UHWERSITA
| DEGLI STUDI

[T1S AperTO

DI TORINO
AperTO - Archivio Istituzionale Open Access dell'Universita di Torino
Type inference for nested self types (extended abstract)
This is the author's manuscript
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/28798 since 2015-10-12T09:18:42Z
Publisher:
Springer

Published version:
DOI:10.1007/978-3-540-24849-1_7
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

26 November 2024

Type Inference for Nested Self Types
(Extended Abstract)*

Viviana Bond**, Jerzy Tiuryrd, and Pawet Urzyczyit * *

1 Universit di Torino, Dipartimento di Informatica
c. Svizzera 185, 10149 Torino, Italy
bono@di.unito.it
2 Uniwersytet Warszawski, Instytut Informatyki
Banacha 2, 02-097 Warszawa, Poland
{tiuryn,urzy }@mimuw.edu.pl

Abstract. We address the issue of decidability of the type inference problem for

a type system of an object-oriented calculus with general selftypes. The fragment
considered in the present paper is obtained by restricting the set of operators to the
method invocation only. The resulting system, despite its syntactical simplicity,

is sufficiently complicated to merit the study of the intricate constraints emerging

in the process of type reconstruction, and it can be considered as the core system
with respect to typability for extensions with other operators. The main result of
the paper is the decidability of type reconstruction, together with a certain form
of a principal type property.

1 Introduction

Object-oriented programming languages enjoy an ever growing popularity, as they
are a tool for designing maintainable and expandable code, and are also suited for de-
veloping web applications and mobile code. A type discipline is then in order to ensure
safety (i.e., absence of message-not-understood run-time errors), but yet this type dis-
cipline has to be flexible enough not to restrain reusability. Polymorphic type systems
are one answer to that double requirement, see for example [6, 14]. Among the many
features that can be included in such systems, there is the gsétgpe

The concept obelf (sometimes callethis) is of paramount importance in object-
oriented languages. Self is a special variable that allows to refer to the object executing
the current method, and so to access its fields and to invoke the sibling methods. This
concept, while being a very handy feature, influences substantially the problem of static
typing for object-oriented languages. Self types have been a subject of foundational
studies, both in the object-based and in the class-based setting (see, for example, [1, 8,
12]). The work done has brought up the importance of typing self in a careful way.

* Research work conducted within the framework of Types WG Project IST-1999-29001.

** This work has been partially supported by EU within the FET - Global Computing initiative,
project DART IST-2001-33477, and by MIUR project NAPOLI. The funding bodies are not
responsible for any use that might be made of the results presented here.

*** Partly supported by KBN Grant 7 T11C 028 20.

2 Bono, Tiuryn, Urzyczyn

The gain of introducing an appropriate type for self is evident when a form of in-
heritance is present, either a class-based one (via class hierarchies), or an object-based
one (via method addition/override). In fact, an appropriate type for self would allow to
specialize automatically those inherited/overriden methods that either return the host
object, or have some parameters of the same type as the host dijacy (nethods),
or both. This specialization (also known BlyTypespecialization) can be seen as an
alternative taypecastswhich are explicit declarations made by the programmer on the
expected actual type of the method result according to the type of the object the method
is invoked upon. Typecasts are unsafe—the programmer must be “sure” about the actual
type of the returned object, since little or even no static checking is performed on type-
casts, as it happens, respectively, in Java or in C++. Moreover typecasts certainly do not
improve readability of code, with bad impact on the debugging phase. As hinted above,
an alternative to typecasts is the introductiorselftype with the meaning “the type of
the current object”, i.e., “the type of self”, to annotate appropriately binary methods and
methods that return the host object. Some type systems including selftype are presented
in[1,8,12].

In this paper we consider the problemtgpe inferencdalso calledtypability) in
presence of general (arbitrarily nested) selftypes in an object-based setting. Very little is
known about type inference with selftypes. At the best of our knowledge, only Palsberg
and Jim approached this subject. In [17] they study the type inference problem for one
of the Abadi-Cardelli systems [1] extended with the notion of selftype. In [16], Pals-
berg presents an algorithm for the Abadi-Cardelli’s four first-order systems (without
any form of selftype), proving that the type inference problem for all four systems is P-
completé. The work [17] can be seen as an application of the techniques developed in
[16], and it contains a proof that the type-inference problem for an Abadi-Cardelli sys-
tem with recursive types and width subtyping extended with a simple form of selftype
is NP-complete. The Palsberg-Jim “tiny drop of selftype”, as the authors themselves
point out, consists of:

— the use of the keyworgktlftype, instead of a bound variable, to stand for the selftype
in object types;

— the restriction that each occurence of selftype “comes with its context”, i.e., more
specifically in their type systenelftype can appear as a component of an object
type only, never in isolation.

These two choices imply the following consequences:

— itis not possible to refer to the selftype of enclosing outer objects (i.e., there are no
nestedselftypes);

— itis not possible to override those methods that return the object itself (i.e., of type
selftype).

Of the above two restrictions, the first one seems to be very essential. It implies that the
access to two or more differestlftype’s, i.e., two or more different environments, is
impossible. Indeed, the “tiny drop of selftype” of Palsberg and Jim can be encoded in a
system without selftype, see [9], meaning that it is a rather weak form of selftype.

