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ABSTRACT

Context. Theoretical arguments along with observational data of YSO jets suggest the presence of two steady components: a disk
wind type outflow needed to explain the observed high mass loss rates and a stellar wind type outflow probably accounting for the
observed stellar spin down. Each component’s contribution depends on the intrinsic physical properties of the YSO-disk system and
its evolutionary stage.
Aims. The main goal of this paper is to understand some of the basic features of the evolution, interaction and co-existence of the
two jet components over a parameter space and when time variability is enforced.
Methods. Having studied separately the numerical evolution of each type of the complementary disk and stellar analytical wind
solutions in Paper I of this series, we proceed here to mix together the two models inside the computational box. The evolution in time
is performed with the PLUTO code, investigating the dynamics of the two-component jets, the modifications each solution undergoes
and the potential steady state reached.
Results. The co-evolution of the two components, indeed, results in final steady state configurations with the disk wind effectively
collimating the inner stellar component. The final outcome stays close to the initial solutions, supporting the validity of the analytical
studies. Moreover, a weak shock forms, disconnecting the launching region of both outflows with the propagation domain of the two-
component jet. On the other hand, several cases are being investigated to identify the role of each two-component jet parameter. Time
variability is not found to considerably affect the dynamics, thus making all the conclusions robust. However, the flow fluctuations
generate shocks, whose large scale structures have a strong resemblance to observed YSO jet knots.
Conclusions. Analytical disk and stellar solutions, even sub modified fast ones, provide a solid foundation to construct two-
component jet models. Tuning their physical properties along with the two-component jet parameters allows a broad class of realistic
scenarios to be addressed. The applied flow variability provides very promising perspectives for the comparison of the models with
observations.

Key words. ISM: jets and outflows – stars: formation – stars: pre-main sequence – magnetohydrodynamics (MHD) –
methods: numerical – stars: winds, outflows

1. Introduction

Jets are supersonic and highly collimated plasma outflows em-
anating from a plethora of astrophysical objects. In particu-
lar, those associated with Young Stellar Objects (YSO) have
been found to be accretion powered (Cabrit et al.1990; Hartigan
et al. 1995), to have narrow opening angles and to propagate
for several hundreds of AU (Dougados et al. 2000; Hartigan
et al. 2004). Although their large scale properties are rather well
known, the conditions at the launch regions are still unclear.
The new generation of high angular resolution instrumentation
is expected to adequately resolve the central regions of YSOs
and hence constrain the various theoretical models that currently
exist.

A promising scenario supported by both observational data
and theoretical arguments is that of a two-component jet,
wherein a pressure driven stellar outflow is surrounded by a disk
wind. In particular, He i λ10830 profiles of classical T Tauri stars

(CTTS) indicate the presence of two genres of wind (Edwards
et al. 2006; Kwan et al. 2007). One is ejected radially with re-
spect to the central object and the other is launched at a constant
angle with respect to the equatorial plane. As a result, CTTS may
be classified according to their outflow properties. Some of them
seem to be associated with a stellar origin, others with a disk ori-
gin and the rest with both components having roughly equivalent
contributions. Therefore, it is suggested that both types of winds
participate, with the dominance being dictated by the intrinsic
physical factors of the specific YSO.

Such a scenario (e.g. Sauty & Tsinganos 1994; Shu et al.
1994) is supported by theoretical arguments as well. Ferreira
et al. (2006) conclude that YSO jets consist of two types of
steady winds plus a sporadic outflow. An extended disk wind,
which is required for the explanation of the high mass fluxes
observed in optical jets and an inner pressure driven outflow of
stellar origin (Bogovalov & Tsinganos 2001) collimated by the
disk wind. A third component is expected to be launched due to
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the variable conditions of the thin layer between the protostel-
lar magnetosphere and the disk’s magnetic field. Their interac-
tion may drive weak sporadic mass ejections probably associated
with jet variability.

In favor of the two-component jet scenario, there is also the
yet unresolved question of the protostellar spin down. Matt &
Pudritz (2005, 2008a, b) have shown that the disk-locking mech-
anism, which was believed to slow down the rotation of the cen-
tral object, is not in good agreement with observations. On the
contrary, they propose that the stellar wind is capable of and
most likely responsible for the spin down of the protostar. A
wide parameter space has been investigated to support such a
conclusion, whereas it is argued that the physical mechanisms
which drive the actual launching are less important, hence al-
lowing all sorts of stellar wind models.

