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A B S T R A C T

Understanding water movement in catchments subsurface is crucial for numerous applications such as pollutant
contamination, nutrient loss, water resource management and ecosystem functioning. Among the variables of
particular interest, the transit times of water particles and their statistical distribution are a desirable output.
Nevertheless, past approaches assume explicitly the form of the transit time distribution (TTD) to provide
information on water age in catchments. In this study we adopt a different approach by making assumptions
on the movement of water particles in the subsurface instead of assumptions on the transit time distribution.
Hence we propose a model based on a random velocity process with rests, where a water particle alternatively
moves with a constant velocity or it is trapped (with zero velocity) until it reaches the outlet of the catchment.
We assume that the moving times are i.i.d. (independent and identically distributed) random variables with
exponential distribution, while waiting times, i.e., times in which the water particle is trapped in subsurface
cavities, are assumed to be i.i.d. random variables with Mittag-Leffler distribution of order 𝛼, which is heavy
tailed. At the catchment outlet, which is assumed here to be at a distance from the inlet equal to the catchment
median flow path length 𝐿, the first passage time (or transit time) of the water particles is measured.

We applied the model to 22 Swiss catchments simulating, for each catchment, the movement of millions
of water particles thus obtaining the corresponding empirical TTD. We search for the threshold age (𝜏⋆) that
closely approximates the portion of the empirical TTD younger than 𝜏⋆, that is the young water fraction (𝐹𝑦𝑤).
We use the complex modulus of the empirical characteristic function of the TTD: this quantity represents, in our
model, the amplitude ratio of seasonal isotope cycles in stream water and precipitation. Our results reveal that
𝜏⋆ is comprised between 46 and 76 days, exactly in the range 2-3 months previously identified. Additionally,
given the amplitude ratio of isotopic concentrations, we estimate the only parameter of the model, that is the
𝛼 parameter of the Mittag-Leffler distribution, for each Swiss catchment using suitable catchments properties.
In conclusion, our study reveals that random velocity processes with rests are stochastic transport processes
useful for modeling water movement in heterogeneous catchments, with a limited number of assumptions.
1. Introduction

The transit time of water can be defined as the elapsed time from the
input of the water through the catchment inlet at time 𝑡𝑖𝑛 to the output
of the water through the catchment outlet at time 𝑡𝑜𝑢𝑡 (Rigon et al.,
2016). Accordingly, the transit time is the time that it takes for rainfall
(or snowmelt) to travel through a catchment before being released as
streamflow (Kirchner, 2016a). The transit time of water, and thus the
water age, is an important catchment descriptor that gives information
on flow paths which controls solutes transport which in turn influences
the susceptibility to pollutant contamination and nutrient loss (McGuire
and McDonnell, 2006; Benettin et al., 2022; Porporato and Calabrese,
2015).

∗ Corresponding author.
E-mail address: mariachiara.bovier@unito.it (M.C. Bovier).

Porporato and Calabrese (2015) examined existing theories of age
distributions in hydrologic systems and highlighted the need to treat
these distributions as random functions when fluxes are modeled with
time-varying stochastic processes. They used a stochastic model to
illustrate how the probabilistic structure of age distributions can help
quantify the variability and inherent uncertainty in determining water
age in real systems. Subsequently, Calabrese and Porporato (2017)
analyzed the role of multiple outflows, spatial components, and nonlin-
earities in the age theory. The water age and the movement of dissolved
substances are closely interconnected and are frequently investigated
in conjunction (Benettin et al., 2017). In the framework of stochastic
models, continuous time random walk (CTRW) models were typically
used in studies of chemical transport. For example, a recent study
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of Dentz et al. (2023) has investigated the occurrence of anomalous
non-Fickian) transport of chloride in a catchment system over a multi-
ecadal period. Moreover, Goeppert et al. (2020), by investigating

the tracer breakthrough curves in a karst system at the border be-
tween Germany and Austria, found that CTRW better describes the low
concentrations at longer travel times rather than traditional advection–
dispersion model and the two-region non-equilibrium model. However,
efforts are beginning to adapt these CTRW models also for the move-
ment of water particles. In this regard, in a very recent study, Elhanati
et al. (2024) implemented a continuous time random walk-particle
racking (CTRW-PT) numerical model to quantify long-tailed break-
hrough curves in a karst system of the Austrian Alps, drawing an
nalogy between partially saturated karst flow and chemical transport.

Past (pre-2006) methodologies that aimed to estimate the mean
transit time (MTT) relied on an assumed time-invariant transit time
distributions (e.g., general steady-state lumped convolution or flow
weighted time) (Benettin et al., 2022). However, the importance and in-
terest in unraveling the mechanisms by which watersheds retain water,
sometimes for years, before releasing it in a matter of hours (Kirchner,
2003) have led to significant developments in the field of transit time
estimation by using new data, theory and applications (Benettin et al.,
2022). From the experimental point of view stable water isotopes have
been used and are increasingly being used in catchment hydrology to
investigate the 𝑣𝑒𝑙 𝑜𝑐 𝑖𝑡𝑦 of the water molecules and, thus, the water
transit time (Kendall and McDonnell, 1998). Among the cutting-edge
theories that use such data, one that has gained significant traction is
based on the use of (time-invariant or time-variant) StorAge Selection
(SAS) function (Botter et al., 2011), which quantifies the release of

aters of different ages from the storage to an outflow (Rinaldo et al.,
2015).

Nevertheless, additional data-based methodologies have been de-
veloped in recent years. The pre-2006 methods have been questioned
ince they implicitly assume homogeneous and stationary catchments
ith consequent underestimation of the MTTs (Kirchner, 2016a,b). As
 result, it has been necessary to find a new metric, different from the

MTT, that is not sensitive to spatial heterogeneity and hydrologic non-
stationarity and that is able to infer reliable information directly from
easonal tracer cycles. In this regard, Kirchner (2016a) and Kirchner

(2016b), assuming that the TTD belongs to the family of gamma
distributions in thought experiments of mixing runoff, revealed that the
ratio of the amplitudes of seasonal isotope cycles in streamflow and
precipitation, respectively, is unaffected by the so-called aggregation
bias and that this ratio quantifies the fraction of runoff with transit
times younger than a threshold age of 2–3 months, named young water
fraction (𝐹𝑦𝑤) (Kirchner, 2016a,b).

The gamma distribution has been chosen by Kirchner (2016a) for
mathematical convenience: it is conveniently parameterized and it pos-
sesses finite moments of all orders and thus the family of gamma distri-
butions encompasses a wide range of shapes which approximate many
plausible TTDs. Furthermore, merging subcatchments runoff (with as-
sumed gamma TTD), the resulting runoff reveals a non-gamma TTD,
thus suggesting a general validity of his results (Kirchner, 2016a).
Nevertheless, the a-priori choice of the TTD is a limitation since it
is an assumption on a desired output. Indeed, other robust methods
have been developed to infer the transit time distribution such as non-
parametric deconvolution methods (Cirpka et al., 2007; Payn et al.,
2008; Gooseff et al., 2011). These approaches have been particularly
useful, for example, to determine transit time distributions using elec-
trical conductivity time series or to derive stream solute residence time
distributions from natural tracer concentrations without presuming any
shape of the distribution. Also, other simple assumptions would lead to
n exponential TTD (e.g., Benson et al. (2019)).

