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1 Introduction and main results

Supersymmetric gauge theories provide a powerful theoretical laboratory for controlling the
dynamics of fields at the quantum level. In four dimensions, these models exhibit interesting
dynamics, including confinement without chiral symmetry breaking and the emergence of
gapless gauge bosons in the infrared [1, 2]. Moreover, through advanced techniques, such as
dualities [2–4] and gauge-gravity correspondences [5, 6], it has been possible to probe the
non-perturbative properties of these models, confirming the presence of mechanisms that
also are expected in physical theories like QCD [7].

Recently, extended supersymmetry has allowed to develop new analytical approaches,
such as supersymmetric localization [8, 9]. Unlike integrability [10, 11], resurgence [12] and
bootstrap approaches [13, 14], supersymmetric localization provides a direct technique for
computing path integrals. Under suitable conditions, partition functions and classes of local
and non-local observables for the theory defined on a compact space-time manifold, such as
S4, can be calculated exactly in terms of matrix models. These are typically characterized by
complex interaction potentials that encode both the conventional perturbative series and non-
perturbative contributions. The latter are often associated with semiclassical configurations,
such as instantons [15], monopoles [16] and fluxes [17, 18]. Localization thus offers an
alternative technique for testing methods that provide informations only in particular regimes
and for refining techniques that require external inputs or data.1 Furthermore, the matrix
models generated by supersymmetric localization also offer new insights on the perturbative
techniques, suggesting a convenient reorganization of Feynman diagrams and predicting their
large-order behaviours. In four dimensions, these features have been extensively studied in
(super)conformal models, where the computations on compact spaces naturally extend to the
Euclidean configurations. Less attention has been given to non-conformal cases.

In this paper, we continue the analysis initiated in [20] regarding the localization ap-
proaches in non-conformal four-dimensional N = 2 supersymmetric theories. More precisely,
we will consider SU(N) N = 2 super-Yang-Mills theories (SYM) with massless hypermul-
tiplets in an arbitrary representation R. In these set-ups, classical conformal symmetry is
broken at the quantum level by the (one-loop exact) β-function [21, 22]

β(g) = −ϵg + β0g
3 , where β0 = iR −N

8π2 . (1.1)

In the previous expression, the first term is the classical contribution in

d = 4− 2ϵ (1.2)

dimensions, while iR denotes the Dynkin index of the representation R. In the following,
we will focus on asymptotically free theories, where iR < N and we fix iF = 1/2 for
the fundamental representation. Compactifying these theories on the four-sphere S4, we
can employ supersymmetric localization [8] to reduce the path-integral associated with the
partition function and with the expectation values of protected operators into a matrix model.

1Localization data have been often used in superconformal bootstrap to refine bounds on anomalous
dimensions and OPE coefficients, see for example [19].

– 2 –



J
H
E
P
0
2
(
2
0
2
5
)
0
7
6

When the theory remains conformal at the quantum level, i.e. when iR = N and the
β-function vanishes, localization results on S4 naturally extend to flat-space observables.
For instance, in N = 4 SYM theories, supersymmetric localization was employed to derive
the analytical expression of the 1/2 BPS Wilson loop [8], originally conjectured in [23, 24].
Moreover, the same technique also applies to supersymmetric Wilson loops which preserve
fewer global supercharges than the circular configuration [25] and families of BPS local
operators [26]. In these cases, the matrix model generated by localization is connected to
Yang-Mills theories in two-dimensions [27–29] and successfully captures the perturbative
results based on standard Feynman diagrams.

Unlike the N = 4 theory, where the matrix model generated by localization on S4 is purely
Gaussian, N = 2 theories involve non-trivial interaction potentials. Standard perturbative
techniques in flat Euclidean space perfectly reproduce the localization predictions for several
protected observables, including supersymmetric Wilson loops [30–34], chiral operators [35–39]
and Bremsstrahlung functions [40–44]. These results show that the perturbative computations
in flat space are encoded by a one-loop effective action on S4 [8], which provides an elegant
reorganization of Feynman diagrams.

However, when the theory involves dimensionful parameters, such as a mass term in
the N = 2∗ theories or a scale generated by dimensional transmutation, the short and
long distance properties of the model are different and it is expected that the flat-space
calculations do not coincide with those on the sphere. In particular, when a mass term
is present, observables on S4 naturally depend on the mass scale and on the radius of the
sphere by their product. The dependence on this dimensionless parameter of the observables
on S4 usually differs from the flat-space counterpart. This scenario was analysed in [45],
where the authors studied the 1/2 BPS Wilson loop in N = 2∗ SYM and showed that the
two-loop perturbative computations of the observable on S4 coincide with the matrix model
predictions, while the analogous flat-space calculation exhibits a different behaviour.

While a mass deformation breaks explicitly conformal symmetry, in theories with massless
matter and a non-vanishing β-function the violation of conformal symmetry occurs at the
quantum level. Compactifying these set-ups on the four-dimensional sphere, we can still apply
supersymmetric localization to map the expectation value of specific protected operator into
matrix models. However, when the matter representation R is associated with a non-vanishing
β-function, the one-loop determinants generated by localization requires a regularization
based on additional massive supermultiplets of mass M (see in particular section 4 of [8]
and section 2 of [20] for more details). These are properly introduced in order to make the
β-function vanish and the one-loop determinants expressible via well-defined products of H-
functions2 (see eq. (2.7)). In the limit M → ∞, the massive degrees of freedom decouple and
we remain with a well-defined matrix model for N = 2 SYM with massless hypermultiplets
in an arbitrary representation R. This regularization leads to a matrix model which depends
on the one-loop exact running coupling

1
g2 = 1

g2
∗
+ β0 logM2R2 , (1.3)

2Ref. [8] discusses the case of pure N = 2 SYM, while in section 2 of [20] the authors describe in detail
non-conformal N = 2 SQCD and generalize the procedure to the theories under examination.
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where g∗ is the renormalized coupling evaluated at the scale M which, from the perspective
of the massless theory, plays the role of a UV cut-off, while R is the radius of the sphere;
it is also the radius of the BPS Wilson loop on S4. Eq. (1.3) also describes the running
coupling constant of the flat-space theory evaluated at the energy scale 1/R, with R being
the radius of the circular Wilson loop.

The dependence of the matrix model on the running coupling g is obviously expected and
analogous to the flat-space computations. It is therefore important to investigate whether
the conventional perturbative series in Euclidean space, when expressed in terms of the
running coupling, is encoded in the localization effective action or to understand which part
of this series (if any) is univocally determined by the localization approach. This question
was addressed in [46] for the correlators of chiral primary operators. The analysis revealed
that the flat-space calculation matches the localization prediction at order g4, while at order
g6 the agreement occurs only for dimensionless ratios of correlators. A similar analysis is
presented in [20], where it was showed that the calculation of the 1/2 BPS Wilson loop in
flat space matches the localization predictions up to order g4.

In the present work, which is a detailed version of a recent short letter [47], we extend
the results presented in [20] up to order g6. In an asymptotically free N = 2 theory with
massless hypermultiplets in an representation R of SU(N), the perturbative prediction of the
matrix model for the 1/2 BPS Wilson loops takes the following form

W (g) =W0(g) + g6 3ζ(3)
28π4N

K′
4 + g6 ζ(3)CFNβ0

16π2 +O(g8) . (1.4)

In the previous expression, W0(g) is the expectation value of the operator in the Gaussian
matrix model, while K′

4 is a colour factor which depends on the representation R (see
eq. (2.19)). The previous expression is valid only in the range of scales

1
Λ ≫ R≫ 1

M
, where Λ =Me

1
2β0g2

∗ (1.5)

is the infrared strong coupling scale generated by dimensional transmutation. In this work,
we will show that perturbation theory in flat space exactly reproduces eq. (2.20) within the
regime (1.5) where the running coupling g, defined in eq. (1.3), is small. Conversely, for
ΛR ∼ 1 the running coupling g grows so that a resummation of the perturbative series would
be needed in order to include in the observables non-perturbative power-like corrections3

of the form Cn(RΛ)n.
On general grounds, we expect that the functional dependence of the observable on RΛ

suffers from a conformal anomaly and differs between the sphere and flat space. Similarly,
when MR ∼ 1, the massive degrees of freedom become relevant and the nature of the
theory changes. As a result, the observables acquire a further dependence on RM which
is not purely logarithmic.

In the following, we will show that standard perturbation in flat Euclidean space perfectly
reproduces eq. (1.4) within the range of validity (1.5). In particular, the two ζ(3)-like

3In special multicolour models, such N = 2∗ SYM or the massive deformation of superconformal N = 2
SQCD, the coefficients Cn can be calculated on the four-sphere by matrix model generated via supersymmetric
localization [48]. Moreover, also instantons, which we neglected in our analysis, could contribute to the
calculation of the observables with power-like corrections.
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corrections in eq. (1.4) have a different origin: the contribution proportional to K′
4 is also

present in superconformal set-ups [30, 31] and arises from a Feynman integral which retains
the same form in flat space and on the sphere, while that involving the coefficient β0, emerges
by interference effects between evanescent terms and the UV divergence of the bare coupling
constant. Our analysis highlights how the localization matrix model organizes in a compact
and elegant way different and complicated diagrammatic contributions, encoding efficiently
ultraviolet cancellations and subtle effects resulting from regularizing and renormalizing
the flat-space perturbative series.

Field theory set-up. In flat space, we consider SU(N) N = 2 SYM theories with massless
hypermultiplets in an arbitrary representation R such that the β-function is non-vanishing.
The explicit expression of the actions is reported in appendix A.1.

The 1/2 BPS Wilson loop operator in the fundamental representation is defined by

Ŵ = 1
N

tr P exp
{
gB

∫
C
dτ
[
iAµ(x(τ))ẋµ(τ) +

R√
2

(
ϕ̄(x(τ)) + ϕ(x(τ))

)]}
, (1.6)

where gB is the bare coupling constant, while P denotes the path-ordering operator. In the
previous expression, the gauge field Aµ(x(τ)) and the vector-multiplet scalar ϕ(x(τ)) are
integrated over a circle C of radius R and canonically parametrized by

xµ(τ) = R(cos τ, sin τ, 0, 0) , with 0 ≤ τ < 2π . (1.7)

The vacuum expectation value of (1.6) contains ultraviolet divergent diagrams. To
regularize the singular corrections and preserve the extended supersymmetry we dimensionally
reduce the theory from four to d = 4− 2ϵ dimensions [23]. In this scheme, the gauge field
Aµ is a d-dimensional vector, while the real scalars generated by the reduction are denoted
with Ai, with i = 1, . . . , 2ϵ. Since the bare coupling is dimensionless only when d = 4, this
regularization scheme breaks classical conformal symmetry. As a result, the dimensionally
regularized observable can only depends on the combination ĝB = RϵgB. Perturbatively,
we expand the expectation value as follows〈

Ŵ
〉
≡ W = 1 +W2 +W4 +W6 +O(ĝ8

B) , (1.8)

where the quantities W2k are proportional to ĝ2k
B . Throughout this work, unless stated

otherwise, the Feynman gauge will be always understood.

Structure of the paper. This paper is organized as follows. In section 2, we present
the structure of Pestun’s matrix model in general massless N = 2 theories with matter
representation associated with a non-vanishing β-function. Subsequently, we consider the
insertion of the 1/2 BPS Wilson loops and derive the explicit prediction of localization for its
perturbative expansion up to order g6. In section 3, we present the field theory analysis in flat
space. We will first review the two-loop results obtained in [20] and explain the non-trivial
role of additional evanescent terms which result from the integration over the Wilson loop
contour. Upon renormalization, these contributions produce finite three-loop corrections
which combine with the diagrams presented in subsection 3.3. Finally, in section 4, we
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discuss the renormalization of the Wilson loop operator. We show that the structure of the
divergences respects the usual renormalization properties expected for this operator and that
within the specific range of energy scales (1.5), the perturbative series in flat space coincides
with the prediction of the matrix model. Finally, in section 5, we draw our conclusions
and present some possible future directions. Calculation details of the three-loop diagrams
involves several intermediate steps, mainly related to intricate path-ordered integration over
the Wilson loop contour which, as far as we know, have not been performed in the current
literature. These computations are presented in detail in five different appendices.

2 Predictions from localization

In this work, we consider N = 2 theories with SU(N) gauge group and massless hypermul-
tiplets in an arbitrary representation R such that the β-function is non-vanishing. When
these theories are compactified on S4, supersymmetric localization enables to reduce the path
integral to an interacting matrix model. However, the one-loop fluctuation determinants
require a regularization which involves additional degrees of freedom of mass M [8, 20]. The
purpose of this section is to introduce the (regularized) matrix model4 which describes the
vacuum expectation value of the 1/2 BPS Wilson loop on S4 for this class of theories and
present the three-loop prediction for this observable.

2.1 The S4 partition function

Compactifying a generic SU(N) N = 2 SYM theory on a four-sphere S4 of radius R,
localization [8] maps the partition function into a matrix model, i.e.

Z =
∫

Da |Z(ia, g,R)|2 . (2.1)

In the previous expression, a is an N ×N Hermitian traceless matrix whose eigenvalues au

parametrize the Coulomb moduli space and the integration measure is given by

Da =
N∏

u=1
dau ∆(a)δ

( N∑
v=1

av

)
, with ∆(a) =

N∏
u<v

(au − av)2 , (2.2)

denoting the Vandermonde determinant. This quantity represents the Jacobian of the
transformation which connects the integration over a Lie algebra g to its Cartan subalgebra
h. This means that Da is equivalent to the flat integration measure

da =
N2−1∏
b=1

dab , where a = abt
b . (2.3)

In the previous expression, we denoted with tn the n-th hermitian traceless generator of
su(n) in the fundamental representation where5

tr tatb =
δab

2 . (2.4)

4In particular, we refer to section 1 of [20] for the technical details.
5The normalization of eq. (2.4) fixes the Dynkin index of the fundamental representation to iF = 1/2.
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In the localized partition function (2.1), the integrand consists of three different factors

Z = ZR
1−loop Zinst Zcl . (2.5)

In the previous expression, Zinst describes the instanton contribution, which can be discarded
since we will primarily work in perturbation theory, while Zcl and ZR

1−loop denote, respectively,
the classical term of the matrix model and its interaction potential, which depends on the
representation R. These quantities are defined as follows [20]

|Zcl(ia, g)|2 = e−
8π2R2

g2 tr a2
,

∣∣∣ZR
1-loop

∣∣∣2 =
∏

wAdj
H(RwAdj · a)∏

wR
H(RwR · a) . (2.6)

In the previous expression, g is the running coupling defined in eq. (1.3), a denotes an
N -dimensional vector containing the eigenvalues of the matrix a, while wR and wAdj are the
weight-vectors of the representation R and of the adjoint one respectively. Moreover, H(x) is
defined through the product of Barnes’ G-function as follows [48]

H(x) = G(1 + ix)G(1− ix) e−(1+γ)x2 =
∞∏

n=1

(
1 + x2

n2

)n

e−
x2
n , (2.7)

where γ is the Euler’s constant. Using the properties of the G-function, it is straightforward
to show that for small values of the argument we have

logH(z) = −
∞∑

m=2
(−1)m ζ(2m− 1)z2m

m
. (2.8)

The contribution of the one-loop determinants in eq. (2.6) can be exponentiated and interpreted
as an interaction potential for the matrix model, i.e.

Sint(a) ≡ − log
∣∣ZR

1-loop
∣∣2 = (TrR−TrAdj)H(Ra) . (2.9)

Combining together the relations of this subsection and rescaling the integration variable
according to a→

(
g2

8π2R2

) 1
2 a, we can write the localized partition function with the contri-

bution of the instanton suppressed as follows6 [20, 31]

Z =
∫

da e− tr a2−Sint(a,g) . (2.10)

In the previous expression, the measure da is defined in eq. (2.3) and is normalized in such a
way that

∫
da e− tr a2 = 1, while the interaction potential of eq. (2.9) acquires a dependence

on g and can be expended as a power series by eq. (2.8), i.e.

