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A B S T R A C T

Tomato spotted wilt virus (TSWV) is a polyphagous thrips-transmitted pathogen inducing significant economic 
losses in agriculture, particularly on tomato plants. The leading management and containment strategies to fight 
TSWV infection rely on growing resistant cultivars and spraying insecticides for thrips control. Therefore, its 
early detection is fundamental in sustainable crop management. Aim of the present work is to reveal TSWV 
infection using a hand-held Raman instrument and Machine Learning (ML) approaches. Artificially inoculated 
tomato plants were scored for symptom development for one month, while Raman spectra were collected 3 and 7 
days after virus inoculation. After preliminary spectral pre-processing, a filter method based on Partial Least 
Squares Discriminant Analysis (PLS-DA) coefficients was applied to remove redundant and irrelevant variables. 
The resulting condensed dataset was checked with multivariate exploratory methods and exploited to build 
multiple PLS-DA models, using different random splitting of the samples between training and test sets. By 
interpreting the classification metrics, Raman spectroscopy coupled with ML techniques allowed us to 
discriminate infected from healthy tomato plants within the first 3–7 days after inoculation, with average ac-
curacy of 90–95 % in validation. The model was also validated on two different sets of susceptible and resistant 
plants, achieving average accuracy higher than 85 %. Early detection of TSWV infection well before visual 
symptom occurrence represents an important advantage in a sustainable agricultural system. Notably, the use of 
a portable Raman spectrometer, much less expensive and cumbersome than benchtop instruments, allows the 
direct in-field execution of these diagnostic measurements.

Abbreviations
TSWV Tomato spotted wilt virus
PCR Polymerase chain reaction
RS Raman spectroscopy
ML Machine Learning
dpi Days post inoculation
arPLS Asymmetrically reweighted penalized least squares
SNV Standard Normal Variate
PLS-DA Partial Least Squares Discriminant Analysis

LV Latent variable
PCA Principal Components Analysis

1. Introduction

Tomato spotted wilt virus (TSWV) (family Tospoviridae, genus 
Orthotospovirus, species Orthotospovirus tomatomaculae) infects >1000 
different plant species from 90 botanical families, including ornamental, 
fruit, horticultural, and agronomic crops (Ruark-Seward et al., 2020). 
TSWV is one of the 10 most destructive viruses infecting horticultural 
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crops in the world (Scholthof et al., 2011), causing more than a billion 
dollars damage each year, therefore being one of the major threats to 
both specialty and staple crops around the world. This virus is trans-
mitted by several thrips species, mainly the western flower thrips 
(Frankliniella occidentalis), but also the onion thrips (Thrips tabaci), and 
the chili thrips (Scirtothrips dorsalis) (Ullman et al., 2002). The thrips 
vector too is infected by this virus. On tomato plants, TSWV induces 
different symptoms, including leaf bronzing, small brown flecks and 
chlorotic spots, stunting, inward cupping and dropping of leaves, uni-
lateral plant growth, dieback of growing tips, and ultimately death.

The major management and containment strategies of this disease 
rely on the use of resistant cultivars and insecticides for thrips control. 
However, to reduce the spread of the disease, limit crop damage, cali-
brate the use of insecticides, and support the breeding procedures to 
identify new sources of genetic resistance, early detection of this plant 
pathogen is fundamental in a sustainable crop management context. 
ELISA assays and polymerase chain reaction (PCR) are the most 
frequently utilized diagnostic techniques for TSWV recognition 
(Chinnaiah et al., 2022; Gao and Wu, 2022; Iturralde Martinez and Rosa, 
2023; Roberts et al., 2000). However, these tests are laborious, invasive, 
costly, and time-consuming, therefore inappropriate for a broad range 
screening. Recently, innovative techniques for non-invasive disease 
detection have been developed, based on Raman spectroscopy (RS) 
(Payne and Kurouski, 2021; Saletnik et al., 2024), volatile compound 
detection (Li et al., 2019), and hyperspectral imaging (Nguyen et al., 
2021).

