝑅𝑒

𝑖
(
𝜋−𝜃

2

))
𝑅

|||||||||
⩽

|||||𝜙†
(
𝑅𝑒

𝑖
(
𝜋−𝜃

2

))|||||
𝑅

,

and we use (𝔹2) to state that

lim
𝑅→+∞

|||||𝜙†
(
𝑅𝑒

𝑖
(
𝜋−𝜃

2

))|||||
𝑅

= 0,

we know that there exists a constant 𝐶(𝑡, 𝑥, 𝑝) such that for 𝑅 > 𝐶(𝑡, 𝑥, 𝑝),

𝑡

𝑝
− 𝔟𝑥 +

𝑥

cos
(
𝜃

2

) 𝚁𝚎𝜙†
(
𝑅𝑒

𝑖
(
𝜋−𝜃

2

))
𝑅

⩾
𝛿

4
.

Hence, for 𝑅 > 𝐶(𝑡, 𝑥, 𝑝),

|||||g
(
𝑅𝑒

𝑖
(
𝜋−𝜃

2

))||||| ⩽ exp

⎛⎜⎜⎜⎝−
𝛿𝑅 cos

(
𝜃

2

)
4

⎞⎟⎟⎟⎠ ⩽ 1.

On the other hand,

𝑅 ∈ [0, +∞) ↦
|||||g
(
𝑅𝑒

𝑖
(
𝜋−𝜃

2

))||||| ∈ ℝ

is continuous and then the latter inequality implies that there exists 𝑀 = 𝑀(𝑥, 𝑡, 𝑝) such that|g(𝑧)| ⩽ 𝑀 for any 𝑧 ∈ 𝜕ℂ(𝜋
2
, 𝜋 − 𝜃

2
). Furthermore, observe that, for 𝑧 = 𝑅𝑒𝑖𝜉 with 𝜉 ∈ (𝜋

2
, 𝜋 − 𝜃

2
),

we have, by (𝔹2), |𝚁𝚎𝜙(𝑧)| ⩽ |𝜙(𝑧)| ⩽ 𝐶|𝑧|, for |𝑧| ⩾ 1. Hence, for |𝑧| ⩾ 1, transferring through
(2.14) 𝜙† to 𝜙 and using that 𝚁𝚎(𝑧) ⩽ 0, we get that

|g(𝑧)| = 𝑒
𝑡
𝑝
𝚁𝚎𝑧+𝑥𝑞−𝑥𝚁𝚎(𝜙(𝑧))

⩽ 𝑒𝑥𝑞+𝑥|𝚁𝚎(𝜙(𝑧))| ⩽ 𝑒𝑞𝑥𝑒𝑥𝐶|𝑧|.
The continuity of the function 𝑧 ∈ ℂ(𝜋

2
, 𝜋 − 𝜃

2
) ↦ |g(𝑧)|𝑒𝑥𝐶|𝑧| ∈ ℝ guarantees that there exists a

constant𝑀1 = 𝑀1(𝑥, 𝑡, 𝑝, 𝑞) > 0 such that

|g(𝑧)| ⩽ 𝑀1𝑒
𝑥𝐶|𝑧|, ∀𝑧 ∈ ℂ

(
𝜋

2
, 𝜋 −

𝜃

2

)
.

Since 𝜋 − 𝜃

2
− 𝜋

2
< 𝜋

2
, we can use Phragmen–Lindelöf theorem (see [68, Chapter 4, Exercise 9,

Item (b)]) to obtain |g(𝑧)| ⩽ 𝑀 for any 𝑧 ∈ ℂ(𝜋
2
, 𝜋 − 𝜃

2
). Thus, from (5.10), we have

|||||∫Γ2𝑅 𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧
||||| ⩽ 𝑀(𝑥, 𝑡, 𝑝)𝑝′𝜋𝑒−𝑥𝑞

𝑡

(
max
𝑧∈Γ2

𝑅

|||||𝜙
†(𝑧)

𝑧

|||||
)
.
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Taking the limit as 𝑅 → +∞, we finally have

lim
𝑅→+∞∫Γ2

𝑅

𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧 = 0, (5.12)

which, combined with (5.9), leads to

lim
𝑅→+∞∫Γ+

𝑅

𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧 = 0. (5.13)

In the same spirit, it is possible to see that

lim
𝑅→+∞∫Γ−

𝑅

𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧 = 0. (5.14)

We consider now the integral on 𝓁2. We have that

∫𝓁2 𝐹(𝑧; 𝑥, 𝑡)𝑑𝑧 = −∫
𝑅

𝜀

𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))
𝜌

𝑒
−𝑥𝜙

(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
+𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)
𝑑𝜌. (5.15)

Choose 𝑝, 𝑝′ > 1 as above so that, recalling that

|||||𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
𝜌

⩽ 𝐶

for 𝜌 ⩾ 𝜀 by (𝔹2), we have

∫
∞

𝜀

|||||||||
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))
𝜌

𝑒
−𝑥𝜙

(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
+𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)|||||||||
𝑑𝜌

= 𝑒−𝑞𝑥 ∫
∞

𝜀

|𝜙†(𝜌𝑒𝑖(𝜋−𝜃
2

))|
𝜌

exp

⎧⎪⎪⎨⎪⎪⎩
−𝜌 cos

(
𝜃

2

)⎛⎜⎜⎜⎜⎝
𝑡

𝑝
− 𝔟𝑥 + 𝑥

𝚁𝚎𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))
𝜌 cos

(
𝜃

2

)
⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭
𝑒
−𝜌 𝑡

𝑝′
cos 𝜃

2 𝑑𝜌

⩽𝐶𝑀 ∫
∞

𝜀
𝑒
−
𝜌𝑡

𝑝′
cos
(
𝜃
2

)
𝑑𝜌 < +∞, (5.16)

where we have also used that 𝑡

𝑝
− 𝔟𝑥 > 𝛿

2
> 0. Hence, we can take the limit in (5.15) to get

lim
𝑅→+∞∫𝓁2 𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧 = −∫

+∞

𝜀

𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))
𝜌

𝑒
−𝑥𝜙

(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
+𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)
𝑑𝜌 =∶ −𝐼1(𝜀).
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Analogously, on 𝓁3, we have that

lim
𝑅→+∞∫𝓁3 𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧 = ∫

+∞

𝜀

𝜙†
(
𝜌𝑒

𝑖
(
𝜋+𝜃

2

))
𝜌

𝑒
−𝑥𝜙

(
𝜌𝑒

𝑖
(
𝜋+ 𝜃

2

))
+𝑡𝜌𝑒

𝑖
(
𝜋+ 𝜃

2

)
𝑑𝜌 =∶ 𝐼2(𝜀). (5.17)

Furthermore, by using the fact that𝜙(𝑧) = 𝜙(𝑧) by Schwartz reflection principle (see [68, Theorem
5.6]), we know that 𝐼2(𝜀) = 𝐼1(𝜀). Hence, taking the limit as 𝑅 → +∞ in (5.3) and using (5.13),
(5.14), (5.17) and (5.17), we get

lim
𝑏→+∞∫

𝑎+𝑖𝑏

𝑎−𝑖𝑏
𝑒𝑧𝑡

𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧) 𝑑𝑧 = 𝐼1(𝜀) − 𝐼1(𝜀) + ∫𝛾𝜀,𝜃 𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧 = 2𝑖𝐼3(𝜀) + ∫𝛾𝜀,𝜃 𝐹(𝑧; 𝑥, 𝑡) 𝑑𝑧,

where we denote

𝐼3(𝜀) ∶= ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎜⎝
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))
𝜌

𝑒
−𝑥𝜙

(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
+𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
𝑑𝜌. (5.18)

This proves (5.1). □

Remark 5.2. Under the hypotheses of Proposition 5.1, if furthermore

∫
1

0

|||||𝙸𝚖𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
𝜌

𝑑𝜌 < +∞, (5.19)

then we can send 𝜀 → 0 in (5.1), wherein by the estimation lemma, the second term converges to
zero, hence getting

𝑓𝜙(𝑥, 𝑡) =
1

𝜋 ∫
+∞

0
𝙸𝚖

⎛⎜⎜⎜⎜⎝
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))
𝜌

𝑒
−𝑥𝜙

(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
+𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
𝑑𝜌.

A similar integral representation holds also for �̄�∗𝑛
𝜙
. The proof is similar to the one of Propo-

sition 5.1, where we substitute the term 𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧) with (

𝜙†(𝑧)

𝑧
)𝑛. For such a reason, we only

underline the parts of the proof that are actually different.

