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ABSTRACT
Many spatially dependent phenomena that are of interest in environmental problems are characterized by strong anisotropy and
non-stationarity. Moreover, the data are often observed over regions with complex conformations, such as water bodies with
complicated shorelines or regions with complex orography. Furthermore, the distribution of the data locations may be strongly
inhomogeneous over space. These issues may challenge popular approaches to spatial data analysis. In this work, we show how we
can accurately address these issues by spatial regression with differential regularization. We model the spatial variation by a Partial
Differential Equation (PDE), defined upon the considered spatial domain. This PDE may depend upon some unknown parame-
ters that we estimate from the data through an appropriate profiling estimation approach. The PDE may encode some available
problem-specific information on the considered phenomenon, and permit a rich modeling of anisotropy and non-stationarity. The
performances of the proposed approach are compared to competing methods through simulation studies and real data applica-
tions. In particular, we analyze rainfall data over Switzerland, characterized by strong anisotropy, and oceanographic data in the
Gulf of Mexico, characterized by non-stationarity due to the Gulf Stream.

1 | Introduction

Many spatial phenomena that are of interest in environ-
mental problems are characterized by strong anisotropy and
non-stationarity. For instance, winds and complicated geomor-
phologies may induce strong anisotropy and non-stationarity
in atmospheric and meteorological data. As an example,
Figure 1 illustrates daily rainfall, measured at 467 meteo-
rological stations in Switzerland, on the 8th of May 1986

Abbreviations: CV, cross-validation; FEM, finite element method; GCV, generalized cross-validation index; INLA, integrated nested Laplace approximation; PDE, partial differential equation; RMSE,
root mean squared error; sPDE, stochastic partial differential equation; SR-PDE, spatial regression with partial differential equation regularisation; SSE, sum of squared error.
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(Dubois, Malczewski, and De Cort 2003). The data display a
strongly anisotropic pattern that likely results from the complex
interaction between the geomorphology of the territory and
atmospheric circulation. Similarly, water currents and com-
plicated shorelines may induce a complex spatial distribution
of data recorded in water. Furthermore, the data locations
design may be strongly inhomogeneous, with the observa-
tions concentrated in a small portion of the spatial domain.
Examples of these issues are given by the buoy data presented
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FIGURE 1 | Switzerland rainfall data. Left: daily rainfall measurements, recorded at 467 locations on the Swiss territory, on May 8, 1986. Right:
regular mesh of the Swiss territory.

FIGURE 2 | Buoy data around the Florida peninsula. Top: sea surface temperature (left) and dissolved oxygen concentration (right) measured
at moored buoys placed around the Florida coastlines. Bottom left: Gulf Stream velocity around Florida peninsula. Bottom right: data-driven mesh
generated by refining a coarser regular mesh where the Gulf Stream displays high velocity.

in Figure 2, top panels. The figure shows two oceanographic
quantities, sea surface temperatures (top-left panel) and dissolved
oxygen concentration (top-right panel), measured at moored
buoys around the Florida peninsula (National Data Buoy Cen-
ter 2023; Boyer et al. 2018). The collected values are strongly
non-stationary, due to the presence of the Gulf Stream, a warm,
swift, and space-varying Atlantic Ocean current, which strongly
influences the climate of the area. The bottom-left panel of
Figure 2 displays the Gulf Stream, obtained from Earth Space
Research (2009). Moreover, the morphology of the domain, with
the presence of the Florida peninsula, also strongly influences

the phenomenon: indeed, two oceanographic measurements
observed at opposite sides of the peninsula are naturally less asso-
ciated than two values observed on the same side of the penin-
sula. In addition, the buoys are located in shallow waters, mainly
near the coastlines, leaving large portions of the domain without
any measurement.

The strong anisotropy and non-stationarity, the complex mor-
phology of the spatial domain, or the highly inhomogeneous
design of the observations raise difficulties for the data analysis
that may challenge classical spatial statistics methods. In this
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work, we show how we can accurately address these issues by
extending a class of Physics-Informed spatial regression models,
named Spatial Regression with Partial Differential Equation
regularisation (SR-PDE); see, for example, Sangalli (2021). In
particular, we model the space variation by a Partial Differential
Equation (PDE), defined over the spatial domain of interest.
With respect to previous works on SR-PDE, we here consider
PDEs that may depend upon some unknown parameters, and
we propose an appropriate profiling estimation approach to esti-
mate such parameters. This enables us, on one hand, to encode
problem-specific information on the considered phenomenon
whenever some (partial) knowledge of the phenomenon is
available; on the other hand, it permits a very rich modeling of
anisotropy and non-stationarity.

The use of deterministic and stochastic differential equations
in spatial statistics models has been explored since the pio-
neering work of Whittle (1954), for different purposes: enabling
faster computations, permitting a flexible modeling of the space
and space-time variation, and leveraging mechanistic informa-
tion about the phenomenon at hand. In particular, the inclu-
sion of problem-specific differential equations in spatial statistics
methods has been popularized by Berliner (2003). Examples in
this direction are offered, for example, by Wikle (2003), Wikle
and Hooten (2010), Cressie and Wikle (2011), Kuhnert (2014),
Richardson (2017), and Hefley et al. (2017), where mechanistic
information is used to inform dynamical spatio-temporal mod-
els. Peli et al. (2022) propose instead a Physics-based Residual
Kriging that incorporates a physical model, expressed by a PDE,
in a universal kriging setting. On a different modeling framework
Lindgren, Rue, and Lindström (2011), Bolin and Lindgren (2011),
and Cameletti et al. (2013) describe complex spatial behaviors
by a stochastic PDE (sPDE), properly fitted through Integrated
Nested Laplace Approximation (INLA, see Rue, Martino, and
Chopin 2009). See Krainski et al. (2018) and Lindgren, Bolin,
and Rue (2022) for a complete overview of the sPDE approach,
with possible extensions and applications. In this framework, the
possibly non-trivial shape of the domain can be accounted for
by the so-called barrier model, proposed in Bakka et al. (2019).
In addition, Fuglstad, Lindgren et al. (2015), Fuglstad, Simpson
et al. (2015), and Chaudhuri et al. (2023) explain how to face
non-stationarity in this context.

Other fascinating research directions move towards the use of
deep learning approaches. Indeed, some recent proposals, to
enable a very flexible modeling of spatial variation, rely on neu-
ral networks. For example, the DeepKriging model by Chen
et al. (2024) takes into account deep neural networks to bet-
ter capture the spatial dependence among data. Deep learn-
ing techniques are also considered by Zammit-Mangion and
Wikle (2020), to model the space-time varying dynamics in a
highly flexible way. Lenzi et al. (2023) considers neural net-
works to estimate unknown parameters in the context of spatial
intractable models. See Wikle and Zammit-Mangion (2023) for a
recent review. In this framework, Physics-Informed deep learn-
ing approaches to spatial data analysis are now being explored
by, for example, Bonas and Castruccio (2023), Bonas, Richter, and
Castruccio (2023), and Menicali, Richter, and Castruccio (2023),
leveraging the separate literature on Physics-Informed Neural
Networks, which currently constitutes a cutting-edge research
direction in deep learning.

Partial differential operators and PDEs are also employed in
regularizing terms of nonparametric regression models used
for spatial data analysis problems. The classical models in this
framework, such as tensor product splines or thin-plate splines
(Cox 1984; Eubank 1999; Wahba 1981, 1990), include simple
isotropic differential operators in the penalty term. Extensions
accounting for the shape of the spatial domain are considered, for
instance, by T. Ramsay (2002), who introduce FELsplines, Wood,
Bravington, and Hedley (2008), Marra, Miller, and Zanin (2012),
and Augustin et al. (2013), who present the so-called soap
film smoothing, H. Wang and Ranalli (2007), Scott-Hayward
et al. (2014), who propose low-rank thin-plate spline approxima-
tions, and Lai and Schumaker (2007), Lai and Wang (2013), who
use bivariate splines over triangulations (see, e.g., the review
in Wang et al. 2020; Yu et al. 2019). The same family of meth-
ods embraces as well the above-mentioned Spatial Regression
with Partial Differential Equation regularization, originally
introduced in Sangalli, Ramsay, and Ramsay (2013), Azzimonti
et al. (2014), and Azzimonti et al. (2015) as a generalization
of the proposed by Ramsay (2002). SR-PDE can handle multi-
dimensional spatial domains with complex shapes, including
general two-dimensional curved domains (Ettinger, Perotto,
and Sangalli 2016) and non-convex three-dimensional domains
(Arnone et al. 2023). The regularizing term of SR-PDE may
involve general forms of linear second-order PDEs that encode
the available physical knowledge of the phenomenon under study
(Azzimonti et al. 2014, 2015; Arnone et al. 2019; Castiglione et al.
2025).

Outside of the simple isotropic and stationary case, SR-PDE
approaches, so far presented in the literature, usually require that
the PDE in the regularizing term is fully specified by the modeler.
However, in typical applications, the problem-specific informa-
tion may be unavailable, incomplete, or inaccurate. For instance,
in the application to rainfall measurements over Switzerland, we
can appreciate a clear anisotropic pattern in the data, likely due
to the interaction between atmospheric circulation and geomor-
phology, but we lack a PDE description of this phenomenon. In
the application to buoy data, we only have partial information
concerning the presence of the Gulf Stream that can be encoded
in the transport term of a linear second-order PDE; however, we
miss the full specification of the governing PDE. In all these cases,
it is impossible to fix all the parameters in the regularizing PDE
on the basis of the problem-specific information.