3 In [13] this result is improved.

Lecture Notes in Computer Science 3

We plan, then, to analyze the decidability of the type inference for a type system that
relaxes the above limitations. The system under study is based on the calculus presented
in [3] (we will call it C from now on). The calculu€’ is an untyped version of the cal-
culus introduced in [5], in order to analyze throughout a functional encoding the type
system of [4] (hereafter BB), which is, in turn, a simplification of the Lambda Calcu-
lus of Object (hereafter LCO) of Fisher, Honsell, Mitchell [12]. The calculus LCO is a
functional object-based calculus enriched with object primitives. Operations allowed on
objects arenethod additionmethod overrideandmethod invocatioalso calledsend.

Method bodies are functions, in particular self is modelled using a lambda-abstracted
variable. In LCO: () itis possible to refer to the selves of the enclosing objeit)x\er-

ride is as general as possible. Selftype is rendered by usingwhgariablesof [15]

to characterize types of methods as type-schemes (i.e., types polymorphic in these vari-
ables), and to enforce correct instantiation of the schemes as methods are inherited. The
type system of” we base our paper on inherits some of the fundamental ideas from
the original system in the modelling of selftype. The main difference is in not using
row-variables to model selftype, but exploiting instead Brueegtchingand implicit
match-bounded quantification over type variables, as it was studied in the BB calcu-
lus of [4]. Matching is a relation over recursive object-types that was first introduced
by [7] as an alternative to F-bounded subtyping [10] in modelling the subclass relation
in class-based languages. The designers of LCO conjectured that type inference for
LCO was undecidable, but nobody has proven that yet. T@iubaving a simpler (yet

as expressive as) type system than LCO, seems to be the appropriate system to study
type inference in presence of a general form of selftype.

Due to the generality of systeri, and the surprising technical difficulties arising
in its analysis, we decided to tackle the related type inference problem in steps. First
of all, we discarded the method addition operation. This is because we believe that
method addition does not add much to the inherent difficulty of the problem of type
inference, since method addition is performed on objects but it is forbidden on“selves
See Section 8 for an overview on how to deal with it.

In this paper we work with a calculus that has method invocation only, i.e., we
also discard method override. The reason for what seems quite a radical choice is that
method invocation turns out to create an interesting problem by itself. The possibility
of referring to nested selves of enclosing outer objects creates “reference loops” which
are difficult to untangle. In the sequel, the formal development of the subject will make
it clear what we mean by “loops” and how we solve them in order to prove decidability.
Loops may be also created and/or modifiedsieyf-inflictedoverrides, i.e., overrides
operating not on proper objects (calledernal overrides but on selves inside method
bodies. Nevertheless, the treatment of external overrides is not as trivial as it might look
(see Section 9).

If itis true that the usefulness of selftype shows out when an inheritance mechanism
is applied, it is also evident that the problem of type inference we are dealing with is by
no means trivial. The restricted system we study in this paper is important because we
do believe that it is the core of any other richer systems (i.e., systems including any form

4 There are calculi that deal wiself-inflictedmethod addition such as [11], but they go beyond
the goal of this paper, which is about classical object-based calculi.

4 Bono, Tiuryn, Urzyczyn

of method addition and/or override), from the point of view of the type reconstruction.
In the sequel of the paper it will be clear how both “detecting bad loops” and “solving
good loops”, in order to type a term, amount to prove that the term has a correct structure
with respect to the way selves are used.

It might seem natural to identify objects with recursive records, so their types with
recursive types, but this is misleading. In fagt:quch choice is not adequate already in
our setting with method invocation only, because of the generality of our selves (see the
examples in Section 2)i)(generally, this solution does work in an enlarged setting with
method override and/or addition because the meaning of self changes as operations on
the host object are performed (see [1], Chapter 6.7.2).

There is a number of simplifications we make in our syntax. For instance we con-
sider objects with exactly two methods, and put “constants” (suchds..) asplace-
holderswherever we mean “an irrelevant subexpression”. These simplifications do not
influence the essence of the problem, and make it easier to isolate the basic issue: type
assignment in presence of multiple selves. Place-holders are just there to hide what-
ever is non-important for the current typing and they do not influence typing itself. The
presence of two fields only rules out the so-calfledssage-not-understoadn-time
errors, as sends are limited to those two components. Even though catching statically
such errors is a primary task of type systems for object-oriented languages, the task of
testing a sort of “well-formedness” of objects is essential as well, and this is what our
typability algorithm does. Nevertheless, a message-not-understood error treatment may
be introduced in our typability algorithm (see Section 8).

This paper might be seen as a first step towards introducing selftypes in real pro-
gramming languages as an alternative to typecasts. No matter whether the type inference
problem in its most general form (including override as well) is decidable or not, the
next steps will be tailoring suitable type systems with decidable and tractable forms of
selftype.

The main technical contribution of the paper is as follows:

— We prove that type reconstruction is decidable for a language involving nested self-
references.

— We show a certain form of a principal quasi type scheme property. The salient
feature of the principal quasi type scheme of a term is that it exists iff the term
is typable and every instance of the scheme gives a correct typing of the term.
Although not every typing of the term is a substitution instance of the scheme,
therefore we do not have a complete notion of “principal typing” for the moment
being, one can reasonably argue that our principal quasi type scheme provides the
most essential information about all typings.

The paper is organized as follows. Section 2 introduces the most basic syntactic cate-
gories, terms and types, and explains the motivation of our type assignment. In Seec-
tion 3 we elaborate the syntactic notions used in our consideration. Important categories
of terms are: types, quasi types and stripped terms. We introduce the operation of for-
mal field selection for quasi types (Section 3.1) and evaluation of a stripped term in

an environment (Section 3.2). Section 4 introduces a type assignment system. In Sec-
tion 5 we introduce the concept of a meta scheme — the main tool in establishing the

Lecture Notes in Computer Science 5

“principal quasi type scheme” property. This section also contains the notion of scheme
equivalence. The latter notion is used for expressing the confluence property of a certain
system of reductions.