Sint(a, g) = −
∞∑

m=2

(
− g2

8π2

)m
ζ(2m− 1)

m
Tr′R a2m , (2.11)

6In eq. (2.10), we did not include the Jacobian of the transformation a →
(

g2

8π2R2

) 1
2

a since it introduces a
multiplicative constant which disappears in properly normalized expectation values.
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where we introduced the primed trace Tr′R = (TrR−TrAdj). Note that this combination of
traces only vanishes in N = 4 SYM theories.7 For general set-ups, the primed trace is non-
vanishing and precisely describes the matter sector of the difference theory, which arises when
we subtract the field content of N = 4 SYM from that associated with N = 2 theories with
hypermultiplets in the representation R. From the perturbative field theory point of view, the
matrix model suggests to construct the interaction contributions by considering the diagrams
characterized by internal lines in the representation R and by subtracting identical terms in
which R = Adj. For instance, the expected correspondence between a contribution in the
matrix model which arises from the quartic vertex Tr′R a4 and the usual Feynman diagrams is

Tr′R a4 = ↔ . (2.12)

In the previous expression, we used a double dashed/continuos line to denote the propagation
of matter in the difference theory approach, while the wiggly/straight lines are associated
with vector-multiplet fields. In N = 2 superconformal set-ups, the correspondence between
matrix model vertices and matter loops was tested at high orders in perturbation theory for
different observables [30, 31, 35]. However, in non-conformal models, it is no longer obvious
whether this connection persists due to the conformal symmetry breaking.

2.2 Supersymmetric Wilson loop

In this section, we study the 1/2 BPS circular Wilson loop in the fundamental representation.
According to [8], the vacuum expectation value of this operator can be evaluated via the
following matrix model [20]

W (g) = 1
Z

∫
da e− tr a2−Sint(a,g) W(a, g) , (2.13)

where the matrix operator W(a, g) is defined as follows

W(a, g) = 1
N

tr exp
(
ag√
2

)
= 1 + g2

4N tr a2 +O(g2) . (2.14)

The matrix model in eq. (2.13) formally coincides with that considered in [31] for the
expectation value of the supersymmetric Wilson loop in generic superconformal N = 2
theories. In the range of energies (1.5), the running coupling g, defined in eq. (1.3), goes to
zero and we can expand the interaction action via (2.11). As a result, we find that8

W (g) =W0(g) +
(
g2

8π2

)2
ζ(3)
2
〈
W(a, g) Tr′R a4

〉
0,c

+O(g8) . (2.15)

7Let us recall that N = 4 SYM can be seen as a N = 2 vector multiplet coupled to a single adjoint
hypermultiplet, i.e. R = Adj. As a result, the theory is superconformal and Tr′

R = 0.
8The subscript 0, c denotes the connected correlator in the Gaussian matrix model, i.e. ⟨f(a) g(a)⟩0,c =

⟨f(a) g(a)⟩0 − ⟨f(a)⟩0⟨g(a)⟩0 with f(a) and g(a) being arbitrary functions of a.

– 8 –



J
H
E
P
0
2
(
2
0
2
5
)
0
7
6

The first term on the right-hand side of the previous expression denotes the expectation value
of the BPS Wilson loop in the Gaussian matrix model, i.e. [20, 31]

W0 = 1
N
L1

N−1

(
−g

2

4

)
exp

(
g2

8
(
1− 1

N

))

= 1 + g2CF

4 + g4CF (2N2 − 3)
192N + g6CF (N4 − 3N2 + 3)

4608N2 + . . . , (2.16)

where CF = (N2−2)/2N is the fundamental Casimir, while Ln
m(x) denotes the n-th generalized

Laguerre polynomial of degree m. In N = 4 SYM, where the matrix model is Gaussian and g
is a pure parameter, the observable is precisely given by the previous expression which, from
a diagrammatic point of view, encodes the resummation of the ladder-like corrections [23, 24].

Turning our attention to the effects of the interaction action (2.15), we note that these
become evident only at three-loop accuracy. In particular, expanding the Wilson loop operator
via eq. (2.14), we find that the lowest order contribution takes the form(

g2

8π2

)2
ζ(3)
2
〈
W(a,g) Tr′Ra4

〉
0,c

=
(
g2

8π2

)2
ζ(3)
2

g2

4N
〈
tra2 Tr′Ra4

〉
0,c

+O(g8) . (2.17)

To evaluate the connected correlator for an arbitrary R we can introduce the free contraction〈
aaab

〉
0 = δab and apply Wick theorem. By considering the legitimate contractions, it is

straightforward to show that(
g2

8π2

)2
ζ(3)
2

g2

4N
〈
tr a2 Tr′R a4

〉
0,c

= g63ζ(3)
28π4N

K′
4 +

g6ζ(3)CFNβ0
16π2 . (2.18)

In the previous expression, β0 is the one-loop coefficient of the β-function, defined in eq. (1.1),
and we introduced the SU(N)-invariant quantity

K′
4 = Tr′R TaTeT

aT e = 2NCF

(
CRiR − NiR

2 − N2

2

)
. (2.19)

The two interaction contributions in eq. (2.18) correspond to the two inequivalent
contractions of matrix model quartic vertex

, . (2.20)

The correspondence between the matrix model vertices and matter loops (2.12) suggests that
these interaction contributions proportional to ζ(3) should emerge in perturbation theory
from two inequivalent single-exchange diagrams. As we already stressed in the previous
section, this correspondence was originally tested in [30, 31] for generic superconformal
set-ups, where only the correction proportional to K′

4 is present. In non-conformal models,
the prediction of the matrix model also includes an additional term proportional to β0. In
the following sections, we will show that this novel contribution emerges in perturbative field
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theory by interference effects between the (UV) poles of the bare coupling and evanescent
factors associated with special parts of diagrams which behave as single exchange correction.

Finally, combining together the relations we derived in this subsection, we obtain a
simple expression for the three-loop prediction, i.e.

W (g) =W0(g) + g6 3ζ(3)
28π4N

K′
4 + g6 ζ(3)CFNβ0

16π2 +O(g8) , (2.21)

where we recall that W0(g) is given by (2.16). Let us stress again that the previous expression
is valid within the range (1.5). Relaxing this condition, we expect that the observable receives
non-perturbative infrared corrections (see comments after eq. (1.5)) which make the result
on the sphere different from the flat-space counterpart.

3 Field theory in flat space

Let us begin with observing that at any perturbative order ĝ2k
B , we can organize the quantities

W2k of eq. (1.8) as follows:

W2k = W ladder
2k +Wv.m.

2k +WR
2k . (3.1)

The first two contributions capture, respectively, the ladder-like diagrams, in which the gauge
field Aµ and the scalar field ϕ are exchanged at tree-level, and the interaction corrections with
internal vertices and lines of the vector multiplet only. These contributions are in common
with the N = 4 theory. By WR

2k we denote, instead, the diagrams that contain internal lines
associated with the matter hypermultiplets in the representation R.

It is well known that in the N = 4 theory, where matter transforms in the adjoint
representation, only the ladder-like diagrams contribute to the expectation value of the
Wilson loop in the limit d → 4. This means that, in general, we can write

Wv.m.
2k = −WAdj

2k + δWv.m.
2k , (3.2)

where δWv.m.
2k is an evanescent corrections: it vanishes for d = 4 and can be expanded in power

series of ϵ = (4− d)/2. As we will discuss in section 4, upon renormalization, the ultraviolet
poles of the bare coupling constant ĝB interfere with the evanescent terms and produce
finite corrections at higher orders in perturbation theory. This means that the renormalized
expectation value at three loops, also receives non-trivial contributions from the two-loop
evanescent corrections δWv.m.

4 which we will compute explicitly in the following subsection.
Substituting eq. (3.2) into eq. (3.1), we have

W2k = W ladder
2k +W ′

2k + δWv.m.
2k , where W ′

2k ≡ WR
2k −WAdj

2k . (3.3)

Thus, besides the ladder-like diagram and the corrections δW2k, at any perturbative order the
interaction contributions are constructed by subtracting from WR

2k exactly the same diagrams
in which the internal matter lines are in the adjoint representation. This combination of
contributions, denoted by W ′

2k, precisely encodes the difference theory diagrams predicted
by the interaction action of the matrix model, see eq. (2.9).
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For d = 4 the ladder-like contributions W ladder
2k are known for every k and are captured

by a Gaussian matrix model through eq. (2.16). Thus, for d → 4, we can write

W ladder
2k = W ladder

2k

∣∣∣
d=4

+ δW ladder
2k . (3.4)

The evanescent corrections δW ladder
2k can contribute, upon renormalization, to higher pertur-

bative orders. For our purposes, we will have to compute δW ladder
4 .

3.1 One-loop corrections

At order ĝ2
B, the Wilson loop expectation value receives contributions from a single class

of ladder-like diagrams, i.e.

W2 = + ≡ . (3.5)

In the previous expression, we employed the double straight/wiggly line of eq. (2.12) to depict
the tree level propagators of the adjoint scalar and of the gauge-field. In the d dimensional
Euclidean space, their expression is given by〈

ϕa(x1)ϕ̄b(x2)
〉

0 = δab∆(x12) ,〈
Aa

µ(x1)Ab
ν(x2)

〉
0 = δµνδ

ab∆(x12) , (3.6)

where we introduced the notation x12 ≡ x1 − x2, while the function ∆(x12) is given by9

∆(x12) = D(x12, 1) =
Γ(1− ϵ)

4π2−ϵ
(
x2

12
)1−ϵ . (3.7)

Expanding the Wilson loop (1.6) at order g2
B, and employing the free Wick contrac-

tions (3.6), we obtain the following representation for the diagrams in eq. (3.5):

W2 = = g2
BCF

2

∮
d2τ

(
R2 − ẋ1 · ẋ2

)
∆(x12) . (3.8)

The two terms above are, respectively, associated with the propagation of the adjoint scalar
and of the gauge field inside the Wilson loop. In particular, as will see in the following
sections, this combination enters all the diagrams contributing to the BPS Wilson loop (1.6).
Consequently, it is convenient to introduce the following effective (tree-level) propagator
on the Wilson loop:

∆̂(x12) = (R2 − ẋ1 · ẋ2)∆(x12) =
Γ(1− ϵ)
8π2−ϵ

(
4R2 sin2(τ12

2 )
)ϵ

, (3.9)

9This corresponds to the case s = 1 in eq. (B.7), since the in momentum space the tree-level propagator is
simply 1/p2.
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where in the second step we used the parametrization (1.7). Substituting the previous
expression in eq. (3.8), we observe that the integration over the contour reduces to a single
integral of the form considered in eq. (F.17), namely

a0(α) ≡
1
π

∮
dτ 1(

4 sin2( τ
2 )
)α = sec(πα)Γ(α)

Γ(1− α)Γ(2α) . (3.10)

As a result, it is straightforward to express the one-loop correction W2 = W ladder
2 in a closed

form which is valid for any d:

W ladder
2 = ĝ2

B CF
Γ(1− ϵ)

8πϵ
a0(−ϵ) ≡ ĝ2

B CFB1(ϵ) . (3.11)

In the previous expression, we introduced, for future convenience, the set of functions

Bn(ϵ) =
Γn(1− ϵ)

8πnϵ
a0(−nϵ) , (3.12)

which are regular and independent of n for ϵ → 0. As we will see in the following, single-
exchange contributions, dressed with the (n− 1)-th loop corrections to the propagators, are
expressed in terms of the function Bn(ϵ).

Expanding eq. (3.11) about ϵ→ 0 we can construct explicitly the two terms of eq. (3.4)
at one loop. To do this properly we have, however, to re-express the bare coupling in terms
of the renormalized one; we will do this in section 4.

3.2 Two loop corrections

The two-loop corrections to the expectation value of Wilson loop were analysed in great
details in [20]. We devote this subsection to review the results at order ĝ2

B and determine
the relevant evanescent corrections we will employ for the three-loop analysis. According to
eq. (3.1), we organize the different families of two-loop diagrams in terms of three distinct
classes of terms, i.e. W ladder

4 , Wv.m.
4 and WR

4 .
Let us begin with discussing the two-loop ladder-like diagrams. Expanding the Wilson

loop operator (1.6) at order g4
B and employing the tree-level propagators of the adjoint scalar

and gauge field (3.6), we find the ladder corrections

= g4
B

N

∮
D
d4τ

{
Caabb

(
∆̂(x12)∆̂(x34) + ∆̂(x14)∆̂(x23)

)
+ Cabab∆̂(x13)∆̂(x24)

}

= W ladder
4 . (3.13)

In the previous expression, the domain of integration D denotes the ordered region τ1 > τ2 >

τ3 > τ4, the propagator ∆̂(x) is defined in eq. (3.9) and we introduced the SU(N) tensor

Cabcd = trT aT bT cT d . (3.14)

Using the properties of the non-Abelian exponentiation of the Wilson loop [49, 50], we can
reduce eq. (3.13) to the following expression

W ladder
4 = 1

2
(
W ladder

2
)2

+ ĝ4
B

2N tr
([
T b, T a])2 ∮

D
d4τ∆̂(x13)∆̂(x24) , (3.15)
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where W ladder
2 is the ladder-like contribution of eq. (3.11), while the second term defines

the so-called maximally non-Abelian part of the diagrams. The nested integration in this
last term is treated in detail in appendix F by Fourier representations. Employing the
parametrization (1.7) and eq. (F.20), we finally find

W ladder
4 = ĝ4

B

CF (2N2 − 3)
12N B2

1(ϵ)− ϵĝ4
B

CFNζ(3)
16π2 +O(ϵ)2 . (3.16)

Note that the term proportional to ζ(3) arises from the maximally non-Abelian part of the
diagram. Further expanding the function B1(ϵ), by employing eq. (3.12), we can determine
the complete expression of the evanescent correction δW ladder

4 . For convenience, however,
we will present this calculation in section 4, where we will discuss the renormalization of
the Wilson loop.

Secondly, we analyse the quantity Wv.m.
4 , which encodes all the two-loop diagrams

uniquely characterized by internal vertices and lines associated with the vector-multiplet.
The only non-trivial contributions result from the Mercedes-like diagrams:10

Wv.m.
4 = . (3.17)

This class of corrections were originally discussed in [23], where the authors studied the
supersymmetric Wilson loop in N = 4 SYM and showed that

= − + δWv.m.
4 = −WAdj

4 + δWv.m.
4 . (3.18)

This expression provides a concrete realization of eq. (3.2) at two loops. In particular, the
bubble-like contribution denotes the one-loop correction to the adjoint scalar and gauge field
propagator in N = 4 SYM, where the hypermultiplets are in the adjoint representation,
while the evanescent correction δWv.m.

4 is given by

δWv.m.
4 = ϵ

ĝ4
BCFNΓ(1− 2ϵ)
(2π)−2ϵ128π4

∫ 1

0
dF (αβγ)−ϵ

∮
d3τ ε(τ) sin τ13

Q1−2ϵ
+O(ϵ)2 . (3.19)

In the previous expression, we introduced the quantities

Q = αβ(1− sτ12) + βγ(1− sτ23) + γα(1− cos τ13) , (3.20)

dF = dα dβ dγ δ(1− α− β − γ) , (3.21)

ε(τ) = θ(τ12)θ(τ23)− θ(τ13)θ(τ32) + permutations . (3.22)

10In principle, one could also expect single-exchange diagrams dressed with the one-loop corrections to the
adjoint scalar and gauge field propagators resulting from the vector-multiplet interaction. However, it follows
from eqs. (B.11) and (B.12) that these specific contributions are not present.
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The path-ordered integral in eq. (3.19) is completely regular in the limit ϵ→ 0 and is evaluated
in appendix F. In particular, using eq. (F.15), we find that∫ 1

0
dF (αβγ)−ϵ

∮
d3τ ε(τ)sin τ13

Q1−2ϵ
= −16π2 ζ(3) +O(ϵ) . (3.23)

Substituting this expression in eq. (3.19) and expanding the prefactor about ϵ → 0, we
finally arrive at the following result:

δWv.m.
4 = −ϵ ĝ

4
BCFNζ(3)

8π2 +O(ϵ)2 . (3.24)

The last quantity we have to determine is the correction WR
4 , which encodes all the

diagrams characterized by internal lines associated with the matter hypermultiplets in the
representation R. At two loops, we find

WR
4 = , (3.25)

where the dashed virtual loop denote the one-loop corrections to the adjoint scalar and gauge
field propagator resulting from matter field in the representation R. We can now combine the
previous expression with eq. (3.18) to construct the difference theory diagrams at two-loop, i.e.