RS exploits the interaction between photons emitted by a laser 
hitting the sample and its molecular components. The inelastic scat-
tering of photons results in an energy shift of these photons, which is 
related to the molecular structure of the sample components and their 
vibrational modes, ultimately providing information about the chemical 
composition of the sample. RS has been applied for the detection of 
abiotic (Altangerel et al., 2017; Sanchez et al., 2020a) and biotic 
(Baratto et al., 2022; Egging et al., 2018; Farber and Kurouski, 2018; 
Kong et al., 2024; Mandrile et al., 2019, 2022; Sanchez et al., 2019a, 
2019b) stress responses, fruit quality (Nekvapil et al., 2018), and 
chemical contamination (Mandrile et al., 2018). Moreover, RS is useful 
for quick and precise plant phenotyping, as well as for evaluating the 
nutritional content of grains (Farber et al., 2020; Krimmer et al., 2019).

We have previously described the RS capability of detecting the 
TSWV infection in tomato plants at an early stage, i.e. when symptoms 
are not yet visible (Mandrile et al., 2019). Moreover, we showed that RS 
allows to discriminate TSWV infection from the attack of other endemic 
pathogens affecting this crop (Mandrile et al., 2019). Recently, a 
RS-based approach was applied to confirm the infection by different 
TSWV strains in resistant and susceptible tomato varieties, but in this 
case RS analysis was performed only on symptomatic leaves collected at 
late time points after the artificial inoculation (Juárez et al., 2024).

Our previous experiments were conducted with a highly sensitive 
benchtop Raman spectrometer, which is nevertheless expensive, 
cumbersome, and unsuitable for non-destructive field applications. In 
this study, we show that the presence of different isolates of TSWV can 
be detected in both susceptible and resistant tomato plants at a very 
early stage of infection with a hand-held Raman device, ideal for field 
usage. To optimize the diagnostic performance of RS technique, 
advanced Machine Learning (ML) elaboration of the spectroscopic data 
has been implemented, allowing to achieve high accuracy levels. The 
model obtained was externally validated on two independent sets of 
susceptible and resistant plants. This study further supports the suit-
ability of hand-held RS for point-of-care applications in plant pathology 
and plant phenotyping.

2. Materials and methods

2.1. Plants and virus isolates

Tomato plants (cv. Marmande) were grown in soil in a greenhouse 
compartment at an average temperature of 23 ◦C (day) and 19 ◦C 
(night). Plants (n = 4) were mechanically inoculated at the 4-leaf stage 
with TSWV (P105 isolate), as previously described (Mandrile et al., 
2019). In brief, a homogenate obtained by grinding 1 g of tobacco leaves 
systemically infected by TSWV in 10 ml inoculation buffer (20 mM 
Na2SO3, 10 mM Na-diethyldithiocarbamate, 5 mM EDTA) was applied 
to the upper leaf surface of the fourth leaf starting from the apex 
(Fig. 1a), by gentle rubbing with carborundum. Mock-inoculated plants 
(n = 4) received the same treatment, using a homogenate made with 
healthy leaves. . A second inoculation experiment, using 3 plants (cv. 
Marmande) per condition, was conducted and the Raman spectra ac-
quired at the same time points were used to validate the model. To 
validate the model protocol on different susceptibility rates, a third 
experiment was conducted using resistant tomato plants (F1 hybrid 
York). Plants (n = 4) were inoculated with the resistance-breaking 
TSWV T992 isolate (Ciuffo et al., 2005; https://www.european 
-virus-archive.com/) or the natural isolate I244, while 
mock-inoculated plants served as control. All TSWV isolates belong to 
the PLAVIT collection (IPSP-CNR Torino, Italy, World Data Center for 
Microorganism (WDCM) no. 1057).