Proposition 5.3. With the same notation of Proposition 5.1, under (𝔹1) and (𝔹2), for 𝑛 ⩾ 1, it holds
that, for any 𝑡 > 0,

�̄�∗𝑛
𝜙
(𝑡) =

1

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)
⎞⎟⎟⎟⎟⎠

𝑛

𝑒
𝑖
(
𝜋−𝜃

2

)
𝑒𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)⎤⎥⎥⎥⎥⎦
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃 𝑒
𝑡𝑧

(
𝜙†(𝑧)

𝑧

)𝑛
𝑑𝑧.

(5.20)
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Proof. Setting 𝐹𝑛(𝑧; 𝑡) = (
𝜙†(𝑧)

𝑧
)𝑛𝑒𝑡𝑧, the proof follows as the one in Proposition 5.1. The main

differences concern integrals over Γ2
𝑅
and 𝓁2. Firstly, by Jordan’s inequality [13, eq. (2), page 262],

|||||∫Γ2𝑅 𝐹𝑛(𝑧; 𝑡)𝑑𝑧
||||| ⩽ 𝜋

𝑡

(
max
𝑧∈Γ2

𝑅

|||||𝜙
†(𝑧)

𝑧

|||||
𝑛
)
→ 0, as 𝑅 → ∞,

where the limit holds by assumption (𝔹2). Concerning the integral over 𝓁2, observe that

∫
∞

𝜀

|𝐹𝑛(𝜌𝑒𝑖(𝜋− 𝜃

2
;𝑡
)
; 𝑡

)|𝑑𝑧 ⩽ ∫
∞

𝜀

𝑒
−𝜌𝑡 cos

(
𝜃

2

)|||||||||
𝜙†
(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
𝜌

|||||||||
𝑛

𝑑𝜌 ⩽ 𝐶 ∫
∞

𝜀

𝑒
−𝜌𝑡 cos

(
𝜃

2

)
𝑑𝜌 < +∞,

where we have used the fact that

|||||||||
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))
𝜌

|||||||||
𝑛

is bounded for 𝜌 ⩾ 𝜀 by assumption (𝔹2). □

Now we are ready to prove Theorem 3.14 by using the previously obtained integral representa-
tions.

Proof of Theorem 3.14. Let us first prove that �̄�∗𝑛
𝜙

∈ 𝐶∞(0, +∞). To do this, fix 𝜀 > 0, let 𝑙 ⩾ 1

and [𝑡1, 𝑡2] ⊂ (0, +∞). Let𝐹𝑛(𝑧; 𝑡) = (
𝜙†(𝑧)

𝑧
)𝑛𝑒𝑡𝑧. Then, 𝜕

𝑙

𝜕𝑡𝑙
𝐹𝑛(𝑧, 𝑡) = 𝑧𝑙(

𝜙†(𝑧)

𝑧
)𝑛𝑒𝑡𝑧 is continuous for

(𝑧, 𝑡) ∈ 𝛾𝜀,𝜃 × [𝑡1, 𝑡2], where, with an abuse of notation, 𝛾𝜀,𝜃 is the image of the parametrised curve
defined in Proposition 5.1. Then, we have

|||| 𝜕𝑙𝜕𝑡𝑙 𝐹𝑛(𝑧, 𝑡)|||| ⩽ max
(𝑧,𝑡)∈𝛾𝜀,𝜃×[𝑡1,𝑡2]

|||||𝑧𝑙
(
𝜙†(𝑧)

𝑧

)𝑛
𝑒𝑡𝑧
|||||, (5.21)

where the right-hand side is constant, hence integrable over 𝛾𝜀,𝜃. Next, let

𝐺𝑛(𝜌, 𝑡) = 𝙸𝚖

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)
⎞⎟⎟⎟⎟⎠

𝑛

𝑒
𝑖
(
𝜋−𝜃

2

)
𝑒𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)⎤⎥⎥⎥⎥⎦
,

and observe that

𝜕𝑙

𝜕𝑡𝑙
𝐺𝑛(𝜌, 𝑡) = 𝙸𝚖

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)
⎞⎟⎟⎟⎟⎠

𝑛

𝜌𝑙𝑒
𝑖(𝑙+1)

(
𝜋−𝜃

2

)
𝑒𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)⎤⎥⎥⎥⎥⎦
.
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For 𝜌 ⩾ 𝜀 and 𝑡 ∈ [𝑡1, 𝑡2], we have|||| 𝜕𝑙𝜕𝑡𝑙 𝐺𝑛(𝜌, 𝑡)|||| ⩽ 𝐶𝑒−𝑡1𝜌 cos
𝜃
2 𝜌𝑙, (5.22)

since |||||||||
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))
𝜌

|||||||||
𝑛

is bounded for 𝜌 ⩾ 𝜀 by assumption (𝔹2). Observe that the right-hand side of (5.22) is integrable
over (𝜀, +∞). Hence, by (5.21) and (5.22) and the fact that 𝑙 ⩾ 1 is arbitrary, we can differentiate 𝑙
times inside the integrals in (5.20), getting

𝑑𝑟

𝑑𝑡𝑟
�̄�∗𝑛
𝜙
(𝑡) =

1

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎡⎢⎢⎢⎢⎣

(
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)))𝑛
𝜌𝑛−𝑟𝑒

𝑖(𝑛−𝑟−1)
(
𝜋−𝜃

2

) 𝑒𝑡𝜌𝑒𝑖
(
𝜋− 𝜃

2

)⎤⎥⎥⎥⎥⎦
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃 𝑒
𝑡𝑧

(
𝜙†(𝑧)

)𝑛
𝑧𝑛−𝑟

𝑑𝑧. (5.23)

This proves that �̄�∗𝑛
𝜙

∈ 𝐶∞(0, +∞).
Now let us prove that 𝑓𝜙 ∈ 𝐶∞(𝔻). To do this, fix any 𝑘, 𝑙 ⩾ 0, 0 < 𝑡1 < 𝑡2 and 0 < 𝑥1 < 𝑥2 <

𝑡1∕𝔟, recalling that any (𝑥, 𝑡) ∈ 𝔻 admits a compact neighbourhood of the form [𝑥1, 𝑥2] × [𝑡1, 𝑡2]

specified before. Let 𝐹(𝑧; 𝑥, 𝑡) = 𝜙†(𝑧)

𝑧
𝑒−𝑥𝜙(𝑧)+𝑡𝑧 and observe that

𝜕𝑘

𝜕𝑥𝑘
𝜕𝑙

𝜕𝑡𝑙
𝐹(𝑧; 𝑥, 𝑡) = (−1)𝑘

𝑧𝑙𝜙†(𝑧)(𝜙(𝑧))𝑘

𝑧
𝑒−𝑥𝜙(𝑧)+𝑡𝑧.

The latter is continuous over 𝛾𝜀,𝜃 × [𝑥1, 𝑥2] × [𝑡1, 𝑡2] and then

|||| 𝜕𝑘𝜕𝑥𝑘 𝜕𝑙

𝜕𝑡𝑙
𝐹(𝑧; 𝑥, 𝑡)

|||| ⩽ max
(𝑧,𝑥,𝑡)∈𝛾𝜀,𝜃×[𝑥1,𝑥2]×[𝑡1,𝑡2]

|||||𝑧
𝑙𝜙†(𝑧)(𝜙(𝑧))𝑘

𝑧
𝑒−𝑥𝜙(𝑧)+𝑡𝑧

|||||, (5.24)

where the right-hand side is a constant, and then, it is integrable over 𝛾𝜀,𝜃. Now set

𝐺(𝜌; 𝑥, 𝑡) = 𝙸𝚖

⎛⎜⎜⎜⎜⎝
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))
𝜌

𝑒
−𝑥𝜙

(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
+𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
and observe that

𝜕𝑘

𝜕𝑥𝑘
𝜕𝑙

𝜕𝑡𝑙
𝐺(𝜌; 𝑥, 𝑡)

