
Query Rewriting in Itemset Mining

Rosa Meo, Marco Botta, and Roberto Esposito

Dipartimento di Informatica, Università di Torino, Italy
{meo,botta,esposito}@di.unito.it

Abstract. In recent years, researchers have begun to study inductive
databases, a new generation of databases for leveraging decision support
applications. In this context, the user interacts with the DBMS using
advanced, constraint-based languages for data mining where constraints
have been specifically introduced to increase the relevance of the results
and, at the same time, to reduce its volume.
In this paper we study the problem of mining frequent itemsets using
an inductive database1. We propose a technique for query answering
which consists in rewriting the query in terms of union and intersection
of the result sets of other queries, previously executed and materialized.
Unfortunately, the exploitation of past queries is not always applicable.
We then present sufficient conditions for the optimization to apply and
show that these conditions are strictly connected with the presence of
functional dependencies between the attributes involved in the queries.
We show some experiments on an initial prototype of an optimizer which
demonstrates that this approach to query answering is not only viable but
in many practical cases absolutely necessary since it reduces drastically
the execution time.

1 Introduction

The problem of mining association rules and, more generally, that of extract-
ing frequent sets from large databases has been widely investigated in the last
decade [1, 21, 15, 23, 4, 18, 24]. These researches addressed two major issues: on
one hand, performance and efficiency of the extraction algorithms; on the other
hand, the exploitation of user preferences about the patterns to be extracted,
expressed in terms of constraints. For instance, Ng et al. [15] proposed a con-
strained frequent set mining framework within which the user can use a rich set
of constraints that must be satisfied by the searched rules and that include SQL-
style aggregate and non-aggregate predicates. These constraints can be exploited
to guide the mining process, by pushing them deeply in the mining algorithms,
in order to prune the search space of frequent itemsets as early as possible.

Constraints are widely exploited also in data mining languages, such as in [10,
14, 8, 23, 24] where the user specifies in each data mining query, not only the con-
straints that the items must satisfy, but also different criteria to create groups
1 This work has been funded by EU FET project cInQ consortium on discoverying

knowledge by Inductive Queries (IST-2000-26469).

H. Christiansen et al. (Eds.): FQAS 2004, LNAI 3055, pp. 111–124, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



112 Rosa Meo, Marco Botta, and Roberto Esposito

of tuples from which itemsets will be extracted. Constraint-based mining lan-
guages are also the main key factor of inductive databases proposed by Mannila
and Imielinski in [9], in order to leverage decision support systems. These new
promising approaches to mining will become really effective only when efficient
optimizers for the mining languages will be available, i.e., if it will be possible
to execute a query exploiting the available information in the database, such as
the constraints in the schema, the indices or the results of previously executed
queries.

In this paper, we introduce a very generic constraint-based language for the
extraction of frequent itemsets and study the conditions under which query
rewriting in the constraint-based mining language is possible.

By query rewriting we mean the determination of a relational expression on
a set of queries whose result is equivalent to the result of a given query for
every database on the same schema. Query rewriting is usually performed by
query optimizers because the execution plan of the DBMS for the query in the
rewritten form is better in terms of execution costs than for the original query.
In the past, query rewriting has been widely used in relational databases, in
data warehouses and in statistical database systems [3, 7, 6, 11, 25, 17]. In these
works, query rewriting of a query computing aggregate functions is performed in
terms of union of other queries whose results have already been materialized. In
particular, [25] suggests that the choice of the materializations (the summaries)
should be made according to the user frequent requests. We also make this as-
sumption for the choice of the data mining materializations. Interestingly, [6]
introduces iceberg queries and observes that a query which searches for itemsets
is an example of this kind of queries. Iceberg queries are generally very expensive
to compute since they require several scans of huge relations. As a consequence,
in order to speed up the execution time, it makes sense to try to factorize the
effort already done by the DBMS. [13, 11] search for the conditions under which
query rewriting of queries with aggregate functions is possible. In [16] the prob-
lem of recognizing equivalent queries in multidimensional databases has been
addressed.

1.1 Storage and Exploitation of the Results of Other Queries

We imagine that we can store the result sets of some query in the database.
We do this because our aim is to reduce as much as possible the computational
times of the data mining engine since, nowadays, the storage space is critic to a
lesser extent.