2.2. Raman spectroscopy

Raman spectra of tomato leaves were collected using a hand-held 
Bruker BRAVO spectrometer (Bruker Optik GMBH, Ettlingen, Ger-
many) equipped with two laser sources (785 and 853 nm). To suppress 
fluorescence BRAVO uses a sequentially shifted excitation (SSE) tech-
nology, as detailed by Jehlička et al. (2017). The spectrometer recorded 
spectra over a range of 300–3200 cm-1 with a sampling resolution of 
10–12 cm-1. The OPUS software (Bruker, version 8.2) was used for data 
transfer, while a Spectragryph (version 1.2.16.1) optical spectroscopy 
software was used for data conversion, in particular from 0.0 files to .csv 
files (Menges, 2001). For each plant, Raman spectra were acquired from 
the apical leaflet of the second and third leaves from the apex (Fig. 1a). 
Three spectra for each leaf were taken in different spots, at both 3 and 7 
days post inoculation (dpi). Overall, 48 spectra, i.e. 24 spectra for each 
time point, were acquired for both mock-inoculated (‘Healthy’) and 
virus-inoculated (‘TSWV’) plants. In the second experiment, aimed at 
validating the ML model, additional 28 spectra for virus-inoculated 
(‘TSWV’) and 37 for mock-inoculated (‘Healthy’) plants were 
collected, using the Bruker BRAVO spectrometer. In the third experi-
ment on York plants, Raman spectra were collected with the same 
procedure, using a hand-held Zolix Finder Edge spectrometer (Zolix 
Instruments Co., LTD, Beijing, China) equipped with a laser source at 
1064 nm, recording spectra over a range of 200–2000 cm-1 with a 
sampling resolution of 14 cm-1. The Spectragryph (version 1.2.16.1) 
optical spectroscopy software was used for data acquisition and data 
conversion, in particular from .txt to .csv files. In this case, 46 spectra for 
virus-inoculated (‘TSWV’) and 24 for mock-inoculated (‘Healthy’) were 
collected at 7 dpi on non-symptomatic leaves.

2.3. Chemometric analysis

2.3.1. Data matrix and Raman spectra pre-processing
The .csv files were converted to .xlsx files and analyzed with Python 

(Van Rossum, 1995) (version 3.11.8) after conversion in a matrix form 
(96 samples × 601 wavelengths), obtained by selecting the wavelengths 
range 600–1800 cm-1 as previously described (Mandrile et al. 2019; 
Vallejo-Pérez et al., 2021). Afterwards, three different pre-processing 
algorithms were applied sequentially to the spectra, namely (i) asym-
metrically reweighted penalized least squares (arPLS) (Baek et al., 2015; 
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Górski and Jakubowska, 2023) with smoothing for baseline correction 
(λ) set to 1000 and speed of algorithm convergence (r) set to 1⋅10–6; (ii) 
Savitzky-Golay filter (Savitzky and Golay, 1964) for smoothing and 
differentiation of the signals with window length = 7 and polynomial 
order = 2; (iii) Standard Normal Variate (SNV), a powerful spectral data 
normalization algorithm that effectively removes the constant offset and 
the multiplicative effects between spectra (Martyna et al., 2020).

2.3.2. Features selection algorithm
Before applying the ML techniques described below, a variable se-

lection strategy for classification purposes was performed. After the 
initial data-cropping, the full resulting matrix contained 601 variables. 
To remove the redundant or irrelevant variables (Yun et al., 2019; Li 
et al., 2021) and improve the model qualitative prediction, an appro-
priate features extraction algorithm was adopted, by implementing a 
Partial Least Squares Discriminant Analysis (PLS-DA) filter method 
based on regression coefficients, as described below (Chong and Jun, 
2005; Florián-Huamán et al., 2022; Frenicha et al., 1995; Mehmood 
et al., 2012). First, a PLS-DA model was optimized on the full spectrum 
of 601 variables. Secondly, the model coefficients were extracted, in 
order to express the relationship between each feature (wavelength) and 
the qualitative response (class: Healthy vs. TSWV). Then, the dataset 
was subjected to an iterative approach which, at each cycle, discarded 
the wavelength with the lowest absolute value of the associated coeffi-
cient and rebuilt the classification model. By choosing the accuracy 
score in cross-validation as the evaluation parameter, the procedure was 
iterated in a loop which tuned the number n of latent variables at each 
iteration (1 < n < 15) until a maximum accuracy level was reached. 
Lastly, a total of 150 relevant wavelengths were extracted (Supple-
mentary Fig. 1) and used as variables in the subsequent elaborations.

2.4. Machine learning techniques and classification metrics

The dataset resulting from the feature-selection process (96 samples 
× 150 wavelengths) was used for (i) an exploratory analysis through 
Principal Component Analysis (PCA) and (ii) to build an optimized PLS- 
DA classification model. For the development and validation of this 
classification model, a random data-splitting process was applied to the 
96 spectra, considering 72 and 24 spectra as calibration set and test set, 
respectively. Since a unique random training/test split may affect the 
results (either by including or excluding outliers in the test set), this 
data-splitting procedure was repeated ten times so as to stress the 
model’s robustness. Moreover, a stratified sampling strategy was 
adopted to preserve the class distribution within the categorical 