The main technical part of the paper is Section 6. It is devoted to an algorithm
which transforms a given stripped term into a quasi type scheme, or reports a failure.
Section 6.1 introduces two fundamental mappings defined on schemes: the projection
and reminder maps. It also contains an invariant property maintained by these maps.
Sections 6.2 and 6.3 describe two classes of redexes: reducible and cyclic. Among the
reducible redexes there are redexes which we call inconsistent. They are the only source
of a possible untypability of a term in our setting. Section 6.4 contains the main techni-
cal properties of the reduction system: confluence and termination (Theorem 6.1), and
recovery of typings (Theorem 6.2).

Section 7 contains the main result of the paper: the principal quasi type theorem
(Theorem 7.3). It states that there is a quasi type scheme assigned to every (and only)
typable term such that all the instantiations of this scheme give correct typings of the
term. This principal quasi type scheme can be effectively obtained if and only if the
term is typable. Therefore the typablity problem is decidable.

Section 8 gives an informal account on how to deal with method addition and
message-not-understoodn-time errors.

Due to space limitations we have omitted from this extended abstract all proofs and
many auxiliary definitions which are not essential for understanding the presentation of
the main results of the paper. The details can be found in the full version of the paper in
http://lwww.di.unito.it/ ~bono/Manuscripts

2 Terms and types

Assume an infinite set of variables (selves), notatiof). .., and an infinite set of
place-holders, notation d, . . . A termis either a variable or a place-holder or:

— anobject i.e., an expression of the forpro s(My, M), whereM; and M, are
terms, or:
— asend i.e., an expression of the forid < ¢, wherel is aterm and < {1, 2}.

The operatopro s binds the selg. Alpha conversion is assumed. The notation (M)
andM|[N/s] is used accordingly (with[N/s] = ¢).

The intended meaning opto s{ M;, M,)" is an object with two methoda/; and
Ms, which may refer to the whole object via the self variaklén the notation of [1]
this would be written ag¢s.M7,¢s.Ms). The meaning of M < ¢” is to extract the
i-th method from the objed¥, and the operational semantics is given by the following
reduction rule:

pro S(Ml,M2><:i ~ Mi[pro S<M17M2>/S]'

We remind the reader that a place-holdenay be seen as replacing and “hiding” a
piece of code (i.e., a subexpression) which is irrelevant to the typing of the whole code

6 Bono, Tiuryn, Urzyczyn

in question. Clearly, a message sent to an irrelevant target is irrelevant too, so we do not
find anything wrong in postulating this reduction:

c<E1 o~ ¢

which expresses exactly the idea of ingnoring the “contents’. @n the other hand,
the expressior < i has some meaning, but it can not be evaluated until we substitute
an actual object fos.

We want to assign types to expressions of our language. The basic idea is that a type
assigned tero s(M7, Ms) should be esssentially a product of types assignédto
andM,. Thus, we would like to assert something like

pro s(3,5) : ({iint, int)),

provided we know tha8, 5 : int. In general, the type of a pure object (an expression
without sends) should correspond to the shape of the object. If an object refers tg a self
the natural choice is to use a type variahleorresponding to the seifand assert

pro s{s,5) : 6t ((t,int)),

where the operataft bindst within ((...)). This can be extended to more complex
pure objects, e.g.,
pro s(pro s'(s',5),pro s'(s,s"))

is of type
St ({6t ((t',int)), 6t ((t,t')))).

However, as said above, we do not really care about place-holders and their types. This
leads us to the following simplification. Assuming ¢ for any place-holdet, we can

simply identify a pure object with its own type. Indeed, the difference between the term
and the type in the last example is just syntactic sugar. The essential part, the structure
of self-references, is the same, up to renaming, and can be drawn as the following tree:

2N
AN

This justifies our definition of a type as a term not containiag An assignment of
such a typer to an expresssion/ containing occurrences &t means:M is as good
as a pure object of type.

Our type assignment should have the subject reduction property, i.e., wéfant
7, wheneverM ~» M’ and M : . This requirement determines what the type assign-
ment rules should be. First of all, observe tidt: pro s({ 71,72) should imply that
M <« iis of typer;[s := pro s(7, 72)]. It is less obvious which type should be as-
signed to a send of the form < 4. Clearly, our identification of an object and its
type requires a uniform principle : s. A self is of type self. The type of < i

Lecture Notes in Computer Science 7

should depend on the context the expression occurs in. Consider as an example the
termM = pro s(pro t(d,s < 1),c), depicted as

/\
/\

s<1

It may be tempting to asseft< 1 : ¢, because < 1 certainly points to the root of the
object identified by the seif This amounts to understanding an object tppe ¢ ...)
as a recursive typgt(...), that may freely be replaced by ..)[ut(...)/t]. That,
however would be wrong: consider the expressién= 1. We have

M<«<1 ~» pro t(d, M<1) ~»
~» pro t(d,pro t(d, M<1)) ~~

From this reduction sequence we can see that no finite object type can be assighed to
as the expression develops into an infinite tree. TAishould not be typed at all.

Note that the idea of a recursive type(d, t) is not adequate here, which can be
best seen if we modify) to M’ = pro s(pro t(t,s < 1),c). While M’ expands
to an infinite tree in reduction, it is not a full binary tree! Another reason why we
do not want to use recursive types is that we certainly want to distinguish between
pro s{4,pro s(2,s)) andpro s(2,s).