Furthermore, we suppose to work in an environment similar to a data ware-
house, in which database content updates occur rarely and in known periods of
time. Thus, previous results are considered up to date and can be usefully ex-
ploited to speed up the execution of current queries. Suppose, for instance, that
the optimizer recognizes that the current query is equivalent to a previous one
whose result is available in the database. This allows the system to completely
avoid huge computational effort: the exploration of the lattice search space of
the frequent itemsets, and several scans of the database which are needed to



Query Rewriting in Itemset Mining 113

compute the aggregate functions on the itemsets (notably support count). In
Section 4, we show that this approach is feasible and advantageous, by means of
some experiments with a prototype optimizer. At the moment, the implemented
optimizer recognizes equivalent queries, and exploits such equivalences to avoid
heavy computations. However, it can be easily extended to recognize when the
result of the current query is contained in a materialized result, thus saving
computation in this case as well.

In this paper, of course, we start answering a little part of the complex and
interesting issues arisen by the usage and maintainance of materializations in
data mining. We start finding conditions under which the composition by means
of set union and intersection of previous query results gives the solution of a
current query. Not surprisingly, these conditions are related to the existence of
functional dependences between the attributes on which itemsets are defined and
the attributes on which the constraints are expressed. These results are similar,
but more general than those presented in [20, 19] where the problem of query
decomposition in inductive databases has been studied in terms of convex version
spaces and seems to be linked to the monotonicity property of constraints.

1.2 Item Dependent and Context Dependent Constraints

In all the previous works in constraint-based mining, a somewhat implicit as-
sumption has always been made: properties on which users define constraints
are functionally dependent on the item to be extracted, i.e., the property is
either always true or always false for all the occurrences of a certain item in
the database. In this case, it is possible to establish the truth of the constraint
considering only the properties of the item itself, that is, separately from the
context of the database in which the item is found (e.g., the purchase transac-
tion). In this paper, we will characterize the constraints that are functionally
dependent on the item extracted and call them item dependent. The exploita-
tion of these constraints proves to be extremely useful from the viewpoint of
the optimization of languages for data mining. In fact, the result set of queries
that are constrained only on item dependent properties can be directly derived
by the result set of related queries. In particular, if an optimizer can decompose
the query into sub-queries that have been already executed by the system, the
system can drastically reduce the workload by means of relational operations on
the previous results.

In contrast to item dependent constraint, we present a new class of constraints
for which the assumption of functional dependence is not valid; in other words,
constraints whose satisfaction depends on the transactions in the database. We
call these constraints, context dependent. We believe that these constraints are
very difficult to manage. Indeed, they still might show the same properties of
monotonicity and anti-monotonicity studied so far in literature but still cannot
be embedded in algorithms as already done in the literature [15, 12].

Then, we will characterize a kind of queries which can possibly contain con-
text dependent constraints and do not present any negative impact on the pro-
posed optimization method.



114 Rosa Meo, Marco Botta, and Roberto Esposito

The rest of the paper is organized as follows. Section 2 presents some prelimi-
nary definitions such as item dependent and context dependent constraints. Sec-
tion 3 states the main results of the paper: sufficient conditions for query rewrit-
ing based on the materialization of other queries. Finally Section 4 shows some
experimental results. These results further motivate the proposed approach. Sec-
tion 5 draws some conclusions.

2 Preliminary Definitions and Notation

Let us consider a database instance D and let T be a database relation having
the schema TS={A1, A2, . . . , An}. A given set of functional dependencies Σ over
the attribute domains dom(Ai), i = 1..n is assumed to be known.

For the sake of exemplification, let us also consider a fixed instance of the
application domain. In particular, we will refer to a market basket analysis ap-
plication in which T is a Purchase relation that contains data about customer
purchases. In this context, TS is given by {tr, date, customer, product,
category, brand, price, qty}, where: tr is the purchase transaction identi-
fier, customer is the customer identifier, date is the date in which the purchase
transaction occurred, product is the purchased product identifier, category
is the category to which the product belongs, brand is the manufacturer of
the product, price is the product price, and qty is the quantity purchased
in transaction tr. The Σ relation is {product→price, product→category,
product→brand, {tr, product}→qty, tr→date, tr→customer}. It should be
noted, however, that the validity of the framework is general, and it does depend
on neither the mining query language nor the running database example.

