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Abstract. We address the issue of decidability of the type inference problem for
a type system of an object-oriented calculus with general selftypes. The fragment
considered in the present paper is obtained by restricting the set of operators to the
method invocation only. The resulting system, despite its syntactical simplicity,
is sufficiently complicated to merit the study of the intricate constraints emerging
in the process of type reconstruction, and it can be considered as the core system
with respect to typability for extensions with other operators. The main result of
the paper is the decidability of type reconstruction, together with a certain form
of a principal type property.

1 Introduction

Object-oriented programming languages enjoy an ever growing popularity, as they
are a tool for designing maintainable and expandable code, and are also suited for de-
veloping web applications and mobile code. A type discipline is then in order to ensure
safety (i.e., absence of message-not-understood run-time errors), but yet this type dis-
cipline has to be flexible enough not to restrain reusability. Polymorphic type systems
are one answer to that double requirement, see for example [6, 14]. Among the many
features that can be included in such systems, there is the use ofselftype.

The concept ofself (sometimes calledthis) is of paramount importance in object-
oriented languages. Self is a special variable that allows to refer to the object executing
the current method, and so to access its fields and to invoke the sibling methods. This
concept, while being a very handy feature, influences substantially the problem of static
typing for object-oriented languages. Self types have been a subject of foundational
studies, both in the object-based and in the class-based setting (see, for example, [1, 8,
12]). The work done has brought up the importance of typing self in a careful way.
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The gain of introducing an appropriate type for self is evident when a form of in-
heritance is present, either a class-based one (via class hierarchies), or an object-based
one (via method addition/override). In fact, an appropriate type for self would allow to
specialize automatically those inherited/overriden methods that either return the host
object, or have some parameters of the same type as the host object (binary methods),
or both. This specialization (also known asMyTypespecialization) can be seen as an
alternative totypecasts, which are explicit declarations made by the programmer on the
expected actual type of the method result according to the type of the object the method
is invoked upon. Typecasts are unsafe—the programmer must be “sure” about the actual
type of the returned object, since little or even no static checking is performed on type-
casts, as it happens, respectively, in Java or in C++. Moreover typecasts certainly do not
improve readability of code, with bad impact on the debugging phase. As hinted above,
an alternative to typecasts is the introduction ofselftype, with the meaning “the type of
the current object”, i.e., “the type of self”, to annotate appropriately binary methods and
methods that return the host object. Some type systems including selftype are presented
in [1, 8, 12].

In this paper we consider the problem oftype inference(also calledtypability) in
presence of general (arbitrarily nested) selftypes in an object-based setting. Very little is
known about type inference with selftypes. At the best of our knowledge, only Palsberg
and Jim approached this subject. In [17] they study the type inference problem for one
of the Abadi-Cardelli systems [1] extended with the notion of selftype. In [16], Pals-
berg presents an algorithm for the Abadi-Cardelli’s four first-order systems (without
any form of selftype), proving that the type inference problem for all four systems is P-
complete3. The work [17] can be seen as an application of the techniques developed in
[16], and it contains a proof that the type-inference problem for an Abadi-Cardelli sys-
tem with recursive types and width subtyping extended with a simple form of selftype
is NP-complete. The Palsberg-Jim “tiny drop of selftype”, as the authors themselves
point out, consists of:

– the use of the keywordselftype, instead of a bound variable, to stand for the selftype
in object types;

– the restriction that each occurence of selftype “comes with its context”, i.e., more
specifically in their type systemselftype can appear as a component of an object
type only, never in isolation.

These two choices imply the following consequences:

– it is not possible to refer to the selftype of enclosing outer objects (i.e., there are no
nestedselftypes);

– it is not possible to override those methods that return the object itself (i.e., of type
selftype).

Of the above two restrictions, the first one seems to be very essential. It implies that the
access to two or more differentselftype ’s, i.e., two or more different environments, is
impossible. Indeed, the “tiny drop of selftype” of Palsberg and Jim can be encoded in a
system without selftype, see [9], meaning that it is a rather weak form of selftype.

3 In [13] this result is improved.
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We plan, then, to analyze the decidability of the type inference for a type system that
relaxes the above limitations. The system under study is based on the calculus presented
in [3] (we will call it C from now on). The calculusC is an untyped version of the cal-
culus introduced in [5], in order to analyze throughout a functional encoding the type
system of [4] (hereafter BB), which is, in turn, a simplification of the Lambda Calcu-
lus of Object (hereafter LCO) of Fisher, Honsell, Mitchell [12]. The calculus LCO is a
functional object-based calculus enriched with object primitives. Operations allowed on
objects aremethod addition, method override, andmethod invocation(also calledsend).
Method bodies are functions, in particular self is modelled using a lambda-abstracted
variable. In LCO: (i) it is possible to refer to the selves of the enclosing objects; (ii ) over-
ride is as general as possible. Selftype is rendered by using therow-variablesof [15]
to characterize types of methods as type-schemes (i.e., types polymorphic in these vari-
ables), and to enforce correct instantiation of the schemes as methods are inherited. The
type system ofC we base our paper on inherits some of the fundamental ideas from
the original system in the modelling of selftype. The main difference is in not using
row-variables to model selftype, but exploiting instead Bruce’smatchingand implicit
match-bounded quantification over type variables, as it was studied in the BB calcu-
lus of [4]. Matching is a relation over recursive object-types that was first introduced
by [7] as an alternative to F-bounded subtyping [10] in modelling the subclass relation
in class-based languages. The designers of LCO conjectured that type inference for
LCO was undecidable, but nobody has proven that yet. Thus,C, having a simpler (yet
as expressive as) type system than LCO, seems to be the appropriate system to study
type inference in presence of a general form of selftype.