= (−1)𝑘𝙸𝚖

⎛⎜⎜⎜⎜⎝
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))(
𝜙

(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)))𝑘
𝜌𝑘+1

𝜌𝑙+𝑘𝑒
𝑖𝑙
(
𝜋−𝜃

2

)
𝑒
−𝑥𝜙

(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
+𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
.
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Recall that

||||||||||
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))(
𝜙

(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)))𝑘
𝜌𝑘+1

||||||||||
is bounded as 𝜌 ⩾ 𝜀, and set 𝑝, 𝑝′ > 1 as right after (5.9). Arguing as in the proof of Proposition 5.1,

we know that there exists𝑀 > 0 such that |g(𝑧)| ⩽ 𝑀 for all 𝑧 ∈ ℂ(𝜋
2
, 𝜋 − 𝜃

2
), where g is defined

in (5.11) with 𝑡2 and 𝑥1 in place of 𝑡 an 𝑥. Hence, we have

|||| 𝜕𝑘𝜕𝑥𝑘 𝜕𝑙

𝜕𝑡𝑙
𝐺(𝜌; 𝑥, 𝑡)

|||| ⩽ 𝐶𝑀𝑒
−
𝜌𝑡1
𝑝′

cos 𝜃
2 , (5.25)

where the right-hand side is integrable on (𝜀, +∞). Hence, since 𝑘, 𝑙 ⩾ 0 are arbitrary, we can
differentiate 𝑘 times in 𝑥 and 𝑙 times with respect to 𝑡 in (5.1), to get that 𝑓𝜙 ∈ 𝐶∞(𝔻) and

𝜕𝑘

𝜕𝑥𝑘
𝜕𝑙

𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡)

=
(−1)𝑘

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎜⎝
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))(
𝜙

(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)))𝑘
𝜌1−𝑙𝑒

−𝑖𝑙
(
𝜋−𝜃

2

) 𝑒
−𝑥𝜙

(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
+𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
𝑑𝜌

+
(−1)𝑘

2𝜋𝑖 ∫𝛾𝜀,𝜃
𝜙†(𝑧)(𝜙(𝑧))𝑘

𝑧1−𝑙
𝑒−𝑥𝜙(𝑧)+𝑡𝑧𝑑𝑧.

(5.26)

□

5.2 Proof of Theorem 3.15

In order to prove Theorem 3.15, we employ the integral representations given in Propositions 5.1
and 5.3.

Proof of Theorem 3.15. As in the (5.26), we have

𝜕𝑘

𝜕𝑥𝑘
𝜕𝑙

𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡)

=
(−1)𝑘

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎜⎝
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))(
𝜙

(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)))𝑘
𝜌1−𝑙𝑒

−𝑖𝑙
(
𝜋−𝜃

2

) 𝑒
−𝑥𝜙

(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
+𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
𝑑𝜌

+
(−1)𝑘

2𝜋𝑖 ∫𝛾𝜀,𝜃
𝜙†(𝑧)(𝜙(𝑧))𝑘

𝑧1−𝑙
𝑒−𝑥𝜙(𝑧)+𝑡𝑧𝑑𝑧.

(5.27)
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Writing 𝑒−𝑥𝜙(𝑧) as a power series and assuming that we can exchange the series with the integral,
we have

𝜕𝑘

𝜕𝑥𝑘
𝜕𝑙

𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) =

+∞∑
𝑗=0

(−1)𝑘+𝑗
𝑥𝑗

𝑗!

×

⎡⎢⎢⎢⎢⎣
1

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎜⎝
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))(
𝜙

(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)))𝑘+𝑗
𝜌1−𝑙𝑒

−𝑖𝑙
(
𝜋−𝜃

2

) 𝑒𝑡𝜌𝑒
𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
𝑑𝜌

+
1

2𝜋𝑖 ∫𝛾𝜀,𝜃
𝜙†(𝑧)(𝜙(𝑧))𝑘+𝑗

𝑧1−𝑙
𝑒𝑡𝑧𝑑𝑧

⎤⎥⎥⎥⎥⎦
=

+∞∑
𝑗=0

∑
𝑘1+𝑘2+𝑘3=𝑘+𝑗

(𝑘 + 𝑗)!

𝑘1!𝑘2!𝑘3!
(−1)𝑘+𝑗

𝑥𝑗

𝑗!
𝑞𝑘1𝔟𝑘2

×

⎡⎢⎢⎢⎢⎣
1

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎜⎝

(
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)))𝑘3+1
𝜌1−𝑙−𝑘2𝑒

−𝑖(𝑙+𝑘2)
(
𝜋−𝜃

2

) 𝑒𝑡𝜌𝑒
𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃
(𝜙†(𝑧))𝑘3+1

𝑧1−𝑙−𝑘2
𝑒𝑡𝑧𝑑𝑧

⎤⎥⎥⎥⎥⎦
=

+∞∑
𝑗=0

∑
𝑘1+𝑘2+𝑘3=𝑘+𝑗

(𝑘 + 𝑗)!

𝑘1!𝑘2!𝑘3!
(−1)𝑘+𝑗

𝑥𝑗

𝑗!
𝑞𝑘1𝔟𝑘2

×

⎡⎢⎢⎢⎢⎣
1

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎜⎝

(
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)))𝑘3+1
𝜌𝑘3+1−(𝑘2+𝑘3+𝑙)𝑒

𝑖(𝑘3−(𝑙+𝑘2+𝑘3))
(
𝜋−𝜃

2

) 𝑒𝑡𝜌𝑒𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
𝑑𝜌

+
1

2𝜋𝑖 ∫𝛾𝜀,𝜃
(𝜙†(𝑧))𝑘3+1

𝑧𝑘3+1−(𝑘2+𝑘3+𝑙)
𝑒𝑡𝑧𝑑𝑧

⎤⎥⎥⎥⎥⎦
=

+∞∑
𝑗=0

∑
𝑘1+𝑘2+𝑘3=𝑘+𝑗

(𝑘 + 𝑗)!

𝑘1!𝑘2!𝑘3!
(−1)𝑘+𝑗

𝑥𝑗

𝑗!
𝑞𝑘1𝔟𝑘2

𝑑𝑘2+𝑘3+𝑙

𝑑𝑡𝑘2+𝑘3+𝑙
𝜇∗(𝑘3+1)(𝑡),

where we used (5.23) in the last equality. Now we only have to prove that we can exchange the
series with the integrals. This is clear for the integral over 𝛾𝜀,𝜃, thus let us only consider the one
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 44 of 58

over (𝜀, +∞). Indeed, we have

∫
+∞

𝜀

+∞∑
𝑗=0

||||||||||
(−1)𝑘+𝑗

𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))(
𝜙

(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)))𝑘+𝑗
𝑗! 𝜌1−𝑙𝑒

−𝑖𝑙
(
𝜋−𝜃

2

) 𝑥𝑗 𝑒𝑡𝜌𝑒
𝑖
(
𝜋− 𝜃

2

)||||||||||
𝑑𝜌

= ∫
∞

𝜀

|||||𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
|||||𝜙
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
𝑘

𝜌𝑘+1
𝜌𝑙+𝑘𝑒

𝑥

||||||𝜙
(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))||||||−𝑡𝜌 cos 𝜃2 𝑑𝜌

⩽ 𝑒𝑥𝑞 ∫
+∞

𝜀

|||||𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
|||||𝜙
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
𝑘

𝜌𝑘+1
𝜌𝑙+𝑘𝑒

𝑥𝔟𝜌 cos
(
𝜃
2

)
−𝑡𝜌 cos 𝜃

2
+𝜙†

(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
𝑑𝜌. (5.28)

It is clear that we have to check integrability in the right-hand side of (5.28) only in a neighbour-
hood of infinity. To do this, set 𝛿 = 𝑡 − 𝔟𝑥 and 𝑝, 𝑝′ > 1 as in the proof of Proposition 5.1. By (𝔹2),
we know that there exists 𝐾 big enough such that

|||||𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
|||||𝜙
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
𝑘

𝜌𝑘+1

is bounded and

|||||𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
𝜌 cos(𝜃∕2)

<
𝛿

4
,

whenever 𝜌 > 𝐾. Hence, we get

∫
+∞

𝐾

|||||𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
|||||𝜙
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
𝑘

𝜌𝑘+1
𝑒
− 𝑡

𝑝′
𝜌 cos

(
𝜃
2

)

× exp

⎛⎜⎜⎜⎜⎝
−𝜌 cos

(
𝜃

2

)⎛⎜⎜⎜⎜⎝
𝑡

𝑝
− 𝑥𝔟 −

|||||𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
𝜌 cos

(
𝜃

2

)
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
𝑑𝜌

⩽𝐶 ∫
+∞

𝐾
𝜌𝑘+𝑙𝑒

− 𝑡

𝑝′
𝜌 cos

(
𝜃
2

)
𝑑𝜌 < +∞.