variable. Each training model was then optimized with a k-fold cross- 
validation (k = 5) strategy, again based on maximizing the accuracy 
score in setting the proper number of LVs. These LVs represent the 
hyper-spatial directions along which the maximum covariance between 
X (data matrix) and Y (categorical response) is captured (Ballabio and 
Consonni, 2013). In detail, a fixed number of five LVs was maintained, 
representing a good trade-off between prediction accuracy and model 
complexity while avoiding overfitting. The optimal, ten final trained 
PLS-DA models were validated by evaluating their performance on the 
corresponding test sets and the resulting classification reports and 
confusion matrices. In order to test this ML procedure on totally inde-
pendent samples and data, further validation was achieved by building a 
final PLS-DA model using all 96 samples and applying it on an external 
dataset arising from 65 spectra, 37 of which belong to infected plants, 
inoculated 3–7 days before the spectral collection. Furthermore, the 
same ML protocol was applied to an additional dataset relative to the 
inoculation on the resistant tomato plants, consisting of 70 spectra, 46 of 
which were from infected plants, inoculated 7 days before spectra 
acquisition.

3. Results and discussion

3.1. Time course of virus infection

Systemic symptoms of TSWV commonly appear on tomato plants as 
typical chlorotic spots after more than one week, depending on plant 
cultivar and environmental conditions. In the present experiments, no 
visible systemic symptoms could be observed in any portion of the plant 
at 3 and 7 dpi, at the same time points of Raman spectra acquisitions on 
the apical leaflets. Chlorotic spots started to emerge at 15 dpi on some 
systemically infected leaves, while the apical leaflets used for Raman 
acquisition developed visible symptoms at 21 dpi (Fig. 1b). Mock- 
inoculated plants (‘Healthy’) remained symptomless across the whole 
experiment.

3.2. Preliminary analysis of tomato leaf spectra

The average leaf spectra of both Healthy and TSWV-infected tomato 
plants (acquired at 3 and 7 dpi) showed vibrational bands originating 
from the major chemical components of plants, i.e. cellulose, lignin, 
carotenoids, and chlorophyll (Fig. 2, Table 1). In detail, the most evident 
peaks were those relative to carotenoids (1004, 1156, 1186, 1526 
cm− 1), chlorophyll (1224, 1326 - 1328 cm− 1), pectin (peaks between 
740 and 746 cm− 1) and cellulose (peaks at 916 and 1094 cm− 1 

Fig. 1. Scheme of the experimental procedure (a) and images of tomato (cv. Marmande) leaflets (b) collected at the beginning of the experiment (0 days post 
inoculation, dpi) and at different times (3 to 28 dpi) after inoculation with TSWV; ‘Healthy’ leaflets represent mock-inoculated samples. Leaf numbering is indicated 
in the plant scheme on the left; TSWV inoculum was delivered on the fourth leaves from the apex, while Raman spectra were acquired on the apical leaflets of the 
second and third leaves from the apex; scale bar, 1 cm. Created in BioRender.com (2025).
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associated to ν(C–O–C) and ν(CO) modes of cellulose), while the peaks at 
920 and 1610 cm− 1 are related to lignin. Carotenoids generated peaks at 
1004, 1156, and 1526 cm− 1, attributed to in-plane CH3 rocking modes, 
and C = C and C—C stretching, respectively. Lastly, the peaks between 
1650 and 1690 cm− 1 can be assigned to proteins.

By averaging the 48 spectra collected from ‘Healthy’ plants and the 
48 from ‘TSWV’, and comparing the averaged spectra, some minor dif-
ferences could be evidenced (Fig. 2). In particular, it was observed that 
the signals relative to chlorophylls at 1224 and 1326–1328 cm− 1, ca-
rotenoids at 1156 and 1185 cm− 1, polyphenols at 1440 cm− 1, and those 
due to proteins at 1650–1690 cm− 1 appeared altered in TSWV-infected 

samples, showing a slight reduction of peak intensity. Also, the differ-
ences observed in the shoulder peak at 1490 cm− 1 and attributed to CH 
bending are likely to be exploited to discriminate ‘Healthy’ from ‘TSWV’ 
plants. Except for these slight differences, the average spectra of 
‘Healthy’ and ‘TSWV’ plants were almost completely superimposable. 
Therefore, the adoption of Machine Learning techniques appears to be 
mandatory to enhance the information provided by the Raman spectra 
toward the detection of the plant infection.