Due to the generality of systemC, and the surprising technical difficulties arising
in its analysis, we decided to tackle the related type inference problem in steps. First
of all, we discarded the method addition operation. This is because we believe that
method addition does not add much to the inherent difficulty of the problem of type
inference, since method addition is performed on objects but it is forbidden on selves4.
See Section 8 for an overview on how to deal with it.

In this paper we work with a calculus that has method invocation only, i.e., we
also discard method override. The reason for what seems quite a radical choice is that
method invocation turns out to create an interesting problem by itself. The possibility
of referring to nested selves of enclosing outer objects creates “reference loops” which
are difficult to untangle. In the sequel, the formal development of the subject will make
it clear what we mean by “loops” and how we solve them in order to prove decidability.
Loops may be also created and/or modified byself-inflictedoverrides, i.e., overrides
operating not on proper objects (calledexternal overrides), but on selves inside method
bodies. Nevertheless, the treatment of external overrides is not as trivial as it might look
(see Section 9).

If it is true that the usefulness of selftype shows out when an inheritance mechanism
is applied, it is also evident that the problem of type inference we are dealing with is by
no means trivial. The restricted system we study in this paper is important because we
do believe that it is the core of any other richer systems (i.e., systems including any form

4 There are calculi that deal withself-inflictedmethod addition such as [11], but they go beyond
the goal of this paper, which is about classical object-based calculi.
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of method addition and/or override), from the point of view of the type reconstruction.
In the sequel of the paper it will be clear how both “detecting bad loops” and “solving
good loops”, in order to type a term, amount to prove that the term has a correct structure
with respect to the way selves are used.

It might seem natural to identify objects with recursive records, so their types with
recursive types, but this is misleading. In fact: (i) such choice is not adequate already in
our setting with method invocation only, because of the generality of our selves (see the
examples in Section 2); (i) generally, this solution does work in an enlarged setting with
method override and/or addition because the meaning of self changes as operations on
the host object are performed (see [1], Chapter 6.7.2).

There is a number of simplifications we make in our syntax. For instance we con-
sider objects with exactly two methods, and put “constants” (such asc, d, ...) asplace-
holderswherever we mean “an irrelevant subexpression”. These simplifications do not
influence the essence of the problem, and make it easier to isolate the basic issue: type
assignment in presence of multiple selves. Place-holders are just there to hide what-
ever is non-important for the current typing and they do not influence typing itself. The
presence of two fields only rules out the so-calledmessage-not-understoodrun-time
errors, as sends are limited to those two components. Even though catching statically
such errors is a primary task of type systems for object-oriented languages, the task of
testing a sort of “well-formedness” of objects is essential as well, and this is what our
typability algorithm does. Nevertheless, a message-not-understood error treatment may
be introduced in our typability algorithm (see Section 8).

This paper might be seen as a first step towards introducing selftypes in real pro-
gramming languages as an alternative to typecasts. No matter whether the type inference
problem in its most general form (including override as well) is decidable or not, the
next steps will be tailoring suitable type systems with decidable and tractable forms of
selftype.

The main technical contribution of the paper is as follows:

– We prove that type reconstruction is decidable for a language involving nested self-
references.

– We show a certain form of a principal quasi type scheme property. The salient
feature of the principal quasi type scheme of a term is that it exists iff the term
is typable and every instance of the scheme gives a correct typing of the term.
Although not every typing of the term is a substitution instance of the scheme,
therefore we do not have a complete notion of “principal typing” for the moment
being, one can reasonably argue that our principal quasi type scheme provides the
most essential information about all typings.

The paper is organized as follows. Section 2 introduces the most basic syntactic cate-
gories, terms and types, and explains the motivation of our type assignment. In Seec-
tion 3 we elaborate the syntactic notions used in our consideration. Important categories
of terms are: types, quasi types and stripped terms. We introduce the operation of for-
mal field selection for quasi types (Section 3.1) and evaluation of a stripped term in
an environment (Section 3.2). Section 4 introduces a type assignment system. In Sec-
tion 5 we introduce the concept of a meta scheme – the main tool in establishing the
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“principal quasi type scheme” property. This section also contains the notion of scheme
equivalence. The latter notion is used for expressing the confluence property of a certain
system of reductions.

The main technical part of the paper is Section 6. It is devoted to an algorithm
which transforms a given stripped term into a quasi type scheme, or reports a failure.
Section 6.1 introduces two fundamental mappings defined on schemes: the projection
and reminder maps. It also contains an invariant property maintained by these maps.
Sections 6.2 and 6.3 describe two classes of redexes: reducible and cyclic. Among the
reducible redexes there are redexes which we call inconsistent. They are the only source
of a possible untypability of a term in our setting. Section 6.4 contains the main techni-
cal properties of the reduction system: confluence and termination (Theorem 6.1), and
recovery of typings (Theorem 6.2).

Section 7 contains the main result of the paper: the principal quasi type theorem
(Theorem 7.3). It states that there is a quasi type scheme assigned to every (and only)
typable term such that all the instantiations of this scheme give correct typings of the
term. This principal quasi type scheme can be effectively obtained if and only if the
term is typable. Therefore the typablity problem is decidable.

Section 8 gives an informal account on how to deal with method addition and
message-not-understoodrun-time errors.