The problem we encountered in the above example does not occur, if we consider
the term/N = pro s{pro t(c,s < 1 < 1),d). The picture is now

/\
VAN

s<1l«=1

and the type of <= 1 < 1 in this context should undoubtedly BeSo what is the type
of s <« 1? Now we see it must bpro t(d, d). But how can we derive it? For this we
need to know the type @V from anenvironmenthat assigns te the type of the object
s points to. (It is not a type of as we always have: s.) We arrive at the following rule

t:prot{m,) M:t
t:prot(m,m)FM<=i:T

Thus to derive the type faV we must first guess it, put it into an environment in which
we derive types of the components &, and finally we apply the following rule for
typing objects

s:pros(T, o) Ny i1, s:pros(r,m)F Ny:mo

F pro s(N1, Nz) : pro s{7,72)

8 Bono, Tiuryn, Urzyczyn

to eliminate the initial guess from the environment.

The need of guessing the final type of a complex expression, before type-checking
begins, makes it difficult to apply any structural approach to type inference. The prob-
lem becomes even more involved in presence of an interaction between “external” sends
to an object expression and “internal” sends occurring within that expression.

2.1 The roadmap of notions

We conclude this informal introduction with a brief description of several syntactic
categories used in the course of the proof of the main decidability result. We use the
following subsets of the set of all terms, orderd as shown below:

typesC quasi typesC stripped termg- terms.

Stripped terms are terms in which all applications of the send opetatare ‘stripped
down’ to leaves, i.e<= occurs only in the context < II, wheres is a self andl] €
{1,2}* is a non-empty path. Moreover, if an occurrenceseE 17 is bound, then the
bindingpro isthe outermogbro of the term. The main technical part of the algorithm
which decides typability is concerned with stripped terms. The strategy of the algorithm
consists in rewriting a given stripped term, trying to eliminate bound occurrences of
s<=1I.

In this way we arrive at the next syntactic category of terms: quasi types. A stripped
term without bound occurrences ok= IT (with IT # ¢) is called a quasi type. Hence
a quasi type is a term in which all applications of the send operator are ‘stripped down’
to the leaves and every such an occurrence is free, i.praobinds a selfs which is
in the contexts < I, with IT # . Quasi types behave in several respects similar to
types: a quasi type is always typable and moreover its type is uniquely determined by
the environment.

Finally the smallest syntactic category, types, consists of terms in which no send
operator occurs.

Since we are interested in a form of principal typing, we have to allow metavariables
which range over types. In this way we obtain a class of meta schemes — they are just
like ordinary terms, except that they may contain metavariables. Again, meta schemes
are stratified syntactically in a similar way as described above. Thus we have:

guasi type schemes stripped schemeS meta schemes.

Quasi type schemes are produced by the algorithm of the paper for each (and only)
typable term (see Theorem 7.3), which is the main result of this paper.

3 Technical background

If IT € {1,2}*, then we definé\/ < IT by induction:M < IIi := M < II < i.
Occasionally, we use the notatidh < I1, evenifII can be empty, identifying/ < ¢
with M. We call every send of the form<« II, wherell # ¢, anatomic sendA top
sendin an objectM = pro s.(My, My) is an atomic send < I bound by the top

Lecture Notes in Computer Science 9

pro s in M. The length ofl] is thelengthof the sends < I7. We say that an atomic
sends < IT isfreein M if s € FV(M).

If a term does not contain non-atomic sends, it is often convenient to think of it as a
labeled binary tree. Internal nodes are labeled by selves and leaves are labeled by place-
holders, selves or sends. Nodes are identified with paths leading to them. For a string
I' € {1,2}* and a termM, if I" leads in}M to a node we will say thaf’ is contained
in M and writel" € M. ForI’ € M we can also refer to a label 6f meaning the label
of the node to whicl™ leads ini/.

A typeis a term not containing=. In particular arobject typds a type which is an
object, as well. Aquasi typds a term in which all sends are atomic and freestépped
termis a term of the fornpro s.{ My, M,), whereM; and M, are quasi types. Thus
in a stripped term all bound sends are top sends.

A self declarationis a pair of the forms : 7, wherer is an object type. Aren-
vironmentis a sequence of self declarations, such that no declaratiéhinvolves a
(free) variable declared later on . More precisely, the definition of an environment,
its domainDom(E), and the seF'V (E) of free selveof E is stated inductively as
follows.

— The empty sequendkis an environment, anBom () = § = FV (().

— If E is an environments is a self such that ¢ FV(FE), andr is a type, then
E' = E,s: 7isanenvironment, witb om(E’) = Dom(E)U{s} andFV(E’) =
FV(E)UFV(r).

We will use the convention that ¥ : 7 is a declaration, then is of the formr =
pro s.{T, 7). Fors € Dom(FE), we write E(s) = 7 if 7 is the type which is assigned
to s by the rightmost declaration farin E.

3.1 Formal field selection

Given a quasi typd" andIT € {1,2}*, we define a quasi typ€.1I, called aformal
field selection

—Te=T,

—clIl =g,

— (s« D). =s<TII, forl e{l,2}* inparticulars.IT = s < II,
— if T'=pro s.(T1,T»), thenT.iIl = (T;[T/s]).I1

Let us stress that by the above definition the notatiohsands < IT are interchange-
able.

In the last clause of the above definition the substitufigff’/ s| is just the ordinary
substitution ofT" for all free occurrences of in 7;. Notice that in this case no free
occurrence ofs in T; is a free send. Otherwise, the result of the substitution is not
necessarily a quasi type. That is, quasi types are not closed with respect to ordinary
substitutions. The general case of substitution of quasi types is dealt with in the full
version of the paper.