In the present work, differently from standard SR-PDE
approaches, we consider the challenging situation where the PDE
in the regularizing term of an SR-PDE model is only specified
up to unknown parameters. Considering PDEs with unknown
parameters enables us to fully deploy the modeling potential of
PDEs, one of the most powerful mathematical tools to model
complex phenomena behaviors. Moreover, it allows us to nat-
urally describe strong forms of anisotropy and non-stationarity
over spatial domains with complex conformations. We devise
an appropriate profiling estimation technique to accurately
estimate, within the considered spatial data analysis problem,
the unknown stationary parameters that specify the (possibly
non-stationary) PDE terms. This profiling estimation technique
is based on the so-called parameter cascading approach. Param-
eter cascading was originally introduced by Ramsay et al. (2007)
in order to estimate the parameters of an ordinary differential
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equation, starting from noisy measurements of its solution, and
later extended by Xun et al. (2013) to approximate PDE param-
eters. A first exploration of the parameter cascading approach,
in the context of SR-PDE, was done in Bernardi et al. (2018),
focusing on the special case when the penalty involves only
a stationary anisotropic diffusion term on a two-dimensional
domain. In this paper, we extend this approach to deal with
the more general case where the penalty involves general lin-
ear second-order elliptic PDEs with space-varying differential
operators and where all the (possibly non-stationary) PDE terms
may depend upon unknown stationary parameters; we moreover
consider both two-dimensional and three-dimensional domains.
The proposed approach highly enhances the scope and the
modeling flexibility of this class of Physics-Informed regression
models. The implementation of the proposed method is based on
the R package fdaPDE available from CRAN (Arnone et al. 2024).

The paper is organized as follows. Section 2 reviews the SR-PDE
modeling framework when the PDE is fully specified a pri-
ori. Section 3 proposes a strategy to estimate the PDE param-
eters when the underlying physics is missing or incomplete.
Section 4 shows the performances of the proposed approach in
some simulation studies. Section 5 and Section 6 illustrate the
use of the proposed method in real case studies characterized by
anisotropy and non-stationarity. In particular, Section 5 describes
the application to rainfall data, whilst Section 6 presents the
application to buoy data. Section 7 discusses ideas about possible
extensions of the proposed approach.

2 | Spatial Regression With PDE Regularization

This section reviews Spatial Regression with PDE regulariza-
tion (SR-PDE), presenting the solution to the estimation problem
when the PDE in the regularizing term is fully specified. For sim-
plicity of exposition, we focus on spatial data and only briefly
comment on possible generalizations to space-time data in the
final discussion section.

2.1 | Modeling Formulation

Consider a 𝑑-dimensional domain  ⊂ ℝ𝑑 with 𝑑 = 2, 3. The
domain  can be a non-convex 2D or 3D region or a 2D Rieman-
nian manifold, that is, a curved surface. The irregular shape of
the domain may, for instance, result from geographic constraints
or complicated conformations, such as coastal regions with irreg-
ular shorelines, as in the application to buoy data in Figure 2, or
curved regions with complex orography. Denote by p𝑖 ∈ , for
𝑖 = 1, . . . , 𝑛, the 𝑛 locations inside the domain , where the data
are recorded. Let 𝑦𝑖 be the real-valued responses, observed at the
locations p𝑖, and x𝑖 =

(
𝑥𝑖,1, . . . , 𝑥𝑖,𝑞

)⊤ the 𝑞-dimensional vectors
containing the covariates associated with 𝑦𝑖 and measured at p𝑖.
Assume the semiparametric model

y = 𝑋𝜷 + f𝑛 + 𝜺

where y =
(
𝑦1, . . . , 𝑦𝑛

)⊤ is the vector of responses, 𝑋 =(
x1, . . . , x𝑛

)⊤ is the 𝑛 × 𝑞 regressor matrix, 𝜷 ∈ ℝ𝑞 is the vector
of coefficients accounting for the mean effect of the covariates,

f𝑛 =
(
𝑓 (p1), . . . , 𝑓 (p𝑛)

)⊤ is the vector collecting the evaluations
of the unknown spatial function 𝑓 ∶  → ℝ at the 𝑛 data loca-
tions, and 𝜺 =

(
𝜀1, . . . , 𝜀𝑛

)⊤ is the vector of independent and
identically distributed measurements errors, having zero mean
and finite variance 𝜎2. Moreover, let 𝐿𝑓 = 𝑢 be a PDE that
provides a partial description of some known characteristics
of the underlying spatial function 𝑓 , as detailed in Section 2.2.
In SR-PDE, the two unknowns, 𝜷 and 𝑓 , are estimated by
minimizing the following penalized residual sum of squares:

𝐽𝜌(𝜷, 𝑓 ) = (1 − 𝜌)1
𝑛

𝑛∑
𝑖=1

(
𝑦𝑖 − x⊤

𝑖
𝜷 − 𝑓 (p𝑖)

)2

+ 𝜌
1|| ∫

(
𝐿𝑓 − 𝑢

)2
𝑑p for 𝜌 ∈ (0, 1)

(1)

where 𝜌 is the smoothing parameter that governs the balance
between data fitting and model fidelity, and || = ∫ 𝑑p is the
area or volume of the domain . The estimation functional (1)
includes, in addition to the usual residual sum of squares, also a
penalization term that involves the squared misfit over  of the
PDE 𝐿𝑓 = 𝑢. Through this extra information, the model can
embed complex physics-based information concerning the spa-
tial structure of the phenomenon being analyzed, as well as the
shape of spatial domain .

2.2 | Regularizing PDE

SR-PDE is currently implemented for linear second-order ellip-
tic PDEs 𝐿𝑓 = 𝑢, with diffusion-transport-reaction operators of
the form

𝐿𝑓 = −∇ ⋅ (𝐾∇𝑓 ) + b ⋅ ∇𝑓 + 𝑐𝑓

where ∇ is defined as
(

𝜕

𝜕𝑝1
,

𝜕

𝜕𝑝2

)⊤

if 𝑑 = 2, and
(

𝜕

𝜕𝑝1
,

𝜕

𝜕𝑝2
,

𝜕

𝜕𝑝3

)⊤

if
𝑑 = 3, while 𝑝𝓁 , for 𝓁 = 1, . . . , 𝑑, denotes the coordinates of the
reference system. The parameters 𝐾 , b, 𝑐 and 𝑢 may vary over
space and are named, respectively, Diffusion, Transport, Reac-
tion, and Forcing term. Such names refer to the role that these dif-
ferent terms have in time-dependent problems, but that result in
effects that are also appreciable at fixed times, as detailed below.

Diffusion term. The diffusion term is defined as ∇ ⋅ (𝐾∇𝑓 ) =∑𝑑

𝓁=1
𝜕

𝜕𝑝𝓁

(∑𝑑

𝑠=1𝐾𝓁,𝑠
𝜕𝑓

𝜕𝑝𝑠

)
, where 𝐾 = {𝐾𝓁,𝑠}, for𝓁, 𝑠 = 1, . . . , 𝑑, is

a 𝑑 × 𝑑 symmetric and positive definite tensor. This term mod-
els anisotropy. The first two columns of Figure 3 visualize the
effects of this term on a 2D domain through ellipsoids having the
axes oriented as the eigenvectors of 𝐾 and lengths proportional
to the corresponding eigenvalues. The first column concerns the
special case when 𝐾 = 𝜂𝐼 , where 𝐼 is the identity matrix and 𝜂

is a real coefficient. In this case, the diffusion term induces an
isotropic effect. This effect may have the same intensity across the
whole domain when 𝜂 is constant over space (stationary isotropy,
in the top-left panel) or may have a space-varying intensity,
as modeled by 𝜂(p) (non-stationary isotropy, in the bottom-left
panel). The second column in Figure 3 displays instead examples
of anisotropic patterns, when 𝐾 ≠ 𝜂𝐼 . Also in this case, the
anisotropy may have constant orientation and intensity, when
𝐾 is constant in space (stationary anisotropy, in the top-center
panel), or vary over space, considering a function of space 𝐾(p)
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FIGURE 3 | Visualization of possible spatial patterns induced by different PDE terms. Top left: isotropic stationary diffusion, obtained for 𝐾 = 𝜂𝐼

with 𝜂 constant in space. Bottom left: isotropic non-stationary diffusion, obtained for 𝐾 = 𝜂𝐼 considering 𝜂(p) as a function of space. Top center:
anisotropic stationary diffusion, obtained for 𝐾 ≠ 𝜂𝐼 with 𝐾 constant in space. Bottom center: anisotropic non-stationary diffusion, obtained for 𝐾 ≠ 𝜂𝐼

considering 𝐾(p) as a function of space. Top right: stationary transport, obtained for b constant in space. Bottom right: non-stationary transport, obtained
considering b(p) as a function of space.

(non-stationary anisotropy, bottom-center panel). For instance,
regarding the application to rainfall data on the Swiss territory,
detailed in Section 5, we use the tensor 𝐾 to model the range and
the preferential direction of a stationary anisotropy.

Transport term. The transport term b ⋅ ∇𝑓 =
∑𝑑

𝓁=1𝑏𝓁
𝜕𝑓

𝜕𝑝𝓁
,

where b is a 𝑑-dimensional vector, steers direction and intensity
of a one-directional effect. The third column in Figure 3 visualizes
the effect of the transport term. The transport may have constant
direction and intensity over the domain (stationary transport, in
the top-right panel), or space-varying direction and/or intensity,
modeled by the function b(p) (non-stationary transport, in the
bottom-right panel). For example, in the application to Switzer-
land rainfall data, in Section 5, we consider a stationary transport
term b to model a prevailing wind. Instead, in the application to
buoy data, in Section 6, we consider the non-stationary transport
term b(p) illustrated in the bottom-left panel of Figure 3, to model
the Gulf Stream around the Florida peninsula.