W ′
4 = WR

4 −WAdj
4 = − ≡ . (3.26)

Thus, we remain with a single-exchange contribution dressed with the one-loop correction
to the adjoint scalar and gauge field propagator in the difference theory approach. The
expression of these propagators in configuration space are given by eqs. (B.16), (B.17). Note
that the correction to the gluon propagator involves the gauge-like term ∂1,µ∂2,ν∆(1),g(x12)
which, when contracted with the tangent vectors ẋµ

1 ẋ
ν
2 , gives rise to total derivatives integrated

over a closed path. These obviously vanish and we remain with

W ′
4 = g2

B CF

2

∮
d2τ ∆̂(1)(x12) . (3.27)

In analogy to the ladder-like correction (3.8), we introduced an effective one-loop propagator
on the Wilson loop contour

∆̂(1)(x12) = (R2 − ẋ1 · ẋ2)∆(1)(x12)

= g2
Bf

(1)(ϵ)Γ(1− 2ϵ)
23+2ϵπ2−ϵΓ(1 + ϵ)

(
4R2 sin2(τ12

2 )
)2ϵ

, (3.28)

where, to obtain the second equality, we used the explicit definition of the function ∆(1)(x12),
given by eq. (B.16), and the parametrization (1.7). Performing the integration over the
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contour by eq. (3.10) and by employing the definition of f (1)(ϵ) in eq. (B.15), we produce
a factor 2π2 a0(−2ϵ) and arrive at the following result:

W ′
4 = ĝ4

BCF P2(ϵ)B2(ϵ) , where P2(ϵ) = − β0
ϵ(1− 2ϵ) (3.29)

and we recall that the function B2(ϵ) was defined in eq. (3.12). Combining together the
relations we derived in this subsection, we find that the two-loop corrections to Wilson loop
v.e.v can be written as follows:

W4 = W ladder
4 +W ′

4 + δWv.m.
4 . (3.30)

3.3 Three-loop corrections

The calculation of the three-loop diagrams is significantly more involved and technical than
the two-loop one. However, the logical steps are identical except for the fact that we do not
have to calculate the evanescent corrections since, upon renormalization, they contribute to
four loops. This means that the three-loop corrections take the following form

W6 = W ladder
6

∣∣∣
d=4

+W ′
6 +O(ϵ) . (3.31)

Let us begin with analysing the ladder diagrams. In d = 4 dimensions, their expression
is captured by eq. (2.16). We find that

W ladder
6 = = ĝ6

BCF (N4 − 3N2 + 3)
4608N2 +O(ϵ) . (3.32)

The three-loop interaction contributions are encoded in the difference-theory term
W ′

6 = WR
6 − WAdj

6 . Unlike its two-loop counterpart (3.26), W ′
6 consists of three different

classes of Feynman diagrams which can be organized according to the number of insertions
in the Wilson loop contour. We use the notation

W ′
6 = W ′

6(2) +W ′
6(3) +W ′

6(4) , (3.33)

to distinguish each contribution which we will discuss in turn.

3.3.1 Diagrams with two insertions

At order g6
B, we can insert in the Wilson loop contour a single scalar/gauge-field propaga-

tor dressed with the two-loop corrections in the difference theory approach. The explicit
expressions of these corrections in configuration space is computed in appendix B.2, see
eqs. (B.33), (B.34). Expanding the Wilson loop at order g2

B and employing these relations,
we find, using the usual difference-theory notation, the following expression

W ′
6(2) = 2-loop = g2

B CF

2

∮
d2τ ∆̂(2)(x12) . (3.34)
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In analogy to the one/two-loop corrections (3.8) and (3.26), we defined the two-loop effective
propagator on the Wilson loop contour as follows

∆̂(2)(x12) = (R2 − ẋ1 · ẋ2)∆(2)(x12)

= f (2)(ϵ) g4
BΓ(1− 3ϵ)

23+4ϵπ2−ϵΓ(1 + 2ϵ)
1(

4R2 sin2 τ12
2
)−3ϵ , (3.35)

where to obtain the second equality we employed eq. (B.33) and the parametrization (1.7).
Substituting eq. (3.35) in eq. (3.34), we can easily integrate over the Wilson loop contour

by means of eq. (3.10). Moreover, recalling that f (2)(ϵ), given by eqs. (B.31), (B.32), contains
four different terms, we finally find

W ′
6(2) =

4∑
i=1

F
(2)
i , where F

(2)
i = f

(2)
i (ϵ) ĝ6

BCFΓ(1− 3ϵ)
23+4ϵπ−ϵΓ(1 + 2ϵ)a0(−3ϵ) . (3.36)

Using the explicit form (B.32) of the functions f (2)
i (ϵ) and simple manipulations, we

can recast these contributions as follows:

F
(2)
1 = −ĝ6

B

CF iR
8π2

P2(ϵ)B3(ϵ)
ϵ(1− 2ϵ) +O(ϵ) ,

F
(2)
2 = −ĝ6

B

CF N

16π2
P2(ϵ)B3(ϵ)
ϵ(1− 3ϵ) ,

F
(2)
3 = ĝ6

B

CF N

32π2
P2(ϵ)B3(ϵ)
ϵ(1 + ϵ) ,

F
(2)
4 = ĝ6

B

K′
4
N

3ζ(3)
(4π)4 +O(ϵ) . (3.37)

Note that only the last contribute is regular in the limit ϵ→ 0, while the others exhibit single
and double UV poles. Note also that the contribution F

(2)
3 arises from the gauge-like part of

the gluon self-energy in the second diagram of eq. (B.25). By gauge invariance, we expect
that it should eventually cancel against similar contributions resulting from other diagrams.

3.3.2 Diagrams with three insertions

The three-loop diagrams with three insertions on the Wilson loop contour fall in two distinct
classes, corresponding to one-loop reducible and irreducible corrections to the gauge-scalar
and pure gauge vertex in the difference theory approach. These diagrams are computed
in appendix C and appendix D. The complexity of the calculation lies on the path-ordered
integration over the contour which we have to perform in arbitrary dimension d due to the
presence of UV singularities. Although the computations are extremely technical, the final
result is quite simple and follows from eqs. (C.20) and (D.60). We find

W ′
6(3) = +

= N

iR
F

(2)
1 − F

(2)
2 − 2F (2)

3 + ĝ6
B

CFNβ0
4π2 ζ(3) +O(ϵ) .

(3.38)
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Thus, up to a finite term proportional to ζ(3), these diagrams with internal vertices are
expressible as linear combinations of the bubble-like contributions F (2)

i that emerge from
the single-exchange corrections of the same order, see eqs. (3.36), (3.37). As it occurred
in eq. (3.36), the F (2)

3 contribution above results from diagrams involving the gauge-like
part of the gluon self-energy at one-loop.

3.3.3 Diagrams with four insertions

This class of corrections arises when dressing the internal lines of the two-loop ladder-
like corrections (3.13) with the one-loop correction to the adjoint scalar and gauge field
propagator in the difference approach. The intermediate steps of the calculation are reported
in appendix E. In particular, by employing eqs. (E.7) and (E.11), we find that

W ′
6(4) =

= F
(2)
3 + ĝ6

B

CF (2N2 − 3)
6N B1(ϵ)B2(ϵ)P2(ϵ) + ĝ6

BCFNβ0
3ζ(3)
16π2 +O(ϵ) ,

(3.39)

where we recall that F (2)
3 is the three-loop bubble-like contributions defined in eq. (3.37) and,

again, it results from diagrams involving the gauge-like part of the gluon self-energy.

3.4 Summary of the three-loop results

Let us summarise our findings at three-loop accuracy for the difference-theory interaction
correction defined in eq. (3.33). Using the results (3.36), (3.38), (3.39), we obtain

W ′
6 = iR −N

iR
F

(2)
1 + ĝ6

BCF

(
2N2 − 3

6N B1(ϵ)B2(ϵ)P2(ϵ) +Nβ0
7ζ(3)
16π2 + K′

4
N

3ζ(3)
28π4CF

)
+O(ϵ) ,

(3.40)
where we recall that the functions Bn(ϵ) and P2(ϵ) are defined, respectively, in eqs. (3.12)
and (3.29). As anticipated, the final result does not include any F

(2)
3 contributions as a

consequence due to gauge invariance. Actually, an analogous cancellation also occurs for
the F (2)

2 contributions and, as we will shortly see, this is essential to ensure the correct
renormalization properties of the Wilson loop observable.

The first contribution in the previous expression can be further simplified by using the
explicit definition of the bubble-like contribution F

(2)
1 given by eq. (3.37). We find that it

accounts for a double insertion in the single-exchange diagram (3.8) of the one-loop correction
to the adjoint scalar and gauge field in the difference theory:

iR −N

iR
F

(2)
1 = ĝ6

BCFP
2
2 (ϵ)B3(ϵ) +O(ϵ) = +O(ϵ) . (3.41)
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Let us note that the internal exchange in the previous expression does not represent the
reducible component of the internal correction associated with the contribution W ′

6(2) (3.34)
which, instead, is given by

− . (3.42)

In fact, eq. (3.41) arises when adding to the previous diagrams the first term in eq. (3.38),
resulting from the diagrams with internal vertices W ′

6(3) (3.41). This additional correc-
tion introduces the “cross terms” characterized by one of the two internal bubbles in the
representation R and the second one in the adjoint.

Altogether, taking into account all the results described above, we get the following
expression of the Wilson loop v.e.v. up to three loops:

W = 1 + ĝ2
BCFB1(ϵ) + ĝ4

BCF

(
(2N2 − 3)

12N B2
1(ϵ) + P2(ϵ)B2(ϵ)− ϵN

3ζ(3)
16π2

)

+ ĝ6
BCF

(
N4 − 3N2 + 3

46098N2 + 2N2 − 3
6N B1(ϵ)B2(ϵ)P2(ϵ) + P 2

2 (ϵ)B3(ϵ) + β0N
7ζ(3)
16π2

)

+ ĝ6
B

3ζ(3)K′
4

28π4N
+ . . . , (3.43)

where the dots stand for O(ϵ) terms which only contribute at four loops.

4 Renormalization

The vacuum expectation value of the 1/2 BPS Wilson loop (1.6) is (UV) divergent and we
have to renormalize it in order to obtain a finite result. The divergences are encoded in the
function P2(ϵ), defined in eq. (3.29), which is singular in the limit ϵ→ 0. Since the circular
Wilson loop operator is defined over a smooth curve, the singularities are reabsorbed by the
charge renormalization [51–53] which, in terms of ĝB = gBR

ϵ, reads

ĝB = g∗ (RM)ϵ Zg∗(ϵ) . (4.1)

In the previous expression, g∗ is the renormalized coupling evaluated at the renormalization
scale M , while Zg∗(ϵ) encodes the so-called subtraction terms. These can be easily calculated
by the explicit expression of the β-function (1.1). In particular, acting on eq. (4.1) with
the logarithmic derivative with respect to M and requiring that gB does not depend on
M we find, in the MS scheme, that

Zg∗(ϵ) = exp
(
−
∫ g∗

0

dt
t

(ϵt+ β(t)
β(t)

)

=
(
1− β0g2

∗
ϵ

)− 1
2

= 1 + β0g2
∗

2ϵ + 3
8
(β0)2g4

∗
ϵ2

+ . . . .

(4.2)
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The renormalized Wilson loop average is obtained by replacing the bare coupling ĝB

with the renormalized one g∗ in the dimensionally regularized observable (3.43) and taking
the limit ϵ → 0, i.e.

W∗ = lim
ϵ→0

W(g∗) . (4.3)

Note that when ϵ → 0, the overall dependence on the renormalization scale M must
vanish. This means that W∗ satisfies a Callan-Symanzik equation [20] which constrains the
dependence of the renormalized Wilson loop average on M , g∗ and R, making them to appear
in the running coupling constant g(R), defined in eq. (1.3).

If we consider the three-loop results in eq. (3.43), we can verify that all the divergences
cancel out upon introducing the renormalized coupling and taking the limit ϵ→ 0. Moreover,
the final result can be expressed in terms of the running coupling. For instance, let us
examine the terms

ĝ2
BCFB1(ϵ) + ĝ4

BCFP2(ϵ)B2(ϵ) + ĝ6
BCFP

2
2 (ϵ)B3(ϵ) , (4.4)

which correspond, respectively, to a single-exchange diagrams dressed with zero, one or two
corrections to the adjoint scalar and gauge field propagator at one-loop in the difference
theory. To proceed with the computation, we use eqs. (3.12) and (3.29) to expand the
functions Bn(ϵ) and P2(ϵ) about ϵ → 0, i.e.

P2(ϵ) = −β0

(1
ϵ
+ 2 + 4ϵ+O(ϵ2)

)
,

B1(ϵ) =
1
4 + 1

4 (γ + log π) ϵ+ 1
16
(
π2 + (γ + log π)2

)
ϵ2 +O(ϵ3) ,

B2(ϵ) =
1
4 + 1

2 (γ + log π) ϵ+O(ϵ2) ,

B3(ϵ) =
1
4 +O(ϵ) , (4.5)

and we replace the bare coupling in eq. (4.4) with the renormalized one (4.1). By employing
the subtraction terms (4.2) and the expansions (4.5), it is straightforward to verify that the
final result is divergence free. Analogously, it is also straightforward to show that, up to
four-loop terms, the finite term takes the following form:

g2
∗
4

(
1− β0g

2
∗

(
logM2R2 + 2 + γ + log π

)
+ β2

0g
4
∗

((
logM2R2 + 2 + γ + log π

)2
+ π2

3

))
.

(4.6)

Let us focus on the regime (1.5) in which we derived the matrix model on S4. Within
this range, logRM ≫ 0 so that the logarithmic terms, associated with the short-distance
properties of theory, dominate over O(M0) ones. Thus, we can write11

g2
∗
4

(
1− β0g

2
∗ logM2R2 + β2

0g
4
∗

(
logM2R2

)2
)
+O(g8

∗) =
g2

4 +O(g8) , (4.7)

11These (scheme-dependent) finite terms are not completely captured by the matrix model, even if we could
reabsorb many of them by using as a renormalization scale the quantity M̃ such that log M̃2R2 = log M2R2 +
2 + γ + log π.
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where we recognized the expansion up to order g6
∗ of the running coupling constant defined

in eq. (1.3). It is interesting to observe that the previous expression admits a graphical
description in terms of a resummation of single-exchange:

+ + =

g

g

+O(g8) . (4.8)

The right-hand side of the previous expression highlights that the final result can be obtained
by the usual ladder-like contribution by replacing the bare coupling with the running one,
defined in eq. (1.3).

Going back to eq. (3.43), we repeat the same analysis for the terms proportional to the
colour factor (2N2 − 3), characterizing the double-exchange diagrams. Exploiting analogous
manipulations, we find, within the regime (1.5), that

ĝ4
BCF

2N2 − 3
12N

(
B2

1(ϵ) + 2ĝ2
BB1(ϵ)B2(ϵ)P2(ϵ)

)
= g4CF

2N2 − 3
192N +O(g8) . (4.9)

Let us now consider the terms in (3.43) proportional to ζ(3) and characterized by the
colour factor CFN , for which we have

ĝ4
BCFN

ζ(3)
16π2

(
−3ϵ+ 7β0ĝ

2
B

)
= g6CFNβ0

ζ(3)
16π2 +O(g8) . (4.10)

Note that each coefficient on the l.h.s. represents the sum of two types of contributions:
−3ϵĝ4

B = (−2ϵ− ϵ)ĝ4
B and 7β0ĝ6

B = (4 + 3)β0ĝ6
B. More specifically, the (−2ϵĝ4

B) term results
from the evanescent correction δWv.m.