Due to space limitations we have omitted from this extended abstract all proofs and
many auxiliary definitions which are not essential for understanding the presentation of
the main results of the paper. The details can be found in the full version of the paper in
http://www.di.unito.it/ ∼bono/Manuscripts .

2 Terms and types

Assume an infinite set of variables (selves), notations, t, . . ., and an infinite set of
place-holders, notationc, d, . . . A term is either a variable or a place-holder or:

– anobject, i.e., an expression of the formpro s〈M1,M2 〉, whereM1 andM2 are
terms, or:

– asend, i.e., an expression of the formM ⇐ i, whereM is a term andi ∈ {1, 2}.

The operatorpro s binds the selfs. Alpha conversion is assumed. The notationFV (M)
andM [N/s] is used accordingly (withc[N/s] = c).

The intended meaning of “pro s〈M1,M2 〉” is an object with two methodsM1 and
M2, which may refer to the whole object via the self variables. In the notation of [1]
this would be written as〈 ςs.M1, ςs.M2 〉. The meaning of “M ⇐ i” is to extract the
i-th method from the objectM , and the operational semantics is given by the following
reduction rule:

pro s〈M1,M2 〉 ⇐ i  Mi[pro s〈M1,M2 〉/s].

We remind the reader that a place-holderc may be seen as replacing and “hiding” a
piece of code (i.e., a subexpression) which is irrelevant to the typing of the whole code
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in question. Clearly, a message sent to an irrelevant target is irrelevant too, so we do not
find anything wrong in postulating this reduction:

c⇐ i  c,

which expresses exactly the idea of ingnoring the “contents” ofc. On the other hand,
the expressions⇐ i has some meaning, but it can not be evaluated until we substitute
an actual object fors.

We want to assign types to expressions of our language. The basic idea is that a type
assigned topro s〈M1,M2 〉 should be esssentially a product of types assigned toM1

andM2. Thus, we would like to assert something like

pro s〈 3, 5 〉 : 〈〈 int , int 〉〉,

provided we know that3, 5 : int . In general, the type of a pure object (an expression
without sends) should correspond to the shape of the object. If an object refers to a selfs,
the natural choice is to use a type variablet, corresponding to the selfs and assert

pro s〈 s, 5 〉 : δt 〈〈 t, int 〉〉,

where the operatorδt bindst within 〈〈 . . . 〉〉. This can be extended to more complex
pure objects, e.g.,

pro s〈pro s′〈 s′, 5 〉,pro s′〈 s, s′ 〉 〉

is of type
δt 〈〈 δt′〈〈 t′, int 〉〉, δt′〈〈 t, t′ 〉〉 〉〉.

However, as said above, we do not really care about place-holders and their types. This
leads us to the following simplification. Assumingc : c for any place-holderc, we can
simply identify a pure object with its own type. Indeed, the difference between the term
and the type in the last example is just syntactic sugar. The essential part, the structure
of self-references, is the same, up to renaming, and can be drawn as the following tree:

s

wwwwwwwww

FFFFFFFFF

s′

						

4444444 s′










555555

s′ • s s′

This justifies our definition of a type as a term not containing⇐. An assignment of
such a typeτ to an expresssionM containing occurrences of⇐ means:M is as good
as a pure object of typeτ .

Our type assignment should have the subject reduction property, i.e., we wantM ′ :
τ , wheneverM  M ′ andM : τ . This requirement determines what the type assign-
ment rules should be. First of all, observe thatM : pro s〈 τ1, τ2 〉 should imply that
M ⇐ i is of typeτi[s := pro s〈 τ1, τ2 〉]. It is less obvious which type should be as-
signed to a send of the forms ⇐ i. Clearly, our identification of an object and its
type requires a uniform principles : s. A self is of type self. The type ofs ⇐ i
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should depend on the context the expression occurs in. Consider as an example the
termM = pro s〈pro t〈 d, s⇐ 1 〉, c 〉, depicted as

s

�������

=======

t

������

;;;;;;; c

d s⇐ 1

It may be tempting to asserts⇐ 1 : t, becauses⇐ 1 certainly points to the root of the
object identified by the selft. This amounts to understanding an object typepro t〈 . . . 〉
as a recursive typeµt〈 . . . 〉, that may freely be replaced by〈 . . . 〉[µt〈 . . . 〉/t]. That,
however would be wrong: consider the expressionM ⇐ 1. We have

M⇐1 pro t〈 d,M⇐1 〉 
 pro t〈 d,pro t〈 d,M⇐1 〉 〉 · · ·

From this reduction sequence we can see that no finite object type can be assigned toM ,
as the expression develops into an infinite tree. Thus,M should not be typed at all.

Note that the idea of a recursive typeµt〈 d, t 〉 is not adequate here, which can be
best seen if we modifyM to M ′ = pro s〈pro t〈 t, s ⇐ 1 〉, c 〉. WhileM ′ expands
to an infinite tree in reduction, it is not a full binary tree! Another reason why we
do not want to use recursive types is that we certainly want to distinguish between
pro s〈 4,pro s〈 2, s 〉 〉 andpro s〈 2, s 〉.