Reaction term. The reaction term 𝑐𝑓 , where 𝑐 is a real-valued
coefficient, controls shrinking of the solution towards the zero
function. Also, this term may vary over space.

Forcing term. The forcing term 𝑢 ∈ 𝐿2(), in the PDE 𝐿𝑓 =
𝑢, can be used to model sources in the signal under study.
For instance, in the analysis of wildfire propagation (see, e.g.,
Grieshop and Wikle 2023), a non-homogeneous forcing term 𝑢(p)
could be used to model the spatial distribution of sources of fire,
such as tanks of fuel or other deposits of inflammable materials,
over the considered spatial domain. For simplicity of exposition,
in this work we consider homogeneous forcing terms 𝑢 = 0 and
refer the readers to, for example, Azzimonti et al. (2015, 2014), for
details on the non-homogeneous case.

Boundary conditions. It is also possible to specify different
case-specific conditions on the boundary 𝜕. These conditions
may concern the values of the function 𝑓 , or of its normal deriva-
tives, and may vary over different portions of the domain. For
simplicity of exposition, in the following sections we consider
homogeneous Neumann conditions (i.e., null normal derivative
of 𝑓 on 𝜕). These boundary conditions, also known as natural
conditions, are not strictly imposed in the estimation problem,
and the resulting estimate satisfies them only approximately. We
refer the readers to, for example, Azzimonti et al. (2015, 2014), for
details on how to handle different boundary conditions.
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We use the notation SR-PDE(𝐾, b, 𝑐) to indicate a SR-PDE model
with PDE terms 𝐾 , b, and 𝑐. The simplest setting for SR-PDE
is the fully stationary isotropic case, obtained for 𝐾 = 𝐼 , b = 𝟎,
𝑐 = 0, 𝑢 = 0, and homogeneous Neumann boundary conditions,
and we refer to this model as SR-PDE(𝐼, 𝟎, 0). This corresponds
to penalization of the simple Laplace operator

Δ𝑓 = ∇ ⋅ ∇𝑓 =
𝑑∑

𝓁=1

𝜕2𝑓

𝜕𝑝2
𝓁

that measures the local curvature of the spatial function 𝑓 along
every direction in the same way. This special case is the default
choice in the absence of any problem-specific information or any
apparent anisotropic behavior in the data.

With the exception of Bernardi et al. (2018), the literature on
SR-PDE has so far focused on isotropic and stationary models,
like SR-PDE(𝐼, 𝟎, 0), or else on cases where the PDE terms
𝐾 , b, and 𝑐 were fully specified on the basis of problem-specific
knowledge (see, e.g., Azzimonti et al. 2015; Azzimonti et al. 2014;
Arnone et al. 2019). Section 2.3 briefly reviews the solution for
the SR-PDE estimation problem when the underlying physics is
fully specified.

2.3 | Solution to the Estimation Problem When
the Underlying Physics is Fully Specified

Azzimonti et al. (2015, 2014), and Arnone et al. (2023) show that,
for given 𝐾 , b, and 𝑐, that is, when the underlying physics is fully
specified, the estimation problem is well-posed for 𝜷 ∈ ℝ𝑞 and 𝑓

in a general space of functions with appropriate regularity. How-
ever, such an estimation problem is infinite-dimensional and
does not possess a closed-form solution. Therefore, numerical
analysis techniques, such as the Finite Element Method (FEM),
are required to discretize the problem and obtain a solution. The
general idea of FEM is to partition the spatial domain  into a set
of subdomains: these subdomains can be triangles in 2D or tetra-
hedra in 3D. For instance, the right panel of Figure 1 shows a reg-
ular triangulation of the Swiss territory, used for the application
to rainfall data, detailed in Section 5. The bottom-right panel of
Figure 2 shows instead a data-driven mesh for the application to
buoy data, discussed in Section 6.

Based on the considered mesh, it is then possible to define
a set of finite element bases that are locally-supported piece-
wise polynomial functions. Such a system of bases spans the
space of globally continuous functions over the mesh that are
polynomials of the desired order when restricted to an ele-
ment of the mesh. The function 𝑓 is thus represented by an
extension in such bases, so that, instead of searching for 𝑓

in an infinite-dimensional space of functions, it is enough to
look for the coefficients f of its basis expansion. Let Ψ be the
matrix whose columns store the evaluations of every finite ele-
ment basis at the locations p1, . . . , p𝑛. Define the residualizing
matrices

𝑄 = 𝐼 − 𝑋(𝑋⊤𝑋)−1𝑋⊤

Λ = 𝐼 − Ψ
(

1 − 𝜌

𝑛
Ψ⊤Ψ + 𝜌||𝑃

)−1 1 − 𝜌

𝑛
Ψ⊤

where 𝑃 is the matrix denoting the finite element discretization
of the penalization term; see Section 7.1 of the Supporting Infor-
mation for details. The solution to the discretized estimation
problem is then given by

𝜷̂ =
(
𝑋⊤Λ𝑋

)−1
𝑋⊤Λy

f̂ =
(

1 − 𝜌

𝑛
Ψ⊤𝑄Ψ + 𝜌||𝑃

)−1 1 − 𝜌

𝑛
Ψ⊤𝑄y

(2)

Note that the expressions of the estimators in Equation (2)
depend implicitly on the PDE parameters through the penalty
matrix 𝑃 . Therefore, the estimate depend on the physical model.
In particular, Section 7.2 of the Supporting Information shows
how the first and second order properties of the estimators 𝜷̂ and
𝑓 depends on the penalty matrix 𝑃 . Additionally, asymptotic
Gaussianity of the estimators, shown, for example, in Ferrac-
cioli, Sangalli, and Finos (2022, 2023); Arnone et al. (2023),
justifies Wald-type inference, as detailed in the former works.
More advanced inferential tools, based on innovative resampling
strategies, are discussed in Ferraccioli, Sangalli, and Finos (2022,
2023); Cavazzutti et al. (2024).

3 | Solution to the Estimation Problem When
the Underlying Physics is Missing or Incomplete

In most analyses of spatially distributed data, our problem-
specific information on the process driving the phenomenon
being analyzed is incomplete or imperfect. For instance, in the
application to Switzerland rainfall data, detailed in Section 5, we
lack a PDE description of the rainfall phenomenon. However,
the data display a clear anisotropic pattern, calling for a diffu-
sion term with unknown stationary matrix 𝐾 ≠ 𝜂𝐼 . Moreover,
we might expect that the rainfall on May 8, 1986, was accompa-
nied by wind, which we could model through a transport term.
Unfortunately, no information is available on the wind on the
day of these records. We can though model the unknown pre-
vailing wind on the day of the records by a transport term with
an unknown stationary vector b. Regarding the application to
buoy data, discussed in Section 6, the physics is partially avail-
able. Indeed, we know about the presence of the Gulf Stream,
illustrated in the bottom-left panel of Figure 2, and this infor-
mation can be properly encoded in the non-stationary transport
term. However, we do not know a priori how to appropriately
balance this transport term with a diffusion term, so we need to
estimate the stationary intensity 𝜂 of an isotropic diffusion matrix
𝐾 = 𝜂𝐼 . In these settings, the PDE can only be specified up to
some unknown stationary parameters that define the (possibly
non-stationary) PDE terms. Hence, from a modeling perspective,
in the SR-PDE framework it is crucial to define appropriate esti-
mation approaches to estimate these unknown parameters from
data, jointly with the vector of parameters 𝜷 and the function 𝑓 .
To this aim, we here develop an appropriate estimation procedure
that follows the parameter cascading approach.

3.1 | A Parameter Cascading Approach
for SR-PDE With Unknown PDE Parameters

Our new objective functional 𝐽𝜌(𝜷, 𝑓 ;𝐾, b, 𝑐) is defined as in
Equation (1), but we now consider as unknowns also the PDE
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terms 𝐾 , b, and 𝑐, or a subset of these parameters. Specifically,
the (possibly non-stationary) PDE terms may depend on multiple
unknown stationary parameters, along with the parametrization
of the PDE terms detailed in Section 3.2. The objective functional
𝐽𝜌(𝜷, 𝑓 ;𝐾, b, 𝑐) is not convex in all the unknowns; thus it is
impossible to minimize it jointly in all the unknowns. Therefore,
an iterative multi-step algorithm is required to solve the estima-
tion problem. We here propose an iterative procedure based on a
parameter cascading approach. To this end, we also consider the
Sum of Squared Error (SSE),

𝑆𝑆𝐸(𝜷̂, 𝑓 ; 𝐾̂, b̂, 𝑐) =
𝑛∑

𝑖=1
(𝑦𝑖 − x⊤

𝑖
𝜷̂ − 𝑓

(
p𝑖

)
)2.

The SSE depends on the PDE parameters 𝐾̂ , b̂, and 𝑐 only implic-
itly, through the estimators 𝜷̂ and 𝑓 , as described by Equation (2).
The iterative optimization scheme works as follows. Let 𝜷̂𝑗 , 𝑓𝑗 ,
𝐾̂𝑗 , b̂𝑗 , and 𝑐𝑗 be the estimates after 𝑗 iterations; at iteration 𝑗 + 1
the algorithm performs the following steps:

1. Given 𝐾̂𝑗 , b̂𝑗 , 𝑐𝑗 , the estimate 𝜷̂𝑗+1 and 𝑓𝑗+1 that solve

{
𝜷̂𝑗+1, 𝑓 𝑗+1

}
= argmin

𝜷,𝑓

𝐽𝜌

(
𝜷, 𝑓 ; 𝐾̂𝑗 , b̂𝑗 , 𝑐𝑗

)
.

are obtained using the formulas in Equation (2).