3.3. Multivariate data analysis and spectra classification

The resulting dataset from feature selection consisting of 96 samples 
and 150 variables was analyzed with both unsupervised and supervised 
approaches. Preliminary exploratory analysis was conducted by PCA, 
while PLS-DA was adopted for the classification purpose, due to its 
proven effectiveness in elaborating spectral data for two-classes 
discrimination problems (Bevilacqua et al., 2017).

3.3.1. PCA
Multivariate unsupervised methods are generally used to verify 

whether any clustering exists in a dataset without exploiting any class 
information during the computation (Granato et al., 2018) and PCA 
represents the most common first step of any multivariate analysis (Bro 
and Smilde, 2014). In the present context, the first 8 PCs allowed to 
explain about 80 % of variance, but neither clusters nor trends could be 
highlighted among the samples, even following a features selection and 
a dimensionality reduction. This possibly results from the limited data 
visualization allowed in 2–3 dimensions only. The adoption of an effi-
cient classification model could be functional also to a better data 
visualization (Barker and Rayens 2003). Moreover, when we applied 
PCA to the separate datasets of samples at 3 and 7 dpi, homogeneous 
distribution of data-points along the first and second PC and no clus-
tering were observed for the two classes, as evident in Supplementary 
Fig. 2.

3.3.2. PLS-DA
Multivariate classification techniques are ML algorithms addressed 

to elaborate mathematical models able to predict the attribution of each 
sample to the correct class, on the basis of the values of a set of features/ 

Fig. 2. Average Raman spectra for Healthy (mock-inoculated, blue line) and TSWV-infected (isolate P105, orange line) leaves of tomato (cv. Marmande), collected in 
the range 600–1800 cm− 1. The insets show the details of the peaks in the range 1175–1350 cm-1 and 1470–1500 cm-1 of the spectra.

Table 1 
Main vibrational bands and their assignments for the Raman spectra collected 
from tomato plants.

Band (cm- 

1)
Vibrational mode Assignment References

744 γ(C–O–H) of COOH Pectin (Sanchez et al., 2020b)
916, 920 ν(C–O–C) in plane, 

symmetric
Cellulose, 
lignin

(Sanchez et al., 2020b; 
Vallejo-Pérez et al., 2021)

1004 ν3(C–CH3 
stretching)

Carotenoids (Mandrile et al., 2019; 
Sanchez et al., 2020b; 
Vallejo-Pérez et al., 2021)

1094 ν(CO) of secondary 
alcohol

Cellulose (Sanchez et al., 2020b; 
Vallejo-Pérez et al., 2021)

1156 ν2(C‖C stretching) Carotenoids (Mandrile et al., 2019; 
Vallejo-Pérez et al., 2021)

1186 ν(C–O–H) next to 
aromatic ring +
δ(CH)

Carotenoids (Juárez et al., 2024; Saletnik 
et al., 2024)

1224 δ(CH). δ(CH2) Chlorophyll (Mandrile et al. 2019)
1326, 1328 δ(CH). ν(CN) Chlorophyll (Mandrile et al., 2019; 

Vallejo-Pérez et al., 2021)
1440 ν(phenyl ring) Phenolics (Mandrile et al., 2019)
1490 δ(CH2) and 

δ(CH3), bending
Aliphatic (Mandrile et al. 2019)

1526 ν1(C − C) Carotenoids (Sanchez et al., 2020b; 
Vallejo-Pérez et al., 2021)

1610 ν(C–C) aromatic 
ring + σ(CH)

Lignin (Mandrile et al., 2019; 
Sanchez et al., 2020b)

1650–1690 Amide I Proteins (Sanchez et al., 2020b; 
Vallejo-Pérez et al., 2021)
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measurements (Ballabio and Consonni, 2013). The PLS-DA algorithm 
relies on PLS regression, which captures the maximum covariance be-
tween X (data matrix) and Y (categorical response), where two distinct 
categories are identified with a-priori Y values of 0 and 1, respectively.