The problem we encountered in the above example does not occur, if we consider
the termN = pro s〈pro t〈 c, s⇐ 1⇐ 1 〉, d 〉. The picture is now

s

yyyyyyyyy

EEEEEEEEE

t

������

DDDDDDDDD c

d s⇐ 1⇐ 1

and the type ofs⇐ 1⇐ 1 in this context should undoubtedly bed. So what is the type
of s ⇐ 1? Now we see it must bepro t〈 d, d 〉. But how can we derive it? For this we
need to know the type ofN from anenvironmentthat assigns tos the type of the object
s points to. (It is not a type ofs as we always haves : s.) We arrive at the following rule

t : pro t〈 τ1, τ2 〉 `M : t
t : pro t〈 τ1, τ2 〉 `M ⇐ i : τi

Thus to derive the type forN we must first guess it, put it into an environment in which
we derive types of the components ofN , and finally we apply the following rule for
typing objects

s : pro s〈 τ1, τ2 〉 ` N1 : τ1, s : pro s〈 τ1, τ2 〉 ` N2 : τ2
` pro s〈N1, N2 〉 : pro s〈 τ1, τ2 〉
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to eliminate the initial guess from the environment.
The need of guessing the final type of a complex expression, before type-checking

begins, makes it difficult to apply any structural approach to type inference. The prob-
lem becomes even more involved in presence of an interaction between “external” sends
to an object expression and “internal” sends occurring within that expression.

2.1 The roadmap of notions

We conclude this informal introduction with a brief description of several syntactic
categories used in the course of the proof of the main decidability result. We use the
following subsets of the set of all terms, orderd as shown below:

types⊆ quasi types⊆ stripped terms⊆ terms.

Stripped terms are terms in which all applications of the send operator⇐ are ‘stripped
down’ to leaves, i.e.⇐ occurs only in the contexts ⇐ Π, wheres is a self andΠ ∈
{1, 2}∗ is a non-empty path. Moreover, if an occurrence ofs ⇐ Π is bound, then the
bindingpro is the outermostpro of the term. The main technical part of the algorithm
which decides typability is concerned with stripped terms. The strategy of the algorithm
consists in rewriting a given stripped term, trying to eliminate bound occurrences of
s⇐ Π.

In this way we arrive at the next syntactic category of terms: quasi types. A stripped
term without bound occurrences ofs⇐ Π (with Π 6= ε) is called a quasi type. Hence
a quasi type is a term in which all applications of the send operator are ‘stripped down’
to the leaves and every such an occurrence is free, i.e. nopro binds a selfs which is
in the contexts ⇐ Π, with Π 6= ε. Quasi types behave in several respects similar to
types: a quasi type is always typable and moreover its type is uniquely determined by
the environment.

Finally the smallest syntactic category, types, consists of terms in which no send
operator occurs.

Since we are interested in a form of principal typing, we have to allow metavariables
which range over types. In this way we obtain a class of meta schemes — they are just
like ordinary terms, except that they may contain metavariables. Again, meta schemes
are stratified syntactically in a similar way as described above. Thus we have:

quasi type schemes⊆ stripped schemes⊆meta schemes.

Quasi type schemes are produced by the algorithm of the paper for each (and only)
typable term (see Theorem 7.3), which is the main result of this paper.

3 Technical background

If Π ∈ {1, 2}+, then we defineM ⇐ Π by induction:M ⇐ Πi := M ⇐ Π ⇐ i.
Occasionally, we use the notationM ⇐ Π, even ifΠ can be empty, identifyingM ⇐ ε
with M . We call every send of the forms ⇐ Π, whereΠ 6= ε, anatomic send. A top
sendin an objectM = pro s.〈M1,M2 〉 is an atomic sends ⇐ Π bound by the top
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pro s in M . The length ofΠ is thelengthof the sends ⇐ Π. We say that an atomic
sends⇐ Π is free in M if s ∈ FV (M).

If a term does not contain non-atomic sends, it is often convenient to think of it as a
labeled binary tree. Internal nodes are labeled by selves and leaves are labeled by place-
holders, selves or sends. Nodes are identified with paths leading to them. For a string
Γ ∈ {1, 2}∗ and a termM , if Γ leads inM to a node we will say thatΓ is contained
in M and writeΓ ∈M . ForΓ ∈M we can also refer to a label ofΓ meaning the label
of the node to whichΓ leads inM .

A typeis a term not containing⇐. In particular anobject typeis a type which is an
object, as well. Aquasi typeis a term in which all sends are atomic and free. Astripped
term is a term of the formpro s.〈M1,M2 〉, whereM1 andM2 are quasi types. Thus
in a stripped term all bound sends are top sends.

A self declarationis a pair of the forms : τ , whereτ is an object type. Anen-
vironmentis a sequence of self declarations, such that no declaration inE involves a
(free) variable declared later on inE. More precisely, the definition of an environment,
its domainDom(E), and the setFV (E) of free selvesof E is stated inductively as
follows.

– The empty sequence∅ is an environment, andDom(∅) = ∅ = FV (∅).
– If E is an environment,s is a self such thats 6∈ FV (E), andτ is a type, then
E′ = E, s : τ is an environment, withDom(E′) = Dom(E)∪{s} andFV (E′) =
FV (E) ∪ FV (τ).

We will use the convention that ifs : τ is a declaration, thenτ is of the formτ =
pro s.〈 τ1, τ2 〉. Fors ∈ Dom(E), we writeE(s) = τ if τ is the type which is assigned
to s by the rightmost declaration fors in E.

3.1 Formal field selection

Given a quasi typeT andΠ ∈ {1, 2}∗, we define a quasi typeT.Π, called aformal
field selection:

– T.ε = T ,
– c.Π = c,
– (s⇐ Γ ).Π = s⇐ ΓΠ, for Γ ∈ {1, 2}∗, in particulars.Π = s⇐ Π,
– if T = pro s.〈T1, T2 〉, thenT.iΠ = (Ti[T/s]).Π

Let us stress that by the above definition the notationss.Π ands⇐ Π are interchange-
able.