2. Given 𝜷̂𝑗+1, 𝑓 𝑗+1 computed in the previous step, the estimate
𝐾̂𝑗+1, b̂𝑗+1 and 𝑐𝑗+1, in cascade, are obtained solving

2.1. 𝐾̂𝑗+1 = argmin
𝐾

𝑆𝑆𝐸(𝜷̂𝑗+1, 𝑓 𝑗+1;𝐾, b̂𝑗 , 𝑐𝑗)

2.2. 𝑏̂𝑗+1 = argmin
b

𝑆𝑆𝐸(𝜷̂𝑗+1, 𝑓 𝑗+1; 𝐾̂𝑗+1, b, 𝑐𝑗)

2.3. 𝑐𝑗+1 = argmin
𝑐

𝑆𝑆𝐸(𝜷̂𝑗+1, 𝑓 𝑗+1; 𝐾̂𝑗+1, b̂𝑗+1, 𝑐)

Solution to Step 1 is equivalent to the estimation problem with
known PDE terms, discussed in Section 2.3; this step does not
require any iterative optimization, as the corresponding estima-
tors are provided in Equation (2). Step 2 defines instead three
new complex minimization problems to be performed. Since the
SSE depends on the PDE parameters only implicitly, through the
values of 𝜷̂𝑗+1 and 𝑓𝑗+1 computed in Step 1, the estimation prob-
lems in Steps 2.1, 2.2, and 2.3 require a numerical optimization
method, such as, for example, Gradient descent, Conjugate gra-
dient method, BFGS, L-BFGS-B or the Nelder-Mead method. The
initial values 𝐾0, b0, and 𝑐0 are set respectively to 𝐼, 𝟎, 0, unless
more informative problem-specific knowledge is available.

It is important to notice that it is not necessary to estimate all
the PDE terms. Indeed, thanks to the sequential nature of the
cascade, there is complete freedom to choose the terms to be esti-
mated, among 𝐾 , b, and 𝑐, and all the combinations are possible.
For instance, in the application to rainfall data in Section 5, we
estimate the diffusion matrix 𝐾 to model the apparent anisotropy
in the data and the transport vector b, to include a possible trans-
port effect induced by wind, with unknown direction and inten-
sity, since we lack information about the wind on the day of the
records; the reaction term is set to zero since it does not appear
relevant for the problem under study. In the application to buoy
data in Section 6, we estimate the diffusion parameter 𝐾 , while
we fix the transport term, which encodes the Gulf Stream and is

thus specified on the basis of problem-specific knowledge; also
in this case, the reaction is set to zero, since it is irrelevant for
the problem under study. It should also be pointed out that it
may be that only some of the coefficients in the terms 𝐾 , b, and
𝑐 are unknown. The estimate is thus typically limited to only a
few parameters of these terms. For example, in the application to
buoy data, we only estimate the intensity 𝜂 of the diffusion term.
Finally, the cascade order in the algorithm, 𝐾 → b → 𝑐, is here
considered because the estimate of 𝐾 is less sensitive to the spe-
cific values of the other PDE terms compared to b and 𝑐.

3.1.1 | Selection of the Smoothing Parameter

The smoothing parameter 𝜌, in the estimation functional in
Equation (1), governs the balance between fidelity to the empir-
ical model, as encoded by the SSE term, and fidelity to the phys-
ical model, as encoded by the regularizing PDE. This smoothing
parameter must be properly chosen to ensure accurate results. In
the context of SR-PDE, the selection of 𝜌 is performed through
minimization of the Generalized Cross Validation index (GCV)
(Craven and Wahba 1978), given by

GCV(𝜌;𝐾, b, 𝑐) = 𝑛

(𝑛 − 𝑞 − tr(𝑆))2 (y − ŷ)⊤(y − ŷ)

= 𝑛

(𝑛 − 𝑞 − tr(𝑆))2 𝑆𝑆𝐸(𝜷̂, 𝑓 ; 𝐾̂, b̂, 𝑐)

where 𝑆 is the smoothing matrix defined as

𝑆 = Ψ
(

1 − 𝜌

𝑛
Ψ⊤

𝑄Ψ + 𝜌||𝑃
)−1 1 − 𝜌

𝑛
Ψ⊤

𝑄

and 𝑡𝑟(𝑆) denotes its trace. Notice that the GCV depends implic-
itly on the smoothing parameter 𝜌 and on the PDE terms, through
S and ŷ.

However, simulation studies highlight that the parameter cas-
cading procedure requires very different smoothing parameters
in Steps 1 and 2, to achieve optimal results. Similar consider-
ations were noted by Bernardi et al. (2018), which explored
parameter cascading in the simpler setting where only a station-
ary anisotropic diffusion term is considered (with null transport
and reaction) on 2D domains. Indeed, in Step 1, small values
of 𝜌 are usually optimal to appropriately balance fidelity to the
data, measured by the SSE, and fidelity to the physical model,
encoded by the regularizing PDE. Instead, when estimating
the PDE parameters, in Step 2, larger values of 𝜌 are needed to
emphasize the effect of the PDE. To take into account this issue,
the parameter cascading procedure is organized as detailed in
Algorithm 1. Specifically, the PDE parameters are estimated for
different smoothing parameters in a grid of values {𝜌1, . . . , 𝜌𝑀},
spanning the whole interval (0, 1). Among the 𝑀 candidate
estimates of the PDE parameters, obtained in correspondence
with the 𝑀 different smoothing parameter values, {𝜌1, . . . , 𝜌𝑀},
we select the estimates providing the lowest GCV. Moreover,
in order to gain flexibility, we find the initial estimates of 𝐾 , b,
and 𝑐 sequentially, thus allowing for different optimal 𝜌 values.
As detailed in Algorithm 1, when more than one PDE term is
unknown, the estimation of the PDE parameters is repeated iter-
atively until a suitable convergence criterion is met. This allows
us to refine the results while avoiding suboptimal solutions that
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ALGORITHM 1 | Iterative parameter cascading.

⊳ First diffusion estimation
for m = 1,…,M, do

Given 𝜌 = 𝜌𝑚, 𝐛 = 𝐛0, 𝑐 = 𝑐0, find 𝐾̂ (𝑚) via Step 1 and
Step 2.1
end for
Find 𝑚∗ = argmin

1,…,𝑚

GCV(𝜌;𝐾 (𝑚), 𝐛0, 𝑐0) and set 𝐾̂ = 𝐾̂ (𝑚∗),
𝜌𝐾 = 𝜌𝑚∗

⊳ First transport estimation
for m = 1,…,M, do

Given 𝜌 = 𝜌𝑚, 𝐾 = 𝐾̂ , 𝑐 = 𝑐0, find 𝐛̂(𝑚) via Step 1 and
Step 2.2
end for
Find 𝑚∗ = argmin

1,…,𝑚

GCV(𝜌; 𝐾̂, 𝐛(𝑚), 𝑐0) and set 𝐛̂ = 𝐛̂(𝑚∗),
𝜌𝐛 = 𝜌𝑚∗

⊳ First reaction estimation
for m = 1,…,M, do

Given 𝜌 = 𝜌𝑚, 𝐾 = 𝐾̂ , 𝐛 = 𝐛̂, find 𝑐(𝑚) via Step 1 and
Step 2.3
end for
Find 𝑚∗ = argmin

1,…,𝑚

GCV(𝜌; 𝐾̂, 𝐛̂, 𝑐(𝑚)) and set 𝑐 = 𝑐(𝑚
∗), 𝜌𝑐 = 𝜌𝑚∗

⊳ Iterative refinement
while !convergence do

Given 𝜌 = 𝜌𝐾 , 𝐛 = 𝐛̂, 𝑐 = 𝑐, find 𝐾̂ via Step 1 and Step 2.1
Given 𝜌 = 𝜌𝐛, 𝐾 = 𝐾̂ , 𝑐 = 𝑐, find 𝐛̂ via Step 1 and Step 2.2
Given 𝜌 = 𝜌𝑐 , 𝐾 = 𝐾̂ , 𝐛 = 𝐛̂, find 𝑐 via Step 1 and Step 2.3

end while

may be dependent on the chosen cascade order. It is important to
notice that the exploration of the grid of the smoothing parameter
values, {𝜌1, . . . , 𝜌𝑀}, is required only once. Indeed, as verified
in simulations, subsequent iterations always select the same
optimal smoothing parameters, 𝜌𝐾 , 𝜌b and 𝜌𝑐 , that are found in
the first optimization. In addition, the algorithm is amenable to
parallelization to speed up the entire procedure.

3.2 | Parametrization of Diffusion
and Transport Terms

This section describes in detail the parametrization of the dif-
fusion matrix and transport vector. The reader not interested in
these technical aspects may skip this section.

3.2.1 | 2D Parametrization of Diffusion and Transport

In spatial data analysis problems over 2D domains, two parame-
ters are required to parametrize the diffusion 𝐾 :

• 𝛼 ∈ [0, 𝜋]: the angle indicating the direction of anisotropy.
In the visualization of Figure 3, this parameter specifies the
main direction of anisotropy, identifying the orientation of
the ellipse associated with 𝐾 . The angle 𝛼 is taken in the
interval [0, 𝜋] since, in the considered parametrization, 𝐾 is
𝜋-periodic with respect to this quantity.

• 𝛾 ∈ (1,+∞): the ratio between the maximum and the min-
imum eigenvalue of 𝐾 . This parameter represents the
intensity of anisotropy: the farther away from 1, the more
elongated is the ellipse representing the anisotropic effect
modeled by 𝐾 .