Of course, the above schema could also be represented over a set of relations
and dimensions adopting the usual data warehouse star schema. Nonetheless,
we keep the database in this non normalized form since it is very usual to mine
data from the result of a pre-processing step of the whole data warehouse content
(by means of selection and join over fact relation and one or more dimension
relations).

The following equivalence relation will prove to be useful for the forthcoming
discussion:

Definition 1. Grouping equivalence relationship: two sets of attributes K1 and
K2 are said to be grouping equivalent if and only if for any relation T defined
on TS:

∀t1, t2 ∈ T : t1[K1] = t2[K1] ⇔ t1[K2] = t2[K2]

where t1[K1] is the projection of the tuple t1 on the attributes in K1.

Sets of attributes that are grouping equivalent form a grouping equivalence
class E. Each set of attributes belonging to the same grouping equivalence class
partitions a database relation T in the same groups. We assume to know about
a set of grouping equivalence classes E1 . . . Ej .



Query Rewriting in Itemset Mining 115

Example 1. In the Purchase example, the following non trivial equivalence
class may be found: E1 = {{tr}, {date, customer}, {tr, date}, {tr, customer},
{tr, date, customer}}.

Let us denote by X → Y a functional dependency (FD) between two attribute
sets X (LHS) and Y (RHS) in the database schema TS.

Definition 2. A dependency set of a set of attributes X contains all the possible
RHS that can be obtained from X following a FD in Σ (direct or transitive) such
that there is no X ′ ⊂ X such that X ′ → Y .

As we did for equivalence classes, we assume to know about a set of depen-
dency sets.
Example 2. The dependency set of {product} is {category, price, brand}.
The dependency set of {tr} is {customer, date} while the dependency set of
{tr, product} is {qty}.

In writing a mining query, the user must specify the following parameters:

– The item attributes, a set of attributes whose values constitute an item, i.e.,
an element of an itemset.

– The grouping attributes needed in order to decide how tuples are grouped
for the formation of each itemset.

– The mining constraints which may be based either on the values of any of
the attributes in TS (e.g., kind of product, price or quantity) or on aggregate
values (e.g., sum of prices of products in an itemset)

– An expression over a number of statistical measures used to reduce the size
of the result set and to increase the relevance of the results. This evaluation
measures are evaluated only on the occurrences of the itemsets that satisfy
the mining constraints.

Usually in market basket analysis, when the user/analyst wants to describe
by means of itemsets the most frequent sales occurred in purchase transactions,
the grouping attribute is tr (the transaction identifier) and the itemsets are
formed by the projection on product of sets of tuples selected from one group.
However, for the sake of generality and of the expressive power of the mining
language, grouping can be decided differently in each query. For instance, if the
analyst wants to study the buying behavior of customers, grouping can be done
using the customer attribute, or if the user wants to study the sales behaviour
over time he/she can group by date or by week or month in the case these
attributes were defined.

Users may exploit the mining constraints in order to discard uninteresting
itemsets and to improve the performances of the mining algorithm.

By summarizing, a mining query may be described as

Q = (T, G, I, Γ (M), Ξ)

where T is the database relation, G is the set of grouping attributes, I is the set
of item attributes, Γ is a boolean expression of atomic predicates over a set M



116 Rosa Meo, Marco Botta, and Roberto Esposito

of attributes (the mining attributes) with M ⊂ TS, and Ξ is an expression on
some statistical measures used for the evaluation of each itemset.

An atomic predicate can be any of the following:

1. AiθvAi
2. agg(Ai)θv

where θ is a relational operator such as <, <=, =, >, >=, <>, vAi is a value from
the domain of attribute Ai, agg(Ai) is the result of an aggregate function on the
set of values of Ai which appear in the tuples from which the itemset has been
extracted, v is a value from the natural or rational domain. Finally, Ξ is a
boolean expression in which each term has the form

ξ(ν)θv
where ξ is a statistical measure for the itemset evaluation and θ and v are defined
as above. We require that the evaluation measure ξ : N → R of an itemset J is a
function applied to the number of the groups in which J satisfies the constraints.