In the last clause of the above definition the substitutionTi[T/s] is just the ordinary
substitution ofT for all free occurrences ofs in Ti. Notice that in this case no free
occurrence ofs in Ti is a free send. Otherwise, the result of the substitution is not
necessarily a quasi type. That is, quasi types are not closed with respect to ordinary
substitutions. The general case of substitution of quasi types is dealt with in the full
version of the paper.
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3.2 Evaluation of stripped terms in an environment

Given a stripped termM , we define a stripped term(M)E , called thevalueofM in the
environmentE, as follows.

– (s)E = s,
– (c)E = c,
– (s⇐ iΠ)E = (τi.Π)E , wheneverE(s) = pro s.〈 τ1, τ2 〉.
– (s⇐ iΠ)E = s⇐ iΠ, if s 6∈ Dom(E).
– (pro s.〈M1,M2 〉)E = pro s〈 (M1)E , (M2)E 〉, wheres 6∈ FV (E)∪s 6∈ Dom(E).

Note that the above definition is correct, i.e. that the induction is well-founded.

Lemma 1. LetT be a quasi type and letΠ ∈ {1, 2}∗. Then for every environmentE,
we have

(TE .Π)E = (T.Π)E .

In particular,
((s⇐ Γ )E .Π)E = (s⇐ ΓΠ)E .

4 Type assignment

A type judgementtakes the formE ` M : τ , whereE is a type environment,M
is a term andτ is a type. Here are the rules. In (obj) we use the abbreviationsτ =
pro s〈 τ1, τ2 〉 andM = pro s〈M1,M2 〉.

(const)
E ` c : c

(var)
E ` s : s

(obj)
E, s : τ `M1 : τ1, E, s : τ `M2 : τ2

E `M : τ

(send)
E `M : τ

E `M ⇐ i : (τ.i)E
(if (τ.i)E is a type)

First of all, observe that the understanding ofE ` M : τ is nonstandard. The environ-
mentE doesnot provide types of free variables, as usually, but only “type bindings”
used only for typing sends. The type assigned to a free variable is always the variable
itself. In particular, one does not need to assume free variables ofM to be in the do-
main ofE, as long as there is no (direct or indirect) send involving these variables. For
instance we havè s : s, but to typepro s〈 s, t 〉 ⇐ 21 we need a type binding fort.
Furthermore, notice that the type of a place-holderc is the place-holder itself, and this
reflects our idea that place-holders stand for ignored sub-expressions.

The reader familiar with [4] will notice that our type bindings are directly inspired
by the idea of “matching types”. A direct comparison between the present system and
C of [3] is possible: our syntax of terms is different than that ofC, but if we forget
about that, a closer look reveals that our rule (obj) corresponds to (two applications of)
rule (Val Method Addition) ofC, and rule (send) is essentially the same asC ’s rule (Val
Select).

Below we illustrate the features of the system with some examples.
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Example 1.Not every term is typable. Consider the following stripped term

M = pro s〈pro t〈 s⇐ 1, c 〉, c 〉

and show thatM is indeed untypable. Assume that`M : τ , for some typeτ . It follows
thatτ must be of the formτ = pro s.〈 τ1, τ2 〉 and we must have a derivation of

s : τ ` pro t〈 s⇐ 1, c 〉 : τ1.

Now, againτ1 must be of the formτ1 = pro t〈 τ11, τ12 〉 and we must have a derivation

s : τ, t : τ1 ` s⇐ 1 : τ11.

Thusτ11 = (τ1)E = τ1, whereE = {s : τ, t : τ1}. This yields a contradiction.

Observe that the type of a term is not uniquely determined by the term and the
environment (see Example below). However, it can be shown that the resulting type of
a quasi type is uniquely determined by the environment.

Example 2.Consider now a stripped termM = pro s〈 s⇐ 12, s⇐ 112 〉. The reader
will easily check that the following typings are derivable in the system.

`M : pro s〈 c, c 〉 (1)

`M : pro s〈pro t〈pro x〈 y, z 〉, t 〉, z 〉 (2)

`M : pro s〈pro t〈pro x〈 y, s 〉, t 〉, s 〉 (3)

x : pro x〈 y, z 〉 `M : pro s〈pro t〈x, t 〉, z 〉 (4)

t : pro t〈pro x〈 y, z 〉, t 〉 `M : pro s〈 t, z 〉 (5)

x : pro x〈 y, z 〉, t : pro t〈x, t 〉 `M : pro s〈 t, z 〉 (6)

Types assigned toM in (1) and (2) are clearly of completely different nature. Also the
types in (2) and (3) are different due to different structure of bindings. Environments in
(4)–(6) are used to type atomic sends ofM .

We remark on passing that the above type assignment system has thesubject reduc-
tion property(see details in the full version of the paper).

5 Meta schemes

We introduce the meta schemes and their instantiations in order to state the principal
quasi type theorem. First we introduce a new category of variables, calledmetavari-
ables. For each path∆ ∈ {1, 2}∗ we have a countable supply of metavariablesα∆

(possibly with subscripts, when necessary). Eachα∆ can be instantiated with a type
which has to satisfy a certain property to be stated later. Metavariables play the same
role as selves, except they cannot be bound bypro . In particular, the send operation is
applicable to a metavariable.