This concludes the proof. □
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5.3 Proof of Theorem 3.18

The behaviour at zero provided in Theorem 3.18 can be shown as a direct consequence of the series
representation given in Theorem 3.15.

Proof of Theorem 3.18. Let [𝑡1, 𝑡2] ⊂ (0, +∞) and observe that for 𝑡 ∈ [𝑡1, 𝑡2], we have by (5.23)

|𝑗,𝑘,𝑙(𝑡)| ⩽ 1

𝜋 ∫
+∞

𝜀

|||||𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
|||||𝜙
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
𝑗+𝑘

𝜌1−𝑙
𝑒
−𝑡1𝜌 cos

(
𝜃
2

)
𝑑𝜌

+
𝜀𝑙

2𝜋 ∫
𝜋−𝜃

2

𝜃
2
−𝜋
|𝜙†(𝜀𝑒𝑖𝜑)||𝜙(𝜀𝑒𝑖𝜑)|𝑗+𝑘𝑒𝜀𝑡2| cos(𝜑)|𝑑𝜑.

(5.29)

Hence, for 0 < 𝑥 <
𝑡1
𝔟
and 𝑡 ∈ [𝑡1, 𝑡2], recalling the definition of 𝑛,𝑘,𝑙(𝑥, 𝑡) given in (3.20), we

have

|||| 𝜕𝑘𝜕𝑙𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) − 𝑛,𝑘,𝑙(𝑥, 𝑡)|||| ⩽

+∞∑
𝑗=𝑛+1

𝑥𝑗

𝑗!
|𝑗,𝑘,𝑙(𝑡)|

⩽
𝑥𝑛+1

(𝑛 + 1)!

+∞∑
𝑗=0

𝑥𝑗

𝑗!

⎡⎢⎢⎢⎢⎢⎣
1

𝜋 ∫
+∞

𝜀

|||||𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
|||||𝜙
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

))|||||
𝑗+𝑘+𝑛+1

𝜌1−𝑙
𝑒
−𝑡1𝜌 cos

(
𝜃
2

)
𝑑𝜌

+
𝜀𝑙

2𝜋 ∫
𝜋−𝜃

2

𝜃
2
−𝜋
|𝜙†(𝜀𝑒𝑖𝜑)||𝜙(𝜀𝑒𝑖𝜑)|𝑗+𝑘+𝑛+1𝑒𝜀𝑡2| cos(𝜑)|𝑑𝜑], (5.30)

where, in the last step, we used (5.29). The convergence of the series in (5.30) can be ascertained
as in (5.28). Taking the supremum in [𝑡1, 𝑡2] in (5.30), we get (3.19). □

5.4 Proof of Proposition 3.19

A slight modification of the arguments used in the proofs of Proposition 5.3 and Theorem 3.14
leads to the desired result.

Proof of Proposition 3.19. Since 𝜙 is a complete Bernstein function that can be extended by con-
tinuity over ℂ(0, 𝜋) with extension 𝜙+, then, by using the relation 𝜙(𝑧) = 𝜙(𝑧), it is clear that it
can also be extended by continuity over ℂ(−𝜋, 0). If we denote such an extension 𝜙−, for any
𝑧 ∈ ℂ(0, 𝜋), we get

𝜙+(𝑧) = 𝜙−(𝑧).

The proof is then carried on exactly as in Propositions 5.1 and 5.3, by setting 𝜃 = 0 (see Figure 2),
where we use 𝜙† when we integrate over 𝓁1, Γ+𝑅 , Γ

−
𝑅
and −𝛾𝜀, 𝜙

†
+ over 𝓁2 and 𝜙

†
− over 𝓁1. □
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F IGURE 2 Sketch of the keyhole contour.

5.5 Proof of Theorem 3.20

In order to prove Theorem 3.20, we first need to provide an integral representation for 𝐺𝜙, g𝜙 and
its derivatives, analogously towhatwe did for Theorems 3.14 and 3.15. This is done in the following
proposition, whose proof is almost identical to the one of Proposition 5.1 and thus is omitted.

Proposition 5.4. Let 𝜙 be the Laplace exponent of a potentially killed subordinator satisfy-
ing assumptions 𝔹1 and (𝔹2) for some 𝜃 ∈ (0, 𝜋). Fix any 𝜀 > 0 and let 𝛾𝜀,𝜃 be defined as in
Proposition 5.1. Then, on 𝔻,

𝐺𝜙(𝑥, 𝑡) =
1

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎜⎝
𝑒
−𝑥𝜙

(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
+𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)

𝜌

⎞⎟⎟⎟⎟⎠
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃
𝑒−𝑥𝜙(𝑧)+𝑡𝑧

𝑧
𝑑𝑧. (5.31)

In particular, 𝐺𝜙 ∈ 𝐶∞(𝔻), g𝜙 ∈ 𝐶∞(𝔻) is well defined and for any 𝑘, 𝑙 ⩾ 0, we have

𝜕𝑘

𝜕𝑥𝑘
𝜕𝑙

𝜕𝑡𝑙
g𝜙(𝑥, 𝑡) =

1

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎝
(
𝜙

(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)))𝑘
𝜌𝑙𝑒

𝑖𝑙
(
𝜋−𝜃

2

)
𝑒
−𝑥𝜙

(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
+𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎠ 𝑑𝜌
+

1

2𝜋𝑖 ∫𝛾𝜀,𝜃 (𝜙(𝑧))
𝑘𝑧𝑙𝑒−𝑥𝜙(𝑧)+𝑡𝑧𝑑𝑧.

(5.32)

We employ the latter together with Proposition 5.3 in the following proof.
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47 of 58 ASCIONE et al.

Proof of Theorem 3.20. Let us first consider 𝐺𝜙. Starting from (5.31), we have, assuming that we
can exchange the order of the series and the integral,

𝐺𝜙(𝑥, 𝑡) =

+∞∑
𝑗=0

(−1)𝑗
𝑥𝑗

𝑗!

⎡⎢⎢⎢⎢⎣
1

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎜⎝

(
𝜙

(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)))𝑗
𝜌

𝑒𝑡𝜌𝑒
𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃
(𝜙(𝑧))𝑗

𝑧
𝑒𝑡𝑧𝑑𝑧

⎤⎥⎥⎥⎥⎦
=

1

𝜋 ∫
+∞

𝜀
𝙸𝚖

(
1

𝜌
𝑒𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃
1

𝑧
𝑒𝑡𝑧 𝑑𝑧

+

+∞∑
𝑗=1

(−1)𝑗
𝑥𝑗

𝑗!

⎡⎢⎢⎢⎢⎣
1

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎜⎝

(
𝜙

(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)))𝑗
𝜌

𝑒𝑡𝜌𝑒
𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃
(𝜙(𝑧))𝑗

𝑧
𝑒𝑡𝑧𝑑𝑧

⎤⎥⎥⎥⎥⎦
=

1

𝜋 ∫
+∞

𝜀
𝙸𝚖

(
1

𝜌
𝑒𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃
1

𝑧
𝑒𝑡𝑧 𝑑𝑧

+

+∞∑
𝑗=1

∑
𝑘1+𝑘2+𝑘3=𝑗−1

(−1)𝑗
𝑥𝑗

𝑘1!𝑘2!(𝑘3 + 1)!
𝑞𝑘1𝔟𝑘2

×

⎡⎢⎢⎢⎢⎣
1

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎜⎝

(
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)))𝑘3+1
𝜌𝑘3+1−(𝑘2+𝑘3)𝑒𝑖(𝑘3−(𝑘2+𝑘3))

𝑒𝑡𝜌𝑒
𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃
(𝜙†(𝑧))𝑘3+1

𝑧𝑘3+1−(𝑘2+𝑘3)
𝑒𝑡𝑧𝑑𝑧

⎤⎥⎥⎥⎥⎦
+

+∞∑
𝑗=1

(−1)𝑗
𝑥𝑗

𝑗!