4 of the two-loop diagrams with internal vertices, defined
in eq. (3.18) and explicitly given by eq. (3.24). Upon renormalization, this evanescence
interferes with the UV poles of the bare coupling and precisely remove the 4β0ĝ6

B term,
resulting from the same family of diagrams at three-loop, i.e. the Mercedes and lifesaver
corrections we presented in eq. (3.38). This means that all the terms proportional to β0ζ(3)
only originate from the ladder-like diagrams depicted in eqs. (3.16) and (3.39), which are
responsible, respectively, for the contributions −ϵĝ4

B and 3β0ĝ6
B.

In graphical terms, we can summarize the content of eqs. (4.9) and (4.10) as follows:12

+ =

g

g

g

g

+ g6CFNβ0
ζ(3)
16π2 +O(g8) . (4.11)

12This is actually not precise: the right hand side includes also, as reported in eq. (3.39), the term F
(2)
3 .

However, as we already pointed out, this contribution does not contribute since it is exactly removed by
analogous contributions resulting from the correction W ′

6(3), see eq. (3.38), and W ′
6(2), given by eq. (3.41).
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Since our analysis regards the three-loop correction, the renormalization of the triple-
exchange terms (3.32) is trivial and provides us with the following contribution

g6CF (N4 − 3N2 + 3)
4608N2 +O(g8) . (4.12)

The last term in eq. (3.43), proportional to the colour factor K′
4, results from the

irreducible part of the internal correction in the single-exchange diagrams (3.34), namely
from the F (2)

4 function in eq. (3.34). We find that

ĝ6
B

K′
4
N

3ζ(3)
28π4 = g6K′

4
N

3ζ(3)
28π4 +O(g8) . (4.13)

Collecting all the results we derived in this subsection, we can write the renormalized
Wilson loop vev W∗ in terms of the running coupling constant g as follows:

W∗ =W0 + g6K′
4
N

3ζ(3)
28π4 + g6CFNβ0

ζ(3)
16π2 +O(g8) , (4.14)

where W0 was introduced in eq. (2.16) and contains the ladder diagrams computed with the
running coupling constant g, while the two terms proportional to ζ(3) coincide exactly with
the prediction of the localization matrix model, as follows from eqs. (2.15) and (2.18). Let us
stress that this agreement holds within the regime (1.5). From the field theory point of view,
the final result, when expressed in terms of the running coupling, is purely due to ladder-like
diagrams, see eqs. (4.8), (4.11) and (4.12). Moreover, the final outcome also ties perfectly in
with the matrix model diagrams (2.20), which suggest that the two terms proportional to ζ(3)
have to be associated with single-exchange diagrams. Indeed, as we previously explained, the
correction involving the coefficient K′

4 results from the diagram (3.34), while the term β0ζ(3)
is proportional to the fundamental Casimir CF , which is the expected colour coefficient of
the as single-exchange diagrams (3.5).

5 Conclusions and outlook

In this paper, we investigated the relation between supersymmetric localization on S4 and
standard perturbative techniques in flat space for a generic N = 2 SYM theory with non-
vanishing β-function. The analysis has been performed by studying the vacuum expectation
value of the 1/2 BPS Wilson loop, for which localization provides an explicit result in term
of an interacting matrix model. Although conformal invariance is broken at quantum level,
preventing a direct connection between the sphere and the Euclidean space, we found a
precise agreement in the specific regime described in eq. (1.5). Within this range of validity,
the contribution of instantons and power-like corrections are suppressed and we showed
that the matrix model predictions match standard perturbation theory based on Feynman
diagrams techniques in flat space up to order g6. At this perturbative order the matrix model
produces two non-trivial ζ(3)-like terms, that have a different origin: one is already present
in the conformal case [30, 31], while the other is peculiar of the models with non-vanishing
β-function. We successfully compared the effective matrix diagrams associated with these
contributions with the flat-space perturbative expansion, finding crucial interference effects
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between evanescent terms and the UV divergences of the bare coupling constant. Our results
not only provide a non-trivial test of the localization approach for generic N = 2 SYM theories,
but also make manifest the subtle reorganization of the conventional Feynman diagrams into
the matrix-model average. On the technical side, the perturbative computations of the three-
loop contributions involved multiple ordered integrations of position-space Green functions
along a circular domain. As far as our knowledge is concerned, this type of calculations have
never been considered before at such precision level: we have devoted a series of appendices
to illustrate the procedure and the actual emergence of the evanescent terms and finite
contributions relevant for the final result.

Clearly, there are some possible improvements and extensions of our work. It would
be interesting to expand our analysis to the next perturbative order and try to generalize
the understanding at all loops. This would imply a more systematic approach to the
calculation of Feynman diagrams for circular Wilson loops involving complicated path-
ordered trigonometric integrations. In the case of cusped Wilson loops, the path-integration
is performed over straight lines by techniques involving heavy quark effective theory. These
have provided beautiful results for the cusp anomalous dimension [53] at high-loop order,
both in supersymmetric and non-supersymmetric theories (see [54] for status review). It
would be nice to develop an analogous tool to face circular contours. Another natural
investigation would be to examine correlators of local operators in this non-conformal set-up:
supersymmetric localization still gives exact results for classes of two-point functions that
can be compared with flat-space perturbation theory [46]. Studying these local observables
in light of the present computations could further improve our understanding of the effects
associated with a non-trivial β-function. We plan to explore these two-point functions in the
near future. A more speculative direction concerns the study the large-order behaviour of the
perturbative series in presence of a running coupling constant. Exact all-orders expressions on
S4 have been already used to explore asymptotic properties of the matrix-model perturbative
expansion, in connection with resurgent techniques [55]. The analysis has been performed
for different N = 2 SYM theories, obtaining explicit results in the conformal and massive
cases. It would be interesting to reconsider the non-conformal case and its relation with a
flat-space set-up to shed light on the convergence properties of the perturbative series and,
possibly, on some gauge-invariant resummations.
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A Field theory set-ups and conventions

Our conventions follow those of [31, 35, 36]. In Euclidean space the spin group is Spin(4) ≃
SU(2)α ⊗ SU(2)α̇. Chiral spinors carry undotted indices α, β, . . ., while anti-chiral spinors
carry dotted indices α̇, β̇, . . . , which are contracted as follows

ψχ ≡ ψαχα , ψ̄χ̄ ≡ ψ̄α̇χ̄
α̇ . (A.1)

In the following, we raise and lower indices as follows

ψα = ϵαβψβ , ψ̄α̇ = ϵα̇β̇ψ̄β̇ , (A.2)

where ϵ12 = ϵ21 = ϵ1̇2̇ = ϵ2̇1̇ = 1. Let us note in Euclidean spacetime spinors satisfy
pseudoreality conditions, i.e.

(ψα)† = ψα . (A.3)

The matrices (σ̄µ)α̇α and (σµ)αβ̇ are defined as follows

σµ = (τ⃗ ,−iI) , σ̄µ = (−τ⃗ ,−iI) , (A.4)

where τ⃗ are the ordinary Pauli matrices. Furthermore, these matrices are such that

(σ̄µ)α̇α = ϵα̇β̇ϵαβ(σµ)ββ̇ (A.5)

and satisfy the Clifford algebra

σµσ̄ν + σν σ̄µ = −2δµνI , (A.6)

σ̄µσν + σ̄νσµ = −2δµνI . (A.7)

The previous expressions obviously implies that

Trσµσ̄ν = −2δµν . (A.8)

It also is straightforward to show that the following set of relations hold

tr(σ̄µσν σ̄ρσσ) = 2
(
δµνδρσ − δµρδνσ + δµσδνρ + ϵµνρσ) ,

tr(σµσ̄νσρσ̄σ) = 2
(
δµνδρσ − δµρδνσ + δµσδνρ − ϵµνρσ) , (A.9)

σ̄µσν σ̄ρ = −δµν σ̄ρ + δµρσ̄ν − δνρσ̄µ − ϵµνρασ̄α ,

where we normalize ϵ1234 = ϵ1234 = 1.

A.1 Euclidean actions in flat space

We consider N = 2 super-Yang-Mills theories with gauge group SU(N) and with massless
hypermultiplets in an arbitrary representation R. The Lie algebra of the gauge group is su(n)
and spanned by hermitian traceless generators T a, with a = 1, . . . , N2 − 1, satisfying

[T a, T b] = ifabcT c . (A.10)
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In the N = 2 language, the vector multiplet consists of one gauge field and one complex
scalar fields, denoted as Aµ and ϕ, along with their fermionic partners ψ and λ, to which we
will sometimes refer as the gauginos. In Euclidean space, the dynamics of this supermultiplet
is described by the following gauged-fixed action

Sgauge
0 =

∫
d4x Tr

[
− 1

2FµνF
µν − 2iλσµDµλ̄− 2iψσµDµψ̄ − 2Dµϕ̄D

µϕ− 2∂µc̄D
µc

]
,

Sint =
∫

d4x Tr
[
2igB

√
2
(
ϕ̄
{
λα, ψα

}
− ϕ

{
ψ̄α̇, λ̄

α̇})− ξ(∂µA
µ)2 − g2

B

[
ϕ, ϕ̄

]2]
,

(A.11)

where in the previous expression we denoted with c the ghost field. Let us note that with
these conventions the actions are negative defined and consequently, they appear as eS in
the path integral. The field-strength and the adjoint covariant derivatives are

Fµν = ∂µAν − ∂νAµ − igB[Aµ, Aν ] , Dµ = Aµ − igB[Aµ, •] . (A.12)

In the N = 2 language matter sits in the hypermultiplets. Their spacetime field content
consists of two complex scalars fields, i.e. q and q̃, along with their fermionic partners η and η̃.
In particular, q and η transform in the representation R, while the q̃ and η̃ in the conjugated
one, i.e. R∗. The dynamics is encoded in the following actions

SQ
0 =

∫
d4x

[
−Dµq̄D

µq − iη̄σ̄µDµη −Dµq̃D
µ ¯̃q − iη̃σµDµ ¯̃η

]
SQ

int =
∫

d4x

[
i
√
2gB

(
q̃λ̄¯̃η − η̃λ ¯̃q

)
+ i

√
2gB

(
η̄ϕ̄¯̃η − η̃ϕη

)
+ i

√
2gB

(
η̄ψ̄ ¯̃q − q̃ψη

)
+ i

√
2gB

(
q̄ψ̄ ¯̃η − η̃ψq

)
+ i

√
2gB

(
q̄λη − η̄λ̄q

)
− g2

BV (ϕ, q̃, q)
]
,

(A.13)

where we denoted with V (ϕ, q̃, q) the scalar potential describing quartic interactions

V = q̃{ϕ, ϕ̄}¯̃q + q̄{ϕ̄, ϕ}q −
(
q̃T a

R ¯̃q
)
(q̄T a

Rq) + 2
(
q̄T a

R ¯̃q
)
(q̃T a

Rq)

+ 1
2 (q̄T a

Rq) (q̄T a
Rq) +

1
2
(
q̃T a

R ˜̄q
) (
q̃T a

R ˜̄q
)
.

(A.14)

In the previous, T a
R denotes the generators of the Lie algebra su(n) in the representation R

of the gauge group. The covariant derivatives for a field transforming in this representation
is defined as

Dµ = ∂µ − igBA
a
µT

a
R . (A.15)

We conclude this section by reporting our conventions for the Feynman propagators.
Let us begin with considering the vector-multiplet fields. In the Feynman gauge, i.e. ξ = 1,
the tree-level propagator of the adjoint scalar ϕ and of the gauge field Aµ are identical up
to spacetime indices. We have

Aa
µAb

ν

= δab

p2 δµν ,
ϕaϕ̄b

= δab

p2 . (A.16)
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On the other hand, the tree-level propagators of the two gauginos λ and ψ exhibits a more
complicated structure. Here we consider in detail the relevant expressions for the Weyl spinor
λ but analogous results hold for ψ. We have two relevant Wick contractions, i.e.〈

λa
α(x)λ̄b

α̇(y)
〉

0 ,
〈
λ̄α̇

b (y)λα
a (x)

〉
0 . (A.17)

In our conventions, the arrow associated with the particle flow always goes from the dotted
index to the undotted one. As a result, in momentum space we represent the first contraction
as follows

〈
λa

α(x)λ̄b
α̇(y)

〉
0 ↔

α, aα̇, b

p

= δabσαα̇ · p
p2 , (A.18)

where σαα̇ · p = σµ
αα̇ pµ, with σµ

αα̇ defined in eq. (A.4). The tree-level propagator with raised
indices in eq. (A.17) is obtained from the previous expression by employing the ϵ-tensor
as explained in eq. (A.4). We find

〈
λ̄α̇

b (y)λα
a (x)

〉
0 ↔

α, aα̇, b

p

= δabσ̄α̇α · p
p2 . (A.19)

Finally, we consider the propagators associated with the spacetime fields of the massless
hypermultiplets in the representation R. For the complex scalars q and q̃ we have

qvq̄u
= δ u

v

p2

q̃v¯̃qu

= δ v
u

p2 ,

(A.20)

where u, v = 1, . . . , dimR. Finally, we consider the fermionic propagators associated with
the fermions η and η̃. For simplicity, we only depict the contractions with lowered indices i.e.

ηα,uη̄v
α̇

p

= δ v
u σαα̇ · p
p2 (A.21)

η̃u
α

¯̃ηα̇,v

p

= δ u
v σαα̇ · p
p2 . (A.22)

The relevant expressions with raised indices are analogous to the propagators presented
in eq. (A.19).

B Perturbative corrections to propagators

In this section, we introduce our notations and conventions for the calculation of the Feynman
integrals entering the perturbative corrections to the propagators at one/two-loop accuracy.

– 25 –



J
H
E
P
0
2
(
2
0
2
5
)
0
7
6

We will primarily work in momentum space and will follow the formalism presented in [56].
At one-loop accuracy, we consider the basis integral

G(n1, n2) =
∫ ddk

(2π)d

1
(k2)n1((k + p)2)n2

= (p2)d/2−n1−n2G̃(n1, n2) , (B.1)

where the overall dependence on external momentum p2 follows from dimensionality, while
G̃(n1, n2) is a function of the dimension d and of the integers n1 and n2.13 Employing usual
Feynman parameters for the different propagators, it is straightforward to show that

G̃(n1, n2) =
Γ(n1 + n1 − d/2)
(4π)d/2Γ(n1)Γ(n2)

Γ(d/2− n1)Γ(d/2− n2)
Γ(d− n1 − n2)

, (B.2)

where Γ(x) is the Euler gamma function. At two-loop accuracy, the basis integral we consider
is [30, 56]

G(n1, n2, n3, n4, n5) =
∫ ddk

(2π)d

ddl

(2π)d

1
((k + p)2)n1((l + p)2)n2(k2)n3(l2)n4((l − k)2)n5

= (p2)d−
∑

niG̃(n1, n2, n3, n4, n5)

where ni are integers. Note that the previous expression is symmetric under the interchanges
(1 ↔ 2, 3 ↔ 4) and (1 ↔ 3, 2 ↔ 4). When one of the parameters ni vanishes, eq. (B) reduces to
a product of the one-loop integrals we introduced (B.1). In particular, we will use the identities

G̃(n1, n2, n3, n4, 0) = G̃(n1, n3)G̃(n2, n4) , (B.3)

G̃(0, n2, n3, n4, n5) = G̃(n3, n5)G̃(n2, n3 + n4 + n5 − d/2) , (B.4)

which can be derived by repeated applications of eq. (B.1). When all the indices ni in eq. (B)
are equal to one, it is possible to employ integration by parts (see section 5.1 of [56] for the
technical details) to derive the following relation:

G(d) ≡ G(1, 1, 1, 1, 1) = 2G(1, 1)
d− 4

(
G(2, 1)−

(
p2
)2−d/2

G(2, 3− d/2)
)
. (B.5)

Using eq. (B.1), it is straightforward to prove that the previous expression is regular in
the limit d → 4 and yields the well-known result proportional to ζ(3), i.e.