We start withmeta schemes, T . They are build according to the following grammar

T ::= c | s⇐ Π | α∆ ⇐ Π | pro s.〈 T1, T2 〉,
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where∆ andΠ range over{1, 2}∗. We identifys ⇐ ε with s andα∆ ⇐ ε with α∆.
Expressions of the formα∆ ⇐ Π, whereΠ 6= ε, will be calledmeta sends. LetTV (T )
denote the set of all metavariables which occur inT and letFS(T ) denote the set of
all sendss⇐ Π which occur free inT (i.e.s is free inT ).

A meta scheme in which all sends are free is called aquasi type scheme. Observe
that a quasi type scheme without metavariables is a quasi type. Astripped schemeis
a meta scheme in which bindings of sends occur only at the top, i.e.T is a stripped
scheme if it is of the form:c, s ⇐ Π,α∆ ⇐ Π, or pro s.〈 T1, T2 〉, whereT1 andT2

are quasi type schemes. Hence a stripped scheme without metavariables is a stripped
term.

Most of the definitions which are applicable to terms are applicable to meta schemes
as well . For example, the definition of formal field selection can be extended to quasi
type schemes by adding the clause for metavariables:

– (α∆ ⇐ Γ ).Π = α∆ ⇐ ΓΠ

An instantiationof a meta schemeT is a pair(E,S), whereE is an environment andS
is a substitution which assigns to every metavariableα∆ ∈ TV (T ) a typeρ such that

(ρ.∆)E = ρ.

For a substitutionS which assigns types to metavariables inTV (T ), by T {S} we
denote the term obtained by substituting types for metavariables inT . The definition of
T {S} is by straightforward induction, the only nontrivial clause being this one:

(α∆ ⇐ Π){S} = S(α∆).Π

Of course, we performα-conversion, when necessary, in order to avoid send capture.
Clearly whenT is a quasi type scheme thenT {S} is a quasi type. Similarly for stripped
schemes.

For a stripped schemeT , the value of T in an instantiation(E,S) for T is the
stripped term(T {S})E .

5.1 Equivalence of meta schemes

Given a stripped schemeT and a metavariableα∆, take any decomposition∆ =
∆1∆2, where∆1,∆2 ∈ {1, 2}∗. LetT ′ = T [α∆2∆1 .∆2/α

∆], whereα∆2∆1 is a fresh
metavariable. ThenT ′ is said to be obtained fromT be acyclic shift. We claim thatT
andT ′ should be considered equivalent. There is one-to-one correspondence between
instantiations ofT andT ′ which preserves values ofT andT ′. More specifically we
have:

(P1) If (E,S) is an instantiation ofT andS(α∆) = ρ, then for

S′ = (S − {(α∆, ρ)}) ∪ {(α∆2∆1 , (ρ.∆1)E)}

the pair(E,S′) is an instantiation ofT ′ and(T {S})E = (T ′{S′})E .
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(P2) And conversely, if(E,S′) is an instantiation ofT ′ andS′(α∆2∆1) = ρ, then for

S = (S′ − {(α∆2∆1 , ρ)}) ∪ {(α∆, (ρ.∆2)E)}

the pair(E,S) is an instantiation ofT and(T {S})E = (T ′{S′})E .

Observe that(E,S′) in (P1) is indeed an instantiation ofT ′. Using twice Lemma 1 we
obtain

((ρ.∆1)E .∆2∆1)E = (ρ.∆1∆2∆1)E =
((ρ.∆1∆2)E .∆1)E = (ρ.∆1)E .

Also the equality(T {S})E = (T ′{S′})E holds by a similar argument. An occurrence
of ρ in the left side which comes from substitutingρ for α∆ corresponds to an occur-
rence of((ρ.∆1)E .∆2)E in the right side. By Lemma 1 both are equal. Justification of
(P2) is similar.

Meta schemesT1 andT2 are said to beequivalentif

– For every instantiation(E,S) of T1 there is a substitutionS′ such that(E,S′) is
an instantiation ofT2 and(T1{S})E = (T2{S′})E . And

– For every instantiation(E,S) of T2 there is a substitutionS′ such that(E,S′) is
an instantiation ofT1 and(T1{S′})E = (T2{S})E .

The above remarks show that cyclic shift preserves scheme equivalence. Another trans-
formation which preserves equivalence iscycle contraction. This consists in replacing
one or more occurrences of the expressionα∆.∆ by α∆.

A meta schemeT is said to betypableif there is an instantiation(E,S) of T and a
typeτ such thatE ` T {S} : τ is derivable.

6 The rewrite system

The aim of this section is to give rewrite rules for transforming a given stripped scheme
into a quasi type scheme. The transformation is going to be a partial function, i.e. for
some stripped schemes there will be no corresponding quasi type scheme. We are go-
ing to describe two kinds of redexes: reducible and cyclic. First we need an auxiliary
definition with which we can define the redexes.

6.1 The projection and remainder functions

For a stripped schemeT we define a pair of functions: aprojection functionpT :
{1, 2}∗ → T and aremainder functionrT : {1, 2}∗ → {1, 2}∗. Intuitively pT (Π)
is a node ofT which is obtained by traveling inT alongΠ, subject to the following
conditions. IfΠ is contained inT then we terminate atΠ. Otherwise we apply the
following rules for passing through a leafΓ :

– if Γ is labeled by a selft which is bound at node∆, then the next step starts at node
∆.
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– if Γ is labeled by a place-holder, then we return to this node in the next step (and
thus in all following steps).