⎡⎢⎢⎢⎢⎣
1

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎜⎝

(
𝑞 + 𝔟𝜌𝑒

𝑖
(
𝜋−𝜃

2

))𝑗
𝜌

𝑒𝑡𝜌𝑒
𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃
(𝑞 + 𝔟𝑧)𝑗

𝑧
𝑒𝑡𝑧𝑑𝑧

⎤⎥⎥⎥⎥⎦
,

(5.33)

where in the last step, we used the multinomial theorem, for 𝑗 ⩾ 1, to expand (𝜙(𝜌𝑒𝑖(𝜋−
𝜃
2
)))𝑗 =

(𝑞 + 𝔟𝜌𝑒𝑖(𝜋−
𝜃
2
) + 𝜙†(𝜌𝑒𝑖(𝜋−

𝜃
2
)))𝑗 . Incorporating the first summand of (5.33) into the last summa-

tion, we achieve

𝐺𝜙(𝑥, 𝑡) =

+∞∑
𝑗=0

(−1)𝑗
𝑥𝑗

𝑗!

⎡⎢⎢⎢⎢⎣
1

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎜⎝

(
𝑞 + 𝔟𝜌𝑒

𝑖
(
𝜋−𝜃

2

))𝑗
𝜌

𝑒𝑡𝜌𝑒
𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃
(𝑞 + 𝔟𝑧)𝑗

𝑧
𝑒𝑡𝑧𝑑𝑧

⎤⎥⎥⎥⎥⎦
+

+∞∑
𝑗=1

∑
𝑘1+𝑘2+𝑘3=𝑗−1

(−1)𝑗
𝑥𝑗

𝑘1!𝑘2!(𝑘3 + 1)!
𝑞𝑘1𝔟𝑘2

 20524986, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.70004 by B

runo T
oaldo - C

am
bridge U

niversity L
ibrary , W

iley O
nline L

ibrary on [06/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 48 of 58

×

⎡⎢⎢⎢⎢⎣
1

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎜⎝

(
𝜙†
(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)))𝑘3+1
𝜌𝑘3+1−(𝑘2+𝑘3)𝑒𝑖(𝑘3−(𝑘2+𝑘3))

𝑒𝑡𝜌𝑒
𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃
(𝜙†(𝑧))𝑘3+1

𝑧𝑘3+1−(𝑘2+𝑘3)
𝑒𝑡𝑧𝑑𝑧

⎤⎥⎥⎥⎥⎦
=

+∞∑
𝑗=0

(−1)𝑗
𝑥𝑗

𝑗!

⎡⎢⎢⎢⎢⎣
1

𝜋 ∫
+∞

𝜀
𝙸𝚖

⎛⎜⎜⎜⎜⎝

(
𝑞 + 𝔟𝜌𝑒

𝑖
(
𝜋−𝜃

2

))𝑗
𝜌

𝑒𝑡𝜌𝑒
𝑖
(
𝜋− 𝜃

2

)⎞⎟⎟⎟⎟⎠
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃
(𝑞 + 𝔟𝑧)𝑗

𝑧
𝑒𝑡𝑧𝑑𝑧

⎤⎥⎥⎥⎥⎦
+

+∞∑
𝑗=1

∑
𝑘1+𝑘2+𝑘3=𝑗−1

(−1)𝑗
𝑥𝑗

𝑘1!𝑘2!(𝑘3 + 1)!
𝑞𝑘1𝔟𝑘2

𝑑𝑘2+𝑘3

𝑑𝑡
𝜇∗(𝑘3+1)(𝑡)

=∶ 𝑆𝜀(𝑥, 𝑡; 𝑞, 𝔟) +

+∞∑
𝑗=1

∑
𝑘1+𝑘2+𝑘3=𝑗−1

(−1)𝑗
𝑥𝑗

𝑘1!𝑘2!(𝑘3 + 1)!
𝑞𝑘1𝔟𝑘2

𝑑𝑘2+𝑘3

𝑑𝑡
𝜇∗(𝑘3+1)(𝑡).

We now evaluate 𝑆𝜀. Consider the function 𝐹𝑗(𝑧; 𝑡) =
(𝑞+𝔟𝑧)𝑗

𝑧
𝑒𝑡𝑧, that is holomorphic on ℂ ⧵ {0},

Hermitian and admits a simple pole in 0 with residue 𝑞𝑗 . We have that

1

𝜋 ∫
+∞

𝜀

𝙸𝚖

⎛⎜⎜⎜⎜⎝

(
𝑞 + 𝔟𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))𝑗
𝜌

𝑒𝑡𝜌𝑒
𝑖(𝜋− 𝜃

2 )

⎞⎟⎟⎟⎟⎠
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃
(𝑞 + 𝔟𝑧)𝑗

𝑧
𝑒𝑡𝑧𝑑𝑧

=
1

2𝜋𝑖

[
∫

+∞

𝜀

𝐹𝑗

(
𝜌𝑒

𝑖
(
𝜋− 𝜃

2

)
; 𝑡

)
𝑒
𝑖
(
𝜋− 𝜃

2

)
𝑑𝜌 − ∫

+∞

𝜀

𝐹𝑗

(
𝜌𝑒

𝑖
(
𝜋+ 𝜃

2

)
; 𝑡

)
𝑒
𝑖
(
𝜋+ 𝜃

2

)
𝑑𝜌 + ∫𝛾𝜀,𝜃 𝐹𝑗(𝑧; 𝑡)𝑑𝑧

]
.

Taking into account the notation in Figure 1, denote by −Γ𝑅,𝜃 the clockwise oriented circular
arc joining 𝐹(𝑅) and 𝐶(𝑅), −𝓁2 the oriented segment joining 𝐷(𝜀) to 𝐶(𝑅) and −𝓁3 the oriented
segment joining 𝐹(𝑅) to 𝐸(𝜀). Denote by 𝔇𝑅,𝜃 the domain whose negatively oriented contour is
given by 𝛾𝜀,𝜃, −𝓁2, −Γ𝑅,𝜃 and −𝓁3. Then, since 𝐹𝑗 is holomorphic on 𝔇𝑅,𝜃, which is a simply
connected domain, we have, by Cauchy’s theorem,

∫−𝜕𝔇𝑅,𝜃

𝐹𝑗(𝑧; 𝑡)𝑑𝑧 = 0. (5.34)

On the other hand, if we denote by Γ𝑅 and 𝛾𝜀 the counterclockwise oriented circles of radius,
respectively, 𝑅 and 𝜀, we have by Cauchy’s residue theorem

1

2𝜋𝑖 ∫Γ𝑅 𝐹𝑗(𝑧; 𝑡)𝑑𝑧 =
1

2𝜋𝑖 ∫𝛾𝜀 𝐹𝑗(𝑧; 𝑡)𝑑𝑧 = 𝑞𝑗.

Hence, denoting by 𝐴𝑅,𝜀 the annulus delimited by the images of Γ𝑅 and 𝛾𝜀, we have

∫−𝜕𝐴𝑅,𝜀 𝐹(𝑧; 𝑡)𝑑𝑧 = 0 = ∫−𝜕𝔇𝑅,𝜃

𝐹𝑗(𝑧; 𝑡)𝑑𝑧, (5.35)
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49 of 58 ASCIONE et al.

where−𝜕𝐴𝑅,𝜀 is the negatively oriented contour of𝐴𝑅,𝜀. If we use the parametrisation of−𝓁2 and

𝓁3 as 𝑧 = 𝜌𝑒
𝑖
(
𝜋∓𝜃

2

)
for 𝜌 ∈ (𝜀, 𝑅), (5.35) implies

∫−Γ𝑅 𝐹(𝑧; 𝑡)𝑑𝑧 + ∫𝛾𝜀 𝐹(𝑧; 𝑡)𝑑𝑧 = ∫
𝑅

𝜀
𝐹𝑗

(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)
; 𝑡

)
𝑒
𝑖
(
𝜋−𝜃

2

)
𝑑𝜌

− ∫
𝑅

𝜀
𝐹𝑗

(
𝜌𝑒

𝑖
(
𝜋+𝜃

2

)
; 𝑡

)
𝑒
𝑖
(
𝜋+𝜃

2

)
𝑑𝜌 + ∫𝛾𝜀,𝜃 𝐹𝑗(𝑧; 𝑡)𝑑𝑧 + ∫−Γ𝑅,𝜃 𝐹(𝑧; 𝑡)𝑑𝑧. (5.36)