To discriminate ‘Healthy’ from ‘TSWV’ samples, a binary classifica-
tion model was built. After selecting the appropriate strategy of repeated 
data-splitting, the final PLS-DA classification models were performed 

with five LVs, extracted as described in Section 2.4.
In a preliminary analysis, all the averaged spectra acquired from 

‘Healthy’ and ‘TSWV’ plants were compared, separately considering the 
datasets with the samples at 3 and 7 dpi. At both timepoints, the model 
succeeded in discriminating ‘Healthy’ from ‘TSWV’ samples with accu-
racies of 89±13 % and 82±11 % at 3 and 7 dpi, respectively, as reported 
in Supplementary Fig. 3 . Since the accuracies at the two acquisition 

Fig. 3. Graphical outcomes of Partial Least Squares Discriminant Analysis (PLS-DA) related to Model 1: (a) Training set scores on the first two latent variables (LVs); 
(b) Projection on a selected plane of a three-dimensional representation of training set scores using LV1, LV2, and LV3.
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times showed no statistically significant differences (p-value = 0.203), 
the final model was built by mixing the spectra acquired at the two 
timepoints, so as to improve the statistical significance of the ‘TSWV’ 
group. Fig. 3a shows the diagram reporting the training scores (co-
ordinates of samples in the LVs projection hyperspace) on LV1 and LV2, 
relative to one of ten models computed (“Model 1″), used as benchmark. 
Notably, a comprehensive visual representation of all models is pre-
vented by the fact that each single spectrum is sampled in several 
different models. Using PLS-DA, ‘Healthy’ samples could be discrimi-
nated from ‘TSWV’ ones, in particular along the bisector traced between 
the second and fourth quadrants (Fig. 3a). An even better visualization 
of the two class separation is detectable in the projection of the three- 
dimensional representation of the LVs hyperplane (Fig. 3b). This 
figure provides a partial intuitive overview of the initial dataset struc-
ture that the PLS-DA algorithm captured.

To evaluate the PLS-DA model performances, each classification 
model was applied to the corresponding external dataset (test set), and 
the true response (true class) was compared with the predicted one. The 
outcome of this procedure, relative to the single Model 1 and reaching 
an accuracy of 96 %, is summarized in the classification chart and 
confusion matrix reported in Table 2. Further validation of the present 
protocol was obtained by applying a comprehensive (i.e., built on all 96 
samples) PLS-DA model on an external dataset of 65 new samples. The 
validation results, expressed by the figures-of-merit and confusion ma-
trix, are also reported in Table 2. The general performance of PLS-DA 
models on different test dataset remains relatively high with accu-
racies above 85 %.

The PLS-DA classification criterion for the specific model considered 
in Table 2 is graphically represented in Fig. 4, where the predicted Y 
values are plotted against the 24 samples of the test set; the dashed green 
line represents the discriminant threshold, arbitrarily set to 0.5, even if 
this value is an adjustable parameter useful to improve the model per-
formance. As mentioned in Section 2.4, to ensure the method robustness, 
ten different PLS-DA models were developed from random splitting of 
the samples between validation and test sets. A comprehensive repre-
sentation of the most significant statistical parameters for all ten PLS-DA 
models (accuracy, sensitivity, and specificity) is reported in Fig. 5, 
showing the mean values of the three classification metrics (dashed 
lines, i.e. accuracy 93 %; sensitivity 94 %; specificity 92 %). Also the 

figure-of-metrics obtained from a totally independent validation dataset 
confirmed the model’s reliability with accuracy 86 %, sensitivity 90 %, 
and specificity 82 % (Table 2). These values support the performances of 
the overall method proposed in this study. The accuracy obtained is 
greater than that reported with a hand-held Raman spectrometer on 
symptomatic leaves at a late stage after inoculation (Juárez et al., 2024), 
but also greater than that achieved with a benchtop instrument on 
asymptomatic leaves (Mandrile et al., 2019). These results represent a 
significant advance in the very early detection of TSWV infection, where 
the accuracy was <75 % before 8 dpi and reached 89 % later (Mandrile 
et al., 2019). Such improved performance likely relies on the different 
strategies adopted in both data treatment and machine learning pro-
cessing. Moreover, having achieved such high performances with a 
portable instrument makes the technique particularly effective.

To better visualize the statistical distribution of the performance 
parameters for the ten different classification models, box-and-whisker 
plots were constructed (Fig. 6), showing consistency and compara-
bility of all ten PLS-DA models.

From the analysis of classification metrics and diagnostic plots here 
reported, we can assert that RS coupled with adequate spectral pre- 
processing and PLS-DA interpretation allows a very early detection of 
TSWV infection on tomato plants, with average levels of accuracy, 
sensitivity, and specificity ranging between 90 % and 95 %. Therefore, 
the outcomes of this work are particularly useful in the agri-food field, 
considering that viral symptoms could be visible by eye two weeks later 
than by Raman detection (Fig. 1b).