The diffusion tensor 𝐾 is then parametrized as

𝐾(𝛼, 𝛾) = 𝑅(𝛼)Σ(𝛾)𝑅(𝛼)−1

where

𝑅(𝛼) =

[
cos(𝛼) −sin(𝛼)
sin(𝛼) cos(𝛼)

]
and Σ(𝛾) =

⎡⎢⎢⎣
1√
𝛾

0

0
√

𝛾

⎤⎥⎥⎦.
Notice that 𝑅−1 = 𝑅⊤ since 𝑅 is a rotation matrix. When the
diffusion is considered along with transport or reaction, a mul-
tiplicative coefficient 𝜂 is introduced to model the intensity of
the diffusion term and its relative magnitude with respect to
the transport and/or reaction term. If b and 𝑐 are both null, the
parameter 𝜂 is unnecessary, since the intensity of the diffusion
term is modeled directly by the smoothing parameter 𝜌, which is
estimated by minimizing the GCV index.

To parametrize the transport vector b over 2D domains, we use
polar coordinates, that is,

b(𝜑, 𝑟) = (𝑟 cos(𝜑), 𝑟 sin(𝜑))⊤

where 𝜑 ∈ [0, 2𝜋] is the angle indicating the direction of the
transport vector, and 𝑟 ∈ [0,+∞) represents its module.

3.2.2 | 3D Parametrization for Diffusion
and Transport

In spatial data analysis problems over in 3D domains, four param-
eters are required to parametrize the diffusion 𝐾 :

• 𝛼1 ∈ [0, 2𝜋]: the first anisotropy angle; this parameter speci-
fies the counterclockwise rotation angle of the ellipsoid with
respect to the 𝑝3-axis.

• 𝛼2 ∈ [0, 2𝜋]: the second anisotropy angle; this parameter
specifies the counterclockwise rotation angle of the ellipsoid
with respect to the 𝑝2-axis.

• 𝛾1 ∈ (1,+∞): the ratio between the largest and the smallest
eigenvalue of 𝐾 ; this parameter relates to the intensity of the
anisotropy, setting the range in the direction associated with
the maximum eigenvalue of 𝐾 with respect to that associated
with the minimum eigenvalue of 𝐾 .

• 𝛾2 ∈ (1,+∞): the ratio between the middle and the smallest
eigenvalue of 𝐾 ; this parameter can be interpreted analo-
gously as 𝛾1. Notice that 𝛾2 ≤ 𝛾1 by definition.

The diffusion tensor 𝐾 is then parametrized as

𝐾(𝛼1, 𝛼2, 𝛾1, 𝛾2) = 𝑅(𝛼1, 𝛼2)Σ(𝛾1, 𝛾2)𝑅(𝛼1, 𝛼2)−1

8 of 20 Environmetrics, 2024
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where

𝑅(𝛼1, 𝛼2) =
⎡⎢⎢⎢⎣
cos(𝛼1) −sin(𝛼1) 0
sin(𝛼1) cos(𝛼1) 0

0 0 1

⎤⎥⎥⎥⎦ ⋅
⎡⎢⎢⎢⎣

cos(𝛼2) 0 sin(𝛼2)
0 1 0

−sin(𝛼2) 0 cos(𝛼2)

⎤⎥⎥⎥⎦
and Σ(𝛾1, 𝛾2) =

⎡⎢⎢⎢⎢⎢⎣

3

√
𝛾2

1
𝛾2

0 0

0 3

√
𝛾2

2
𝛾1

0

0 0 3
√

1
𝛾1𝛾2

⎤⎥⎥⎥⎥⎥⎦
.

The angles 𝛼1 and 𝛼2 are considered in the interval [0, 2𝜋] since,
in the considered parametrization, 𝐾 is 2𝜋-periodic with respect
to these angles. As observed in the 2D setting, 𝑅−1 = 𝑅⊤ since 𝑅

is a rotation matrix; moreover, the multiplicative coefficient 𝜂 can
be added to balance the magnitude of the diffusion with respect
to the other effects when the transport or the reaction terms are
present.

To parametrize the transport b in 3D domains, we use spherical
coordinates, that is,

b(𝜑1, 𝜑2, 𝑟) =
(
𝑟 cos(𝜑1) sin(𝜑2), 𝑟 sin(𝜑1) sin(𝜑2), 𝑟 cos(𝜑2)

)⊤

where 𝜑1 ∈ [0, 2𝜋] is the angle between b and the 𝑝1-axis, 𝜑2 ∈
[0, 𝜋] is the angle between b and the 𝑝3-axis, and 𝑟 ∈ [0,+∞) rep-
resents the module of b.

4 | Simulation Studies

This section is dedicated to simulations, carried out considering
simple configurations, that are helpful to understand the perfor-
mance of the proposed approach.

4.1 | Simulation 1: Diffusion Estimation

In this first test case, we generate 30 two-dimensional Gaussian
random fields with Matérn covariance characterized by different

anisotropies on a square domain with side length equal to 1.
The Gaussian random fields are generated through the utility
RFsimulate available from the R package RandomFields
(Schlather et al. 2017, 2015), considering angles and eigenval-
ues ratios randomly sampled from the intervals [0, 𝜋] and [2, 5].
The smoothness parameter 𝜈 of the Matérn covariance is set
equal to 2. A similar simulation study was considered by Bernardi
et al. (2018). We here consider this simple generating scheme as
we would like to test the ability of the proposed method to cor-
rectly estimate the anisotropy in data in a context where the data
show a clear and known anisotropic pattern. Moreover, we can
here compare the estimates obtained by the proposed approach
with those provided by anisotropic kriging with a Matérn vari-
ogram. The latter method constitutes the golden standard in this
setting, since it employs the very same covariance structure that
was used to generate the data. Notice that, to assess the goodness
of the proposed approach in capturing the correct anisotropy, one
has to compare 𝐾 with 𝐴⊤𝐴, where 𝐴 is the Matérn anisotropy
matrix. For anisotropic kriging, in order to avoid convergence
issues, we consider a diffusion parameter initialization within the
ranges exploited for the data generation.

From each generated field, we create a training and a test dataset.
The training dataset is composed of 200 values, observed at 200
locations uniformly sampled within the domain, as displayed in
Figure 4, left panel; Gaussian noise, with zero mean and standard
deviation equal to 0.1 (which corresponds approximately to 5%
of the data range), is added to the true field values. The testing
dataset consists of the true field values on a fine grid of 100 × 100
locations on a regular lattice.

We consider the proposed SR-PDE model with unknown diffu-
sion 𝐾 , while we set b and 𝑐 to zero in order to focus on diffusion
estimation only. The squared domain is discretized through a reg-
ular mesh with 346 nodes, displayed in the left panel of Figure 4.
This mesh is obtained by the mesh generation and mesh refine-
ment utilities in the fdaPDE package (Arnone et al. 2024). We
then estimate the diffusion tensors 𝐾 via the parameter cascading
approach described in Section 3, using the same package.

FIGURE 4 | Left: Simulation 1. Training data sampled from a Gaussian random field with Matérn covariance (first simulation replicate), and regular
mesh used in SR-PDE. Right: Simulation 2. Training data sampled from the solution of a PDE (first simulation replicate), and data-adaptive mesh used
in SR-PDE. The color of the markers is related to sampled values.
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FIGURE 5 | Simulation 1. Left: RMSE committed on test data by isotropic and anisotropic SR-PDE, indicated respectively by SR-PDE(𝐼, 𝟎, 0) and
SR-PDE(𝐾̂, 𝟎, 0), isotropic and anisotropic kriging, and the isotropic sPDE approach based on INLA. Center and right: errors committed by anisotropic
SR-PDE and anisotropic kriging in the estimation of the anisotropy angle 𝛼 and of the intensity 𝛾 . The errors are computed as |𝛼̂ − 𝛼| and |𝛾̂ − 𝛾|, where
𝛼̂ and 𝛾̂ are the estimated parameters, while 𝛼 and 𝛾 are the ground truth values used in the data generation process.

We compare the proposed SR-PDE(𝐾̂, 𝟎, 0) model to the isotropic
SR-PDE(𝐼, 𝟎, 0) model, to isotropic and anisotropic kriging with
Matérn variograms, and to the isotropic sPDE approach based
on INLA. The isotropic kriging results are computed with the
R package gstat (Pebesma 2004). Anisotropic kriging is per-
formed using the R package geoR (Jr and Diggle 2001; Dig-
gle and Ribeiro 2007). The sPDE approach is implemented
using the package R-INLA (www.r-inla.org; Rue, Martino, and
Chopin 2009; Martins et al. 2013; Lindgren, Rue, and Lind-
ström 2011) using the built-in utilities to construct a mesh with
415 nodes and considering the default smoothness value 𝜈 = 1.

Figure 5 shows the Root Mean Squared Error (RMSE) commit-
ted on test data by the different methods across the 30 simula-
tion replicates. Thanks to the correct diffusion estimates provided
by parameter cascading, SR-PDE(𝐾̂, 𝟎, 0) provides lower RMSE
with respect to SR-PDE(𝐼, 𝟎, 0), isotropic kriging, and the sPDE
approach. Moreover, the RMSE committed by SR-PDE(𝐾̂, 𝟎, 0) is
comparable with that of anisotropic kriging, which is the golden
standard in this simulation setting, since it exploits the same
covariance structure used to generate the data. Figure 5 also com-
pares the anisotropic diffusion estimates, provided by the pro-
posed approach, and anisotropic kriging: the diffusion angles
are sharply captured by SR-PDE(𝐾̂, 𝟎, 0), with errors comparable
to those of anisotropic kriging. Considering the diffusion shape
parameters, the results obtained by the proposed approach are
less accurate than those of the golden standard. However, this
lack of precision in the estimation of 𝛾 does not affect the final
goodness of fit, since the RMSE obtained by SR-PDE(𝐾̂, 𝟎, 0) is
not significantly different from that of anisotropic kriging and is
lower than that of other competing models. This corroborates the
findings in Bernardi et al. (2018), which show that, whenever the
optimal angle 𝛼 is fixed, the SSE does not present a sharp mini-
mum with respect to 𝛾 .