G(d) = (p2)d−5G̃(d) = 6ζ(3)
(4π)4p2 +O(d− 4) . (B.6)

Finally, to Fourier transform in configuration space, we will employ the formula

D(x, s) ≡
∫ ddp

(2π)d

eip·x

(p2)s
= Γ(d/2− s)

4sπd/2Γ(s)
1

(x2)d/2−s
. (B.7)

The tree-level propagators in configuration space are proportional to ∆(x) = D(x, 1).
13Let us note that when n1 ≤ 0 or n2 ≤ 0 eq. (B.1) vanishes.
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B.1 One-loop corrections

In this subsection, we examine in detail the one-loop corrections to the propagators which
enter the calculation of the Wilson loop.

We begin with considering the gauge field and the adjoint scalar propagators. By gauge
invariance, we can deduce that

= δabg2
B

(p2)2 π
(1)
S (p2) , (B.8)

= δabg2
B

(p2)2

(
δµν − pµpν

p2

)
π

(1)
G (p2) , (B.9)

where π(1)
G and π

(1)
S are the gluon and scalar polarization operator, respectively. For the

theories under examination, these quantities were computed in appendix C of [20], where it
is explicitly showed that they coincide in the Feynman gauge, as expected by supersymmetry.
For future reference, we report the relevant Feynman diagrams that contribute to eq. (B.8).
Using the conventions of appendix A.1, we find that

=

AA

+

ψψ̄

λλ̄

+

ηη̄

η̃ ¯̃η

(B.10)

where ψ and λ denote the two gauginos of the vector multiplet, while η and η̃ are the Weyl
fermions associated with the massless hypermutliplets in the representation R. Going through
the calculation of eq. (B.10), it is possible to show that the first two diagrams cancel each
other out and consequently, we remain with [20]

=

ηη̄

η̃ ¯̃η

≡ = −2δabg
2
B

p2 iRG(1, 1) , (B.11)

where G(1, 1) is defined in (B.1) and we recall iR is the Dynkin index of the representation
R. Since π(1)

G (p2) = π
(1)
S (p2) in the Feynman gauge, we deduce that [20]

= = −2iR
δabg

2
B

(p2)

(
δµν − pµpν

p2

)
G(1, 1) . (B.12)

Using these results, we can easily derive the one-loop corrections to the propagators in the
difference theory method. Subtracting off the contributions of N = 4 SYM, where the
hypermultiplets transform in the adjoint representation, we find that

= δab
g2

BΠ(1)(p2)
(p2)2 , (B.13)

= δab

(
δµν − pµpν

p2

)
g2

BΠ(1)(p2)
(p2)2 , (B.14)
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with the one-loop polarization operator in the difference theory being given by

Π(1)(p2) = f (1)(d)(p2)d/2−1 , where f (1)(d) = −16π2β0G̃(1, 1) . (B.15)

We recall that the dimensionless function G̃(1, 1) is given by (B.1), while β0 is the one-loop
coefficient of the β-function (1.1). In configuration space, using eq. (B.7) to perform the
Fourier transform, we find the following result

x1 x2
= f (1)(d)g2

B D(x12, 3− d/2) ≡ ∆(1)(x12) , (B.16)

for the scalar propagator. Repeating the same calculation for the gluon, we have

x1 x2
= g2

Bf
(1)(d) (δµνD(x12, 3− d/2)− ∂1,µ∂2,νD(x12, 4− d/2))

≡ δµν∆(1)(x12)− ∂1,µ∂2,ν∆(1),g(x12) .
(B.17)

By gauge invariance, we expect that all the Wilson loop diagrams which involves the
gauge-like term ∂1,µ∂2,ν∆(1),g(x12) do not contribute to the final results and in the following,
we will verify this property explicitly.

Finally, we consider the fermionic propagators at one-loop accuracy. These will enter the
calculation of the two-loop corrections to the adjoint scalar propagator we will examine in
the following section. Specifically, we begin with considering the vector multiplet fermions,
i.e. the gauginos ψ and λ. For the Weyl fermion ψ, we find

= +

λλ̄

ϕϕ̄

+

qq̄

η̃ ¯̃η

+

ηη̄

q̃ ¯̃q

= −2(N + iR)δab

g2
B/p

p2 G(1, 1) ,

(B.18)

where /p ≡ pµσ
µ, with σµ given by (A.4). In the previous expression, q and q̃ are the complex

scalars associated with hypers in the representation R, while the first diagram results from
the interaction of the fermion ψ with the gauge field Aµ and with the real scalars Ai, where
i = 1, . . . , 4 − d, which emerge from dimensional reduction. We verified that the one-loop
corrections to the propagator of the gaugino λ give us the same result, as expected from
supersymmetry. From eq. (B.18), we can easily deduce the one-loop correction to the fermion
propagator in the difference method, i.e.

= 2(N − iR)δab

g2
B/p

p2 G(1, 1) . (B.19)
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Finally, we consider the corrections to the propagators of the spinors η and η̃. For the
fermion η we find

= +

ψψ̄

qq̄

+

λλ̄

qq̄

+

ϕϕ̄

η̃ ¯̃η

= −4CRδuv
g2

B/p

p2 G(1, 1) ,

(B.20)

where u, v = 1, . . . , dimR and we recall that CR is the quadratic Casimir14 of the representa-
tion R. We find an identical result for fermion η̃ as expected from supersymmetry.

B.2 Two-loop corrections to the propagators

The three-loop analysis of the 1/2 BPS Wilson loop involves diagrams characterized by the
two-loop corrections to the adjoint scalar and gauge field propagator in the difference theory
approach. In the Feynman gauge, the expectation based on supersymmetry is that these
quantities coincide up to spacetime indices,15 as it occurs at one-loop accuracy (see eqs. (B.13)
and (B.14)). Therefore, in the following, we will assume that

2-loop = 2-loop
R − 2-loop

Adj = δabg
4
B

(p2)2 Π
(2)(p2), (B.21)

2-loop = 2-loop
R − 2-loop

Adj = δabg
4
B

(p2)2

(
δµν−

pµpν

p2

)
Π(2)(p2), (B.22)

and we will calculate the two-loop polarization operator Π(2)(p2) by considering the scalar
propagator. In the previous expression, the contribution labelled by R encodes all the
two-loop diagrams in N = 2 SYM in which the scalar ϕ (or the gluon) interacts with matter
fields in representation R, while the other contribution denotes the corrections resulting
from N = 4 SYM, where matter transforms in the adjoint representation, i.e. R = Adj. By
dimensional reasons, the polarization operators can be written as

Π(2)(p2) = (p2)d−3 f (2)(d) , (B.23)

where f (2)(d) is a dimensionless function of d and includes colour factors. To avoid cumber-
some expressions, we find convenient to express every diagram by the basis integrals (B.1)
and (B) and directly provide their contributions to f (2)(d), omitting the overall prefactor
g4

Bδab/(p2)5−d.
14The quadratic Casimir is defined via the relation T a

RT a
R = CRI.

15An explicit test of this property at two-loop accuracy can be found in [30], where the authors studied the
1/2 BPS Wilson loop in superconformal N = 2 QCD.
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On the one-hand, we find that the reducible corrections are simply given by

− = 4(i2R −N2)G̃(1, 1)2 , (B.24)

as it follows from eq. (B.11). On the other hand, the irreducible contributions can be
organized in two classes of diagrams.

The first one arises when decorating the internal lines of the diagrams depicted in
eq. (B.10) with the one-loop self-energies associated with the fields of the virtual loops. In
the difference theory approach, we find the following classes of diagrams

+ +

= 2N(N − iR)
(
5G̃(0, 1, 1, 0, 1)− G̃(0, 1, 1, 2, 1)

)
, (B.25)

= 16
(
CRiR −N2

) (
G̃(0, 1, 1, 1, 1)− G̃(0, 1, 1, 0, 1)

)
. (B.26)

In eq. (B.25), the internal bubbles in the double dashed/continuos line notation denote,
respectively, the one-loop correction to the adjoint scalar, gauge field and gaugino propagators
in the difference method (see, respectively, eqs. (B.13), (B.14) and (B.19)). Similarly, eq. (B.26)
arises when we decorate the matter loop in eq. (B.11) with the one-loop correction (B.20)
and we subtract the contribution of N = 4 SYM.

The second class of irreducible corrections emerges from pure two-loop diagrams, which
we organize in terms of three fermionic loops and one sunset-like correction, i.e.

= 2K′
4

NCF

(
G̃(d)− G̃(1, 0, 1, 1, 1) + 2G̃(0, 1, 1, 0, 1)

)
, (B.27)

= −4N(iR −N)
(
G̃(0, 1, 1, 1, 1)− G̃(1, 1)2

)
, (B.28)

= 4N(iR −N)
(
4G̃(0, 1, 1, 0, 1)− 2G̃(1, 1)2

)
, (B.29)

=
(
8(CRiR −N2)− 2N(iR −N))G̃(0, 1, 1, 0, 1

)
. (B.30)

The colour factor K′
4 in eq. (B.27) was defined in eq. (2.19), while the double wiggly/continuous

line denotes the propagation of the gauge field Aµ and of the 4− d real scalars resulting from
dimensional reduction inside the fermion loop. Similarly, the diagrams in eq. (B.29) arise from
the Yukawa-like vertices in which the adjoint scalar ϕ interacts with the matter fermions, with
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the two gauginos and with the matter scalars. Note that the external continuos line with which
we depicted the internal bubble in eq. (B.29) has the meaning as in eqs. (B.21) and (B.22).

Combining together the results we derived in this subsection, we can express the dimen-
sionless function f (2)(d), that determines the scalar polarization Π(2) through eq. (B.23),
as the sum of four different terms

f (2)(d) = f
(2)
1 (d) + f

(2)
2 (d) + f

(2)
3 (d) + f

(2)
4 (d) . (B.31)

Recalling the explicit definition of the coefficient β0, given by eq. (1.1), we finally obtain

f
(2)
1 (d) = 32π2 β0 iR G̃(1, 1)2 ,

f
(2)
2 (d) = 32π2 β0N G̃(0, 1, 1, 1, 1) ,

f
(2)
3 (d) = 16π2 β0N G̃(0, 1, 1, 2, 1) ,

f
(2)
4 (d) = 2K′

4
NCF

G̃(d) . (B.32)

Finally, it is straightforward to obtain the expressions of these propagators in configuration
space. By employing eq. (B.7), we find

x1
2-loop

x2
= g4

Bf
(2)(d)D(x12, 5− d) ≡ ∆(2)(x12) , (B.33)

for the adjoint scalar field. Conversely, for the gluon propagator, we get two terms:

x1
2-loop

x2
= g4

Bf
(2)(d) (δµνD(x12, 5− d)− ∂1,µ∂2,νD(x12, 6− d))

≡ δµν∆(2)(x12)− ∂1,µ∂2,ν∆(2),g(x12) . (B.34)

Note that the gauge-like term ∂1,µ∂2,ν∆(2),g(x12) is completely irrelevant when inserted in
the single-exchange correction (3.34) since, when contracted with the tangent vectors ẋµ

1 ẋ
ν
2 ,

it provides total derivates integrated over a closed path.

C Mercedes-like diagrams

In this section, we provide the technical details regarding the calculation of the Mercedes-like
correction

M ≡ , (C.1)

where we used the notation introduced in eqs. (B.16) and (B.17).
Expanding the Wilson loop operator (1.6) at order g3

B, we obtain the following repre-
sentation for the Mercedes-like corrections

M =
∮

d3τ

(
(igB)3

3!N
〈
trPA(τ1)A(τ2)A(τ2)

〉
M + ig3

BR
2

2N
〈
trPA(τ1)Φ(τ2)Φ̄(τ3)

〉
M

)
, (C.2)
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where we recall that P denotes the path-ordering operator, we introduced the notation
Ai ≡ ẋµ(τi)Aa

µ(x(τi))T a and Φi ≡ ϕa(x(τi))T a and we used the subscript M to restrict the
Wick contractions inside the correlators to the internal diagrams depicted in eq. (C.1).

Before entering the calculation of eq. (C.2), it is convenient to recall that the one-loop
correction to the gauge-field propagator, defined in eq. (B.17), involves the gauge-like term
∂1,µ∂2,ν∆(2),g(x12). By gauge invariance, we expect that the sum of all three-loop corrections
to the expectation value of the Wilson loop involving this gauge-like term vanishes. To
check this fact explicitly, it is convenient to introduce the following diagrammatic notation
for eq. (B.17):

x1 x2
= δabδµν∆(1)(x12) + δab∂1,µ∂1,ν∆(1),g

µν (x12)

≡
x1

δ x2
+

x1
∂ x2

.

(C.3)

We use the symbols δ and ∂ inside the dashed/continuos bubbles, to distinguish the tensor
structures of the two terms and we recall that ∆(1)(x) and ∆(1),g(x) are defined in eqs. (B.16)
and (B.17) respectively, from which it follows that

∆(1)(x12) =
g2

Bβ0Γ2 (d/2− 1)
4πd−2(d/2− 2)(d− 3)(x2

12)d−3 , (C.4)

∆(1),g(x12) =
g2

Bβ0Γ2(d/2− 1)
25πd−2(3− d/2)(d− 3)(2− d/2)2(x2

12)d−4 . (C.5)

Using the notation we introduced in eq. (C.3), we can organize the correction (C.1) in terms
of two distinct classes of diagrams, i.e.

M1 ≡
δ

+
δ

+ , (C.6)

M2 ≡
∂

+
∂

. (C.7)

In the following subsections, we will analyse these two classes of corrections in turn.

C.1 Computing M1

To deduce the expression of the different diagrams contributing to M1, we begin with
considering the interaction action associated with the internal (gauge-scalar/pure-gauge)
triple vertices. Using the conventions of appendix A.1, we find that

Sgs = gB

∫
ddωfabc

(
∂µϕ̄bA

µ
aϕc − ϕ̄bA

µ
a∂µϕc

)
(ω)

Sgg = gB

∫
ddωfacb

(
∂µAν,cA

µ
aA

b
ν

)
(ω) ,

(C.8)
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where fabc, defined by [T a, T b] = ifabcTc, are the (antisymmetric) structure constants of
su(N). Inserting these actions in the correlation functions of eq. (C.2) and decorating the
proper Wick contractions with the one-loop correction to the adjoint scalar δab∆(1)(x), defined
in eq. (B.16), and with the tensor δµν∆(1)(x), we arrive at the following expression

M1 = −g
4
BCFN

2

∮
d3τε(τ) (R2 − ẋ1 · ẋ3) (ẋ2 · ∂x1)

∫
ddω

3∑
i=1

∏
j ̸=i

∆(1)(xiω)∆(xjω) , (C.9)

where xiω ≡ xi − ω, while the function ∆(x) and the path-ordering symbol16 ε(τ) are defined
in eqs. (3.7) and (3.22), respectively. By integrating over ω with usual Feynman parameters
and expressing the coordinates xi via the parametrization (1.7), we find that

M1 = Ad

∫ 1

0
dF

∮
d3τε(τ) (1− cos (τ13))(α(1− α) sin (τ12)− αγ sin (τ32))

Q3d/2−4 . (C.10)

In the previous expression, the denominator Q is defined in eq. (3.20), while the integration
measure over the Feynman parameters and the multiplicative prefactor are given by

dF = dF (αβγ)d/2−2
(
αd/2−2 + βd/2−2 + γd/2−2

)
, (C.11)

Ad = ĝ6
BCFNβ0 Γ(3d/2− 4)Γ2(d/2− 1)

(d/2− 2)Γ(d− 2) (π)3d/2−623d/2+2π4 . (C.12)

In the previous expression, dF is the standard measure over the unit cube (3.21). To perform
the contour integration in eq. (C.10), we employ the following identities17

∫ 1

0
dF

∮
d3τ

∂

∂τ1

(
ϵ(τ)(1− cos τ13)

Q3d/2−5

)
= 0 , (C.13)

∂τ1ε(τ)− 2
(
δ(τ12)− δ(τ13)

)
= 0 . (C.14)

To proceed with the calculation, it is sufficient to insert eq. (C.13) in (C.10) and observe
that the measure dF is completely symmetric. This enables to relabel the variables τi and
keep the denominator Q unchanged. As a result, we find that

M1 = 2Ad

3d/2− 5

∫ 1

0
dF

∮
d2τ

(1− cos τ23)6−3d/2

(γ(1− γ))3d/2−5 −Ad

(3d− 12
3d− 10

)∫ 1

0
dF

∮
d3τ

ε(τ) sin τ13
Q3d/2−5

= −2F (2)
2 − N

iR
F

(2)
1 + ĝ6

Bβ0CFN9ζ(3)
16π2 . (C.15)

In the previous expression, the quantities F (2)
1 and F

(2)
2 are the (UV divergent) bubble-like

contributions we defined in eq. (3.37). They arise from the integration over the measure
dF (C.11) in the first term of the previous expression, while the ζ(3)-like contribution is
obtained by applying the master integral (3.23) to the second term.