Taking a step back, the TTD can be seen as the observed effect at
he outlet point concerning the movement of water particles within
he watershed. Accordingly, what is reasonable to be assumed is the
 a

2 
movement of water molecules in the subsurface. To investigate ground-
water dynamics, a variety of numerical modeling approaches, based
on Darcy’s Law, have been used and constrained on different field
data (Somers and McKenzie, 2020). Such data can be estimated from
boreholes in the plains, while they are scarce for mountain environ-
ments in which subsurface processes are largely unknown. Thus, the
reproduction of observations as a result of hydrological processes at
catchment-scale remains challenging due to largely unknown boundary
conditions (Somers and McKenzie, 2020). Stochastic models, even if
they are based on approximations about the physics of the process,
an partially include the complex phenomena occurring in the sub-

surface with simple assumptions that overcome a detailed knowledge
of boundary and initial conditions and result suitable for practical
pplications.

The concept of first passage time refers to quantifying the time taken
by a random quantity to reach a preset threshold value. Therefore, the
heory of first passage times is well-suited for describing the movement

of a water molecule within a catchment until it reaches the outlet point.
A past theoretical study of Godec and Metzler (2016) advanced the
irst passage theory by rigorously deriving the complete distribution

of first passage times for a heterogeneous system (like catchments are)
and by uncovering significant differences between typical first passage
times and mean first passage times. However, studies that utilize the
first-passage time theory in hydrological studies with experimental data
capable of validating the model outputs are still limited.

Another modeling approach, which is widely used for anomalous
transport in heterogeneous systems, is the mobile-immobile (MIM)
model, which separates the particles into two fractions, those that
are in the mobile zone and those that are trapped in the immobile
zone. The convectional (Markovian) MIM model was used by Gao
et al. (2010) to describe reactive solute transport with scale-dependent
dispersion in heterogeneous porous media by assuming the dispersivity
coefficient a linear or exponential function of travel distance. Instead a
fractional mobile-immobile model for solute transport was considered,
for example, by Schumer et al. (2003) or Benson and Meerschaert
(2009). Assuming the power law distribution for waiting times in
the immobile zone leads to a fractional time derivative in the model
equations. The solutions capture the anomalous behavior of tracer
plumes in heterogeneous aquifers, including power law breakthrough
curves at late time, and power law decline in the measured mobile
mass. Mobile-immobile models with power-law and mixed waiting
ime distributions was considered also by Doerries et al. (2022). They

studied different forms for the dynamics of trapping times, not re-
stricted to the exponential, and their effects on tracer mass in the
mobile zone, in particular they also considered Mittag-Leffler trapping
time distribution. Non-markovian mobile-immobile models are not only
used in the geophysical and hydrological contexts. Indeed Kurilovich
et al. (2022) developed a non-Markovian MIM model that describes the
nomalous subdiffusive behavior of excitons in two different classes of

materials. Theoretical and simulated models based on the idea that the
trapping time distribution has power-law asymptotics at long times fit
the available experimental data.

The main aim of this paper is to develop a novel stochastic model,
ased on random velocity processes with rests, making plausible as-

sumptions (that take into account the heterogeneity of the catchments
subsurface) on distributions of water particles moving times (i.e., the
times in which water particles move in the catchment subsurface)
and waiting times (i.e., the times in which the water particles are
trapped in the catchment subsurface) and validate the model by using
results obtained with stable water isotopes across 22 study catchments
in Switzerland. The strength of our model is the absence of a-priori
assumptions on the TTD, the simplicity of the underlying assumptions
on water movement and the requirement of only one input, i.e., the

edian flow path length 𝐿 of the catchment, which can be easily
btainable from digital elevation models (DEM) and that will be used
s the preset threshold value for calculating the first passage time. It
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is noteworthy that this parameter was already found to be strongly
correlated with MTTs and 𝐹𝑦𝑤 in previous studies (McGuire et al., 2005;
Tetzlaff et al., 2009; Seeger and Weiler, 2014; von Freyberg et al.,
2018).

2. Preliminaries: seasonal cycles of stable isotopes

Isotope seasonal cycle in stream flow can be modeled as the convo-
lution of the catchment’s transit time distribution with the isotope sea-
sonal cycle in precipitation (Kirchner, 2016a; McGuire and McDonnell,
2006):

𝑐𝑠(𝑡) = ∫

∞

0
ℎ(𝜏)𝑐𝑝(𝑡 − 𝜏)𝑑 𝜏 (1)

where 𝑐𝑠(𝑡) is the isotopic composition (expressed in delta notation
(h), e.g. 𝛿18𝑂 or 𝛿2𝐻), in stream flow at time 𝑡, 𝑐𝑝(𝑡 − 𝜏) is the
isotopic composition in precipitation at any previous time 𝑡 − 𝜏, and
ℎ(𝜏) is the transit time distribution 𝑇 that is a priori unknown. Eq. (1)
mplicitly assumes that the catchment is a linear time-invariant system
nd, thus, that the distribution ℎ(𝜏) is stationary, i.e., constant in time.

Additionally, in this equation the evapotranspiration and its effects on
racer signatures are ignored (Kirchner, 2016a).

The isotopic composition of both stream flow and precipitation
follows a seasonal pattern that can be modeled by assuming a sinusoidal
unction:

𝑐𝑝(𝑡) = 𝐴𝑝 sin(2𝜋 𝑓 𝑡 − 𝜙𝑝) + 𝑘𝑝, (2)

𝑐𝑠(𝑡) = 𝐴𝑠 sin(2𝜋 𝑓 𝑡 − 𝜙𝑠) + 𝑘𝑠, (3)

where 𝐴 represents the amplitude (h), 𝜙 is the phase (radians), 𝑡 is
he time (days), 𝑓 is the frequency (𝑓 = 1

365 days−1) and 𝑘 is the
constant describing the vertical offset of the isotope signal (h). The
ubscripts 𝑝 and 𝑠 refers to precipitation and stream flow, respectively.
he isotope seasonal cycle of the stream water (i.e., the measured
utput) exhibits some damping relative to the isotope seasonal cycle
f precipitation (i.e., the measured input) and this damping is related
o the water age (McGuire and McDonnell, 2006; Kirchner, 2016a).

Indeed, the stronger attenuation of the seasonal isotope cycle amplitude
in stream flow (𝐴𝑠) relative to the seasonal isotope cycle amplitude
in precipitation (𝐴𝑝) reflects the longer time that the incoming water
spends within the catchment by following complex flow-paths and
simultaneously mixing with the groundwater storage which acts as a
filter on the input isotopic composition. Accordingly, a lower amplitude
ratio (i.e., 𝐴𝑠∕𝐴𝑝) corresponds to older water in the stream.