Examples of ξ are support count and frequency. The support count is the
counting of the distinct groups containing the itemset. The itemset frequency is
computed as the ratio between the itemset support count and the total number
of database groups.

A mining engine, takes a query Q defined on an input relation T and generates
a result set R 2.
Example 3. The query

Q = ( Purchase, {tr}, {product},
price > 100 ∧ count(product)>= 2, support count >= 20)

over the Purchase relation (first parameter) extracts itemsets formed by prod-
ucts (third parameter), where all the products in the itemset have been sold in
the same transaction (second parameter). Moreover, each product in the item-
set must have price greater than 100 and the itemset must contain at least two
products (aggregate function count(product) >= 2 on the candidate itemset).
Finally, support count of the returned itemsets must be at least 20.
Example 4. The following query over the Purchase relation extracts itemsets
formed by occurrences of products in sales grouped by date where the selected
products are sold in a low quantity (less than 10 units each) and where the
itemset support count is at least 30.

Q = (Purchase, {date}, {product}, qty < 10, support count >= 30)
Now that we have seen how constraint-based mining queries are formed, let

us define two particular types of predicates in constraints: the item dependent
constraints and the context dependent ones.
2 In particular, the mining engine stores R on the same DB from which R was mined

as a pair of normalized relations Rsummary and Rdetail. Rsummary has the schema
{Itemset id, Ξ} where Itemset id is the identifier of the itemset and Ξ is its statistical
evaluation expression. The second relation Rdetail, over the schema {Itemset id, I},
contains the detail of each itemset in terms of its constituting items.



Query Rewriting in Itemset Mining 117

Definition 3. Let us consider the query
Q = (T, G, I, Γ (M), Ξ)

An atomic predicate P(Ai) ∈ Γ (M), Ai ∈ M is defined as an item dependent
constraint if and only if Ai belongs to the dependency set of at least one attribute
subset of I. Otherwise, it is defined as a context dependent constraint.

Example 5. Predicate price>100 in the query of Example 3 is an item depen-
dent constraint because price is in the dependency set of product. Predicate
support count>=20 is not an item dependent constraint because it is not ap-
plied on an attribute in the dependency set of product and also because it is not
a predicate in a constrained expression, but in a statistical evaluation expression.

Example 6. Predicate qty>100 in query of Example 4 is a context dependent
constraint because qty depends on either product or tr alone.

We notice that an itemset I satisfies an item dependent constraint either in
any database group in which it occurs, or in none. This immediately implies the
following:

Lemma 1. An itemset I that satisfies an item dependent constraint in a mining
query has a statistical measure that is a function of the total number of groups
in which I occurs in the given database instance.

On the contrary, a context dependent constraint might be satisfied by some
occurrences of itemset I, but not all of them. Then, its statistical measure is
based on the number of groups in which the itemset satisfies the constraint (that
might be less than the total number of groups in which it appears).

3 Query Rewriting

We suppose that a certain set S of other queries Qi have been already executed
by the inductive database management system and that their results have been
stored in distinct result sets Ri.

Definition 4. A query Q0 on TS is rewritable in terms of a set S′ = {Qj} ⊆ S
of other queries if it is possible to rebuild the result set R0 using only intersection
and union operations of the result sets Rj and this is true regardless of the
database instance.

Certainly, the query rewriting of Q0 on queries in S is possible for every
database instance on the given schema, if certain hypothesis are fulfilled.

Definition 5. A set of queries S′ = {Qi} ⊆ S is a candidate rewriting of Q0 if
the following conditions hold for all Qi ∈ S′:

1. Gi is in the same grouping equivalence class of G0

2. Ii is in the same grouping equivalence class of I0.
3. Ξ0 and Ξi are logically equivalent expressions on the same statistical evalu-

ation measures and values.



118 Rosa Meo, Marco Botta, and Roberto Esposito

Condition 1 guarantees that grouping attributes in Q0 and in Qi partition
the input relation T into the same groups for every database defined on TS.

Condition 2 allows the result sets of different queries Ri, Rj to be intersected
and joined even when Ii �= Ij . In such a situation it is necessary to rewrite the
two result sets in terms of a common element in the grouping equivalence class
to which Ii and Ij both belong.