3.4. Validation of the model on resistant tomato F1 hybrid plants

To further validate the protocol and explore the effect of a different 
susceptibility rate, another virus inoculation experiment was conducted 
using the commercial tomato F1 hybrid York, carrying the Sw-5 gene 
providing resistance to TSWV. Moreover, in this case, two different 
TSWV isolates were used, the wild type I244 strain, unable to systemi-
cally spread in the York hybrid, and the T992 isolate (Ciuffo et al., 
2005), overcoming the effect of the Sw-5 gene. As shown in Supple-
mentary Fig. 4, plants infected by both TSWV isolates showed a decrease 
in the intensity of peaks in the range 1175–1350 cm-1 and 1140–1170 
cm-1, related to both chlorophyll and carotenoids, confirming the results 

Table 2 
(A) Performance of the PLS-DA classification, expressed as figures of merit (precision, recall, specificity, accuracy) and calculated on the test set relative to Model 1 and 
the cross-validated (k = 4) external validation set, respectively. (B) Confusion matrix calculated on the test set relative to Model 1 and the cross-validated external 
validation set, respectively.
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obtained with the susceptible cv. Marmande (Fig. 2 and Supplementary 
Fig. 5). A decrease in the intensity of peaks at 1224 and 1326 cm− 1, 
associated to chlorophyll (Mandrile et al., 2019) and peaks at 1156 and 
1185 cm− 1, ascribed to carotenoids, was also reported for 
TSWV-infected plants at later stages after inoculation (Mandrile et al., 
2019; Juárez et al., 2024).

Interestingly, these analyses indicate that the impact of TSWV 
infection on these two leaf constituents (carotenoids and chlorophyll) 
occurs since the beginning of the infection process, even in the absence 
of systemic spread, as is the case for the T992 isolate. Such changes are 
in agreement with transcriptional data performed on TSWV-infected 
plants showing a wide downregulation of genes related to photosyn-
thesis and pigment metabolism (Catoni et al., 2009). Since a decrease in 
carotenoid content also occurred in grapevine plants infected by 
Grapevine fanleaf virus (Mandrile et al., 2022), this can be considered an 
indication of a common virus-induced perturbation of hormonal re-
sponses, in particular abscisic acid and strigolactones, which originate 
from carotenoid precursors.

Moreover, the considerable signal reduction encountered in TSWV- 
infected plants for peaks around 1650–1690 cm-1, possibly linked to a 
reduced protein content (Fig. 2 and Supplementary Fig. 4 and 5) could 
be attributed to a decrease of the major plant protein, the RuBisCO large 
subunit, forming over 50 % of leaf proteins in healthy plants 
(Kawashima and Wildman, 1970). Indeed, chlorosis is one of the first 
visible symptoms of TSWV, in line with the RuBisCO degradation 
recently reported in a proteomic analysis of TSWV-infected tomato 
plants (Gupta et al. 2020).

In order to validate the protocol through a different genotype, the 
PLS-DA model was applied on the new dataset consisting of 70 spectra 
(24 spectra for mock-inoculated and 46 spectra for virus-inoculated). 
The internal validation results, obtained by a repeated cross-validation 
procedure and expressed by the figures-of-merit and confusion matrix, 
are reported in Table 3, showing that the final accuracy is equal to 92 %, 
resulting from the average across the ten repetitions of the cross- 
validation procedure (chapter 2.4).

4. Conclusions

In the ever-increasing need of triggering more sustainable policies of 
crop production, the early detection of plant infections by affordable and 
easy-to-use instruments and methods represents a fundamental target. 
Unlike benchtop instruments, the less sophisticated portable devices, 
considerably cheaper and more maneuverable even though less per-
forming, are likely to make practically feasible control strategies that are 
precluded to most agricultural enterprises.

The present study demonstrates that a simple portable Raman 
spectrometer is perfectly capable of recognizing asymptomatic TSWV- 
infected tomato plants two weeks before the infection effects become 
visible, provided that appropriate Machine Learning algorithms are 
targeted to the enhancement and interpretation of the minor alteration 
that the pathogen induces in the Raman spectra. Needless to say, this 
approach could be adopted to reduce or avoid the use of nucleic acid or 
protein-based diagnostic assays, allowing to save time and reduce costs 
and labor in horticultural practices.