The amplitude ratio is related to the characteristic function of the
transit time distribution as follows. We use E to denote the mathemat-
ical expectation and 𝐻(𝜉), 𝜉 ∈ R, for the characteristic function with
argument 2𝜋 𝜉 of ℎ(𝜏), hence

𝐻(𝜉) = ∫

+∞

−∞
ℎ(𝜏)𝑒𝑖2𝜋 𝜉 𝜏𝑑 𝜏 = E𝑒𝑖2𝜋 𝜉 𝑇 . (4)

From the convolution (1) and using (2) and (3), it can be obtained that
𝐴𝑠
𝐴𝑝

= |𝐻(𝑓 )| (5)

where the absolute value of the characteristic function is meant as
he complex modulus and 𝑓 is the frequency of sine functions. For
athematical details see Appendix A.1.

This equivalence between the amplitude ratio of isotope cycles
n stream flow and precipitation and the complex modulus of the
haracteristic function is a key point because 𝐴𝑠∕𝐴𝑝 can be quantified
y sine-wave fitting on isotope data, while |𝐻(𝑓 )| can be computed
mpirically with simulations. We make assumptions about water move-
ent in the catchment, considering a model based on a random velocity

process, and calculate the modulus of the empirical characteristic func-
ion of the transit time distribution by simulating the first passage times

through a certain level 𝐿, as explained in the next section.
3 
3. Mathematical model and methodology

3.1. Random velocity process with rests and passage time

Random velocity processes are transport processes where a moving
particle perform random displacements with finite (constant) velocity:
random quantities in the model are the length and the orientation of
the displacements. In this sense they are a modification of continuous
time random walks, which instead are jumping processes (Metzler and
Klafter, 2000), and they are very useful to describe a wide range of
physical and biological phenomena involving stochastic transport phe-
nomena, since they have continuous trajectories. Furthermore, they can
represent different (anomalous) diffusive behavior (Zaburdaev et al.,
2015) depending on the tail of the distribution of the displacement’s
length.

In particular, we consider here a random velocity process with rests,
ay 𝑋(𝑡), 𝑡 ≥ 0, for the motion of water particles in the catchment as
ollows. The particle starts from the origin and moves along a linear
ath with a constant random velocity 𝑣1, which is chosen uniformly
n the interval (1, 100), for an exponential random time 𝐸1. Then the
article is trapped and it does not move for a random waiting time 𝐽1
ith infinite expectation. At the end of the trapping the motion starts
gain with another constant velocity 𝑣2, uniform in (1, 100), for another
xponential time 𝐸2, and so on. It will be always assumed that all the
andom quantities involved are independent. So the water’s particle
lternates between moving times, 𝐸𝑛, 𝑛 ∈ N, in which it moves with a
ertain velocity 𝑣𝑛, 𝑛 ∈ N, and waiting times (pauses), 𝐽𝑛, 𝑛 ∈ N, during
hich it remains stuck in its current position and thus has zero velocity.

The random displacement of the particle represent the motion of the
water in the catchment, while the pauses represent some trapping effect
induced by catchments’ heterogeneity. We remark that random velocity
processes can be viewed as semi-Markov models of transporting particle
in one dimension, in the sense of Ricciuti and Toaldo (2023), and we
use this approach to make the model rigorous, see Appendix A.2 for a
precise mathematical formulation.

The assumption on the distribution of the velocities of water parti-
cles means that, when particle is free to move, it spreads with velocities
𝑣𝑛, 𝑛 ∈ N, that are i.i.d. (independent and identically distributed)
random variables with uniform distribution

𝑣𝑛 ∼ 𝑈 (1, 100)

where the numbers represent a minimum velocity of 1 meters/day
and a maximum velocity of 100 meters/day. This is a typical range
of seepage velocity, indicated by Devlin (2020), along different types
of materials (sandy, sand and gravel, fractured rock, karst).

We choose the exponential distribution with parameter 𝜆 = 1 for
moving times since it has finite mean and variance. The choice of the
parameter equal to one is justified as follows. An exponential random
variable with parameter 𝜆 > 0 is the rescaling of an exponential
random variable with parameter 1: if 𝐸𝜆 denote an exponential r.v. with
parameter 𝜆 > 0, then 𝑃 (𝐸1∕𝜆 > 𝑡) = 𝑃 (𝐸𝜆 > 𝑡). The moving distances
traveled by the particles are 𝐸1

1𝑣1,… , 𝐸1
𝑛𝑣𝑛, where 𝑣𝑛 are the (random)

velocities and 𝐸1
𝑛 are i.i.d. copies of 𝐸1. The rescaling 𝐸𝜆

𝑛 = 𝐸1
𝑛∕𝜆

ould be, in practice, nothing more than a deterministic rescaling of
the velocities. These, however, must be kept as they are following the
discussion above.

Instead, we assume that waiting times are i.i.d. random variables
with Mittag-Leffler distribution of order 𝛼. The cumulative distribution
function is given by:

𝐹 (𝑡) = 𝑃 (𝐽𝑛 ≤ 𝑡) = 1 − 𝐸𝛼(−𝑡𝛼)

where 𝐸𝛼(⋅) denotes the Mittag-Leffler function of one parameter which
is defined as

𝐸𝛼(𝑧) =
∞
∑ 𝑧𝑘 .

𝑘=0 𝛤 (1 + 𝛼 𝑘)
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The one-parameter Mittag-Leffler function is a generalization of the
exponential function which is very popular in the mathematical com-
munity working on non-local equations (see, e.g., Mainardi (2010)
nd Scalas (2006)). This is because, in particular, the survival function

𝐸𝛼(−𝑡) is the eigenfunction of the fractional derivative of order 𝛼,
i.e., 𝜕𝛼𝑡 𝐸𝛼(−𝑡) = −𝐸𝛼(−𝑡) and it reduces to the exponential in the case
𝛼 = 1. For 𝛼 ∈ (0, 1] the function 𝐸𝛼(−𝑡) is completely monotone and
it is 1 for 𝑡 = 0, this means that is a legitimate survival function. For
𝛼 ∈ (0, 1), the function 𝐸𝛼(−𝑡) behaves, see Baleanu et al. (2016), as a
stretched exponential for 𝑡 → 0

𝐸𝛼(−𝑡) ≃ 1 − 𝑡
𝛤 (𝛼 + 1) ≃ 𝑒

−𝑡
𝛤 (𝛼+1) (6)

and has a power law tails for 𝑡 → ∞

𝐸𝛼(−𝑡) ≃
sin(𝛼 𝜋)

𝜋
𝛤 (𝛼)
𝑡

. (7)

Since 𝛼 ∈ (0, 1) the Mittag-Leffler distribution is a heavy tailed distri-
ution (see more on fractional calculus and the corresponding heavy-
ailed distributions in Meerschaert and Sikorskii (2012); see Meerschaert

and Toaldo (2019) for recent generalizations). The distribution function
is differentiable on (0,+∞) and the density is singular at zero. The
behavior of the survival function makes clear that it has infinite mean.
We choose the Mittag-Leffler distribution to model the behavior of a
water particle subject to a trapping effect in the geological formation
of the catchment. Due to the behavior of the Mittag-Leffler distribution
the traps tend to be very short, as the density is singular at zero
(see Eq. (6)), or very long, as it is an heavy tailed distribution with
infinite expectation (see Eq. (7)). The parameter 𝛼 of the Mittag-Leffler
distribution is related to the duration of waiting times, for small 𝛼
the waiting times are very long while for larger 𝛼 the waiting times
decrease.