Condition 3 guarantees that any result element in Ri has been evaluated by
the same statistical evaluation measures as in Q0. If those measures were not
the same for all the queries in S′, it would be necessary to recompute them for
each result element and this would require to access again the input relation.
This should be avoided in order to save computational work, otherwise most of
the benefits gained would be wasted.

Now we can establish the main result of this paper. It defines how the various
query results can be composed together.

Theorem 1. Let us consider a query Q and let S′ = {Qi, Qj} be a candidate
rewriting of Q. If both Mi and Mj are in the dependency set of any two subsets
of I, then the following relationships hold.

Γ (M) = Γi(Mi) ∧ Γj(Mj) ⇒ R = Ri ∩ Rj

Γ (M) = Γi(Mi) ∨ Γj(Mj) ⇒ R = Ri ∪ Rj

Proof. (sketch) We first notice that being Qi and Qj in a candidate rewriting
of Q, then their results may be composed together since the semantics of the
itemsets extracted by Qi and Qj are the same. Moreover, let us recall that an
itemset appears in a result set iff it satisfies both the query constraints and the
statistical expression. The result follows from the following considerations:

– an itemset which satisfies the conjunction (respectively the disjunction) of
Γi(Mi) and Γj(Mj) will be included in the intersection (respectively the
union) of Ri and Rj .

– the atomic predicates involved are item dependent constraints and hence, as
a consequence of Lemma 1, the statistical measures associated to them does
not depend on the constraints themselves. Hence, its value is the same in
Ri, Rj , and R.

Item dependent constraints in a query Q guarantee that a query rewriting
candidate {Qi,Qj} of Q can be used for answering query Q if there is a logical
equivalence between mining predicates of Q and the conjunction (disjunction) of
mining predicates in Qi and Qj. In these cases, the itemsets found respectively
in the intersection (union) of the results Ri and Rj are also in R and viceversa.
This Theorem has important consequences, from the computational viewpoint,
because not only we can predict which itemsets we will found in the result
of query Q without coming back to the database but also the value of their
statistical measures.



Query Rewriting in Itemset Mining 119

3.1 Query Rewriting for Mining Queries
on Context Dependent Constraints

In order to explain how it is possible to do query rewriting, even for context
dependent constraints, let us consider a sample query Q and one of its candidate
rewritings Q′ = {Qi, Qj}. Let J be an itemset which appears in both Qi and
Qj , and let us denote with Oi and Oj the sets of database groups that contain J
in which J satisfies the mining constraints in Qi and Qj respectively. As we will
discuss below, Oi and Oj are not necessarily the same set and hence the set of
groups which satisfy both the mining conditions Γi(Mi) and Γj(Mj) should be
computed as Oi ∩Oj . The important implication of this fact is that the number
of groups that satisfy both queries cannot be foretold directly from the results
of Qi and Qj, when only the size of Oi and the size of Oj are known: one usually
needs to access the database and retrieve the entire group lists Oi and Oj .

Interestingly, Theorem 1 states it is sufficient that the query constraints are
item dependent for query rewriting to be possible (without making accesses
to the original database relation T ). Under the theorem assumptions, in fact,
whether J satisfies the constraints or not uniquely depends on J itself. If J
satisfies the constraints, it does it for all the groups in which J occurs. This
implies that, for any item dependent constraint, the set of groups Oi and Oj are
either equal or empty.

On the other hand, when a mining query is based on context dependent
constraints, the occurrences of an itemset J may satisfy the mining constraints
in certain database groups but not in others. This is the core characteristic of
context dependent constraints: whether they are satisfied by an itemset depends
on the database context in which the itemset occurs. As a consequence, in order
to answer the mining query, it is usually necessary to retrieve all the database
groups in which the itemset occurs in order to verify case by case the constraints
(or typically maintaining Oi and Oj for each itemset J , and then by means of
their intersection and union).

Interestingly, as it is stated below, there are situations in which this can be
avoided even when context dependent constraints are involved.