16ε(τ) arises since the internal diagrams are proportional to the antisymmetric structure constant fabc.
17This procedure is analogous to that outlined in [23, 57] for the calculation of the two-loop Mercedes-like

diagrams Wv.m.
4 we defined in eq. (3.18), in the context of N = 4 theories. In our case, the model is not

superconformal and consequently, the analysis is more involved.
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C.2 Computing M2

In this section, we turn our attention to the corrections M2, depicted in eq. (C.7). Let us
begin with discussing the diagrams involving three gauge fields. Inserting the pure-gauge
vertex (C.8) in the first correlator of eq. (C.2) and decorating the Wick contractions with
the tensor ∂1,µ∂2,ν∆(2),g(x12), we arrive at the following representation

∂
= g4

BCFN

2

∮
d3τε(τ)

∫
ddω

d
dτ1

(
O(xj)∆(x3ω)∆(x2ω)∆(1),g(x1ω)

)
, (C.16)

where we recall that ∆(x) is the massless tree-level propagator defined in eq. (3.7), the
function ∆(1),g(x) is given by eq. (C.5), while O(xj) denotes the following operator

O(xj) =
[
(ẋ3 · ∂1) (∂1 − ∂3) · ẋ2 + (ẋ2 · ẋ3) (∂3 · ∂1)

]
. (C.17)

Let us now consider the diagrams in eq. (C.7) involving the propagation of two scalars and one
gauge field. Inserting the gauge-scalar vertex (C.8) in the second correlator of eq. (C.2), and
decorating the Wick contraction of the gauge field with the tensor ∂1,µ∂1,ν∆(1),g(x1ω), we find

∂
= −g

4
BCFR

2N

2

∮
d3τε(τ) d

dτ1
∂3 · ∂1

(
∆(x3ω)∆(x2ω)∆(1),g(x1ω)

)
. (C.18)

Finally, by combining together eqs. (C.16) and (C.18) and neglecting terms which provide
total derivatives, we obtain the following result

M2 = g4
BCFN

2

∮
d3τε(τ)

(
ẋ2 · ẋ3 −R2

) d
dτ1

∂3 · ∂1

∫
ddω∆(x2ω)∆(x3ω)∆(1),g(x1ω)

= g4
BCFN

∮
d3τ(δ(τ12)− δ(τ13))

(
R2 − ẋ2 · ẋ3

)
∂3 · ∂1

∫
ddω∆(x2ω)∆(x3ω)∆(1),g(x1ω)

= −2F (2)
3 ,

(C.19)

where F (2)
3 denotes the bubble-like contribution defined in eq. (3.37) and we obtained the

second line via integration by parts and using eq. (C.14). Combining this result with
eq. (C.15), we find that

M = M1 + M2 = −2F (2)
2 − 2F (2)

3 − N

iR
F

(2)
1 + 9β

R
0 ĝ

6
BCFN

16π2 ζ(3) . (C.20)
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D Lifesaver diagrams

In this section, we examine in detail the calculation of the lifesaver-like diagrams18

L = , (D.1)

where we used again the difference theory notation. In particular, the internal bubble encodes
the one-loop irreducible corrections to the (gauge-scalar/pure-gauge) triple vertex in the
difference theory approach.

D.1 Construction of the building blocks

Expanding the Wilson loop operator (1.6) at order g3
B , we obtain the following representation

for the diagrams depicted in eq. (D.1)

L = Lg + Lgs , (D.2)

where the quantities Lgs and Lg encode two correlators in the difference theory approach

Lg =
(
(igB)3

3!N

)(∮
d3τ

〈
trPA(τ1)A(τ2)A(τ3)

〉
L

)
, (D.3)

Lgs =
(
ig3

BR
2

2N

)(∮
d3τ

〈
trPA(τ1)Φ(τ2)Φ̄(τ3)

〉
L

)
. (D.4)

We begin with discussing eq. (D.4), which involves the irreducible correction to the
gauge-scalar vertex in the difference method. To construct these corrections, it is sufficient to
determine the relevant diagrams characterized by internal matter line in the representation
R and subsequently, to subtract an identical contribution in which R = Adj. Introducing
Sµ

abc(xi) =
〈
Aµ

a(x1)ϕb(x2)ϕ̄c(x3)
〉

L, we have

Sµ
abc(xi) =

Aµ
a(x1)

ϕ̄c(x3) ϕb(x2)

+

Aµ
a(x1)

ϕ̄c(x3) ϕb(x2)

− (R = Adj)

= fabc (Sµ
1 (xi) + Sµ

2 (xi)) .

(D.5)

where we defined the functions

Sµ
1 (xi) = (2ig3

B)(iR −N)
∫

dP
∫ ddk

(2π)d

pµ
2k

2 − pµ
3 (k − p1)2

k2(k − p1)2(k + p3)2 , (D.6)

Sµ
2 (xi) = (2ig3

B)(iR −N)
∫

dP
∫ ddk

(2π)d

p2
1(k + p3)µ − p2

3(k − p1)µ − p2
2k

µ

k2(k − p1)2(k + p3)2 . (D.7)

18We provide an extended analysis since we did not find evidence of analogous calculations in the exist-
ing literature.
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In the previous expression, dP denotes the usual integration measure over the external
momenta pi, i.e.

dP =
3∏

i=1

ddpi

(2π)d

e−ipi·xi

p2
i

(2π)dδd (Σj pj) . (D.8)

Let us observe that the functions in eqs. (D.6) and (D.7) have a different behaviour in the
limit d → 4. Indeed, integrating over the large loop momentum yields a pole 1/(d − 4) in
eq. (D.6), while the function Sµ

2 (xi) is regular in four dimensions. Substituting eq. (D.5) into
eq. (D.4), we can naturally arrange the results in terms of two distinct contributions:

Lgs = Lgs,1 + Lgs,2 . (D.9)

Specifically, the quantity Lgs,1 is given by

Lgs,1 = −g
3
BR

2

4 NCF

∮
d3τε(τ) (ẋ1 · S1)

= A1R
2
∮

d3τε(τ) (ẋ2 · ∂1)
∫

ddω∆(1)(x1ω)∆(x2ω)∆(x3ω) ,
(D.10)

with ∆(x) being the tree-level propagator (3.7) and ∆(1)(x) the (UV) divergent one-loop
correction to the adjoint scalar propagator (B.16), while

Lgs,2 = −g
3
BR

2

4 NCF

∮
d3τε(τ) (ẋ1 · S2)

= A2

∮
d3τε(τ)

∫
dP

(
−ip2

2
) ∫ ddk

(2π)2
R2 (2k · ẋ1 − k · ẋ2)
k2(k + p1)2(k − p3)2 . (D.11)

In the previous expressions, we introduced, for the sake of conciseness, the quantities

A1 = CFNg
4
B

2 , (D.12)

A2 = 4π2CFNβ0g
6
B . (D.13)

The analysis of the internal diagrams which enter eq. (D.3) goes along the same lines.
In particular, the irreducible one-loop correction to the pure-gauge vertex in the difference
method receives corrections from both scalar and fermionic loops and for convenience, we
will consider them in turn. Matter scalars contribute via the following diagrams

Sabc
µνρ(xi) =

Aa
µ(x1)

Ab
ν(x2) Ac

ρ(x3)

+

Aa
µ(x1)

Ac
ρ(x3) Ab

ν(x2)

− (R = Adj)

= 2ig3
Bf

abc (N − iR)
∫

dP
∫ ddk

(2π)d

(2k + p1)µ (2k + p1 − p3)µ(2k − p3)ρ

k2(k + p1)2(k − p3)2 .

(D.14)
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In the previous expression, we used a double dashed/dotted line to denote, respectively, the
contributions associated with the scalars q and q̃, which transform in the representation R
and R∗, and we recall that dP is defined in eq. (D.8).

The matter fermions contribute with the following diagrams:

Fabc
µνρ(xi) =

Aa
µ(x1)

Ab
ν(x2) Ac

ρ(x3)

+

Aa
µ(x1)

Ac
ρ(x3) Ab

ν(x2)

− (R = Adj)

= ig3
Bf

abc (N − iR)
∫

dP
∫ ddk

(2π)d

(
Tr σ̄µ/kσ̄ρ(/k − /p3)σ̄ν(/k + /p1)

)
k2(k + p1)2(k − p3)2

+ ig3
Bf

abc (N − iR)
∫

dP
∫ ddk

(2π)d

(
Tr σ̄ρ/kσ̄µ(/k + /p1)σ̄ν(/k − /p3)

)
k2(k + p1)2(k − p3)2 ,

(D.15)

where we used again a double dashed/dotted line to denote, respectively, the contributions
of the fermions η and η̃, which transforms in the representation R and R∗. Employing the
identities in eq. (A.9) and neglecting terms which provide total derivatives integrated over
closed paths when inserted in eq. (D.3), we eventually find that

Fabc
µνρ(xi) = −Sabc

µνρ(xi) + fabc (G1,µνρ(xi) + G2,µνρ(xi)) . (D.16)

In the previous expression, Sabc
µνρ(xi) is the contribution to the pure gauge-vertex resulting

from the scalar loops (D.14), while the quantities G1,µνρ and G2,µνρ are, respectively, the
counterparts of the functions Sµ

1 and Sµ
2 defined in eqs. (D.6) and (D.7) and have a similar

behaviour for d → 4. Their explicit expressions are:

G1,µνρ(xi) = −2ig3
B(iR −N)

∫
dP

∫ ddk

(2π)d

[
δµν

(
k2p2,ρ − p1,ρ(k − p3)2)
k2(k + p1)2(k − p3)2

+δµρ
(
p1,ν(k − p3)2 − p3,ν(k + p1)2)
k2(k + p1)2(k − p3)2 + δνρ

(
p3,µ(k + p1)2 − p2,µk

2)
k2(k + p1)2(k − p3)2

] (D.17)

and

Gµνρ(xi) = 2ig3
B(iR −N)

∫
dP

∫ ddk

(2π)d

[
δµν

(
p2

1(k − p3)ρ + p2
2kρ − p2

3(k + p1)ρ
)

k2(k + p1)2(k − p3)2

+δµρ
(
p2

3(k + p1)ν − p2
2kν + p2

1(k − p3)ν
)

k2(k + p1)2(k − p3)2 − δνρ
(
p2

1(k − p3)µ − p2
2kµ − p2

3(k + p1)µ
)

k2(k + p1)2(k − p3)2

]
.

(D.18)

Combining together the contribution to the pure-gauge vertex resulting from the
scalars (D.16) with that of the fermions (D.14) and inserting the result in eq. (D.3), we again
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can organize the final result in terms of two distinct contributions:

Lg = Lg,1 + Lg,2 . (D.19)

In analogy to eq. (D.9), Lg,1 takes the following form

Lg,1 = g3
B

12NCF

∮
d3τε(τ) (ẋµ

1 ẋ
ν
2 ẋ

ρ
3)G1,µνρ

= −A1

∮
d3τε(τ) (ẋ1 · ẋ3) (ẋ2 · ∂1)

∫
ddω∆(1)(x1ω)∆(x2ω)∆(x3ω) .

(D.20)

where the coefficient A1 was introduced in eq. (D.12) while ∆(1)(x) and ∆(x) are defined in
eqs. (B.16) and (3.7), respectively. Let us note that the previous expression has the same
structure of eq. (D.10) with the replacement R2 → −ẋ1 · ẋ2, as expected by supersymmetry.
On the other hand, Lg,2 is given by

Lg,2 = g3
B

12NCF

∮
d3τε(τ) (ẋµ

1 ẋ
ν
2 ẋ

ρ
3)G2,µνρ (D.21)

= A2

∮
d3τε(τ)

∫
dP

(
ip2

2
) ∫ ddk

(2π)d

(2k · ẋ1) (ẋ2 · ẋ3)− (k · ẋ2) (ẋ1 · ẋ3)
k2(k + p1)2(k − p3)2 , (D.22)

where the coefficient A2 is defined in eq. (D.13).

Summary of the results. Using the results we derived in this section, we can construct the
final expression for the lifesaver diagram depicted in eq. (D.1). Starting from eq. (D.1) and
expressing the one-loop correction to the gauge-scalar and pure-gauge vertices by eqs. (D.9)
and (D.19), we can arrange the four contributions in such a way to reconstruct the usual
R2 − ẋi · ẋj factor. Thus, we can write

= Lg + Lgs

= (Lg,1 + Lgs,1) + (Lg,2 + Lgs,2) ≡ L1 + L2 .

(D.23)

Explicitly, we have

L1 = A1

∮
d3τε(τ)

(
R2 − ẋ1 · ẋ3

)
ẋ2 · ∂1

∫
ddω∆(1)(x1ω)∆(x2ω)∆(x3ω) (D.24)

and

L2 = A2

∮
d3τε(τ)

∫
dP

(
ip2

2
) ∫ ddk

(2π)d

(2k · ẋ1)
(
ẋ2 · ẋ3 −R2)− (k · ẋ2)

(
ẋ1 · ẋ3 −R2)

k2(k + p1)2(k − p3)2 .

(D.25)
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D.2 Integration over the Wilson loop contour: calculating L1

In this subsection, we examine in detail the integration over the Wilson loop contour of
the contribution defined in eq. (D.24): the calculation is analogous to that we described in
section C.1 for the correction M1, defined in eq. (C.9). To begin with, we integrate over the
bulk point ω by introducing the usual Feynman parametrizations for the propagators ∆(x)
and ∆(1)(x) defined, respectively, in eq. (3.7) and (B.13). Using the parametrization (1.7)
for the points xi on the Wilson loop contour, we obtain

L1 = −Ad

∫ 1

0
dF

(
α2βγ

)d/2−2 ∮
d3τ

ε(τ) (1− cos τ13) (α(1− α) sin τ12 + αγ sin τ23)
Q3d/2−4 ,

(D.26)

where the measure dF is given by eq. (3.21), while Ad and Q are defined in eqs. (C.12)
and (3.20), respectively. Integrating by parts via the identity (C.13), we find that

L1 = 2Ad

5− 3d/2

∫ 1

0
dF

(
α2βγ

)d/2−2 ∮
d2τ

(1− cos τ23)6−3d/2

[γ(1− γ)]3d/2−5

+Ad
6− 3d/2
5− 3d/2

∫ 1

0
dF

(
α2βγ

)d/2−2 ∮
d3τ

ε(τ) sin τ13
Q3d/2−5 −AdI1(d) , (D.27)

where

I1(d) =
∫ 1

0
dF

(
α2βγ

)d/2−2 ∮
d3τε(τ)βγ sin τ13(1− cos τ23) + αγ sin τ23(1− cos τ13)

Q3d/2−4

=
∫ 1

0
dF

(
αd−4(βγ)d/2−1 − βd−3αd/2−2γd/2−1

) ∮
d3τε(τ)(1− cos τ23) sin τ13

Q3d/2−4 .