In this context the transit time of water in the catchment is repre-
sented by the first passage time of the process 𝑋(𝑡), 𝑡 ≥ 0, through the
level 𝐿. We choose as level 𝐿 the median flow path of the catchment
because it is a measure for the length of the typical travel of water
rajectories in the catchment.

3.2. Computational methods

In order to generate the transit time 𝑇1,… , 𝑇𝑁 we perform 𝑁 exact
simulations of the trajectories of the process 𝑋(𝑡), for 𝑡 large enough
such that all of them pass through the level 𝐿 (recall that 𝑋(𝑡) is
ontinuous and non-decreasing). The simulation are exact in the sense
hat we can sample all the random quantities from their distribution
nd then using them to build the trajectories. Given the trajectories, the
irst passage time is then a functional that we can compute explicitly,
ee Fig. 1. We generate the water particle velocities as i.i.d. random

variables uniformly distributed in the interval (1, 100), the moving times
s i.i.d. random variables with exponential distribution with parameter
= 1, and the waiting times as i.i.d. random variables with Mittag-

effler distribution with parameter 0.05 < 𝛼 < 0.95 (the extreme values
re excluded as they do not appear in our estimates and they are
omputationally very expensive). The interval (1, 100) meters/day for
article velocities is a typical range of seepage velocity along different
ypes of materials (Devlin, 2020). From the velocities 𝑣𝑛, alternating

with zero velocity, we obtain the position of the water particle in time
nd compute the first passage time for the level 𝐿, which corresponds
o the measure of the median flow path length in the catchment. The
umber of iterations has to be sufficiently large for the strong law of

large numbers, so we consider 𝑁 = 10000.
Since the distribution function of transit time is unknown, the em-

pirical cumulative distribution function can be computed by simulating
𝑁 first passage times of a particle for the level 𝐿. The empirical
characteristic function with 𝑁 simulated first passage times 𝑡𝑛, 𝑛 =
1,… , 𝑁 is

𝐻𝑁 = 1
𝑁
∑

cos(2𝜋 𝑓 𝑡𝑛) + 𝑖 1
𝑁
∑

sin(2𝜋 𝑓 𝑡𝑛). (8)

𝑁 𝑛=1 𝑁 𝑛=1

4 
Therefore the complex modulus of the empirical characteristic function
is

|𝐻𝑁 | =

√

√

√

√

√

1
𝑁2

( 𝑁
∑

𝑛=1
cos(2𝜋 𝑓 𝑡𝑛)

)2

+ 1
𝑁2

( 𝑁
∑

𝑛=1
sin(2𝜋 𝑓 𝑡𝑛)

)2

. (9)

The modulus depends on the parameter 𝛼 ∈ (0, 1) of the Mittag-Leffler
distribution and on the number of simulations 𝑁 . Since the first passage
times 𝑡𝑛 are realizations of r.v.’s 𝑇1,… , 𝑇𝑁 that are i.i.d. copies of 𝑇 ,
i.e., the transit time through 𝐿 of the process, we have by the strong
law of large numbers that, almost surely, for 𝑁 → ∞,

1
𝑁

𝑁
∑

𝑛=1
cos(2𝜋 𝑓 𝑇𝑛) → E cos(2𝜋 𝑓 𝑇 ), (10)

1
𝑁

𝑁
∑

𝑛=1
sin(2𝜋 𝑓 𝑇𝑛) → E sin(2𝜋 𝑓 𝑇 ). (11)

From (10) and (11) follows that for 𝑁 → ∞
√

√

√

√

√

1
𝑁2

( 𝑁
∑

𝑛=1
cos(2𝜋 𝑓 𝑇𝑛)

)2

+ 1
𝑁2

( 𝑁
∑

𝑛=1
sin(2𝜋 𝑓 𝑇𝑛)

)2

→
√

(E cos(2𝜋 𝑓 𝑇 ))2 + (E sin(2𝜋 𝑓 𝑇 ))2. (12)

Therefore, when the number of simulated first passage times tends to
infinity, the modulus of empirical characteristic function tends to the
modulus of the theoretical characteristic function, i.e., almost surely as
𝑁 → +∞,

|𝐻𝑁 | → |𝐻(𝑓 )|. (13)

With 𝑁 simulated first passage times, given the length of the flow
ath, we can calculate the modulus of the empirical characteristic
unction as 𝛼 varies in (0, 1), using (9). Fig. 2 shows the modulus of

the empirical characteristic function computed with different flow path
lengths, for 𝛼 varying.

Therefore, given the median flow path length 𝐿 of the catchment as
 fixed observed parameter, we do the following:

• we obtain 𝑁 simulated realizations 𝑡 = (𝑡1,… , 𝑡𝑁 ) of the transit
time 𝑇 of water particles to estimate the empirical TTD, by
reaching 𝐿;

• we use that, in our model, the amplitude ratio of the isotopic
concentrations is represented by the (complex) absolute value of
the TTD characteristic function (see Eq. (5)), that we can estimate
empirically through simulations;

• we find, for each catchment, the threshold age 𝜏⋆ for which the
modulus of the empirical characteristic function closely approx-
imates the young water fraction as the model parameter varies
(see Section 4.2);

• we show that these threshold ages 𝜏⋆ agree with the ones ob-
tained by Gentile et al. (2023) and are in the range obtained
by Kirchner (2016a) (assuming a gamma TTD). This concludes
the validation of the model in the sense proposed by Kirchner
(2016a), i.e., our model captures (regardless of the 𝛼 value) the
interplay between the young water fraction and the modulus of
the characteristic function;

• we provide an estimate of the model’s parameter 𝛼 which requires
the knowledge only of the amplitude ratio (see Section 4.4) and
discuss how this parameter is related to the amplitude ratio and
the median flow path length.