Figure 6 offers a visualization of the obtained results, relative
to the first sampled random field of this simulation study. The

top-left panel shows the test data and the underlying ground
truth anisotropy ellipse; the other panels display the predic-
tions and the diffusion estimates provided by different models.
In particular, the top-right panel of the figure shows that the
proposed parameter cascading procedure returns an accurate
estimation of the anisotropy, resulting in precise predictions
for SR-PDE(𝐾̂, 𝟎, 0). Figure 7 compares, instead, the coverage
and the amplitude of 95% prediction intervals on a 100 × 100
lattice of test locations across the 30 simulation replicates. These
boxplots highlight that the anisotropic SR-PDE(𝐾̂, 𝟎, 0) has sim-
ilar prediction performances to the golden standard anisotropic
kriging, with higher coverage and narrower prediction intervals
than isotropic methods.

4.2 | Simulation 2: Transport Estimation

The second simulation study concerns a setting where there
is a strong transport effect. The spatial fields are here gener-
ated solving diffusion-transport-reaction PDEs using the soft-
ware FEniCS (Alnaes et al. 2015), on a square domain with side
length equal to 1. To explore different scenarios, we compute
30 different PDE solutions, considering random transport vec-
tors, with angles and magnitudes uniformly sampled in [0, 2𝜋]
and [500, 1000], respectively; moreover, we set 𝐾 = 𝐼 and 𝑐 =
0. The transport intensities are larger than the diffusion inten-
sity in order to emphasize the transport effect over the diffusion
one. To avoid trivial solutions, the source term is set equal to
𝑢 = 500 cos(20𝑦2) + 500 cos(20𝑥2), while Dirichlet boundary con-
ditions are exploited to set the value of 𝑓 equal to cos(5𝜋𝑥) and
cos(5𝜋𝑦), respectively, on the horizontal and on the vertical side
of the inflow boundary.

For each PDE solution, we create a training and a test dataset.
The training dataset is composed of 90 observations, measured
at random locations near the left and the bottom side of the
domain, with only 10 additional values observed in the remain-
ing portion of the domain, as visible in the right panel of Figure 4.
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FIGURE 6 | Simulation 1. Top left: first test field; the ellipse visualizes the true anisotropy of the field. Other panels: field estimates provided by the
competing methods, with the corresponding anisotropy ellipses. The competing models are isotropic and anisotropic SR-PDE, indicated respectively by
SR-PDE(𝐼, 𝟎, 0) and SR-PDE(𝐾̂, 𝟎, 0), isotropic and anisotropic kriging, and the isotropic sPDE approach based on INLA.

FIGURE 7 | Simulation 1. Coverage (left) and amplitude (right) of 95% prediction intervals, on a 100 × 100 lattice of test locations, across the 30
simulation replicates. The competing models are isotropic and anisotropic SR-PDE, indicated respectively by SR-PDE(𝐼, 𝟎, 0) and SR-PDE(𝐾̂, 𝟎, 0),
isotropic and anisotropic kriging, and isotropic sPDE approach based on INLA.
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FIGURE 8 | Simulation 2. Left: RMSE committed on test data by isotropic and anisotropic SR-PDE, indicated respectively by SR-PDE(𝐼, 𝟎, 0) and
SR-PDE(𝐾̂, 𝟎, 0), SR-PDE with unknown transport, indicated by SR-PDE(𝐼, 𝒃̂, 0), isotropic and anisotropic kriging, and the isotropic sPDE approach
based on INLA. Center and right: estimation errors committed by anisotropic SR-PDE when estimating the transport angle 𝜑 and the intensity 𝑟, with
respect to the ground truth values. The errors are computed as |𝜑̂ − 𝜑| and |𝑟̂ − 𝑟|, where 𝜑̂ and 𝑟̂ are the estimated parameters, while 𝜑 and 𝑟 are the
ground truth values used in the data generation process.

This inhomogeneous pattern of measurements can be observed
in several environmental problems, such as, for instance, in
applications to buoy data, since buoys are moored in shallow
waters, close to the coastlines that constitute the boundaries of
the domain of interest. A Gaussian noise with zero mean and
standard deviation equal to 0.1, which corresponds approxi-
mately to 5% of the data range, is added to the training data. The
test data is composed of measures of the PDE solution at a fine
grid of 100 × 100 points over the square domain.

We here illustrate the ability of the proposed model to lever-
age partial information about the phenomenon under study.
Specifically, we assume that the phenomenon is characterized
by a transport effect, though we do not impose either the direc-
tion or the intensity of this transport term. We thus consider
a SR-PDE(𝐼, b̂, 0) model, where the unknown transport term is
estimated via the parameter cascading approach described in
Section 3. As done for Simulation 1 and for the applications pre-
sented in Section 5 and 6, we consider a null forcing term and
homogeneous Neumann conditions; we thus use a different forc-
ing term and different boundary conditions with respect to those
that were used to generate the data. Since the training data loca-
tions are strongly inhomogeneous in space, we apply a mesh
adaptivity procedure, as suggested by Ferraccioli et al. (2021), to
enable more flexibility in the estimation where we have more
data while saving computational cost. In particular, we consider
a Voronoi tessellation of the training data locations: this is a
partition of the spatial domain where the 𝑖-th subdomain is the
set of points that are closer to the 𝑖-th training data location
than to any other data location in the training set. Starting from
the Voronoi vertices, we then create the mesh using the mesh
generation and mesh refinement utilities of the fdaPDE pack-
age. This results in meshes that are finer where more training
data are observed, as displayed in the right panel of Figure 4
concerning the first simulation replicate and with an average
of 1643 nodes.

We also compute the estimates given by isotropic SR-PDE,
SR-PDE(𝐾̂, 𝟎, 0), isotropic and anisotropic kriging with Matérn
variograms, and the isotropic sPDE approach based on INLA
with a mesh having 1595 nodes. These methods are implemented
using the same packages indicated in Section 4.1.

Figure 8 shows the boxplots of the RMSE committed on test data
by the different methods across the 30 simulation replicates. The
proposed SR-PDE(𝐼, b̂, 0) returns by far the smallest RMSE. Even
though the training data are concentrated in a small region of the
domain, the transport angles are estimated with a good accuracy,
with a median error of about 0.067 radians and a maximum error
of about 0.137 radians. The results on the magnitude of the trans-
port are less sharp, but this does not influences the overall quality
of the estimation, as already highlighted in Section 4.1. Figure 9
illustrates the predictions provided by the considered models in
the first simulation replicate. In particular, the top right panels
depict the differences between the effect of an anisotropic diffu-
sion term and of a transport term. The transport estimated by the
proposed SR-PDE(𝐼, b̂, 0) model provides a very good estimate of
the true transport vector. As a result, despite the small sample size
and the strongly inhomogeneous pattern of the data locations, the
spatial field estimated by SR-PDE(𝐼, b̂, 0) follows faithfully the
ground truth pattern. Notice that this model employs the wrong
forcing term and wrong boundary conditions. Nevertheless, the
ability of the proposed method to accurately retrieve the underly-
ing physics leads to remarkably good predictions, even in regions
of the domain with few training data. Instead, the estimates pro-
vided by the competing methods are unable to capture the overall
spatial pattern, as also confirmed by the markedly higher RMSE
shown in the left panel of Figure 8. Figure 10 compares the cover-
age and the amplitude of 95% prediction intervals on a 100 × 100
lattice of test locations across the 30 simulation replicates. Thanks
to the reliable estimate of the PDE obtained through parame-
ter cascading, the proposed SR-PDE(𝐼, b̂, 0) is able to return very
accurate predictions, with narrow intervals, even in this setting
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FIGURE 9 | Simulation 2. Top left: heatmap of the first test field; the vector visualizes the true transport of the field. Other panels: heatmaps of the
predicted spatial fields, with the corresponding anisotropy ellipses. The competing models are isotropic and anisotropic SR-PDE, indicated respectively
by SR-PDE(𝐼, 𝟎, 0) and SR-PDE(𝐾̂, 𝟎, 0), SR-PDE with unknown transport, indicated by SR-PDE(𝐼, 𝒃̂, 0); isotropic and anisotropic kriging; and the
isotropic sPDE approach based on INLA. For SR-PDE(𝐼, b̂, 0), displayed in the top-right panel, also the estimated transport term is displayed.

FIGURE 10 | Simulation 2. Coverage (left) and amplitude (right) of 95% prediction intervals, on a 100 × 100 lattice of test locations, across the
30 simulation replicates. The competing models are isotropic and anisotropic SR-PDE, indicated respectively by SR-PDE(𝐼, 𝟎, 0) and SR-PDE(𝐾̂, 𝟎, 0),
SR-PDE with unknown transport, indicated by SR-PDE(𝐼, 𝒃̂, 0), isotropic and anisotropic kriging, and isotropic sPDE approach based on INLA.

characterized by few data. These results emphasize the impor-
tance of properly using the available physical knowledge in order
to face challenging data analysis with complex spatial patterns.
Moreover, when the data locations are strongly inhomogeneous
over the spatial domain, the use and accurate estimation of a suit-
able problem-specific description can be very helpful in order to
extrapolate good predictions over the whole domain. This aspect
will be further illustrated by the application to buoy data in
Section 6.