Furthermore, if we denote by −Γ†
𝑅,𝜃

the clockwise oriented circular arc joining 𝐶(𝑅) to 𝐹(𝑅), it is
clear that

∫−Γ𝑅 𝐹(𝑧; 𝑡)𝑑𝑧 − ∫−Γ𝑅,𝜃 𝐹(𝑧; 𝑡)𝑑𝑧 = ∫−Γ†
𝑅,𝜃

𝐹(𝑧; 𝑡)𝑑𝑧

hence (5.36) leads to

∫−Γ†
𝑅,𝜃

𝐹(𝑧; 𝑡)𝑑𝑧 + ∫𝛾𝜀 𝐹(𝑧; 𝑡)𝑑𝑧

= ∫
𝑅

𝜀
𝐹𝑗

(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)
; 𝑡

)
𝑒
𝑖
(
𝜋−𝜃

2

)
𝑑𝜌 − ∫

𝑅

𝜀
𝐹𝑗

(
𝜌𝑒

𝑖
(
𝜋+𝜃

2

)
; 𝑡

)
𝑒
𝑖
(
𝜋+𝜃

2

)
𝑑𝜌 + ∫𝛾𝜀,𝜃 𝐹𝑗(𝑧; 𝑡)𝑑𝑧. (5.37)

By the estimation lemma, we have||||||∫−Γ†𝑅,𝜃 𝐹(𝑧; 𝑡)𝑑𝑧
|||||| ⩽ 𝜃𝑅 max

𝑧∈Γ†
𝑅,𝜃

|𝐹(𝑧; 𝑡)| ⩽ 𝜃(𝑞 + 𝔟𝑅)𝑗𝑒
−𝑡 cos

(
𝜃
2

)
𝑅
,

hence, taking the limit as 𝑅 → +∞ in (5.37), we get

2𝜋𝑖𝑞𝑗 = ∫𝛾𝜀 𝐹(𝑧; 𝑡)𝑑𝑧

= ∫
∞

𝜀
𝐹𝑗

(
𝜌𝑒

𝑖
(
𝜋−𝜃

2

)
; 𝑡

)
𝑒
𝑖
(
𝜋−𝜃

2

)
𝑑𝜌 − ∫

∞

𝜀
𝐹𝑗

(
𝜌𝑒

𝑖
(
𝜋+𝜃

2

)
; 𝑡

)
𝑒
𝑖
(
𝜋+𝜃

2

)
𝑑𝜌 + ∫𝛾𝜀,𝜃 𝐹𝑗(𝑧; 𝑡)𝑑𝑧. (5.38)

Substituting this value into 𝑆𝜀(𝑥, 𝑡; 𝑞, 𝔟), we get (3.23).
The other two series (3.24) and (3.25) are obtained analogously, once one notices that for any

𝑗 ⩾ 0,

1

𝜋 ∫
+∞

𝜀
𝙸𝚖

((
𝑞 + 𝔟𝜌𝑒

𝑖
(
𝜋−𝜃

2

))𝑗
𝑒𝑡𝜌𝑒

𝑖
(
𝜋− 𝜃

2

))
𝑑𝜌 +

1

2𝜋𝑖 ∫𝛾𝜀,𝜃 (𝑞 + 𝔟𝑧)𝑗𝑒𝑡𝑧𝑑𝑧

=
1

2𝜋𝑖 ∫𝛾𝜀 (𝑞 + 𝔟𝑧)𝑗𝑒𝑡𝑧𝑑𝑧 = 0,

since (𝑞 + 𝔟𝑧)𝑗𝑒𝑡𝑧 is holomorphic in the disc {𝑧 ∈ ℂ ∶ |𝑧| < 𝜀}. Finally, the fact that one can
actually exchange the serieswith the integral is proven exactly as in the proof of Theorem 3.15. □
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REGULARITY AND ASYMPTOTICS OF DENSITIES OF INVERSE SUBORDINATORS 50 of 58

6 EXAMPLES AND FURTHER DISCUSSION

Here, we provide computational examples and further discussion of our results.

6.1 Examples for the results in Section 3.1

We start with examples concerning Section 3.1.
Take a Bernstein function with 𝑞 = 𝔟 = 0 and a Lévy measure with a compactly supported

density that is regularly varying at 0 with index −1 − 𝛼 for some 𝛼 ∈ (0, 1), as, for instance,

𝜇𝜙(𝑑𝑦) = 𝑚(𝑦)𝕀
{𝑦< 1

2
}
𝑑𝑦, 𝑚(𝑦) ∼ 𝑦−𝛼−1, as 𝑦 → 0. (6.1)

We can opt for general regular variation and 𝔟, 𝑞 > 0 butwe leave it to the interested reader. Then,

𝜙′′′(𝑥) ∼ 𝐶3𝑥
𝛼−3 and − 𝜙′′(𝑥) ∼ 𝐶2𝑥

𝛼−2, as 𝑥 → ∞

for positive constants𝐶2, 𝐶3. Clearly, (𝔸2) is satisfied. Also, due to the finite support of 𝜇𝜙, we have
that ||𝜙′′(0+)|| < ∞,𝜙′′′(0+) < ∞ and (𝔸′

2
) is valid too. Furthermore, for some 𝐶 > 0,

𝑥2Δ(𝑥) = 𝑥2 ∫
1
𝑥

0
𝑦2𝑚(𝑦)𝑑𝑦 ∼ 𝐶𝑥𝛼, as 𝑥 → ∞,

and (𝔸1) holds with 𝐿 = ∞. It is clear that, actually, assumptions (𝔸1) and (𝔸2) hold for any Bern-
stein function 𝜙 that is regularly varying at∞ with index 𝛼 ∈ (0, 1). Going back to the example,
let 𝑡(𝑥)∕𝑥 ↓ 0. Using −𝜙′′(𝑥) ∼ 𝐶2𝑥

𝛼−2, as 𝑥 → ∞, we establish, for any 𝑘, 𝑙 ⩾ 0, as 𝑥 → ∞,

sup
0<𝑡⩽𝑡(𝑥)

||||||(−1)𝑘
√
2𝜋𝐶2

𝐶𝑘+1
0

√
𝑥

𝑐𝑘+𝑙+1−
𝛼
2

𝑒−𝑐𝑡+𝑥𝜙(𝑐)
𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) − 1

|||||| = O

(√
ln (𝑥)

𝑎𝛼∗𝑥

)
, (6.2)

where we used Theorem 3.2 with 𝜙(𝑦) = 𝜙†(𝑦) ∼ 𝐶0𝑦
𝛼, as 𝑦 → ∞, and the monotonicity in 𝑐 of

the first asymptotic term in (3.5). Finally, employing that 𝜙′(𝑦) ∼ 𝐶1𝑦
𝛼−1, as 𝑦 → ∞, we get from

(3.6)

𝐶1𝑎
𝛼−1
∗ ∼

𝑡(𝑥)

𝑥
as 𝑥 → ∞ ⟺ 𝑎∗ ∼

(
1

𝐶1

𝑡(𝑥)

𝑥

) 1
𝛼−1

, as 𝑥 → ∞,

and we can plug in this expression in (6.2). The speed of convergence of the first asymptotic
term in (3.5) is hence (𝑡(𝑥)∕𝑥)𝛼∕(2(1−𝛼))𝑥−

1
2 which offers faster decay when 𝛼 approaches 1 and

we note that it is faster than the second term of the asymptotic in (3.5) which in this case is of
order O

(
𝑥−1∕2

)
.

We continue the example above with an illustration of Theorem 3.6, for which only (𝔸1) is
required. Take 𝑡(𝑥) = 𝑥 and then 𝑎∗ = 𝑎∗(𝑥) = (𝜙′)−1(1). Hence, from (3.8), we deduce that the
explicit in 𝑥

𝜕𝑘𝜕𝑙

𝜕𝑥𝑘𝜕𝑡𝑙
𝑓𝜙(𝑥, 𝑡) =

(−1)𝑘𝜙†(𝑎∗)𝜙
𝑘(𝑎∗)√

2𝜋𝑎1−𝑙∗

√
−𝜙′′(𝑎∗)

𝑒𝑥(𝑎∗−𝜙(𝑎∗))√
𝑥

(
1 + O

(√
ln(𝑥)

𝑥

))
, as 𝑥 → ∞.

 20524986, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/tlm
3.70004 by B

runo T
oaldo - C

am
bridge U

niversity L
ibrary , W

iley O
nline L

ibrary on [06/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



51 of 58 ASCIONE et al.