4. Catchments application and results

4.1. Study catchments

In this study we use the amplitude ratio (𝐴𝑠∕𝐴𝑝) previously esti-
mated by Gentile et al. (2023) for 22 Swiss catchments (see Fig. 3)
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Fig. 1. Simulated trajectories of a water particle through time with first passage times for the level 𝐿 = 407 m.
Fig. 2. Modulus of the empirical characteristic function with median flow path lengths: 𝐿 = 155 m, 𝐿 = 308 m, 𝐿 = 481 m and 𝐿 = 647 m, as 𝛼 varies in (0, 1).
which were also investigated by von Freyberg et al. (2018). The am-
plitudes of seasonal isotope cycles in precipitation and stream flow
were obtained in their study by using the isotopic composition (𝛿18𝑂),
complemented with MeteoSwiss daily precipitation data and discharge
data. Specifically, the seasonal isotope cycle amplitude in precipitation
(𝐴𝑝) is obtained by fitting volume-weighted Eq. (2) on precipitation
isotope data to reduce the influence of low-precipitation periods and
to account for temporally aggregated rainfall samples (von Freyberg
et al., 2018); the seasonal isotope cycle amplitude in streamwater (𝐴𝑠)
is obtained by fitting flow-weighted Eq. (3) on streamwater isotope data
to compensate for sub-sampled high-flow periods. These coefficients are
estimated with sinusoidal fitting by using the iteratively re-weighted
least squares (IRLS) regression for reducing the influence of outliers.
The reader is referred to the source paper (Gentile et al., 2023) for
5 
further information about the methodology and data used to compute
the amplitudes of the seasonal cycles which are used in this study to
estimate the main parameter of the mathematical model. The amplitude
ratios obtained by Gentile et al. (2023) for the 22 Swiss catchments
with related standard error (SE) are reported in Table 1. The data
set covers catchment mean elevations between 472 and 2369 m a.s.l.
and catchment areas between 0.7 and 351 k m2. The catchments are
classified in three different hydro-climatic regimes (snow-dominated,
rainfall-dominated and hybrid) according to the classification scheme
proposed by Staudinger et al. (2017).

We use as only input data of the mathematical model a terrain
index: the median flow path length 𝐿 (in meters). In this study 𝐿
is considered as a representative length of the flow paths within the
catchment since (i) no more detailed information about the length
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Table 1
Name with ID, median flow path length (L), amplitude ratio (𝐴𝑠∕𝐴𝑝) of isotope cycles in stream flow and precipitation with
standard error, threshold age (𝜏⋆) obtained for the young water fraction and estimation of 𝛼 parameter for the 22 Swiss
catchments.
Catchment name (ID) Median flow path 𝐴𝑠

𝐴𝑝
± 𝑆 𝐸 Threshold Parameter

length 𝐿 (m) age 𝜏⋆ (d) estimation 𝛼̂

Aabach (AAB) 407 0.22 ± 0.04 62 0.35
Aach (AAC) 481 0.07 ± 0.07 66 0.19
Allenbach (ALL) 423 0.14 ± 0.02 63 0.26
Alp (ALP) 196 0.34 ± 0.04 49 0.23
Biber (BIB) 207 0.34 ± 0.04 50 0.25
Dischmabach (DIS) 647 0.09 ± 0.01 76 0.31
Emme (EMM) 286 0.34 ± 0.05 55 0.35
Ergolz (ERG) 421 0.11 ± 0.01 63 0.22
Erlenbach (ERL) 169 0.51 ± 0.05 47 0.35
Guerbe (GUE) 258 0.21 ± 0.03 53 0.18
Ilfis (ILF) 157 0.13 ± 0.02 47 0.006
Langeten (LAN) 308 0.09 ± 0.02 56 0.08
Luempenenbach (LUE) 155 0.33 ± 0.03 46 0.14
Mentue (MEN) 364 0.26 ± 0.05 60 0.35
Murg (MUR) 219 0.11 ± 0.03 50 0.002
Ova da Cluozza (OVA) 616 0.13 ± 0.02 75 0.36
Riale di Calneggia (RIA) 647 0.19 ± 0.03 76 0.44
Rietholzabach (RIE) 194 0.15 ± 0.02 49 0.01
Schaechen (SCH) 646 0.12 ± 0.02 76 0.36
Sense (SEN) 227 0.20 ± 0.04 51 0.13
Sitter (SIT) 329 0.17 ± 0.02 57 0.22
Volgelbach (VOG) 193 0.29 ± 0.03 49 0.17
Fig. 3. Location of the 22 study catchments across Switzerland with indication of the hydro-climatic regime.
of subsurface flow paths are available and (ii) it resulted in a strong
negative correlation with the young water fraction (von Freyberg et al.,
2018), thus it turned out to be a good proxy for the water age. The
median flow path lengths reported in Table 1 have been previously
computed by Seeger and Weiler (2014) (and reported in Table 2 of von
Freyberg et al. (2018)) by using the open source software SAGA-GIS.
They used a DEM of 25 m resolution as input to the SAGA module
‘‘Channel Network’’ to derive the channel network in a catchment.
Subsequently, they used the SAGA module ‘‘Overland Flow Distance
to Channel network’’ (O’Callaghan and Mark, 1984; Freeman, 1991;
Ali and De Boer, 2010; Nobre et al., 2011) to calculate the flow path
lengths, then aggregated by computing their median value.
6 
4.2. Young water fraction

The young water fraction is defined as the proportion of water
younger than a certain threshold age (𝜏𝑦𝑤) and thus it can be computed
using the TTD. Hence, from the point of view of the model, the water
younger than a certain 𝜏𝑦𝑤 is represented by the distribution function
of the TTD, i.e., 𝑃 (𝜏 ≤ 𝜏𝑦𝑤). This quantity has recently been proposed
as a reliable measure of water age in heterogeneous and non-stationary
catchments (Kirchner, 2016a,b). Young water fraction with a threshold
age of approximately 2–3 months can be estimated directly from the
amplitude ratio of the seasonal cycles of stable water isotopes in stream
flow and precipitation, respectively (Kirchner, 2016a).
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In this section we show that our model, regardless of 𝛼 and 𝐿,
captures the behavior of the young water fraction in the sense proposed
by Kirchner (2016a). Indeed, the amplitude ratio is represented in our

odel by the complex modulus of the characteristic function; we show
ere that this coincides (regardless of 𝛼 value and for each median flow
ath) with the proportion of particles that cross level 𝐿 in less than 2 or
months. However, Kirchner (2016a) assumed a Gamma TTD, while
e only make hypothesis about the movement of water particles. We

can obtain the young water fraction empirically with 𝑁 simulated first
passage times 𝑡𝑛 for 𝛼 ∈ (0, 1). Denote by

(0,+∞) ∋ 𝜏𝑦𝑤 ↦ 𝐹𝑦𝑤 = 1
𝑁

𝑁
∑

𝑛=1
1(𝑡𝑛<𝜏𝑦𝑤). (14)

the empirical c.d.f. of the TTD, i.e., the empirical estimate of the
fraction of water younger than some arbitrary 𝜏𝑦𝑤, 𝑃 (𝜏 ≤ 𝜏𝑦𝑤). In our

odel the amplitude ratio is represented by the complex modulus of the
haracteristic function, that we estimates as in Eq. (9) from simulations.