5 | Switzerland Rainfall

This section is dedicated to the application of rainfall data in
Figure 1. The dataset comprises 467 daily rainfall measure-
ments, recorded in Switzerland on May 8, 1986. This dataset
was used for the Spatial Interpolation Comparison 97 (ftp://ftp
.geog.uwo.ca/SIC97/intro/alldata.dat; Dubois, Malczewski, and
De Cort 2003). Heavy and prolonged precipitations are the main
drivers of flooding in Switzerland. By understanding rainfall
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patterns and where the heaviest rainfall is likely to occur, it is pos-
sible to develop better flood forecasting systems and design more
effective flood prevention measures. Moreover, rainfall monitor-
ing is helpful to manage water resources.

As visible from Figure 1, the spatial distribution of collected
rainfall data is strongly anisotropic, possibly due to the com-
plex interaction between geomorphology and atmospheric circu-
lation. This anisotropic pattern cannot be explained by covariates,
such as elevation, which turn out to be not significant in a regres-
sion setting, as demonstrated by Bernardi et al. (2018) and Fer-
raccioli, Sangalli, and Finos (2022). Unfortunately, we lack here
a detailed PDE description of this physics that could be used to
inform the estimator. Nevertheless, in SR-PDE modeling, we can
use a stationary anisotropic diffusion term, with unknown direc-
tion and intensity, to model the apparent anisotropy in the data.
Moreover, we might expect that the rainfall was accompanied by
wind. If we had some information on the wind in Switzerland on
May 8, 1986, we could have encoded such knowledge in an appro-
priate transport term b. Since we could not find any record of the
wind on that day, we include in the SR-PDE model a stationary
transport term with unknown direction and intensity. Finally, we
set a null reaction term, since no meaningful shrinkage effect can
be envisioned in this applied problem.

We use the regular triangulation of the Swiss territory, having
1127 nodes, shown in the right panel of Figure 1. The optimal
diffusion parameters found via iterative parameter cascading are
𝛼̂ = 2.454 radians and 𝛾̂ = 6.001, while the transport ones are 𝜑̂ =
0.917 radians and 𝑟̂ = 6.9378. The top-right panel of Figure 11
shows the estimated optimal diffusion ellipse 𝐾̂ and transport
vector b̂: they follow faithfully the spatial pattern of the rainfall

data. Remarkably, the optimal transport estimated is also per-
fectly aligned with respect to the mean wind speed rose observed
in Switzerland over a 10-years period (2008–2017), provided by
Davis et al. (2019).

Figure 11 displays the estimate of the rainfall in Switzer-
land provided by the considered SR-PDE(𝐾̂, b̂, 0), compared
to the estimates provided by the following competing meth-
ods: isotropic SR-PDE; anisotropic SR-PDE(𝐾̂, 𝟎, 0), which does
not include information on the prevailing wind; isotropic and
anisotropic kriging with Matérn variograms; sPDE approach
based on INLA with a mesh having 1265 nodes. The vari-
ous methods are implemented through the same utilities intro-
duced in Section 4.1. The bottom-right panel of Figure 11 shows
leave-one-out Cross-Validation (CV) errors of the different spa-
tial models. SR-PDE(𝐾̂, b̂, 0) has significantly lower CV errors
than all the other methods. In particular, if the transport vec-
tor is estimated, along with the diffusion matrix, the results
improve not only with respect to SR-PDE(𝐼, 𝟎, 0), that is, with
respect to the isotropic SR-PDE model, but also with respect to the
SR-PDE(𝐾̂, 𝟎, 0) model proposed by Bernardi et al. (2018), which
enabled only the estimation of the diffusion term.

6 | Buoy Data Around Florida Peninsula

This section focuses on the analysis of the oceanographic data
illustrated in the top panels of Figure 2. In particular, we
consider sea surface temperatures and dissolved oxygen, mea-
sured at moored buoys in the Gulf of Mexico, around the
coastlines of the Florida peninsula on April 1, 2020. Tem-
perature and oxygen data are made freely available by the
National Oceanic and Atmospheric Administration (NOAA),

FIGURE 11 | Switzerland rainfall data. Top left: rainfall data measured at different locations of the Swiss territory. Bottom right: leave-one-out
cross-validation errors committed by different methods. Other panels: spatial field estimates of rainfall in Switzerland provided by different competing
methods, with the corresponding anisotropy ellipse. The competing models are: isotropic SR-PDE, anisotropic SR-PDE, and anisotropic SR-PDE with
unknown transport, indicated respectively by SR-PDE(𝐼, 𝟎, 0), SR-PDE(𝐾̂, 𝟎, 0) and SR-PDE(𝐾̂, b̂, 0); isotropic and anisotropic kriging; and the isotropic
sPDE approach based on INLA. For SR-PDE(𝐾̂, b̂, 0), displayed in the top-right panel, the estimated transport term, which captures the prevailing wind
on the day of the records, is also displayed.
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respectively at https://www.ndbc.noaa.gov (National Data Buoy
Center 2023) and https://www.ncei.noaa.gov/archive/accession
/NCEI-WOA18 (Boyer et al. 2018). The non-trivial form of the
spatial domain, characterized by the presence of the Florida
peninsula highly influences the oceanographic quantities under
study. Indeed, for example, the temperatures observed at two
buoys on opposite sides of the Florida peninsula, are naturally
less associated than the temperatures observed at two buoys, at
equal distance, but located on the same side of the peninsula.
Moreover, the phenomenon under study is strongly characterized
by the Gulf Stream, which is a warm, swift, and non-stationary
Atlantic Ocean current, shown in the bottom-right panel of
Figure 2. It is thus particularly desirable to analyze these data
using a method capable of take into account this physical knowl-
edge. The SR-PDE modeling framework is well suited to model
these data. Indeed, on the one hand, it naturally accounts for
the nontrivial shape of the domain. On the other hand, the
influence of the Gulf Stream on the spatial distribution of the
considered oceanographic quantities can be properly captured
by a diffusion-transport PDE, with a stationary isotropic diffu-
sion, combined with a space-varying transport function b(p),
that represents the Gulf Stream velocity in each location of the
domain. In particular, the direction and intensity of the Gulf
Stream around Florida are provided by the Ocean Surface Cur-
rent Analysis Real-time (OSCAR) dataset, with a 5-day resolu-
tion (Earth Space Research 2009). OSCAR provides near-surface
ocean current estimates derived using quasi-linear and steady
flow momentum equations, applied to satellite-sensed data con-
cerning ocean wind, sea surface temperature, and height gradi-
ents. Since we do not know a priori the relative intensities of the
diffusion and transport terms, we let the intensity parameter 𝜂

of the diffusion term be unspecified, and we estimate it using the
parameter cascading approach detailed in Section 3. The reaction
coefficient can instead be set to zero, since the shrinkage effect is
not meaningful for the phenomenon under study.

For the implementation of SR-PDE, we use the data-adaptive
mesh with 1635 nodes, shown in the bottom-right panel of
Figure 2. In transport-dominated settings, such as the one here
considered, data-driven meshes, besides saving computational
cost, may also prevent possible numerical instabilities that may
result from the strong transport. Specifically, the data-driven
mesh has been obtained starting from a fine mesh and then apply-
ing a rejection sampling procedure to get a coarser triangulation
where the magnitude of the velocity b is low: the smaller the Gulf
Stream intensity at a mesh node, the higher the probability of
deleting that node from the triangulation.

6.1 | Target: Sea Surface Temperature

The modeling and monitoring of Sea Surface Temperatures (SST)
is essential for marine ecosystems and weather forecasting. For
instance, SST affects the distribution of life underwater, since
warm seawater supports the presence of plankton, plants, and
fish. SST also influences the formation of clouds and precipi-
tation, because the heat exchange, between the ocean and the
atmosphere drives atmospheric circulation. Moreover, SST is a
key metric for monitoring climate change, as the ocean absorbs
over 90% of the surplus heat caused by human-induced climate
change.

We model SST by an SR-PDE model with the regularizing PDE
described above. The parameter cascading approach in Section 3
returns the estimate 𝜂̂ = 0.0218 for the diffusion intensity. This
small optimal value for the diffusion intensity 𝜂 suggests that the
transport has a very significant impact on the phenomenon under
study, and it dominates over the diffusion effect.

Figure 12 displays the estimate of SST provided by the consid-
ered SR-PDE(𝐾̂, b, 0), compared to the estimates provided by the
following competing methods: isotropic SR-PDE, which does not
include information on the Gulf Stream; isotropic and anisotropic
kriging with Matérn variograms; sPDE approach considering the
barrier model presented in Bakka et al. (2019) with a mesh having
1800 nodes. The bottom-right panel of the same figure displays
the boxplots of leave-one-out cross-validation errors for the var-
ious methods: SR-PDE(𝐾̂, b, 0) attains significantly lower errors
than all other methods.