– if Γ is labeled by a free send, or a meta send, or a top send, then we terminate at
this node, i.e. no next step is possible.

ThenrT (Π) is what remains ofΠ upon the termination of the travel throughT . The
formal definition follows.

Case A:(Π ∈ T )

pT (Π) = Π

rT (Π) = ε

Case B:(Π1Π2 ∈ T is a leaf labeledt,Π1 is labeledt, andΠ2 6= ε and∆ 6= ε)

pT (Π1Π2∆) = pT (Π1∆)
rT (Π1Π2∆) = rT (Π1∆)

Case C:(∆ 6= ε andΠ ∈ T is a leaf labeled by one of the following: a free send, a
top send, a meta send)

pT (Π∆) = Π

rT (Π∆) = ∆

Case D:(∆ 6= ε andΠ ∈ T is a leaf labeled by a place-holder)

pT (Π∆) = Π

rT (Π∆) = ε

6.2 Reducible top sends

A top sends⇐ Π is said to bereducibleif pT (Π) is not an occurrence of a top send.
Among reducible top sends are those which we call inconsistent. A top sends⇐ Π

is said to beinconsistentif pT (Π) = i∆, for somei and∆, ands⇐ Π occurs inTi.∆.
A reducible send which is not inconsistent is calledconsistent.

Lemma 2. If a stripped scheme contains an inconsistent top send, then it is not typable.

Let s ⇐ Π be a reducible top send inT and letpT (Π) = i∆ andrT (Π) = ξ.
Reduction ofs⇐ Π consists in replacing every occurrence ofs⇐ Π in T by Ti.∆ξ.

It follows that∆ ∈ Ti and we have the following two possibilities:

1. ∆ is an internal node ofTi. Thenξ = ε.
2. ∆ is a leaf inTi. Then the label of this leaf is one of the following:

2a. A free send inT .
2b. A meta send.
2c. A place-holder.
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In each case ((1) or (2)) it follows thatTi.∆ξ does not contain new top sends, i.e. there
may be new occurrences of top sends after the reduction, but the set of all different top
sends after the reduction is not larger than before. In fact, when the reducible top send
is not inconsistent, then the number of top sends after the reduction decreases by one.

The intuitions behind the previous concepts are:

– an inconsistent reducible top send addresses a subtree of the tree representing the
term in question which contains the top send itself, meaning that the top send’s type
should contain properly itself (see the first example in Section 2);

– a consistent reducible top send is one for which we can mimic the evaluation pro-
cess, by substituting it with the subtree it addresses. This way we make a step
towards a send-free term, which will correspond to the quasi type scheme.

6.3 Cyclic top sends

Let ST be the set of all occurrences of top sends inT . The projection and remainder
functions give rise to two mappingŝpT : ST → T and r̂T : ST → {1, 2}∗. For
Γ ∈ ST , if the label ofΓ is s⇐ Π, then

p̂T (Γ ) = pT (Π), and r̂T (Γ ) = rT (Π).

A top sends⇐ Π is said to becyclic if for one of its occurrencesΓ ∈ ST we have

p̂kT (Γ ) = Γ, (7)

for somek ≥ 1. It follows that the occurrenceΓ is unique. We call it acyclic occurrence
of s⇐ Π. The leastk satisfying (7) will be called theperiod of s⇐ Π. A cyclic
coefficientof a cyclic send is the word̂rT (p̂k−1

T (Γ )) · · · r̂T (p̂T (Γ ))r̂T (Γ ), whereΓ is
the cyclic occurrence andk is the period ofs⇐ Π.

Let s ⇐ Π be a cyclic top send inT and let∆ be its cyclic coefficient. Reduction
of s⇐ Π consists in replacing every occurrence ofs⇐ Π in T byα∆, whereα∆ is a
fresh metavariable not occurring inT .

It follows that sends which label the nodesp̂T (Γ ), . . . , p̂k−1
T (Γ ) are also cyclic

in T . After the reduction the send labeling the nodep̂k−1
T (Γ ) becomes reducible, while

the other sends are not subject to immediate reduction in the new scheme.
The intuitions behind a cyclic send is that it represents an infinite computation (in-

finite computations are universally accepted in object-oriented calculi, see typical ex-
amples in [1, 12]). Essentially, it refers to itself within a certain number of computation
steps, which is the period.

6.4 Confluence and termination

Let T be a stripped scheme. Each top send inT is either cyclic or reducible. Every
such top send is called aredex. To be more precise, a redex is a term (send) as such,
not a single occurrence of that term. Clearly ifT has no redexes then it is a quasi type
scheme.

The main properties of the above rewrite system are collected in the next two results.
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Theorem 6.1. LetT be a stripped scheme.

1. (Termination) Let n be the number of top sends inT . Aftern steps of reduction
we either arrive at a quasi type scheme, or else we must have earlier detected an
inconsistent reducible send.

2. (Confluence)LetT ′ andT ′′ be two quasi type schemes obtained fromT by a se-
quence of reductions. ThenT ′ andT ′′ are equivalent.

Theorem 6.2. LetT be a stripped scheme. The following are equivalent.

1. T is typable.
2. There exists a sequence of reductions which transformsT into a quasi type scheme.
3. Every sequence of reductions transformsT into a quasi type scheme.

Moreover, ifT # is a quasi type scheme obtained fromT by a sequence of reductions
and(E,S) is any instantiation ofT # such that(T #{S})E is a type, sayτ , then

E ` T {S} : τ

is derivable.