Hence we search here for the threshold age, say it 𝜏⋆, for which the
mpirical young water fraction closely approximate the modulus of the

empirical characteristic function.
We looked for the threshold age 𝜏⋆ that minimizes the sum of

squares of the distances between the modulus of the characteristic
function and the young water fraction, as follows:

𝜏⋆ = argmin𝜏𝑦𝑤

∑

𝛼
(|𝐻𝑁 | − 𝐹𝑦𝑤)2, (15)

where 𝛼 ranges from 0.05 to 0.95 with step 0.01.
We performed the procedure for the 22 Swiss catchments, thus for

different values of 𝐿, and we found 𝜏⋆ between 46 and 76 days, as
shown in Table 1, so in the range of 2.3 ± 0.8 months found by Kirchner
(2016a) for a wide range of transit time distributions (von Freyberg
t al., 2018). In addition, our results are in line with previous outcomes
btained by Gentile et al. (2023) who found a threshold age between

about 44 and 96 days for the same catchments, but using a ‘‘direct
input’’ approach for estimating the amplitude ratio of seasonal tracer
cycles instead of the ‘‘delayed input’’ approach used by von Freyberg
et al. (2018). For more details about ‘‘direct’’ and ‘‘delayed’’ input
or estimating the amplitude ratio of seasonal tracer cycles the reader

is referred to von Freyberg et al. (2018) and Gentile et al. (2023).
The amplitude ratio 𝐴𝑠∕𝐴𝑝 and the young water fraction 𝐹𝑦𝑤 are both
dimensionless and they are both in the range from 0 to 1, so they can
e directly compared to determinate the threshold age. Equivalently,
he threshold age can be obtained with the fit between modulus of
he characteristic function and young water fraction that minimizes
he root mean squared error (RMSE) calculated relative to the 1:1
ine. The threshold ages 𝜏⋆, reported in Table 1, were obtained with
𝑀 𝑆 𝐸 ≤ 0.01. Plots for some of the 22 Swiss study catchments are

hown in Fig. 4.

4.3. Passage time and heavy tail

The average transit time is infinite because the distribution of
rapping Mittag-Leffler and therefore the distribution of transit time is
eavy-tailed. Indeed, define the r.v. 𝜏𝐿 ∶= inf {𝑠 ≥ 0 ∶ 𝑋(𝑠) = 𝐿}. Note
hat

𝜏𝐿 = 𝐿
𝑣0
1[

𝐸0>
𝐿
𝑣0

] + (𝐸0 + 𝐽0 + 𝜏′𝐿)1
[

𝐸0≤
𝐿
𝑣0

] ≥ 𝐽01[𝐸0≤
𝐿
𝑣0

], (16)

where 𝜏′𝐿 denote the amount of time after 𝑇2 taken by 𝑋 to reach the
level 𝐿; in formulae 𝜏′𝐿1

[

𝐸0≤
𝐿
𝑣0

] = inf {𝑠 ≥ 𝑇2 ∶ 𝑋(𝑠) = 𝐿
}

− 𝑇2. Using

(16) we get that

E𝜏𝐿 ≥ E𝐽01[𝐸0≤
𝐿
𝑣0

] = E𝐽0P
(

𝐸0 ≤
𝐿
𝑣0

)

= +∞ (17)

where we used independence of 𝐽0, 𝑣0 and 𝐸0 as well as the fact that
0 has infinite expectation (since it has the Mittag-Leffler distribution).

We observe that heavy tails for transit time distribution was already
 c

7 
observed (Wang et al., 2023; Kirchner, 2019; Porporato and Calabrese,
2015).

The infinite average transit time can also have an hydrologic in-
erpretation. Indeed, the total catchment storage is composed of a

mobile part (mobile aquifer groundwater connected with streamflow)
nd an ‘‘immobile’’ (the following clarifies why we use ‘‘ ’’) part that
oes not participate in the catchment water fluxes (Staudinger et al.,

2017). Accordingly, the infinite MTT suggests that an amount of water
articles, through deep vertical infiltration, can reach portions of the
ubsurface (e.g., aquitard) that restrict the groundwater flow due to
ow permeability, thus confining deeper aquifers that are disconnected
rom watercourses. However, certain geological, hydrological and/or
nthropic processes will, at some point, activate transverse dispersion
rom (extremely old) aquitard groundwater (likely constituting the ‘‘im-
obile’’ storage) to old (unconfined) aquifer groundwater (Torgersen

et al., 2013) which is connected with watercourses. In such a case, the
extremely old water particles would contribute to increasing the mean
residence time in the aquifer that, sustaining baseflow during low-flow
periods, will increase the streamwater MTT, thus also explaining the
eavy tails of TTD. In this regard, radioactive tracers revealed that ‘‘fos-

sil’’ (>12,000-year-old) groundwaters dominate global aquifer (about
250 m depth) storage (Jasechko et al., 2017), which can contribute to
stream flow.

Another interpretation for mean transit times tending towards in-
inity can also be given by considering the water retained in a soil
ample. It is known that, after sampling, the so-called ‘‘gravitational
ater’’ is lost, while the water that the soil retains against gravitational

orces remains within it. Nevertheless, to quantify the gravimetric
water content of a soil sample, the thermogravimetric method can
be used, which involves drying the sample in an oven at 105 ◦C for
at least 21 h so that even the water adsorbed by soil particles can
evaporate. At ambient temperatures, this water does not participate
in deep percolation and, if not taken up by plants, remains, for an
indefinite time, in the soil held by the high negative tension. However,
some processes (e.g., pedogenetic phenomena and/or the influence of
soil fauna) could cause the soil to retain this water with less tension,
which could then participate in gravitational flow, thereby increasing
the average age of the percolating water (which is generally assumed
to recharge groundwater). Although the aforementioned considerations
lead us to find it acceptable to have a mean transit time tending
towards infinity, the use of tracers does not help us to clearly validate
this result and this is mainly for two reasons. First, tracers can help
uantify the contribution of old vs. young streamflow but not ℎ𝑜𝑤
𝑙 𝑑 the old water is (Knapp et al., 2019; Benettin et al., 2022). Sec-

ond, a conceptual/mathematical model must be employed to convert
racer concentrations into an age and the model assumptions can have

repercussions on the results (Torgersen et al., 2013). For example, by
ssuming a stationary TTD in the convolution integral approach, the
table-isotope-based MTT likely underestimates the true MTT, possibly
y orders of magnitude (Kirchner, 2016a).

Although the mean transit time tends to infinite, order statistics,
such as quantiles, i.e., the proportion of water younger than a threshold
age (that we use in the next section to validate our model), are robust
to the occurrence of extreme values. The asymptotic distribution can be
often recognized explicitly, see for example, Chapter 10 in David and
Nagaraja (2003) but also section 10.2 of Casella and Berger (2001).