The top-right panel of Figure 12 also displays the SST field
provided by NASA satellite images (JPL MUR MEaSUREs
Project 2015). It is important to notice that these data are not used
in the estimation. They are here displayed only to enable compar-
ison with respect to the SST estimates provided by the competing
methods, on the basis of the buoy data. Such visual comparisons
highlight that none of the competing methods, apart from the
proposed SR-PDE(𝐾̂, b, 0), can capture the strongly anisotropic
and non-stationary pattern of SST. The proposed method, lever-
aging the available problem-specific information concerning the
presence of the Gulf Stream, is capable instead of estimating the
spatial pattern of the quantity under study to a highly remark-
able level of detail, using solely the measurements at the buoys.
Indeed, thanks to the inclusion of a suitable space-varying trans-
port term and to the optimal estimation of 𝜂 given by the proposed
parameter cascading, SR-PDE(𝐾̂, b, 0) can capture the strongly
anisotropic and non-stationary features that are apparent from
the satellite images.

To further assess the performance of the proposed approach and
to provide a wider comparison with respect to the competing
methods, we consider additional SST buoy data, measured at
dates in spring and autumn, every 6 months from the date consid-
ered in Figure 12. Table 1 shows the resulting means and standard
deviations of leave-one-out CV errors for the competing models,
confirming the superiority of the proposed technique.

These results highlight that a suitable physical description of the
problem under study is crucial in the estimation, especially when
dealing with complex problems strongly characterized by a phys-
ical phenomenon such as the Gulf Stream.

6.2 | Target: Dissolved Oxygen

We now consider another fundamental oceanographic quantity,
Dissolved Oxygen (DO), which is one of the main indicators of
aquatic ecosystem health. DO is essential for the survival of fish,
invertebrates, and bacteria, since a depletion of DO results in
the suffocation of aquatic organisms. In addition, the presence
of DO plays a key role in enhancing the water quality: indeed,
bacteria take advantage of DO to decompose organic matter,
such as sewage and algae blooms; therefore, when DO levels are
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FIGURE 12 | Sea Surface Temperature (SST) around the Florida peninsula. Top left: SST measured at moored buoys, located around the Florida
coastlines. Top right: SST provided by NASA satellite images; these data are not used to compute the estimates and are here displayed only to enable
comparison with the estimates provided by the considered competing methods. Bottom right: leave-one-out cross-validation errors, committed by differ-
ent methods. Other panels: SST estimates provided by the considered competing methods. The competing methods are the isotropic SR-PDE(𝐼, 𝟎, 0); the
anisotropic SR-PDE(𝐾̂, b, 0), which includes information of the Gulf Stream in the transport b and uses the parameter cascading approach in Section 3;
isotropic and anisotropic kriging; and the sPDE approach based on INLA, using the barrier model.

TABLE 1 | Sea Surface Temperature (SST) around the Florida peninsula.

Mean (st. dev.)
of CV errors 01/04/2020 01/10/2020 01/04/2021 01/10/2021 01/04/2022 01/10/2022

SR-PDE(𝐼, 𝟎, 0) 0.789 (0.324) 0.812 (0.346) 0.597 (0.283) 0.884 (0.325) 0.731 (0.284) 0.821 (0.337)
SR-PDE(𝐾̂, b, 0) 𝟎.𝟑𝟗𝟏 (𝟎.𝟏𝟔𝟕) 𝟎.𝟐𝟖𝟐 (𝟎.𝟏𝟓𝟐) 𝟎.𝟐𝟕𝟎 (𝟎.𝟏𝟑𝟓) 𝟎.𝟑𝟔𝟖 (𝟎.𝟐𝟎𝟕) 𝟎.𝟒𝟗𝟗 (𝟎.𝟏𝟗𝟕) 𝟎.𝟑𝟗𝟑 (𝟎.𝟏𝟔𝟗)
Iso-kriging 0.991 (0.342) 1.004 (0.484) 0.655 (0.278) 1.203 (0.288) 1.134 (0.314) 0.930 (0.453)
Aniso-kriging 0.700 (0.450) 0.721 (0.356) 0.533 (0.304) 0.821 (0.324) 0.750 (0.400) 0.839 (0.485)
sPDE 0.639 (0.258) 0.603 (0.361) 0.556 (0.213) 0.830 (0.288) 0.744 (0.311) 0.678 (0.296)

Note: Mean leave-one-out cross-validation errors and corresponding standard deviations committed by different methods on SST data measured at five different days. The
competing methods are the isotropic SR-PDE(𝐼, 𝟎, 0); the proposed SR-PDE(𝐾̂, b, 0), which includes information of the Gulf Stream in the transport b and uses the
parameter cascading approach in Section 3; isotropic and anisotropic kriging; and the sPDE approach based on INLA, using the barrier model.

insufficient, organic matter can accumulate and lead to water pol-
lution. For these reasons, modeling and monitoring the spatial
behavior of the DO concentration in seawater is crucial to identify
and address environmental problems early on.

We model DO, using SST as a covariate. DO is in fact highly nega-
tively correlated with SST, with a Pearson correlation index equal

to −0.713. This is due to the fact that warm water provokes a
leakage of oxygen, due to the faster movements of the molecules.
Specifically, we consider a SR-PDE(𝐾̂, b, 0) model, with the same
PDE described above (with unknown intensity of the diffusion
term), and used to model SST in Section 6.1. Such PDE pro-
vides a valid model for most oceanographic quantities mea-
sured at buoys. We use the same data-driven mesh shown in the

16 of 20 Environmetrics, 2024

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2889 by C

ochraneItalia, W
iley O

nline L
ibrary on [09/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 13 | Dissolved Oxygen (DO) around the Florida peninsula. Top left: DO concentration measured at moored buoys, located around the
Florida coastlines. Bottom right: leave-one-out cross-validation errors committed by different competing methods. Other panels: DO concentration
estimates provided by different competing methods. The competing methods are: the isotropic SR-PDE(𝐼, 𝟎, 0); the proposed SR-PDE(𝐾̂, b, 0), which
includes information of the Gulf Stream in the transport b and uses the parameter cascading approach in Section 3; isotropic and anisotropic kriging;
and the sPDE approach based on INLA, using the barrier model.

bottom-right panel of Figure 2. Applying the parameter cascading
algorithm in Section 3, we obtain 𝜂̂ = 0.07; this value is of the
same order of magnitude as that estimated in Section 6.1, leading
to the same balance between diffusion and transport. Indeed, if
we had used the same PDE parameter estimated in Section 6.1,
we would have obtained estimates having totally comparable
leave-one-out cross-validation errors, as tested by the Wilcoxon
test. This confirms that the PDE provides an overall very accurate
description for the spatial variation of the oceanographic quan-
tities under study. The fitted SR-PDE(𝐾̂, b, 0) model returns a 𝛽

coefficient equal to −0.756, with an approximate 95% Wald con-
fidence interval for 𝛽 given by (−0.882,−0.629), coherently with
the negative correlation between DO and SST mentioned above.

Figure 13 shows the estimates of DO fields predicted by different
competing models, all including SST as a covariate. The com-
peting methods are the same as those considered in Section 6.1.
The same figure also displays, in the bottom-right panel, the
leave-one-out cross-validation errors for the competing methods.
Also in this application, the proposed SR-PDE(𝐾̂, b, 0) attains
the lower cross-validation error values. In particular, the mean
leave-one-out cross-validation error provided by SR-PDE(𝐾̂, b, 0)
is about 4% of the range of the observed DO values, whilst those

of competing models range between 6% and 10%. The proposed
method thus confirms its very good performances.

7 | Conclusions

SR-PDE provides a powerful physics-informed spatial regres-
sion framework that permits taking into account a suitable
PDE description of the phenomenon under study. Doing so,
both fidelity to the data and fidelity to the physical model con-
tribute to finding accurate and robust estimates that are coher-
ent, not only with the observed data, but also with the available
problem-specific information. This is crucial, for instance, when
facing environmental problems characterized by data scarcity
or inhomogeneity, by complex spatial domains, or by strongly
non-stationary spatial patterns, such as in the application to
buoy data, detailed in Section 6. Indeed, the addition of a phys-
ical description of some important aspects of the phenomena
under study, such as the presence of the Gulf Stream in the
application to buoy measurements, is essential to provide an
accurate modeling of the data at hand and thus a better under-
standing of the underlying process.

Furthermore, thanks to the parameter cascading approach here
described, it is now possible to retrieve appropriate values
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for the PDE parameters, whenever these cannot be specified
on the basis of problem-specific information. This estimation
approach permits us to fully deploy the power of SR-PDE, even
in settings where we lack problem-specific information or the
available information is incomplete. The application to rainfall
measurements over Switzerland, in Section 5, offers an illustra-
tive example in this sense: indeed, it shows that we can accurately
estimate the unknown anisotropy in the data, as well as retrieve
the unknown prevailing wind, leading to estimates superior to
those offered by state-of-the-art competitors.

There are, of course, a number of possible extensions of the pro-
posed approach. A very interesting direction of future research
concerns generalizations of the parameter cascading procedure
in order to retrieve unknown space-varying PDE parameters, in
analogy to what is described, for example, by Fuglstad, Lind-
gren et al. (2015); Fuglstad, Simpson et al. (2015), for the
sPDE approach. Another interesting further development goes
towards space-time data settings, leveraging the SR-PDE mod-
els for space-time data proposed by Arnone et al. (2019) and
Arnone, Sangalli, and Vicini (2023). Additional extensions that
would further broaden the applicability of this rich family of
physics-informed regression models concern spatial generalized
linear settings, appropriately combining the proposed approach
with the functional iterative penalized least square technique
described in Wilhelm and Sangalli (2016), as well as the use
of fractional differential operators. Finally, a fascinating direc-
tion of future research consists in refining the available inference
approaches for SR-PDE models with fixed PDE parameters, based
on classical Wald inference or on the innovative resampling ideas
developed in Ferraccioli, Sangalli, and Finos (2022, 2023) and
Cavazzutti et al. (2024), in order to also account for uncertainty
in the PDE parameters.
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