(D.28)

Comparing the previous expression with eq. (C.15), we note that the last term is a novelty.
It arises because the integrand in eq. (D.24) is not completely symmetric in the exchange
of the coordinates xi. On the other hand, the exstra term I1(d) does not contribute to
the final result; to see this, we replace the denominator Q with a two-fold Mellin-Barnes
integral via (F.7) obtaining

1
Q3d/2−4 = 24−3d/2

Γ(3d/2− 4)

∫ dudv
(2πi)2

Γ(3d/2− 4 + u+ v)Γ(−u)Γ(−v)
(
βγ sin2 τ23

2
)u(

αβ sin2 τ12
2
)3d/2−4+u+v (

αγ sin2 τ13
2
)−v

. (D.29)

Inserting the previous expression into eq. (D.28), we integrate over the Wilson loop contour
via eq. (F.6) and we obtain

I1(d)=
∫ dudv

(2πi)2
Γ(3d/2−4+u+v)Γ(−u)Γ(−v)Γ(d/2+u+v)

23d/2−5Γ(3d/2−4)Γ(5−d)
J (4−3d/2−u−v,u+1,v)

×
(
Γ(1−d/2−u)Γ(4−d−v)−Γ(2−d/2−v)Γ(3−d−u)

)
,

(D.30)
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where the function J (x, y, z) is defined in eq. (F.6). Expanding the previous expression
about d = 4, we arrive at

I1(d) = (d− 4)
∫ δ+i∞

δ−i∞

dv du
(2πi)2

csc(πu) csc(πv) csc(π(u+ v))(ψ(0)(−u)− ψ(0)(−v))
u+ v + 1 + . . . ,

(D.31)

where the dots stand for terms of order O(d− 4)2, while δ ∈ (−1, 0) denotes the real part of
the integration variables u and v. The previous expression vanishes identically because of
the antisymmetry of the integrand, meaning that I1(d) = O(d− 4)2 and AdI1(d) = O(d− 4),
as it can be seen by employing eq. (C.12).

Concerning the first two terms in eq. (D.27), one can explicit perform the integration
over the Feynman parameters and apply the master integral (3.23) to obtain

L1 = F
(2)
2 − ĝ6

B

3CFNβ0ζ(3)
16π2 +O(d− 4) , (D.32)

where we recall that F (2)
2 is the bubble-like contribution defined in eq. (3.37).

D.3 Integration over the Wilson loop contour: calculating L2

The calculation of L2 is more complicated than that we performed in the previous subsection.
To begin with, we consider eq. (D.25) and we integrate over the internal momentum k by
introducing the usual Feynman parameters for the three propagators. We find that

L2 = 2A2
iΓ(3− d/2)
(4π)d/2

∮
d3τε(τ)(R2 − ẋ1 · ẋ3)

∫
dPdXp2

3 (zẋ2 · p2 − xẋ2 · p1) + zp2
2ẋ2 · p3(

xyp2
1 + zyp2

2 + zxp2
3
)3−d/2 ,

(D.33)

with dX = dxdydzδ(1 − x − y − z). The previous expression involves the quantity p2 · ẋ2
which, upon integration over the external momenta dP , yields a total derivative with respect
to the variable τ2. As a result, the contour integration of this contribution is technically
simpler to treat. Therefore, we find convenient to express eq. (D.33) as the sum of two
terms, i.e. L2 = L′

2 + L′′
2, with

L′
2 = 2A2

iΓ(3− d/2)
(4π)d/2

∮
d3τε(τ)(R2 − ẋ1 · ẋ3)

∫
dP

∫ 1

0
dXp2

3 (zẋ2 · p2)
M3−d/2 , (D.34)

L′′
2 = 2A2

iΓ(3− d/2)
(4π)d/2

∮
d3τε(τ)(R2 − ẋ1 · ẋ3)

∫
dP

∫ 1

0
dXzp2

2 (ẋ2 · p3)− p2
3x(ẋ2 · p1)

M3−d/2 ,

(D.35)

which we will analyse in turn. In the previous expression, the denominator M is

M = xyp2
1 + zyp2

2 + zxp2
3 . (D.36)
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D.3.1 Computing L′
2

As we already stressed, the computation of the function L′
2 goes through the observation

that the product p2 · ẋ2 becomes a total derivative upon integration over the momenta pi

(see eq. (D.8)). By relabelling τ1 ↔ τ2 and recalling that ε(τ) is antisymmetric, we find
that eq. (D.34) can be rewritten as follows

L′
2 = 2A2

Γ(3− d/2)
(4π)d/2

∮
d3τε(τ)(R2 − ẋ2 · ẋ3)

d
dτ1

∫
dP

∫ 1

0
dX xp2

3
M3−d/2

= 4A2
Γ(3− d/2)
(4π)d/2

∮
d3τ (δ(τ13)− δ(τ12)) (R2 − ẋ2 · ẋ3)

∫
dP

∫ 1

0
dX xp2

3
M3−d/2 ,

(D.37)

where we obtained the second line via integration by parts and eq. (C.14). To proceed with
the computation, we employ the following identity (see eq. (F.13))

Γ(3− d/2)
M3−d/2 =

∫ dudv
(2πi)2

Γ(3− d/2 + u+ v)Γ(−u)Γ(−v)
x3−d/2+uy3−d/2+vz−u−v

(p2
2)u(p2

3)v

(p2
1)3−d/2+u+v

, (D.38)

where the integration contour separates the increasing and decreasing poles of the Γ-functions.
Substituting the previous expression in eq. (D.37) and sequentially performing the integration
over the Feynman parameters and the momenta pi (see eq. (D.8)), we find

L′
2 = A2

Γ(3d/2− 5)
(
M(ii)(d)−M(i)(d)

)
44π3d/2Γ(d− 2)Γ(5− d)

∮
R2 − ẋ2 · ẋ3
[x2

23]3d/2−5 , (D.39)

with the two Mellin-like amplitudes defined as

M(i)(d) =
∫ dudv

(2πi)2
Γ(d− 4− u− v)Γ(d/2− 1 + u)Γ(5− d+ v)Γ(−v)Γ(1 + u+ v)

u(d/2− 3− u− v)Γ(3d/2− 5− v)[Γ(d/2− 2− v)Γ(d/2− 1− u)]−1 ,

(D.40)

M(ii)(d) =
∫ dudv

(2πi)2
Γ(−u)Γ(4− d+ u)Γ(1 + u+ v)Γ(d/2− 1− u)Γ(d/2− 2− v)

Γ(3d/2− 4− u)(3− d/2 + u+ v)[Γ(d− 4− u− v)Γ(d/2 + v)]−1 .

(D.41)

These two functions exhibit different behaviours when d→ 4. On the one hand, eq. (D.41)
becomes singular in this limit due to the product Γ(−u)Γ(4− d+ u), which does not enable
to separate the first increasing and the first decreasing pole. On the other hand, eq. (D.40)
is perfectly finite in four dimensions. For future reference, we provide its expansion about
d = 4, i.e.

M(i)(d)=
∫ δ+i∞

δ−i∞

dudv
(2πi)2

π3csc(πu)csc(πv)csc(π(u+v))
v(u+v+1) +...=2ζ(3)+O(d−4), (D.42)

where δ ∈ (−1, 0) represents the real part of the variables u and v. As we will shortly see,
similar quantities will arise from the integral L′′

2, defined in eq. (D.35).
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D.3.2 Computing L′′
2

We begin with writing eq. (D.35) as

L′′
2 = A2

∮
d3τε(τ)(R2 − ẋ1 · ẋ3)(ẋ2 · ∂1)L̃′′

2 , (D.43)

where
L̃′′

2 = 2Γ(3− d/2)
(4π)d/2 (ẋ2 · ∂1)

∫
dP

∫ 1

0
dXxp2

3 + yp2
2

M3−d/2 . (D.44)

Let us concentrate on L̃′′
2, which contains the integration over the Feynman parameters

and over the measure dP . By expressing the denominator M , defined in eq. (D.36), as a
two-fold Mellin-Barnes integral via eq. (D.38), the integration over the measures dX and
dP becomes elementary. The net result can be expressed as a combination of generalized
propagators D(x, s) defined in eq. (B.7):

L̃′′
2 =

∫
dΩD(x1ω,σ)fd(u,v)

(
D(x2ω,1−u)D(x3ω,−v)+D(x2ω,−v)D(x3ω,1−u)

)
(D.45)

where dΩ = ddω du dv /(2πi)2(2π)d and σ = 4−d/2+u+v. The integration over the variable
ω arises from the conservation of the momenta pi, while

fd(u, v) =
Γ(d/2− 1− u)Γ(d/2− 2− v)Γ(1 + u+ v)Γ(3− d/2 + v + u)Γ(−u)Γ(−v)

Γ(d− 2)π−d/2 .

(D.46)

To proceed with the calculation, we integrate over ddω by introducing three Feynman param-
eters for the different propagators D(x, s). By employing eq. (B.7) and the parametrization
of the coordinates τi, given by eq. (1.7), we obtain

L′′
2 = A2Γ(3d/2− 4)R12−3d

Γ(d− 2)29π3d/223d/2−5

∫
dM

∮
d3τ

ε(τ)(cos τ13 − 1) (α(1− α) sin τ12 + αγ sin τ23)
Q3d/2−4 .

(D.47)

The denominator Q is defined in eq. (3.20), while the measure dM is given by

dM = du dv
(2πi)2dF αd−5−u−vβd/2−2+uγd/2−2+v

(
f̃(u, v)γ + f̃(v, u)β

)
, (D.48)

with

f̃(u, v) = −Γ(d/2− 1− v)Γ(d/2− 2− u)Γ(1 + u+ v)
u(3− d/2 + u+ v) , (D.49)

while dF was defined in eq. (3.21). Note that the integration measure is symmetric under
the simultaneous exchange of β ↔ γ and u↔ v. Finally, we integrate over the coordinates
τi by employing the identity (C.13) and eventually obtain

L′′
2 =−A2

Γ(3d/2− 4)R12−3d

Γ(d− 2)29π3d/223d/2−5

∫
dM

(
2

3d/2− 5

∮
d2τ

(1− cos τ12)6−3d/2

[γ(1− γ)]3d/2−5

)

−A2
Γ(3d/2− 4)R12−3d

Γ(d− 2)29π3d/223d/2−5

∫
dM

(3(2− d/2)
3d/2− 5

∮
d3τε(τ) sin τ13

Q3d/2−5 + Td(α, β, γ)
)
,

(D.50)
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where

Td(α, β, γ) =
∮

d3τε(τ)βγ sin τ13(1− cos τ23) + αγ sin τ23(1− cos τ13)
Q3d/2−4 . (D.51)

The first term in the second line is proportional to (d−4): it vanishes in the limit d→ 4 since
the path-ordered integral is regular and consequently, it can be neglected for the three-loop
analysis. Actually, as we will show in the following subsection, also the term involving the
function Td(α, β, γ) is of order (d − 4). Thus, we can write

L′′
2 = −A2

Γ(3d/2− 4)R12−3d

Γ(d− 2)29π3d/223d/2−5

∫
dM

(
2

3d/2− 5

∮
d2τ

(1− cos τ12)6−3d/2

[γ(1− γ)]3d/2−5

)
+O(d− 4)

= −A2
Γ(3d/2− 5)

(
M(ii)(d) +M(i)(d)

)
44π3d/2Γ(d− 2)Γ(5− d)

∮
R2 − ẋ2 · ẋ3
(x2

23)3d/2−5 +O(d− 4) ,

(D.52)

where we employed the explicit form of the measure dM (D.48) to integrate over the
Feynman parameters and used the definitions of the amplitudes M(i)(d) and M(ii)(d) given
in eqs. (D.40) and (D.41). Finally, combining this result with eq. (D.39), we find that the
function L2 (D.33) can be expanded as

L2 = L′
2 + L′′

2

= − A2Γ(3d/2− 5)M(i)(d)
27π3d/2Γ(d− 2)Γ(5− d)

∮
R2 − ẋ2 · ẋ3
(x2

23)3d/2−5 +O(d− 4)

= −CFNĝ
6
Bζ(3)

8π2 +O(d− 4) .

(D.53)

The last equality follows from the definition of the coefficient A2, given by eq. (D.13), from
the expansion of the amplitude M(i)(d) about d = 4 (D.42) and from the integration over
the contour.

D.3.3 Evanescent integrals

Let us conclude this section by explicitly showing that the last contribution in the second
line of eq. (D.50) is of order (d − 4). We consider

E(d) =
∫

dMTd(α, β, γ)

=
∫ 1

0
dF

∫ dudv
(2πi)2α

d−5−u−vβd/2−2+uγd/2−2+v
(
γf̃(u, v) + βf̃(v, u)

)
Td(α, β, γ) ,

(D.54)

which the second line follows from the definition of dM, given by eq. (D.48). The first
term can be written as

E1(d) = 2
∫ dFdudv

(2πi)2

(
γd/2+vf̃(u, v)

α5−d+u+vβ1−d/2−u
− γd/2+vf̃(u, v)
β4−d+u+vα2−d/2−u

)∮
d3τε(τ)

sin τ13 sin2 τ23
2

Q3d/2−4 ,

(D.55)
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where we used the integral representation for the function Td(α, β, γ) (D.28) and the anti-
symmetry of the ε-symbols (3.22). Changing variable according to u′ = d/2− 3− u− v in
the second term, we find that E1(d) = 0 for any d.

The calculation of the second contribution in eq. (D.54) is more subtle. We find that

E2(d) =2
∫ dFdudv

(2πi)2

(
γd/2−1+vf̃(v, u)
α5−d+u+vβ−d/2−u

− γd/2−1+vf̃(v, u)
β4−d+u+vα1−d/2−u

)∮
d3τε(τ)

sin τ13 sin2 τ23
2

Q3d/2−4 ,

(D.56)
where we employed again the integral representation of the function Td(α, β, γ). To continue
the calculation, we consider separately the quantities

E′
2(d) =

∫ dFdudv
(2πi)2

γd/2−1+vf̃(v, u)
α5−d+u+vβ−d/2−u

∮
d3τε(τ)sin τ13 (1− cos τ23)

Q3d/2−4 ,

E′′
2(d) =

∫ dFdudv
(2πi)2

γd/2−1+vf̃(v, u)
β4−d+u+vα1−d/2−u

∮
d3τε(τ)sin τ13 (1− cos τ23)

Q3d/2−4 .

(D.57)

Firstly focussing on E′
2(d), we replace the denominator Q with its Mellin-Barnes image (D.29).

This enables to integrate over the contour by employing eq. (F.6) and the result can be
written as a four-fold Mellin-Barnes integral

E′
2(d) =

∫ dudvdsdt
(2πi)4

Γ(3d/2− 4− s− t)Γ(−s)Γ(−t)Γ(−d/2− u− v − s)Γ(5− d− t+ u)
23d/2−5Γ(5− d)Γ(3d/2− 4)

× Γ(d/2 + v + t+ s)J (3d/2− 4− s− t, s+ 1, t) ,
(D.58)

where the function J (x, y, z) is defined in eq. (F.6). Expanding the previous expression
about d → 4 enables to integrate over s and t by a repeated application of Barnes’s first
lemma. We eventually find that

E′
2(d) = 8π2

∫ δ+i∞

δ−i∞

dudv
(2πi)2

Γ(1− u)Γ(u+ 2)Γ(−v)Γ(v)Γ(−u− v)Γ(u+ v + 1)
v (1 + u+ v) +O(d− 4) ,

(D.59)
where δ ∈ (−1, 0) is the real part of the variables u and v. However, it is not necessary to
perform the integration over the last two variables since, repeating the same analysis for
the quantity E′′

2(d), it is possible to show its double Mellin-Barnes representation coincides
with the previous expression. Exploiting this fact in eq. (D.56), we have, expanding about
d → 4, an identical cancellation. This explicitly showed that the function E(d) (D.54) is
of order O(d − 4).