4.4. Estimation of the trapping effect: the parameter 𝛼

In the proposed model for the movement of water particles in
he subsurface we consider the Mittag-Leffler distribution for waiting
imes, whose parameter 𝛼 is the only parameter of the model. As
xplained above, just after (6) and (7), this parameter is related to the
ength of waiting times, that is, the times in which the water particle
oes not move because it is trapped due to the heterogeneity of the
atchment. The 𝛼 parameter can be estimated by a polynomial fitting
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Fig. 4. In the top three plots the black points represent the modulus of the empirical characteristic function and the gray lines the young water fraction for different threshold
ages. The best fits in red are obtained with threshold ages (𝜏⋆) of 55, 63 and 76 days for catchments Emme, Ergolz and Dischmabach, respectively. The other three plots show
in black the 1:1 line and in red the best fits with the same threshold ages for the three catchments.
of the modulus of the characteristic function which represents the
empirical counterpart of the amplitude ratio of isotopic concentrations.
The latter is observable, in the sense that it comes from a deterministic
sinusoidal fitting of real data and its value for the 22 Swiss catchments
is available from Gentile et al. (2023). The dependence between 𝛼 and
|𝐻(𝑓 )| should be estimated by fitting a suitable curve. We fitted the
coefficients of polynomials with the mean square method and with a
fourth order polynomial we obtain a 𝑅2 ≈ 0.99; see the curves in Fig. 5
for some of the 22 Swiss study catchments.

Since the modulus of the characteristic function coincides with the
ratio of the amplitudes of the isotopic concentrations, as stated in
Section 2 (see Eq. (5)), by substituting the value of the amplitude ratio
(𝐴𝑠∕𝐴𝑝), reported in Table 1, the fourth degree polynomial can be
solved to estimate the value of 𝛼. The estimated values 𝛼̂, with a fourth-
degree polynomial fitting, for each of the 22 Swiss study catchments are
reported in Table 1.

The amplitude ratio is related to the proportion of young water as
follows. Small values of the amplitude ratio indicate that there is a lot
of mixing within the catchment between incoming water (from precip-
itation and/or snowmelt) and groundwater storage that was previously
present in the catchment (and, accordingly, it is older). As a result,
the young water is low (e.g., the Dischmabach snow-dominated catch-
ment, von Freyberg et al. (2018)). On the contrary, larger values of
the amplitude ratio indicate a greater portion of young water (e.g., the
Erlenbach hybrid catchment; von Freyberg et al. (2018) and Gentile
et al. (2024)) due to limited mixing processes and the activation of
rapid flow paths. In this sense, the alpha parameter is related to the
mixing of young water with old water: a lower alpha value corresponds
to longer traps (heavy tailed) and thus more mixing with water that was
already stored in the catchment. This direct relation is well depicted
8 
by our model as can be seen from the estimates of 𝛼 (Table 1) and the
trend of the modulus of the characteristic function, representing the
amplitude ratio in our model, that increases from 0 to 1 with 𝛼 (Fig. 2).

5. Discussion and conclusions

A probabilistic approach has already been introduced for anomalous
(or non-Fickian) transport to describe tracer and water transport in
heterogeneous systems. Porporato and Calabrese (2015) drew attention
to existing theories of water age distributions and emphasized the
importance of treating age distributions as random functions when
hydrologic flows are modeled by means of time-varying stochastic
processes. The introduction of stochasticity, originating from the ran-
domness of the input and output terms in hydrological systems, can
help improve streamflow models and quantify the uncertainty of water
age. In addition, Calabrese and Porporato (2017) extended water age
theory to multiple flows and analyzed the effects of nonlinearities.

On the other side Markovian mobile-immobile models and non-
Markovian mobile-immobile models with heavy tails trapping time
distribution for solute transport have been used (Doerries et al., 2022;
Gao et al., 2010; Schumer et al., 2003), and also models based on
continuous time random walks have been widely considered. Indeed
a CTRW based on a power-law distribution of the transition times
have been used to model the transport of a natural passive tracer
(chloride) at a large spatial scale and over a long period (Dentz et al.,
2023). Also, it was shown that CTRW model better describes the long
tailed breakthrough curves of conservative tracers in an alpine karst
system than the conventional advection–dispersion equation and the
two-region non-equilibrium model, based on mobile and immobile
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Fig. 5. Fourth degree polynomial fitting (in blue) over the modulus of the characteristic function to estimate the parameter 𝛼. These plots are relative to the catchments Aabach,
Emme, Biber, Sitter, Langeten and Alp.
zones (Goeppert et al., 2020). An adaptation of the continuous time ran-
dom walk-particle tracking model also to water flow in karst aquifers
has been considered very recently (Elhanati et al., 2024) by simulating
the contribution of fast and slow flow components.

Therefore the stochastic model we proposed, based on a random
velocity process with rests, is new, in particular, in the context of
subsurface water movement in heterogeneous catchments. This gave
us the possibility to undertake several new considerations. The main
strengths, and new features, of our model are the following. We make
no explicit assumptions on the distribution of water transit time but
make simple physical assumptions about the movement of water par-
ticles that take into account the heterogeneity of the subsurface. The
only assumption is that the water particle alternates between periods
in which it moves with constant velocity and periods in which it does
not move (rests), so it has zero velocity, because it is trapped in the
subsurface due to the heterogeneity of the catchment. We assume that
moving times are i.i.d. random variables with exponential distribution,
the waiting times are i.i.d. random variables with Mittag-Leffler distri-
bution of order 𝛼 ∈ (0, 1) and the velocities are i.i.d. random variables
with uniform distribution in the interval (1, 100). The distribution of
trapping times (Mittag-Leffler) and thus the distribution of transit time
is heavy-tailed, so the average transit time is infinite. We remark
that not assuming a TTD is not necessarily an advantage, as other
assumptions must be made upfront. However, it is more advantageous,
conceptually, given that the TTD is generally a desired output.

The first passage time of the stochastic process through a certain
level 𝐿, representing the transit time of water, is computed through
simulations of the trajectories of millions of water particles. The median
flow path length was chosen as level 𝐿 because it is a representative
measure for the length of the catchment, and thus we estimate the tran-
sit time distribution empirically. Furthermore, we determine that the
complex modulus of the empirical transit time distribution coincides
with the amplitude ratio of the isotopic concentrations in stream flow
and precipitation. We observe that our approach is stationary, in the
sense that we find only one TTD (for each catchment) which is based
9 
on the model and the amplitude ratio that is a stationary input.
We applied the model to 22 Swiss catchments to estimate the

young water fraction, i.e., the proportion of the empirical transit time
distribution younger than a threshold age. Searching for the threshold
age 𝜏⋆ for which the young water fraction closely approximate the
modulus of the empirical characteristic function, that in our model
coincides with the amplitude ratio of isotopic concentrations, we found
𝜏⋆ between 46 and 76 days, in agreement with the range of 2–3 months
obtained previously in the literature (Kirchner, 2016a; Gentile et al.,
2023).

Finally, it is possible to estimate the only model parameter, namely
the 𝛼 parameter of the Mittag-Leffler distribution, with a polynomial
fitting of the modulus of the empirical characteristic function given
the value of the amplitude ratio of the isotopic concentrations. The
Mittag-Leffler distribution is the distribution chosen for waiting times
so the 𝛼 parameter is related to the length of trapping times in the
sense that a lower value of alpha corresponds to longer traps, since the
distribution is heavy-tailed, and thus to more mixing of young water
with water that was already stored in the catchment. Therefore, lower
values of alpha correspond to lower median flow path lengths or lower
values of amplitude ratio of isotopic concentrations in stream flow and
precipitation, i.e., to more mixing of young water with water that was
already stored in the catchment.