Every quasi type schemeT # obtained from a stripped schemeT by a sequence of
reductions will be called anormal formof T . It follows from Theorem 6.1 that every
stripped scheme has at most one normal form, up to scheme equivalence.

Example 1.M = pro s〈pro t〈 d, s ⇐ 1 〉, c 〉: M is a stripped term and the atomic
sends⇐ 1 is reducible and inconsistent, becausepM (1) = 1 ands⇐ 1 occurs in the
sub-treeM1 (following the definition of Section 6.2).M is not typable by Lemma 2.

Example 2.M = pro s〈 s ⇐ 1, c 〉: M is a stripped term ands ⇐ 1 is a cyclic send.
It can be solved using the technique of Section 6.3. This term is typable and a type is
pro s〈 s, c 〉.

Example 3.M = pro s〈 s ⇐ 12, s ⇐ 112 〉: M is a stripped term and first we solve
the cyclic sends ⇐ 12, obtaining the quasi-type schemapro s〈α2, s ⇐ 112 〉. Now
s⇐ 112 becomes reducible and we getpro s〈α2, α2.12 〉. By givingα2 a typeρ such
that(ρ.2) = ρ (remember that the first send was cyclic, so its type must represent this),
we can get as types ofM : pro s〈 c, c 〉, pro s〈pro t〈pro x〈 y, z 〉, t 〉z 〉, etc.

7 Main Result

We define a partial map which assigns to a termM a quasi type schemeTM , called a
principal quasi type schemeof M . It is defined by induction onM .

– Tc = c
– Ts = s
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– Tpro s.〈M1,M2 〉 = (pro s〈 TM1 , TM2 〉)#

– TM⇐i = TM .i.

The above recurrence equations have to be understood in such a way that the left hand
side is defined iff the right hand side is defined.

The main result of this paper is the following theorem.

Theorem 7.3. (Principal quasi type theorem)

1. M is typable iffTM is defined.
2. If TM is defined, then for every instantiation(E,S) of TM such that(TM{S})E is

a type we have
E `M : (TM{S})E .

3. The partial mappingM 7→ TM is computable. Therefore the problem of typability
is decidable.

8 Extensions

We have solved the type reconstruction problem for a system containing only the send
operator to highlight the essential mathematical content of the problem itself. But the
approach can be extended to deal with the method addition operator←+ of theC
calculus [3], and with themessage-not-understoodrun-time error, without changing
the mathematical core of our solution. The override operator, though, remains an open
problem (see in the conclusions).

Method addition. Firstly, we must extend the object syntax to include objects with
an indefinite number of components. Then, since method addition is permitted only
on proper objects, it is enough to extend appropriately the notion of “principal quasi
type scheme”TM , in order to check, in the case of method addition, if the resulting
(quasi) type of the object receiving the addition is apro 〈 ... 〉 (quasi) type and it does
not contain the method to be added, together with checking that the method body is
typable.

Message-not-understood.As a consequence of dealing with objects with more than
two components plus the method addition, we could lift the constraint on the send
operation, by allowing the invocation of whichever method, both on proper objects
(external send) and on selves (self-inflicted send). In the external case, the right-hand
side of the equationTM⇐i = TM .i of the principal quasi type scheme would be satisfied
(andTM⇐i would be typable) ifTM were a quasi type scheme of the formpro 〈 ... 〉
containing ani component, and the resulting quasi type scheme would be as in the two-
method situation. A more difficult case is when the send is self-inflicted, i.e., ifM is
a selfs: this case must be solved directly during the global process of going from the
stripped term containingM ⇐ i to its quasi type scheme, because we need to check if
the subtree rooted ats has ani branch. In order to do so, for every top sends⇐ Π we
must check that the branching described byΠ exist in the subtree rooted ats.
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9 Conclusion and future work

We have shown that decidable type reconstruction is possible for languages with nested
selftype references. This is an important conclusion even if the language we solved the
problem for contains only the send operator, because we do believe that it is the core
of any other richer systems (i.e., systems including method addition and/or override),
from the point of view of the type reconstruction.

Our result raises a number of further questions. Obviously, one wants to expand the
analysis to the case of object languages with a more reasonable choice of operators.

Adding method addition must be still formalized, but we conjecture that is nothing
more than careful bookwork. Dealing withmessage-not-understoodappears to be more
delicate, because it implies an extension of the algorithm as hinted above, but it does
not change the techniques we use to detect and solve “loops”, which are the central part
of our solution.

Override is, instead, an open question at the moment, so far it can be only shown
that adding method override makes the problem PTIME-hard. Intuitively, override, by
substituting method bodies, may change the interrelationships among the cyclic top
sends, inducing complex equational constraints — a very special case of second-order
unification. As mentioned in the introduction, it looks like self-inflicted overrides are the
main issue. Nevertheless, also external overrides introduce some difficulties. In order
to type a method override on an object, we would need to compare the (quasi) type of
the overriden (old) method body with the (quasi) type of the overridding (new) one, and
only if they are “equal” the override is typable. Now, the problem lies in the fact that we
still do not have a complete notion of principality for our typing, making not possible
deciding equality among (quasi) types5.

Even for the simple language we discussed above, there are still issues to be investi-
gated. The naive algorithm, involving the construction ofTM , is obviously not feasible,
as it involves nested substitutions. Although we believe the problem is solvable in poly-
nomial time, a workable implementation is still to be developed, and does not seem to
be trivial.
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