10 Bono, Tiuryn, Urzyczyn

3.2 Evaluation of stripped terms in an environment

Given a stripped termiM/, we define a stripped ter(d/) g, called thevalueof M in the
environment, as follows.

- (8)r = s,

- (e =c,

— (s < iIl)g = (7.II) g, wheneverE(s) = pro s.(Ty, T2).

— (s<ill)p =s<ill,if s ¢ Dom(E).

— (pro s.{ My, My))g = pro s{ (M1)g,(M2)g), wheres ¢ FV(E)Us ¢ Dom(E).

Note that the above definition is correct, i.e. that the induction is well-founded.

Lemma 1. LetT be a quasi type and Idf € {1,2}*. Then for every environmeft,
we have
(TgH)g=(T.1)g.

In particular,

4 Type assignment

A type judgementakes the formE = M : 7, whereE is a type environment)/
is a term andr is a type. Here are the rules. In (obj) we use the abbreviatiors
pro s{7,T2) andM = pro s{ My, Ms).

(const)

Etrc:c
(var) Ets:s
(obj) Es:tEMy:m, FE,s:17kMy:m
E-M:T
E+M: . .
(send) T (if (i) is a typg

Er-M<i:(ri)g
First of all, observe that the understandingff- M : 7 is nonstandard. The environ-
ment E doesnot provide types of free variables, as usually, but only “type bindings”
used only for typing sends. The type assigned to a free variable is always the variable
itself. In particular, one does not need to assume free variablé$ tf be in the do-

main of £, as long as there is no (direct or indirect) send involving these variables. For
instance we have s : s, but to typepro s(s,t) < 21 we need a type binding far
Furthermore, notice that the type of a place-holderthe place-holder itself, and this
reflects our idea that place-holders stand for ignored sub-expressions.

The reader familiar with [4] will notice that our type bindings are directly inspired
by the idea of “matching types”. A direct comparison between the present system and
C of [3] is possible: our syntax of terms is different than thatCgfbut if we forget
about that, a closer look reveals that our rule (obj) corresponds to (two applications of)
rule (Val Method Addition) of”, and rule (send) is essentially the samé'asrule (Val
Select).

Below we illustrate the features of the system with some examples.

Lecture Notes in Computer Science 11

Example 1.Not every term is typable. Consider the following stripped term
M =pro s(prot{s<1,c),c)

and show thal/ is indeed untypable. Assume that\/ : 7, for some typer. It follows
that7 must be of the formr = pro s.(71,72) and we must have a derivation of

s:ThEprot{s<1,c):m.
Now, againr must be of the formr; = pro ¢(711, 712) and we must have a derivation
s:Tt:mFs<1:71y;.
Thusti; = (n1)g = 71, whereE = {s : 7, ¢ : 71 }. This yields a contradiction.

Observe that the type of a term is not uniquely determined by the term and the
environment (see Example below). However, it can be shown that the resulting type of
a quasi type is uniquely determined by the environment.

Example 2.Consider now a stripped tertd = pro s(s < 12,s < 112). The reader
will easily check that the following typings are derivable in the system.

F M :pros{cc) Q)

F M : pro s{pro t(pro x(y,z),t),z) 2

F M : pro s{pro t{pro xz(y,s),t),s) 3)
x:proxz{y,z)F M : pro s(prot{z,t), z) 4)
t:prot{proz(y,z),t)+ M :pros(tz) (5)
x:proxz{y,z), t:prot{x,t) - M :pros(t, z) (6)

Types assigned té/ in (1) and (2) are clearly of completely different nature. Also the
types in (2) and (3) are different due to different structure of bindings. Environments in
(4)—(6) are used to type atomic sends\éf

We remark on passing that the above type assignment system sabjbet reduc-
tion property(see details in the full version of the paper).

5 Meta schemes

We introduce the meta schemes and their instantiations in order to state the principal
quasi type theorem. First we introduce a new category of variables, caliéavari-
ables For each patrd € {1,2}* we have a countable supply of metavariale$
(possibly with subscripts, when necessary). Ea¢hcan be instantiated with a type
which has to satisfy a certain property to be stated later. Metavariables play the same
role as selves, except they cannot be boungiay. In particular, the send operation is
applicable to a metavariable.

We start withmeta scheme§ . They are build according to the following grammar

Tu=cls<l|a? <I|pros(T;,Ts),

12 Bono, Tiuryn, Urzyczyn

whereA and IT range over{1,2}*. We identify s < ¢ with s anda® <« ¢ with o,
Expressions of the form“ <« IT, wherell # &, will be calledmeta sendd.etTV (7))
denote the set of all metavariables which occufimnd letF'S(7) denote the set of
all sendss <= IT which occur free ir7 (i.e. s is free inT).

A meta scheme in which all sends are free is calleghasi type schem®bserve
that a quasi type scheme without metavariables is a quasi tygeipbed schemes
a meta scheme in which bindings of sends occur only at the top/ iie.a stripped
scheme if it is of the forme, s < IT,a? <« II, or pro s.({ 7, T>), where7; and7;
are quasi type schemes. Hence a stripped scheme without metavariables is a stripped
term.

Most of the definitions which are applicable to terms are applicable to meta schemes
as well . For example, the definition of formal field selection can be extended to quasi
type schemes by adding the clause for metavariables:

— (@ <=NIl=a?<=T1

An instantiationof a meta schem® is a pair(E, S), whereFE is an environment anfl
is a substitution which assigns to every metavarialstec TV (7) a typep such that

(p-A)p =p.