Therefore, the main novelty of our paper is that we can argue that
our model gives us information on the exit time of water from the
catchment, in particular on the proportion of young water, and on the
features of the motion inside the catchment. This agree with what is
known in the literature and the model has only one parameter which is
possible to estimate. In conclusion, random velocity processes with rests
are a useful model for modeling subsurface water movement in hetero-
geneous catchments, and the validation of the model is done by using
concentrations of stable water isotopes in precipitation and streamflows
that are used to compute the young water fraction (Kirchner, 2016a,b).
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Appendix. Mathematical details

A.1. Amplitude ratio of seasonal isotope cycles

The equality (5) between the amplitude ratio of isotopic cycles
in stream flow and precipitation and the complex modulus of the
characteristic function can be ascertained as follows. By substituting
the isotopes concentration (3) and (2) into the convolution Eq. (1), it
ollows that

𝐴𝑠 sin(2𝜋 𝑓 𝑡 − 𝜙𝑠) + 𝑘𝑠 = ∫

∞

0
ℎ(𝜏)[𝐴𝑝 sin(2𝜋 𝑓 𝑡 − 𝜙𝑝) + 𝑘𝑝]𝑑 𝜏 .

For the Euler’s formula the sine function can be written as sin 𝑥 =
𝑒𝑖𝑥−𝑒−𝑖𝑥

2𝑖 , then

𝐴𝑠
𝑒𝑖2𝜋 𝑓 𝑡𝑒−𝑖𝜙𝑠 − 𝑒−𝑖2𝜋 𝑓 𝑡𝑒𝑖𝜙𝑠

2𝑖
+ 𝑘𝑠

= 𝐴𝑝 ∫

∞

0
ℎ(𝜏) 𝑒

𝑖2𝜋 𝑓 (𝑡−𝜏)𝑒−𝑖𝜙𝑝 − 𝑒−𝑖2𝜋 𝑓 (𝑡−𝜏)𝑒𝑖𝜙𝑝
2𝑖

𝑑 𝜏 + 𝑘𝑝

and thus

𝐴𝑠(𝑒𝑖2𝜋 𝑓 𝑡𝑒−𝑖𝜙𝑠 − 𝑒−𝑖2𝜋 𝑓 𝑡𝑒𝑖𝜙𝑠 ) + 2𝑖(𝑘𝑠 − 𝑘𝑝) = 𝐴𝑝[𝑒𝑖2𝜋 𝑓 𝑡𝑒−𝑖𝜙𝑝𝐻(−𝑓 )

− 𝑒−𝑖2𝜋 𝑓 𝑡𝑒𝑖𝜙𝑝𝐻(𝑓 )].

where we used the characteristic function (4).
Using the exponential of the logarithm and the complex logarithm

 𝑜𝑔(𝐻) = 𝑙 𝑜𝑔|𝐻| + 𝑖𝐴𝑟𝑔(𝐻), where 𝑙 𝑜𝑔|𝐻(𝑓 )| = 𝑙 𝑜𝑔|𝐻(−𝑓 )| and
𝐴𝑟𝑔(𝐻(−𝑓 )) = −𝐴𝑟𝑔(𝐻(𝑓 )):

𝐴𝑠(𝑒𝑖2𝜋 𝑓 𝑡−𝑖𝜙𝑠 − 𝑒−𝑖2𝜋 𝑓 𝑡+𝑖𝜙𝑠 ) + 2𝑖(𝑘𝑠 − 𝑘𝑝) = 𝐴𝑝𝑒
𝑙 𝑜𝑔|𝐻|[𝑒𝑖2𝜋 𝑓 𝑡−𝑖𝜙𝑝−𝑖𝐴𝑟𝑔(𝐻)

− 𝑒−𝑖2𝜋 𝑓 𝑡+𝑖𝜙𝑝+𝑖𝐴𝑟𝑔(𝐻)].

Using Euler’s formula 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥 and considering that cosine is
n even function while sine is an odd function:
10 
𝐴𝑠 sin(2𝜋 𝑓 𝑡 − 𝜙𝑠) + (𝑘𝑠 − 𝑘𝑝) = 𝐴𝑝𝑒
𝑙 𝑜𝑔|𝐻| sin(2𝜋 𝑓 𝑡 − 𝜙𝑠 − 𝐴𝑟𝑔(𝐻)).

This equality is verified if
𝐴𝑠 = 𝐴𝑝𝑒

𝑙 𝑜𝑔|𝐻(𝑓 )|, 𝐴𝑟𝑔(𝐻(𝑓 )) = 𝜙𝑠 − 𝜙𝑝, 𝑘𝑠 = 𝑘𝑝,

so that
𝐴𝑠
𝐴𝑝

= |𝐻(𝑓 )|.

A.2. The random motion

Here is the precise mathematical formulation of the proposed model
for the random motion. Let v𝑛, be a discrete time Markov chain on
[0, 100], with the transition probabilities on [0, 100]

𝑝𝑣(𝑑 𝑥) ∶= 𝑃
(

v𝑛+1 ∈ 𝑑 𝑥 ∣ v𝑛 = 𝑣
)

=

⎧

⎪

⎨

⎪

⎩

𝑑 𝑥
99 1[𝑥∈(1,100)], 𝑣 = 0,
𝛿0(𝑑 𝑥), 𝑣 ∈ (0, 100],

where 𝛿0(⋅) represents the Dirac measure at zero and the initial distri-
bution 𝜇(𝑑 𝑥) uniform on (1, 100). Let 𝑉 (𝑡) be a semi-Markov process on
0, 100], representing the unit velocity vector of moving particle:

𝑉 (𝑡) = v𝑛, 𝑇𝑛 ≤ 𝑡 < 𝑇𝑛+1,
where 𝑇𝑛 indicate the velocities switching times. The position of the
particle is then obtained by integrating the velocity over time:

𝑋(𝑡) = ∫

𝑡

0
𝑉 (𝜏)𝑑 𝜏 , 𝑡 ≥ 0.

The process 𝑋(𝑡) is as we described above, i.e., we have that

𝑇𝑛+1 − 𝑇𝑛 = 𝐽𝑛 𝑛 = 1, 3, 5, 7,…
𝑇𝑛+1 − 𝑇𝑛 = 𝐸𝑛 𝑛 = 0, 2, 4, 5,…
where 𝐽𝑛 are the waiting times with Mittag-Leffler distribution and 𝐸𝑛
are the moving times with exponential distribution.

The pair (𝑋(𝑡), 𝑉 (𝑡)) is a semi-Markov transport process, in the sense
f Ricciuti and Toaldo (2023). In a semi-Markov transport process the
volution of a particle depends not only on the current state (position
nd velocity) but also on the time elapsed since the last change of
elocity.

Data availability

Data will be made available on request.
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