Since 𝑥𝜙′(𝑥) ⩽ 𝜙(𝑥), see (4) of Lemma 2.1, we double check that 𝑎∗ − 𝜙 (𝑎∗) ⩽ 0.
Finally, for this example, consider the case when lim

𝑥→∞
𝑡(𝑥)∕𝑥 = ∞ = 𝜙′(0+). Then, as above

𝑎∗ ∼ 𝐶(𝑡(𝑥)∕𝑥)−
1

1−𝛼 and 𝑥 = o (𝑡(𝑥)), as 𝑥 → ∞, thus

−𝑎2∗𝜙
′′(𝑎∗)𝑥 ∼ 𝐶𝑎𝛼∗𝑥 ∼ 𝐶′𝑡−

𝛼
1−𝛼 (𝑥)𝑥

1
1−𝛼 , as 𝑥 → ∞,

which goes to infinity if 𝑡(𝑥) = o(𝑥
1
𝛼 ) and the first requirement of (3.9) holds. Also, for any 𝛿 > 0,

lim
𝑥→∞

𝑒−𝛿𝑥𝑡−
𝛼

1−𝛼 (𝑥)𝑥
1

1−𝛼 = 0,

for 𝑡(𝑥) = o(𝑥
1
𝛼 ) and the third condition in (3.9) holds. Under the same restrictions, ln(1∕𝑎∗)

is at most of logarithmic growth and the second imposition of (3.9) is valid and Theorem 3.8
is applicable.
Let us discuss the route to the derivation of new fine local estimates in the region of the lower

envelope. We use the example above with 𝛼 = 1∕2. In this case, one has to consider

ℙ

(
𝜎(𝑥) ⩽ 𝑐

𝑥2

log2 𝑥

)
,

where log2 𝑥 = log log 𝑥, 𝑐 > 0, see [10, Chapter III]. Set 𝑡(𝑥) = 𝑐 𝑥2

log2 𝑥
. Clearly, 𝑡(𝑥)∕𝑥 → ∞ and

from above (𝔸1),(𝔸2) and (𝔸′
2
) hold. Also,

𝜙′(𝑎∗) =
𝑡(𝑥)

𝑥
⇒ 𝑎∗ ∼ 𝐶

log22 𝑥

𝑥2
, as 𝑥 → ∞.

Furthermore, the first requirement of (3.9) is fulfilled since as 𝑥 → ∞,

−𝑥𝑎∗𝜙
′′(𝑎∗) ∼ 𝐶𝑥𝑎

−1
2

∗ ∼ 𝐶 log2(𝑥) → ∞.

The second and third impositions of (3.9) are then obvious and Theorem 3.10 holds true, and
by virtue of its claims, it yields local estimates for the densities and all derivatives of the
probabilities above.
Assume that ||𝜙′′(0+)|| < ∞ and hence 𝜙′(0+) < ∞. Let us determine the speed bywhich 𝑡(𝑥)∕𝑥

may approach 𝜙′(0+) so that our results hold. Firstly, we note that since 𝑎∗ → 0 then, as 𝑥 → ∞,

−𝑎∗𝜙
′′(0+) ∼ 𝜙′(0) − 𝜙′(𝑎∗) = 𝜙′(0) −

𝑡(𝑥)

𝑥
.

From Remark 3.9, we have to ensure that lim
𝑥→∞

𝑎∗
√
𝑥 = ∞. Hence, from the last relation, we must

have

lim
𝑥→∞

√
𝑥

𝑥𝜙′(0) − 𝑡(𝑥)
= 0.

Thus,
√
𝑥 = o

(
𝑥𝜙′(0) − 𝑡

)
, as 𝑥 → ∞, or alternatively 𝑡 < 𝑥𝜙′(0) − 𝐾

√
𝑥, for all 𝐾 > 0, and all 𝑥

large enough. This captures the region below that of the central limit theorem for the density g𝜙,
see Theorem 3.10, and therefore, we can approximate with high precision, as 𝑥 → ∞, quantities
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of the type

ℙ(𝜎(𝑥) ∈ [𝑎, 𝑏]) = ∫
𝑏

𝑎
g𝜙(𝑥, 𝑡)𝑑𝑡.

6.2 Examples for the results in Section 3.2

Firstly, we develop some explicit examples for Section 3.2. It is clear that the representation (3.17)
provides some completely explicit result if we evaluate the derivatives of the convolution powers
�̄�∗𝑛
𝜙
. For instance, this is doable for stable subordinators in which case the tail of the Lévymeasure

of 𝜙(𝑧) = 𝑧𝛼 is given by

�̄�𝛼(𝑡) =
𝑡−𝛼

Γ(1 − 𝛼)
,

where we use the subscript 𝛼 instead of 𝜙 to underline the dependence on the single parameter.
For these specific tails, it is well known that

�̄�
∗(𝑗+1)
𝛼 (𝑡) =

𝑡𝑗−(𝑗+1)𝛼

Γ(𝑗 + 1 − (𝑗 + 1)𝛼)
,

and then,

𝑑𝑗

𝑑𝑡𝑗
�̄�
∗𝑗
𝛼 (𝑡) =

𝑡−𝑗𝛼−1

Γ(−𝑗𝛼)
=
𝑡−𝑗𝛼−1

𝜋
sin(𝜋𝑗𝛼)Γ(1 + 𝑗𝛼),

where we have used Euler’s reflection formula, provided that 𝛼 ∉ ℚ, while for 𝛼 ∈ ℚ, we have to
pay attention to the case in which 𝑗𝛼 is an integer, for which it can be simply proven that �̄�∗𝑗𝛼 (𝑡)
is a monomial of degree less than 𝑗 and thus 𝑑𝑗

𝑑𝑡𝑗
�̄�
∗𝑗
𝛼 (𝑡) = 0 as expected. For 𝑙 = 0 substituting this

into (3.26) and then into (3.24), we get that

g𝛼(𝑥, 𝑡) =

+∞∑
𝑗=1

(−1)𝑗+1
𝑥𝑗

𝑗!

𝑡−𝑗𝛼−1

𝜋
sin(𝜋𝑗𝛼)Γ(1 + 𝑗𝛼). (6.3)

This series expansion is well known in literature, see, for example, [61, Equation (7)]. The same
argument can be also adopted to obtain the series representation of 𝑓𝛼. Indeed, with the same
arguments as before

𝑑𝑗

𝑑𝑡𝑗
�̄�
∗(𝑗+1)
𝛼 (𝑡) =

𝑡−(𝑗+1)𝛼

𝜋(𝑗 + 1)𝛼
sin(𝜋𝛼(𝑗 + 1))Γ(𝛼(𝑗 + 1) + 1)

for any 𝑗 ⩾ 0 and 𝛼 ∈ (0, 1). Thus, by using (3.17), we get

𝑓𝛼(𝑥, 𝑡) =

∞∑
𝑗=0

(−1)𝑗
Γ(1 + (𝑗 + 1)𝛼)

𝛼(𝑗 + 1)!

sin(𝜋𝛼(𝑗 + 1))

𝜋
𝑥𝑗𝑡−𝛼(𝑗+1). (6.4)

Such a series can also be deducted by combining (6.3) with the relation

𝑓𝛼(𝑥, 𝑡) =
𝑡

𝛼
𝑥−1−

1
𝛼 g𝛼

(
1, 𝑡𝑥−

1
𝛼

)
,
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see [50] formore details. The series representation (6.4) has also been obtained bymeans of a limit
argument in [44, Remark 2.3].
A similar approach can be used to deduce some information on the relativistic (or tempered)

stable subordinator, that is, when 𝜙(𝑧) = (𝜆 + 𝑧)𝛼 − 𝜆𝛼. In [44], the authors provide both an inte-
gral and a series representation for the density 𝑓𝛼,𝜆 of the inverse tempered stable subordinator.
In the proof, they exploit the possibility to extend 𝜙 to the whole complex half-plane ℂ(0, 𝜋), and
then, they integrate on a keyhole contour centred in −𝜆. This seems to be slightly different from
our contour, which is not really a keyhole contour and it is always centred in 0. However, Propo-
sition 3.19 lets us extend the approach to a full keyhole contour. Furthermore, if we choose 𝜀 < 𝜆,
then for any 𝑗 ⩾ 0, we get

∫𝛾𝜀 𝑒
𝑡𝑧 (𝜙(𝑧))

𝑗+1

𝑧
𝑑𝑧 = 0,

since the integrand is holomorphic on the disc {𝑧 ∈ ℂ ∶ |𝑧| < 𝜀}. Since 𝜙+(𝜌) is real for 𝜌 > −𝜆,
we can rewrite

𝑑𝑗+1

𝑑𝑡𝑗+1
�̄�
∗𝑗

𝜙
(𝑡) =

1

𝜋 ∫
+∞

𝜆
𝙸𝚖

[
(𝜙+(−𝜌))

𝑗+1

𝜌
𝑒−𝑡𝜌
]
𝑑𝜌 =

𝑒−𝑡𝜆

𝜋 ∫
+∞

0
𝙸𝚖

[
(𝜙+(𝜆 − 𝜌))𝑗+1

𝜌 + 𝜆
𝑒−𝑡𝜌
]
𝑑𝜌.