For a substitutionS which assigns types to metavariablesTiv (7), by T{S} we
denote the term obtained by substituting types for metavariablEsTie definition of
T{S} is by straightforward induction, the only nontrivial clause being this one:

(a? < IN{S} = S(a?).1T

Of course, we perforna-conversion, when necessary, in order to avoid send capture.
Clearly whenT is a quasi type scheme th@r{ S} is a quasi type. Similarly for stripped
schemes.

For a stripped schem&, the value of 7 in an instantiationF, S) for 7 is the
stripped term(7 {S})e.

5.1 Equivalence of meta schemes

Given a stripped schem& and a metavariable®, take any decompositiofd =

A1 Ay, whereA,, Ay € {1,2}*. LetT’ = T[a?241. Ay /a?], wherea?241 s a fresh
metavariable. Theff” is said to be obtained fror be acyclic shift We claim that7

and7” should be considered equivalent. There is one-to-one correspondence between
instantiations off and7”’ which preserves values @f and7”’. More specifically we

have:

(P1) If (E,S) is an instantiation of” and.S(a?) = p, then for
§'= (S —{(a®,)} U{(a®?, (p.A1)p)}

the pair(E, S’) is an instantiation of " and(7{S})r = (7'{S'}) .

Lecture Notes in Computer Science 13

(P2) And conversely, ifE, S’) is an instantiation of ” andS’(a“241) = p, then for

§= (8" —{(a®2,p)}) U{(a?, (p-A2)p)}
the pair(E, S) is an instantiation of and(7{S})r = (7'{5'})&.

Observe thatE, S’) in (P1) is indeed an instantiation 8f. Using twice Lemma 1 we
obtain

((p-A1)p. A1) = (p- A1 A2 A) E =
((p-A142)p.A1)E = (p-A1)E.

Also the equalit 7 {S})g = (7'{S’}) g holds by a similar argument. An occurrence
of p in the left side which comes from substitutipgor a“ corresponds to an occur-
rence of((p.A1)g.A2) g in the right side. By Lemma 1 both are equal. Justification of
(P2) is similar.

Meta schemeg; and7; are said to bequivalentf

— For every instantiatiofiE, S) of 7; there is a substitutio” such that(E, S’) is
an instantiation off; and(7:{S})r = (72{S'})r. And

— For every instantiatiofE, S) of 7, there is a substitutio§” such that(E, S’) is
an instantiation off; and(7:{S'})r = (72{S})E.

The above remarks show that cyclic shift preserves scheme equivalence. Another trans-
formation which preserves equivalenceigle contractionThis consists in replacing
one or more occurrences of the expressiohA by a4,
A meta schem@ is said to beypableif there is an instantiatioq¥, S) of 7 and a
typer such thattl - 7{S} : 7 is derivable.

6 The rewrite system

The aim of this section is to give rewrite rules for transforming a given stripped scheme
into a quasi type scheme. The transformation is going to be a partial function, i.e. for
some stripped schemes there will be no corresponding quasi type scheme. We are go-
ing to describe two kinds of redexes: reducible and cyclic. First we need an auxiliary
definition with which we can define the redexes.

6.1 The projection and remainder functions

For a stripped schem® we define a pair of functions: projection functionps :
{1,2}* — T and aremainder functionrr : {1,2}* — {1,2}*. Intuitively pr(II)
is a node of7 which is obtained by traveling if alongIl, subject to the following
conditions. IfIT is contained inZ then we terminate atl. Otherwise we apply the
following rules for passing through a le&t

— if I'is labeled by a self which is bound at nodg\, then the next step starts at node
A.

14 Bono, Tiuryn, Urzyczyn

— if I is labeled by a place-holder, then we return to this node in the next step (and
thus in all following steps).

— if I" is labeled by a free send, or a meta send, or a top send, then we terminate at
this node, i.e. no next step is possible.

Thenrs(IT) is what remains of] upon the termination of the travel through The
formal definition follows.

Case A:(IT €T)

pT(H) =1
TT(H) =&

Case B:(I1,I1; € T is a leaf labeled, 11, is labeledt, andIl; # ¢ and A # ¢)

pr(II111sA) = pr(I1LA)
TT(HlﬂgA) = ’I"T(H1A)

Case C:(A # candIl € 7 is a leaf labeled by one of the following: a free send, a
top send, a meta send)

pr(l1A) =11
T‘T(HA) =A

Case D:(A # e andll € T is aleaf labeled by a place-holder)

pT(HA) =11
TT(HA) =€

6.2 Reducible top sends

Atop sends < IT is said to beeducibleif p7(II) is not an occurrence of a top send.
Among reducible top sends are those which we call inconsistent. A topssend!

is said to benconsistentf p7(II) = iA, for somei andA, ands < IT occurs in7;. A.

A reducible send which is not inconsistent is calteshsistent

Lemma 2. If a stripped scheme contains an inconsistent top send, then itis not typable.

Let s <= IT be a reducible top send I and letp7 (1) = iA andry (1) = &.
Reduction ofs < IT consists in replacing every occurrencescf 17 in 7 by 7;. AE.
It follows that A € 7; and we have the following two possibilities:

1. Ais aninternal node of;. Then{ = ¢.

2. Ais aleafinZ;. Then the label of this leaf is one of the following:
2a. Afree sendir.
2b. A meta send.
2c. A place-holder.