Theorem 2. Let us consider a query Q and let S′ = {Qi, Qj} be a candidate
rewriting of Q. Let us also assume that G and I are such that an itemset appears
at most once in each group. If Γi(X) ⇒ ¬Γj(Y ) (i.e., Γj(Y ) is always false
for the itemsets that satisfy Γi(X) regardless the database instance T ) then the
following relationships hold:

Γ (M) = Γi(Mi) ∧ Γj(Mj) ⇒ R = ∅
Γ (M) = Γi(Mi) ∨ Γj(Mj) ⇒ R = Ri ∪ Rj

For each itemset J in R and for each statistical measure ξk that contributes to
Ξ, the new value of ξk(ν) is computed by setting:

ν = νi + νj

where νi and νj are the number of groups in which J appears and that satisfy
the mining constraints of the query Qi and Qj respectively.



120 Rosa Meo, Marco Botta, and Roberto Esposito

Proof. (sketch) We first notice that since we do not assume item dependent
constraints, the statistical measure of an itemset may change accordingly to the
constraints involved in the queries.

The first part of the theorem follows since Γi(Mi) ⇒ ¬Γj(Mj) implies that
an itemset in relation T cannot satisfy Γi(Mi) ∧ Γj(Mj).

For the second part, the union of Ri and Rj contains all itemsets which
satisfy either Γi(Mi) or Γj(Mj). Moreover, since any group contains at most one
occurrence of a fixed itemset J and it cannot satisfy both Γi and Γj , then that
group contributes either to the count of J in Ri or to its count in Rj , but not to
both. Hence, the evaluation measure in R resulting from the sum of the counts
in Ri and Rj is correct.

4 Experiments

The query rewriting of a query Q requires the identification of a set of queries
which satisfy either Theorem 1 or Theorem 2 and the foreseen algebraic opera-
tions between their result sets. This is advantageous provided that their overall
cost is less than the cost of executing the query from scratch. Indeed union and
join of two results by means of SQL queries are well known to be very efficient
operations provided that the needed indices are defined.

Hence, an important issue involved in the optimization problem is the iden-
tification of which queries among previous ones may be used as Q1 and Q2. In
the most general setting, the solution to the problem is not trivial at all, since
it requires to be able to recognize the equivalence of logical formulae. The prob-
lem is even more complex than this, since when Q increases in size, the number
of different ways in which we can choose Qi and Qj increases exponentially. A
complete solution to this problem is clearly out of the scope of this paper. Any-
way, at the present time we already implemented an optimizer that tests for the
equivalence of two, possibly complex, queries. In the forthcoming work, we plan
to implement a heuristic strategy based on the greedy covering strategy in order
to find approximate solutions to the general problem.

In the following we explain how the optimizer checks for the logical equiv-
alence between a query Q and one of its candidate rewritings Qi. In brief, the
following operations are performed:

1. Rewriting of the mining constraints of the two queries in disjunctive normal
form. This step is necessary in order to make it easier to identify equivalent
logical expressions.

2. Substitution of some mining constraints with some other equivalent ones
or elimination of redundant ones. This is done by the exploitation of the
functional dependencies in the database schema.

3. Generation of a compact representation of the truth table of the two resulting
expressions.

4. Check the equivalence between the two predicates expressions on the table.



Query Rewriting in Itemset Mining 121

Example 7. Consider queries

Q = ( Purchase, {tr}, {product},
category = ’computer’∧ brand = ’XX’

∨category = ’hi-fi’∧ price < 200,

support count >= 20)
Qi = (Purchase, {tr}, {product},

category = ’computer’∧ (¬category = ’hi-fi’∨ price ≥ 200)
∨category = ’hi-fi’∧ price > 100 ∧ price < 200),
support count >= 20)

and suppose that the following functional dependencies are known to hold:

– no product in category hi-fi costs less than 150 (that is category =
’hi-fi’→ price ≥ 150).

– all products that have ’XX’ brand are in category ’computer’ (that is
brand = ’XX’ → category = ’computer’).