The method’s performing parameters were measured on indepen-
dent test samples and were externally validated on two completely 
separated sets of plants, one of which performed on plants with a 
different genotype and with different virus isolates. Accuracies out-
scored 96 %, 86 %, and 92 % respectively, even on plants tested 3 days 
after inoculation. These repeated impartial test confirmations ensure the 
method’s reliability and prevent overfitting that may arise from data- 
dependent ML modeling. Lastly, both spectral pre-processing and ML 
data elaborations were managed rapidly on a standard personal com-
puter and could be applicable in routine controls.

From a broader perspective, the possibility to detect the presence of a 
pathogen when symptoms are visually undetectable represents an 
important advantage in the agricultural diagnostic sector, particularly 
considering that it can be achieved using a portable Raman device, 
allowing to perform field measurements in real time, with an instrument 
much less expensive than a corresponding benchtop spectrometer. 
Moreover, this allows the acquisition of a large number of spectra, as the 
procedure is not destructive and does not require storage and transfer of 

Fig. 4. Partial Least Squares Discriminant Analysis (PLS-DA) analysis in external validation: predicted Y vs. test samples for Model 1. The green dashed line rep-
resents the class-threshold. On the X axis, H or I represent Healthy or Infected samples, respectively.
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Fig. 5. Figures-of-merit obtained on each of the ten test sets randomly created by the 72:24 data-splitting between a training set (used to build each of the ten 
models) and the test set (used to validate the corresponding model). (a) Accuracy – fraction of samples (24) assigned to the correct class; (b) Sensitivity = Recall – 
fraction of TSWV samples (12) assigned to the correct class; (c) Specificity – fraction of healthy samples (12) assigned to the correct class. The dotted orange line 
represents the mean value obtained from the test sets relative to the ten models.
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material, thus enabling to increase the accuracy and reliability of the 
technique.

However, for a more general application of such proximal sensor- 
based diagnostic techniques, deeper elucidations of the biological 
pathways altered during plant pathogen infection are sought, investi-
gating and possibly verifying a commonality of responses induced by 
different isolates of a pathogen on different cultivars.

In a possible scenario of practical implementation of RS for diag-
nostic purposes of plant viruses, the most interesting example consists in 
breeding for resistance, which is currently the prevalent defense strategy 
against plant viruses. For tomatoes, due to the long domestication pro-
cess of this crop (Ferrero et al., 2020), the majority of resistance genes 
against viruses are identified in wild germplasm and introduced into 
cultivated genotypes through hybrid breeding. Specifically, the most 
relevant disease management strategy for TSWV relies on the Sw-5 locus, 
providing durable resistance against different tospovirus species and 
even against strains from diverse geographic locations (Turina et al., 
2016). However, the frequent onset of resistance-breaking isolates 
(Aramburu et al., 2010; Latham and Jones, 1998) requires a continuous 
search of new sources of resistance, pushing towards the use of rapid 
diagnostic tools during breeding.

Here, we approached this issue testing the performances of a 
portable RS instrument on an ancient commercial tomato cultivar (cv. 
Marmande) susceptible to the majority of tomato viruses, including 
TSWV (Peiró et al., 2014); we expanded our analysis using a commercial 
tomato hybrid line carrying the Sw-5 locus, testing two different TSWV 
isolates, a wild type one (I244) unable to systemically spread in this 

hybrid and the T992 isolate, obtaining rather high accuracy values. 
Nonetheless, a limitation of this diagnostic tool could result from its 
application on plants with different genetic background originating 
from crosses with wild relatives of domestic tomatoes to introgress new 
resistance traits (Qi et al., 2021), ultimately leading to uneven pertur-
bations of the host basal metabolome and of altered metabolic responses 
following virus attack.

Indeed, substantial gaps in the knowledge of the biological pathways 
tackled during virus infection in cultivated vegetables with different 
genetic backgrounds and how such genetic variability modifies the 
response to pathogens have to be filled. A combinatorial approach 
integrating -omics studies with proximal sensor techniques could help to 
comprehensively elucidate the complex array of responses occurring 
during plant-pathogen interactions, for example combining tran-
scriptomics and metabolomics studies of plants infected by TSWV (Lv 
et al., 2023; Liang et al., 2024) with RS techniques.
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