This leads to

𝑓𝜙(𝑥, 𝑡) =
𝑒−𝑡𝜆

𝜋

+∞∑
𝑗=0

𝑥𝑗

𝑗!
(−1)𝑗 ∫

+∞

0
𝙸𝚖

[
(𝜙+(𝜆 − 𝜌))𝑗+1

𝜌 + 𝜆
𝑒−𝑡𝜌
]
𝑑𝜌

=
𝑒𝑥𝜆

𝛼−𝑡𝜆

𝜋

+∞∑
𝑗=0

𝑥𝑗

𝑗!
(−1)𝑗 ∫

+∞

0
𝙸𝚖

[
(𝜙+(𝜆 − 𝜌))𝑗+1

𝜌 + 𝜆
𝑒−𝑥(−𝜌)

𝛼−𝑡𝜌

]
𝑑𝜌

=
𝑒𝑥𝜆

𝛼−𝑡𝜆

𝜋 ∫
+∞

0

𝑒𝑥𝜌
𝛼 cos(𝛼𝜋)−𝑡𝜌

𝜌 + 𝜆

× [𝜌𝛼 sin(𝛼𝜋 − 𝑥𝜌𝛼 sin(𝑖𝛼𝜋)) + 𝜆𝛼 cos(𝛼𝜋) sin(𝑥𝜌𝛼 sin(𝑖𝛼𝜋))]𝑑𝜌,

where the last equality follows by simple algebraic manipulations. It is the integral representation
of [44, Theorem 2.1], and thus, arguing as in [44, Proposition 2.1], we get the series representation

𝑓𝜙(𝑥, 𝑡) =
𝑒𝜆

𝛼𝑥

𝜋

+∞∑
𝑗=0

(−1)𝑗𝑥𝑗

𝑗!
𝜆𝛼(𝑗+1)[Γ(1 + 𝛼(𝑗 + 1))Γ(−𝛼(𝑘 + 1), 𝜆𝑡) sin((𝑗 + 1)𝛼𝜋)

−Γ(1 + 𝛼𝑗)Γ(−𝛼𝑗, 𝜆𝑡) sin(𝑗𝛼𝜋)],

(6.5)

where Γ(𝑥, 𝑦) is the upper-incomplete Gamma function.
With the same arguments, we can use Proposition 3.19 to obtain the integral representation

of the density of the inverse Gamma subordinator (i.e. the case 𝜙(𝑧) = log(1 + 𝑧)), as in [45,
Proposition 1].
In [14], the authors studied a special class of Thorin subordinators. Let us consider now

an example taken from this paper. Fix 𝛼 ∈ (0, 1), let us consider the subordinator 𝜎 whose
Laplace exponent is given by 𝜙(𝑧) = 𝜑(𝑧) − 𝜑(0) − 𝑧, where 𝜑(𝑧) is the unique solution of
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𝜑(𝑧) − (𝜑(𝑧))𝛼 = 𝑧 for 𝑧 ⩾ 0. Clearly, 𝜙(0) = 0 and then 𝑞 = 0. Furthermore, by [14, Theorem 1],
we know that 𝔟 = 0 and, by [14, Proposition 5], we get that g𝜙 is well defined. We can rewrite [14,
Equation (21)] in the following form, for 𝑥, 𝑡 > 0,

g𝜙(𝑥, 𝑡) =

+∞∑
𝑗=1

𝑥𝑗

𝑗!
(𝐴𝑗(𝑡) + 𝐵𝑗(𝑡) + 𝐶𝑗(𝑡)), (6.6)

where

𝐴𝑗(𝑡) = 𝑗

+∞∑
𝑛=1

(−1)𝑛+1
Γ(1 + 𝑛𝛼)

𝑛!
sin(𝜋𝑛𝛼)𝑡−𝑛𝛼+𝑛

𝐵𝑗(𝑡) = 𝑗(𝑗 − 1)

+∞∑
𝑛=1

(−1)𝑛+1
(𝑛 + 1)Γ(1 + 𝑛𝛼)

𝑛!
sin(𝜋𝑛𝛼)𝑡−𝑛𝛼+𝑛−1

𝐶𝑗(𝑡) =

⎧⎪⎨⎪⎩
0, 𝑗 = 1, 2,
𝑗∑

𝑘=0

𝑗!

(𝑗 − 𝑘)!

+∞∑
𝑛=𝑘+1

(−1)𝑛+1
(
𝑛 + 1

𝑘 + 2

)
Γ(1 + 𝑛𝛼)

𝑛!
sin(𝜋𝑛𝛼)𝑡−𝑛𝛼+𝑛−2−𝑘, 𝑗 ⩾ 3.

In particular, comparing (3.24) and (6.6), we get, by means of (3.26),

𝑑𝑗

𝑑𝑡𝑗
�̄�
∗𝑗

𝜙
(𝑡) = 𝐴𝑗(𝑡) + 𝐵𝑗(𝑡) + 𝐶𝑗(𝑡), 𝑡 > 0, 𝑗 ⩾ 1.

For 𝑗 = 1, we get again [14, Equation (22)]. Moreover, setting

𝐴𝑗(𝑡) = 𝑗

+∞∑
𝑛=1

(−1)𝑛
Γ(1 + 𝑛𝛼)

𝑛!(𝑛 − 𝑛𝛼 + 1)
sin(𝜋𝑛𝛼)𝑡−𝑛𝛼+𝑛+1

𝐵𝑗(𝑡) = 𝑗(𝑗 − 1)

+∞∑
𝑛=1

(−1)𝑛
(𝑛 + 1)Γ(1 + 𝑛𝛼)

𝑛!(𝑛 − 𝑛𝛼)
sin(𝜋𝑛𝛼)𝑡−𝑛𝛼+𝑛

𝐶𝑗(𝑡) =

⎧⎪⎨⎪⎩
0, 𝑗 = 1, 2,
𝑗∑

𝑘=0

𝑗!

(𝑗 − 𝑘)!

+∞∑
𝑛=𝑘+1

(−1)𝑛
(
𝑛 + 1

𝑘 + 2

)
Γ(1 + 𝑛𝛼)

𝑛!(𝑛 − 𝑛𝛼 − 1 − 𝑘)
sin(𝜋𝑛𝛼)𝑡−𝑛𝛼+𝑛−1−𝑘, 𝑗 ⩾ 3,

we have

𝑑𝑗

𝑑𝑡𝑗
�̄�
∗𝑗+1

𝜙
(𝑡) = �̄�𝑗+1(𝑡) + �̄�𝑗+1(𝑡) + �̄�𝑗+1(𝑡), 𝑡 > 0, 𝑗 ⩾ 0,

and then, we achieve the density of the inverse subordinator 𝐿𝜙 by means of (3.17).
Finally, we show a specific application of Theorem 3.18 to the context of time-non-local

equations. For example, in [2], the following assumption is used to prove the main result.

∙ For any 0 < 𝑎 ⩽ 𝑏, there exists 𝛿𝑎,𝑏 > 0 and a function 𝐹𝑎,𝑏 ∶ (0, 𝛿𝑎,𝑏) → (0, +∞) such that

∫
𝛿𝑎,𝑏

0
𝑥−

1
2 𝐹𝑎,𝑏(𝑥)𝑑𝑥 < ∞
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and, for any 𝑥 ∈ (0, 𝛿𝑎,𝑏) and 𝑡 ∈ [𝑎, 𝑏],

|||||
𝜕𝑓𝜙

𝜕𝑥
(𝑥, 𝑡)
||||| ⩽ 𝐹𝑎,𝑏(𝑥).

It is clear that we can Theorem 3.18 for 𝑛 = 0 and since the remainder is locally uniform in 𝑡,
the latter condition is verified with 𝐹𝑎,𝑏 being independent of 𝑥 if 𝜙 satisfies (𝔹1) and (𝔹2). In
particular, the latter holds whenever (but not exclusively if) 𝜙 is a complete Bernstein function,
as discussed in Section 3.2.1.
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