The optimizer performs the following transformations:

1. it transforms constraints in disjunctive form. Q is already in disjunctive form.
Qi becomes:

Qi = ( Purchase, {tr}, {product},
category = ’computer’∧ ¬category = ’hi-fi’

∨category = ’computer’∧ price ≥ 200

∨category = ’hi-fi’∧ price > 100 ∧ price < 200,

support count >= 20)

2. it exploits the known functional dependencies and some basic property of
range predicates in an ordered domain. As a result query Q becomes

Q = ( Purchase, {tr}, {product},
category = ’computer’∨ category = ’hi-fi’∧ price < 200,

support count >= 20)

and query Qi becomes

Qi = ( Purchase, {tr}, {product}, category = ’computer’

∨category = ’computer’∧ price ≥ 200

∨category = ’hi-fi’∧ price < 200),
support count >= 20)

3. it builds the truth table of the mining constraints expressions in Q and in
Qi from step 2 and verifies that they are logically equivalent. In this case
this is easily checked to be true.



122 Rosa Meo, Marco Botta, and Roberto Esposito

The time complexity of the solution is exponential in the number of dis-
tinct predicates involved; anyway, a careful implementation keeps the problem
tractable for most reasonable queries. In order to test the last assertion, we

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30

S
ec

on
ds

Query Size

(a)

 0.41

 0.42

 0.43

 0.44

 0.45

 0.46

 0.47

 0.48

 0.49

 0  20  40  60  80  100  120

S
ec

on
ds

Size of the query catalog

(b)

Fig. 1. Optimization times as a function of (a) number of atomic predicates and (b)
the size of the query catalog.

randomly built queries of increasing length and ran the testing procedure over
them. The results are reported in logarithmic scale in Figure 1 (a). It is worth
noting that, even if the algorithm is clearly exponential, whenever the number of
predicates involved in the queries is not larger than 20, the time spent to process
the query is less than 10−0.2 ≈ 0.63 seconds3. Since typical query lengths are
much smaller than 20, we can argue that in common situations the processing
time for the equivalence checking is actually acceptable.

The algorithm which checks the entire database catalog of previous queries
simply repeats the equivalence checking algorithm once for each past query until
an equivalence is found. Hence, the complexity increases linearly with the number
of previous queries as it can be seen in Figure 1 (b). Of course, a number of
“cleaning” policies can be devised in order to keep the size of the query catalog
relatively small.

Let us consider an experiment we made on a sample database having ≈
250, 000 records containing ≈ 10, 000 sales transactions composed of 25 items on
average, randomly extracted from a total of 939 items. The system took about
one millisecond for the optimization steps, 12 seconds to prepare the dataset for
the mining algorithm and 543 seconds to build the final result using a Partition-
like algorithm (at the end, the result set contained 42 association rules).

The system ran on a setting which corresponds to a nearby of the origin of
the two Figures 1 (a) and (b). The results prove the feasibility of the proposed
approach since they make evident that the time saved in case the optimization
succeeds is dramatically smaller than the execution time of the mining algorithm.
3 The testing program was written entirely in C++. The testing machine running

Linux (Kernel v.2.4) sports two Pentium III processors (1.4GHz each) and 1Gb of
RAM. The mining engine connects to a MySQL server (v.3.23.53) by means of an
ODBC connection.



Query Rewriting in Itemset Mining 123

Notice that, even in the case that the query catalog has 100 queries with 15
atomic predicates on average, the time spent by the optimizer is still less than
four seconds, which is acceptable.

5 Conclusions

In this paper we studied the problem of query rewriting for queries that mine fre-
quent itemsets. The proposed technique consists in rewriting the query in terms
of union and intersection of the result sets of other queries, previously executed
and materialized. We found sufficient conditions for the optimization to apply
and shown by means of some experiments that this approach is viable because it
reduces drastically the execution time. This seems absolutely necessary in many
data mining applications.

In the future we plan to consider also fuzzy evaluation techniques for the
problem of mining frequent itemset from a database. Previous results in this
direction already exist (the so called condensed ε-adequate representations de-
veloped by Boulicaut and Rigotti in [2]) that consider approximate solutions to
the identification of the statistical evaluation measure of an itemset.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast dis-
covery of association rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Knowledge Discovery in Databases, volume 2. AAAI/MIT
Press, Santiago, Chile, September 1995.

2. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed representa-
tion of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery, 7(1):5–22, 2003.

3. S. Chaudhuri, S. Krishnamurthy, S. Potarnianos, and K. Shim. Optimizing queries
with materialized views. In Proc. of 11th ICDE, March 1995.