Lecture Notes in Computer Science 15

In each case ((1) or (2)) it follows th&@f. A¢ does not contain new top sends, i.e. there

may be new occurrences of top sends after the reduction, but the set of all different top

sends after the reduction is not larger than before. In fact, when the reducible top send

is not inconsistent, then the number of top sends after the reduction decreases by one.
The intuitions behind the previous concepts are:

— an inconsistent reducible top send addresses a subtree of the tree representing the
term in question which contains the top send itself, meaning that the top send’s type
should contain properly itself (see the first example in Section 2);

— a consistent reducible top send is one for which we can mimic the evaluation pro-
cess, by substituting it with the subtree it addresses. This way we make a step
towards a send-free term, which will correspond to the quasi type scheme.

6.3 Cyclic top sends

Let St be the set of all occurrences of top sendginThe projection and remainder
functions give rise to two mappingsr : St — 7 and7r : St — {1,2}*. For
I' € S, ifthe label ofI" is s < II, then

]/D\T(F) = pT(H), and ?T(F) = T‘T(H).
A top sends < IT is said to becyclicif for one of its occurrence$’ € S+ we have
pr(r) =1, (7

for somek > 1. It follows that the occurrencE is unique. We call it &yclic occurrence
of s < II. The leastk satisfying (7) will be called theperiod of s <= II. A cyclic
coefficientof a cyclic send is the wor@ (ps(I")) - - - 77 (pr (I))Pr (), wherel is
the cyclic occurrence anidis the period ofs < IT.

Let s < IT be a cyclic top send ifir and letA be its cyclic coefficient. Reduction
of s « IT consists in replacing every occurrencesof= I7 in 7 by a?, wherea? is a
fresh metavariable not occurring .

It follows that sends which label the nodgs (I'),...,ph ' (I") are also cyclic
in 7. After the reduction the send labeling the ngde ' (I") becomes reducible, while
the other sends are not subject to immediate reduction in the new scheme.

The intuitions behind a cyclic send is that it represents an infinite computation (in-
finite computations are universally accepted in object-oriented calculi, see typical ex-
amples in [1, 12]). Essentially, it refers to itself within a certain number of computation
steps, which is the period.

6.4 Confluence and termination

Let 7 be a stripped scheme. Each top sendiris either cyclic or reducible. Every
such top send is calledradex To be more precise, a redex is a term (send) as such,
not a single occurrence of that term. Clearlyithas no redexes then it is a quasi type
scheme.

The main properties of the above rewrite system are collected in the next two results.

16 Bono, Tiuryn, Urzyczyn

Theorem 6.1. Let7 be a stripped scheme.

1. (Termination) Letn be the number of top sendsin After n steps of reduction
we either arrive at a quasi type scheme, or else we must have earlier detected an
inconsistent reducible send.

2. (Confluence)Let 7’ and7"” be two quasi type schemes obtained fforby a se-
quence of reductions. Th&f and7" are equivalent.

Theorem 6.2. Let7 be a stripped scheme. The following are equivalent.

1. 7 is typable.
2. There exists a sequence of reductions which transf@rimso a quasi type scheme.
3. Every sequence of reductions transformmto a quasi type scheme.

Moreover, if7# is a quasi type scheme obtained frdimby a sequence of reductions
and(E, S) is any instantiation o # such that{7#{S}) is a type, say, then

E+-T{S}: 7
is derivable.

Every quasi type schem&# obtained from a stripped scherfle by a sequence of
reductions will be called aormal formof 7. It follows from Theorem 6.1 that every
stripped scheme has at most one normal form, up to scheme equivalence.

Example 1. M = pro s(pro t{d,s < 1),c): M is a stripped term and the atomic
sends < 1 is reducible and inconsistent, becapgg(1) = 1 ands < 1 occurs in the
sub-treeM; (following the definition of Section 6.2)\/ is not typable by Lemma 2.

Example 2.M = pro s{s < 1,¢): M is a stripped term and < 1 is a cyclic send.
It can be solved using the technique of Section 6.3. This term is typable and a type is
pro s{s,c).

Example 3.M = pro s(s < 12,s < 112): M is a stripped term and first we solve
the cyclic sends <« 12, obtaining the quasi-type schemao s{a?,s < 112). Now

s < 112 becomes reducible and we gato s(a2, o2.12). By giving o2 a typep such
that(p.2) = p (remember that the first send was cyclic, so its type must represent this),
we can get as types @f: pro s(c,c), pro s{pro t{pro z(y,z),t)z), etc.

7 Main Result

We define a partial map which assigns to a tévhna quasi type schentg,, called a
principal quasi type schenaf M. It is defined by induction o/ .

~T.=c
—T.=5s

Lecture Notes in Computer Science 17

- IZ;)ro s {Mi,Ms) = (pro S<ITJ\4151TJ\42 >)#
— Tipes = Tag i,

The above recurrence equations have to be understood in such a way that the left hand
side is defined iff the right hand side is defined.
The main result of this paper is the following theorem.

Theorem 7.3. (Principal quasi type theorem)

1. M is typable iff7,, is defined.
2. If 7Ty, is defined, then for every instantiatio®’, S) of 7y, such that(7, {S})E is
a type we have

3. The partial mapping/ — 7, is computable. Therefore the problem of typability
is decidable.

8 Extensions

We have solved the type reconstruction problem for a system containing only the send
operator to highlight the essential mathematical content of the problem itself. But the
approach can be extended to deal with the method addition operatorof the C
calculus [3], and with thenessage-not-understoadn-time error, without changing

the mathematical core of our solution. The override operator, though, remains an open
problem (see in the conclusions).

Method addition. Firstly, we must extend the object syntax to include objects with
an indefinite number of components. Then, since method addition is permitted only
on proper objects, it is enough to extend appropriately the notion of “principal quasi
type scheme7,,, in order to check, in the case of method addition, if the resulting
(quasi) type of the object receiving the addition ipm (...) (quasi) type and it does

not contain the method to be added, together with checking that the method body is
typable.