D.4 Summary of the results

Let us briefly summarize the results for the calculation of the lifesaver diagrams (D.1).
Starting from eq. (D.23), we finally find that

= L1 + L2 = F
(2)
2 − ĝ6

B

5CFNβ
R
0 ζ(3)

16π2 +O(d− 4) , (D.60)
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where the second equality follows from eqs. (D.32) and (D.53) and we recall that F (2)
2 is

the bubble-like contribution defined in eq. (3.37).

E Diagrams with four emissions

In this section, we provide calculation details of the following class of diagrams

W ′
6(4) = , (E.1)

where we recall that the double dashed/continuos internal bubble denotes the one-loop
correction to the adjoint scalar and gauge field in the difference approach, see eqs. (B.16)
and (B.17).

Following the approach outlined in section C and employing eq. (C.3), we can organize
the diagrams depicted in eq. (E.1) as follows

Σ′
4 = δ + δ + + , (E.2)

Σ′′
4 = ∂ + ∂ . (E.3)

E.1 Computing Σ′
4

Expanding the Wilson loop operator at order g4
B and decorating the Wick contractions with

the one-loop correction to the adjoint scalar propagator ∆(1)(x), defined in eq. (B.16), and
with the tensor δµν∆(1)(x), we find that

Σ′
4 = g4

B

N

∫
τ1>τ2>τ3>τ4

d4τ Caabb
(
∆̂(x12)∆̂(1)(x34) + ∆̂(x34)∆̂(1)(x12)

)
+

Caabb
(
∆̂(x14)∆̂(1)(x23) + ∆̂(x23)∆̂(1)(x14)

)
+

Cabab
(
∆̂(x13)∆̂(1)(x14) + ∆̂(x34)∆̂(1)(x12)

)
,

(E.4)

where we recall that the tensor Cabcd is defined in eq. (3.14), while ∆̂(x) and ∆̂(1)(x) are,
respectively, given by eqs. (3.9) and (3.28). Using the non-Abelian exponentiation rules for
the Wilson loop, we rewrite the previous expression as follows

Σ′
4 = W2W ′

4 + g4
B

2N tr
([
T b, T a])2 ∫

D
d4τ

(
∆̂(x13)∆̂(1)(x24) + ∆̂(x24)∆̂(1)(x13)

)
, (E.5)
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where D denotes the ordered region τ1 > τ2 > τ3 > τ4, the functions W2 and W ′
4 are defined in

eqs. (3.11) and (3.29), while the second term in the previous expression denotes the maximally
non-Abelian part of the diagram. Going through the calculation of eq. (E.5) we encounter,
by employing the parametrization eq. (1.7), the following integral

∫
τ1>τ2>τ3>τ4

d4τ
1(

4 sin2 τ13
2
)d/2−2 (4 sin2 τ24

2
)d−4 + 1(

4 sin2 τ24
2
)d/2−2 (4 sin2 τ12

2
)d−4 . (E.6)

Using Fourier expansion methods outlined in appendix F, the previous expressions can be
evaluated in terms of generalized hypergeometric functions (see eq. (F.20)). We find that

Σ′
4 = ĝ6

BCF
2N2 − 3

6N P2(d)B1(d)B2(d) +
ĝ6

Bβ0CFN3ζ(3)
24π2 + . . . , (E.7)

where the dots stand for terms proportional to (d− 4)2, while the function Bn(x) and P2(x)
are defined in eqs. (3.11) and (3.29), respectively. Note that the ζ(3)-like term in the previous
expression is analogous to that we generated from the maximally non-Abelian part of the
two-loop ladder-like diagram (3.16). In particular, the result of eq. (3.16) is proportional
to the evanescent factor ϵ = 2− d/2 resulting from the integration over the contour. This
factor also arises in eq. (E.7) but it cancels against the UV pole of the one-loop correction
∆(1)(x) (B.16) and leaves a finite result.

E.2 Computing Σ′′
4

In this section, we turn our attention to the correction Σ′′
4, represented in eq. (E.3). Let

us begin with considering in detail the first diagram which only involves gauge fields. We
expand the Wilson loop operator at order g4

B , and we decorate the relevant Wick contractions
by the tensor ∆(1),g

µν (x) ≡ ∂1,µ∂1,ν∆(1),g(x). We have

∂ = g4
B

∮
D
d4τ Caabb

(
ẋµ

1 ẋ
ν
2∆(1),g

µν (x12)∆(x34)(ẋ3 · ẋ4) +
(
1 ↔ 3
2 ↔ 4

))
+

g4
B

∮
D
d4τ Cabab

(
ẋµ

1 ẋ
ν
3∆(1),g

µν (x13)∆(x24)(ẋ2 · ẋ4) +
(
1 ↔ 2
3 ↔ 4

))
+

(E.8)

g4
B

∮
D
d4τ Caabb

(
ẋµ

1 ẋ
ν
4∆(1),g

µν (x14)∆(x23)(ẋ3 · ẋ2) +
(
1 ↔ 2
4 ↔ 3

))
,

where we denoted with D the ordered region τ1 > τ2 > τ3 > τ4 and we recall that ∆(x12) is
massless tree level propagator defined in eq. (3.7), while the tensor Cabcd is given by eq. (3.14).
The calculation of these diagrams can be further simplified by employing again the non-Abelian
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exponentiation properties of the Wilson loop. Going through the calculation, we arrive at19

∂ = g4
B

2N tr
([
T a, T b])2 ∫

D
d4τ

(
ẋµ

1 ẋ
ν
3∆(1),g

µν (x13)∆(x24)(ẋ2 · ẋ4) +
(
1 ↔ 2
3 ↔ 4

))

= g4
B

CFN

2

∮
d2τ (ẋ1 · ẋ2)∆(1),g(x12)∆(x12) , (E.9)

where we recall that CF = (N2 − 1)/2N . To obtain the last equality, we integrated by parts
twice. Repeating the same analysis for the second diagram in eq. (E.3), we find that

∂ = g4
B

CFN

2

∮
d2τ

(
−R2

)
∆(1),g(x12)∆(x12) . (E.10)

Combining together the relations we derived in this subsection, we finally arrive at the
following representation for the correction Σ′′

4, defined in (E.3), i.e.

Σ′′
4 = −g4

B

CFN

2

∮
d2τ

(
R2 − ẋ1 · ẋ2

)
∆(1),g(x12)∆(x12) = F

(2)
3 . (E.11)

The last equality can be explicitly proved by recalling that the functions ∆(x) and ∆(1),g(x)
are, respectively, given by eq. (3.7) and (C.5), and using the explicit expression bubble-
like correction F

(2)
3 , given by eq. (3.37). Combining together the previous expression and

eq. (E.7), we reproduce eq. (3.39).

F Trigonometric integrals

In this section, we evaluate the trigonometric integrals appearing in the calculation of the
circular Wilson loop. It is convenient to firstly outline some useful relations. We will make
extensively use of the following identity [58]

M(a, b, c) =
∫ 2π

0
d3τ

(
sin2 τ12

2
)a(

sin2 τ13
2
)b(

sin2 τ23
2
)c

= 8π3/2Γ(a+ 1/2)Γ(b+ 1/2)Γ(c+ 1/2)Γ(1 + a+ b+ c)
Γ(1 + a+ c)Γ(1 + b+ c)Γ(1 + a+ b) .

(F.1)

We can use this identity to derive other useful results. For instance, as explained in appendix G
of [59], the nested integral

I[α, β, γ] =
∫

τ1>τ2>τ3
d3τ

[(
sin2 τ12

2

)α (
sin2 τ13

2

)β (
sin2 τ23

2

)γ

cos τ23
2

−
(
sin2 τ23

2

)α (
sin2 τ12

2

)β (
sin2 τ13

2

)γ

cos τ13
2(

sin2 τ13
2

)α (
sin2 τ23

2

)β (
sin2 τ12

2

)γ

cos τ12
2

]
,

(F.2)

19To obtain eq. (E.9), we neglected terms which yield total derivatives integrated over a closed path.
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can be reduced to a linear combination of functions we introduced in eq. (F.1). The net
result can be written as follows

I[α, β, γ] = 4π3/2Γ(1 + α+ β + γ)Γ(1 + α)Γ(1 + β)Γ (1/2 + γ)
Γ (3/2 + α+ γ) Γ (3/2 + β + γ) Γ(1 + α+ β) . (F.3)

Finally, by employing this useful relation, we can derive a general expression for the following
path-ordered integral

J (α, β, γ) =
∮

d3τε(τ) sin τ13

(
sin2 τ12

2

)α (
sin2 τ13

2

)γ (
sin2 τ23

2

)β

, (F.4)

where we recall that ε(τ) ≡ ε(τ1, τ2, τ3) is defined in terms of the Heaviside θ-function
in eq. (3.22). Employing this definition for the ε-symbol and relabelling the integration
variables, we find that

J (α, β, γ) = −2I(β, α, γ + 1/2)− 2I(α, β, γ + 1/2) = −4I(α, β, γ + 1/2) . (F.5)

To obtain the last line we noted that I(α, β, γ) is symmetric in the exchange of the first
two arguments. Therefore, the final result reads

J (α, β, γ) = −16π3/2Γ(3/2 + α+ β + γ)Γ(1 + α)Γ(1 + β)Γ(1 + γ)
Γ(2 + α+ γ)Γ(2 + β + γ)Γ(1 + α+ β) . (F.6)

Finally, in the calculation of the Wilson loop, we will extensively use the following identity

1
(A+B + C)σ

= 1
Γ(σ)

∫ +i∞

−i∞

du dv
(2πi)2

BuCv

Aσ+u+v
Γ(σ + u+ v)Γ(−u)Γ(−v) , (F.7)

where the integration contour runs parallelly to imaginary axis in such a way that the
increasing and decreasing poles of the Γ-functions are separated.

F.1 Path-ordered integrals

In this subsection, we employ some of the identities we presented in the previous section
to evaluate the path-ordered integral we introduced in eq. (3.23), i.e.

E(d) =
∫ 1

0
dF (αβγ)d/2−2

∮
d3τ ε(τ)sin τ13

Qd−3

= −8
∫ 1

0
dF (αβγ)d/2−2

∫
τ1>τ2>τ3

d3τ
sin τ13

2 sin τ12
2 sin τ23

2
Qd−3 ,

(F.8)

where α, β and γ are Feynman parameters integrated over the unit cube via the measure
dF (3.21), while the denominator Q is defined in eq. (3.20). To obtain the second line, we
employed the explicit definition of the ϵ-symbol in terms of the Heavise θ-function (3.22).
To integrate over the Feynman parameters, we replace the denominator Q with a two-fold
Mellin-Barnes representation, i.e. (see eqs. (3.20) and (F.7))

1
Qσ

= 2−σ

Γ(σ)

∫ +i∞

−i∞

du dv
(2πi)2

Γ(σ + u+ v)Γ(−u)Γ(−v)(
βα sin2 τ12

2
)σ+u+v (

βγ sin2 τ23
2
)−u (

γα sin2 τ31
2
)−v , (F.9)
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where the integration path runs parallelly to the imaginary axes and separates the increasing
and the decreasing poles of the Γ-function. Substituting this identity in eq. (F.8) and
performing the integration over the Feynman parameters, we arrive at the following result

E(d) =
∫ du dv

(2πi)2
Γ(d− 3 + u+ v)Γ(−u)Γ(−v)Γ(2− d/2− u)

(Γ(2− d/2− v)Γ(d/2− 1 + u+ v))−1 E(u, v, d) , (F.10)

where in the previous expression we denoted the integral over the coordinates τi as follows

E(u, v, d) = − 26−d

Γ(3− d/2)Γ(d− 3)

∫
τ1>τ2>τ3

d3τ

(
sin2 τ23

2
)u+1/2 (sin2 τ31

2
)v+1/2(

sin2 τ12
2
)d−3+u+v−1/2

= − 26−d

Γ(3− d/2)Γ(d− 3)3!

∮
d3τ

(
sin2 τ23

2
)u+1/2 (sin2 τ31

2
)v+1/2(

sin2 τ12
2
)d−3+u+v−1/2

= − 29−dπ3/2Γ(11/2− d)
Γ(3− d/2)Γ(d− 3)3!

Γ(u+ 1)Γ(v + 1)Γ(4− d− u− v)
Γ(2 + u+ v)Γ(5− d− u)Γ(5− d− v) .

(F.11)

In the previous expression, we obtained the second line by observing that the integrand is
completely symmetric. This can be proved by properly shifting the Mellin-Barnes variables
and enables us to replace the nested integration with an integral over the complete circle.
Employing eq. (F.1), we finally find

E(d) = − 29−dπ3/2Γ(11/2− d)
Γ(3− d/2)Γ(d− 3)3! M(d) . (F.12)

In the previous expression, the amplitude M(d) is a meromorphic function of the dimension
d which is defined in terms of the following two-fold Mellin-Barnes integral

M(d) =
∫ du dv

(2πi)2
Γ(v + 1)Γ(−v)Γ(2− d/2− v)Γ(−u)Γ(u+ 1)Γ(2− d/2− u)

Γ(5− d− v) ×

×Γ(d− 3 + u+ v)Γ(4− d− u− v)Γ(d/2− 1 + u+ v)
Γ(2 + u+ v)Γ(5− d− u) .

(F.13)

Since the function E(d) appears in the calculation of the Wilson loop with an evanescent
coefficient (see eq. (3.18)), we only have to determine its behaviour for d → 4. We find

M(d)
∣∣∣
d=4

=
∫ +δ′+i∞

−δ′−i∞

dv du
(2πi)2

−π3 csc(πu) csc(πv) csc(π(u+ v))
(1 + u+ v)uv

= 6ζ(3) ,
(F.14)

where δ′ = Re(u) = Re(v) ∈ (−1, 0), in such a way that the increasing poles are to the
right of the integration contour, while the decreasing ones are to the left. Substituting the
previous expression in eq. (F.12), we finally arrive at

E(d) = −16π2ζ(3) +O(d− 4) . (F.15)
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F.2 Fourier expansions methods and the ladder-like diagrams

In this section, we will go through the calculation of the trigonometric integrals which enter
the maximally non-Abelian part of the multiple-exchange diagrams (3.15) and (E.5).

The starting point is the Fourier expansion of the real even function 1/ sin2α
(

x
2
)

1(
4 sin2 x

2
)α = 1

2a0(α) +
∞∑

n=1
an(α) cosnx , (F.16)

where the Fourier coefficients are given by [58]

an(α) =
1
π

∫ 2π

0
dx cosnx(

4 sin2 x
2
)α = sec(πα)Γ(n+ α)

Γ(2α)Γ(1− α+ n) . (F.17)

Expressing the coordinates xi in terms of trigonometric functions via eq. (1.7), we find
that the integrals appearing in eqs. (E.5) and (3.15) take the following form

L (α, β) =
∫
D

d4τ(
4 sin2 τ13

2
)α (4 sin2 τ24

2
)β , (F.18)

where the integration domain D is defined by the ordered region τ1 > τ2 > τ3 > τ4. Replacing
the trigonometric functions via their Fourier expansions (F.16) and performing the integration
over the coordinates τi, we finally arrive at the following representation

L(α, β) = π4

6 a0(α)a0(β)−
∞∑

n=1

π2

n2

(
a0(α)an(β) + a0(β)an(α)− an(β)an(α)

)
. (F.19)

The infinite sums in the previous expression can be easily performed in terms of usual
generalized hypergeometric functions. After a straightforward calculation, we find that

L(α,β)
π2a0(α)a0(β)

= ζ(2)−α4F 3 (xα,yα,1)
(1−α) −β 4F 3 (xβ ,yβ ,1)

(1−β) +αβ 5F 4 (wα,β ,zα,β ,1)
(1−α)(1−β) , (F.20)

where the parameters of the two generalized hypergeometric functions are encoded in the
following quantities xα = (1, 1, 1, 1 + α), yα = (2, 2, 2 − α), wα,β = (1, 1, 1, 1 + α, 1 + β)
and zα,β = (2, 2, 2 − α, 2 − β).
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