4. S. Chaudhuri, V. Narasayya, and S. Sarawagi. Efficient evaluation of queries with
mining predicates. In Proc. of the 18th Int’l Conference on Data Engineering
(ICDE), San Jose, USA, April 2002.

5. S. Chaudhuri and K. Shim. Optimizing queries with aggregate views. In Proc. of
EDBT, 1996.

6. M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. Ullman. Comput-
ing iceberg queries efficiently. In Proceeding of VLDB ’98, 1998.

7. A. Gupta, V. Harinarayan, and D. Quass. Aggregate query processing in data
warehousing environments. In Proceedings of VLDB ’95, pages 358–369, 1995.

8. J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: A data mining
query language for relational databases. In Proceedings of SIGMOD-96 Workshop
on Research Issues on Data Mining and Knowledge Discovery, 1996.

9. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Communications of the ACM, 39(11):58–64, November 1996.

10. T. Imielinski, A. Virmani, and A. Abdoulghani. Datamine: Application program-
ming interface and query language for database mining. KDD-96, pages 256–260,
1996.



124 Rosa Meo, Marco Botta, and Roberto Esposito

11. H.-J. Lenz and A. Shoshani. Summarizability in olap and statistical data bases. In
Proceedings Ninth International Conference on Scientific and Statistical Database
Management, pages 132–143. IEEE Computer Society, August 1997.

12. C. K.-S. Leung, L. V. S. Lakshmanan, and R. T. Ng. Exploiting succinct constraints
using fp-trees. ACM SIGKDD Explorations, 4(1):40–49, June 2002.

13. F. M. Malvestuto. The derivation problem for summary data. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 82–89,
1988.

14. R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association
rules. In Proceedings of the 22st VLDB Conference, Bombay, India, September
1996.

15. R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and
pruning optimizations of constrained associations rules. In Proceedings of 1998
ACM SIGMOD International Conference Management of Data, pages 13–24, 1998.

16. W. Nutt, Y. Sagiv, and S. Shurin. Deciding equivalence among aggregate queries.
In Proceedings of ACM PODS, pages 214–223, 1998.

17. C.-S. Park, M. H. Kim, and Y.-J. Lee. Rewriting olap queries using materialized
views and dimension hierarchies in data warehouses. In Proceeding of ICDE’01,
2001.

18. C.-S. Perng, H. Wang, S. Ma, and J. L. Hellerstein. Discovery in multi-attribute
data with user-defined constraints. ACM SIGKDD Explorations, 4(1):56–64, 2002.

19. L. D. Raedt. A perspective on inductive databases. ACM SIGKDD Explorations,
4(2):69–77, December 2002.

20. L. D. Raedt, M. Jaeger, S. D. Lee, and H. Mannila. A theory of inductive query
answering. In Proceedings of IEEE International Conference on Data Mining, pages
123–130. IEEE Computer Society, December 2002.

21. R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints.
In Proceedings of 1997 ACM KDD, pages 67–73, 1997.

22. D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy. Answering queries with
aggregation using views. In Proceeding of VLDB ’96, 1996.

23. D. Tsur, J. D. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and
A. Rosenthal. Query flocks: A generalization of association-rule mining. In Pro-
ceedings of 1998 ACM SIGMOD International Conference Management of Data,
1998.

24. H. Wang and C. Zaniolo. User defined aggregates for logical data languages. In
Proc. of DDLP, pages 85–97, 1998.

25. X. S. Wang and C. Li. Deriving orthogonality to optimize the search for summary
data. Information Systems, 24(1):47–65, 1999.

26. Y. Zhao, P. M.Deshpande, J. F. Naughton, and A. Shukla. Simultaneous opti-
mization and evaluation of multiple dimensional queries. In Proceedings of ACM
SIGMOD ’98, pages 271–282, 1998.


	1 Introduction
	1.1 Storage and Exploitation of the Results of Other Queries
	1.2 Item Dependent and Context Dependent Constraints

	2 Preliminary Definitions and Notation
	3 Query Rewriting
	3.1 Query Rewriting for Mining Queries on Context Dependent Constraints

	4 Experiments
	5 Conclusions
	References