Message-not-understoodAs a consequence of dealing with objects with more than
two components plus the method addition, we could lift the constraint on the send
operation, by allowing the invocation of whichever method, both on proper objects
(external send) and on selves (self-inflicted send). In the external case, the right-hand
side of the equatiofiy;—; = 7,.7 Of the principal quasi type scheme would be satisfied
(and7s; would be typable) if7;; were a quasi type scheme of the fopmo (...)
containing an component, and the resulting quasi type scheme would be as in the two-
method situation. A more difficult case is when the send is self-inflicted, i.@7, i§

a selfs: this case must be solved directly during the global process of going from the
stripped term containing/ < i to its quasi type scheme, because we need to check if
the subtree rooted athas ari branch. In order to do so, for every top seng-= 17 we

must check that the branching described/bgxist in the subtree rooted at

18 Bono, Tiuryn, Urzyczyn

9 Conclusion and future work

We have shown that decidable type reconstruction is possible for languages with nested
selftype references. This is an important conclusion even if the language we solved the
problem for contains only the send operator, because we do believe that it is the core
of any other richer systems (i.e., systems including method addition and/or override),
from the point of view of the type reconstruction.

Our result raises a number of further questions. Obviously, one wants to expand the
analysis to the case of object languages with a more reasonable choice of operators.

Adding method addition must be still formalized, but we conjecture that is nothing
more than careful bookwork. Dealing withessage-not-understoagpears to be more
delicate, because it implies an extension of the algorithm as hinted above, but it does
not change the techniques we use to detect and solve “loops”, which are the central part
of our solution.

Override is, instead, an open question at the moment, so far it can be only shown
that adding method override makes the problem PTIME-hard. Intuitively, override, by
substituting method bodies, may change the interrelationships among the cyclic top
sends, inducing complex equational constraints — a very special case of second-order
unification. As mentioned in the introduction, it looks like self-inflicted overrides are the
main issue. Nevertheless, also external overrides introduce some difficulties. In order
to type a method override on an object, we would need to compare the (quasi) type of
the overriden (old) method body with the (quasi) type of the overridding (new) one, and
only if they are “equal” the override is typable. Now, the problem lies in the fact that we
still do not have a complete notion of principality for our typing, making not possible
deciding equality among (quasi) types

Even for the simple language we discussed above, there are still issues to be investi-
gated. The naive algorithm, involving the constructior? §f, is obviously not feasible,
as itinvolves nested substitutions. Although we believe the problem is solvable in poly-
nomial time, a workable implementation is still to be developed, and does not seem to
be trivial.

References

1. M. Abadiand L. CardelliA Theory of ObjectsMonographs in Computer Science. Springer,
1996.

2. Baader, F., Nipkow, TTerm Rewriting andhll That, Cambridge University Press, 1998.

3. V. Bono. Extensible Objects: a Tutorial. Global Computing — Trentd_NCS. Springer,
2003. To appear.

4. V. Bono and M. Bugliesi. Matching for the Lambda Calculus of ObjeTteoretical Com-
puter Sciencgl999.

5. V. Bono, M. Bugliesi, and S. Crafa. Typed Interpretations of Extensible Objects. ACM
Transactions on Computational Logic, 2002.

6. G. Bracha, M. Odersky, D. Stoutamire and P.Wadler. Making the future safe for the past:
Adding genericity to the Java programming languageProc. of OOPSLA'98

5 The equality between the type of the old body and of the overriding one is a typical requirement
in object-oriented type systems when no subtyping is present.

10.

11.

12.

13.

14.

15.

16.

17.

Lecture Notes in Computer Science 19

. K.B. Bruce. A paradigmatic object-oriented programming language: Design, static typing

and semanticsJournal of Functional Programmingt(2):127—206, 1994.

. K.B. Bruce. Foundations of Object-Oriented Languages—Types and Semarfities MIT

Press, 2002.

. Michele Bugliesi and Santiago Pericas. Depth subtyping and type inference for object cal-

culi. Information and Computatiqri77(1):2-27, 2002.

W. Cook, W. Hill, and P. Canning. Inheritance is not subtypingPioc. of ACM Symp.
POPL'90 pages 125-135. ACM Press, 1990.

P. Di Gianantonio, F. Honsell, and L. Liquori. A Lambda Calculus of Objects with Self-
inflicted Extension. InProc. of ACM-SIGPLAN OOPSLA, International Symposium on
Object Oriented, Programming, System, Languages and Applicagagges 166—178. The
ACM Press, 1998.

K. Fisher, F. Honsell, and J.C. Mitchell. A lambda calculus of objects and method special-
ization. Nordic Journal of Computingl(1):3-37, 1994.

F. Henglein. Breaking through the’ barrier: Faster object type inferenc@heory and
Practice of Object Systems (TAPOS(1):57—72, 1999. Invited paper selected from 4th Int'l
Workshop on Foundations of Object-Oriented Languages (FOOL 4), 1997.

A.V. Hense. Polymorphic Type Inference for Object-Oriented Programming Languages
Pirrot Verlag, 1994.

J. C. Mitchell. Toward a typed foundation for method specialization and inheritance. In
Proc. of ACM Symp. PORIpages 109-124. ACM Press, 1990.

J. Palsberg. Efficient inference of object typegormation and Computatiqri23(2):198—

209, 1995.

J. Palsberg and T. Jim. Type inference with simple selftypes is NP-comgtattic Journal

of Computing4(3):259-286, 1997.