A plethora of studies exists in the literature concerning nu-
merical simulations performed to investigate the launching and
propagation of jets. Two approaches are adopted: in the one, the
disk is treated as a boundary (e.g. Pudritz et al. 2006; Fendt 2006,
2009 and references therein), while in the other the disk is in-
cluded in the computational box, hence studying its dynamics
simultaneously and self consistently with those of the jet (first
studied in Casse & Keppens 2002, 2004). More recently, Meliani
et al. (2006) effectively incorporated a stellar type outflow accel-
erated by turbulent heating and in Meliani & Keppens (2007),
the transverse stability of relativistic two-component jets was
examined. Furthermore, adopting a different initial setup, Zanni
et al. (2007) studied the effects of resistivity on the dynamics of
the disk-jet system and Tzeferacos et al. (2009) performed an
interesting parameter study on disk magnetization.

Despite the complexity of the non-linear MHD equations,
the derivation of analytical steady state outflow solutions has
proved successful in the context of self-similarity (Vlahakis
& Tsinganos 1998). Each family of these solutions (radially
or meridionally self-similar) manages to capture the physical
mechanisms involved in either disk winds (Blandford & Payne
1982; Ferreira 1997; Vlahakis et al. 2000, hereafter VTST00), or
stellar outflows (Sauty & Tsinganos 1994; Trussoni et al. 1997;
Sauty et al. 2002, hereafter STT02). The geometrical properties
of these two classes of solutions are complementary. Although
radially self-similar models become singular at small polar an-
gles, the meridionally self-similar ones are by definition appro-
priate for modeling of the outflow at the axis.

In the first paper of this series (Matsakos et al. 2008, Paper I),
we addressed the topological stability, as well as several physi-
cal and numerical properties, separately for typical radially and
meridionally self-similar solutions. Such analytically derived
wind models were defined as ADO (Analytical Disk Outflow)
and ASO (Analytical Stellar Outflow), respectively.

Concerning the ADO model, its main feature is the formation
of a shock in the super fast magnetosonic region. Upstream of
this shock, the analytical and the asymptotic numerical solutions
are basically coincident, while the downstream flow converges to
a consistent physical solution, overcoming the singularity of the
analytical model at the symmetry axis (first achieved in Gracia
et al. 2006). This shock corresponds to the numerically modified
fast magnetosonic separatrix surface (FMSS, Tsinganos et al.
1996) that causally disconnects the downstream flow from its
launching region. This property is quite robust to variation of
the physical parameters, and has been recently confirmed also
in Stute et al. (2008), where an outer radial truncation of the
disk wind was imposed in the simulations. Moreover, a particu-
lar model was initialized by specifying a sub modified fast so-
lution both at the initial conditions and at the boundaries (i.e.

a flow causally connected throughout the whole computational
domain). Over time, the shock was still found, with its posi-
tion marking the FMSS that causally separates the upstream and
downstream regions.

On the contrary, the ASO model does not show singulari-
ties at its boundaries and therefore, the evolution of its super
Alfvénic region does not show any readjustments. However,
since energy input is a vital constituent of the model’s accel-
eration, the modifications of the energy source terms in the sub
Alfvénic domain were demonstrated to strongly affect the out-
come of the flow. In particular, we verified that an adiabatic
evolution resulted in a collapse of the jet to an almost static at-
mosphere, whereas specifying a polytropic index to mimic al-
most isothermal conditions produces a weak collimated turbu-
lent wind.

The goal of the present work is to study the two-component
jet scenario, taking advantage of both analytical and numerical
approaches. Specifically, we construct models by properly defin-
ing the initial conditions with a mixture of two analytical (ADO
& ASO) solutions connected through a transition region. The in-
troduction of a few normalization and mixing parameters, along
with enforced time variability applied to the stellar component
or at the matching surface, allows the examination of several in-
teresting cases.

The paper is structured as follows. Section 2 revises a few
basic properties of the analytical solutions, Sect. 3 describes the
mixing procedure followed to set the initial conditions. In the
same section, the different cases investigated are presented along
with the numerical setup. In Sect. 4 we discuss the results of
the simulations performed. Section 5 summarizes and reports the
conclusions of this work.

2. MHD equations and the analytical solutions

Our starting point is the ideal MHD equations for the conser-
vation of mass, momentum, energy and magnetic flux together
with the flux-freezing condition:

∂ρ

∂t
+ ∇ · (ρV) = 0, (1)

∂V
∂t
+ (V · ∇)V +

1
ρ

B × (∇ × B) +
1
ρ
∇P = −∇Φ, (2)

∂P
∂t
+ V · ∇P + ΓP∇ · V = Λ, (3)

∂B
∂t
− ∇ × (V × B) = 0 and ∇ · B = 0, (4)

where ρ, P, V, B are the density, pressure, velocity and magnetic
field (over

√
4π), respectively. The gravitational potential, Φ, is

equal to −GM/R with G, M and R denoting the gravitational
constant, the mass of the central object and the spherical radius,
respectively. Λ represents the volumetric energy gain/loss terms
(Λ = [Γ − 1]ρQ, with Q the energy source terms per unit mass),
and Γ is the ratio of the specific heats.

Assuming steady state conditions and axisymmetry, several
conserved quantities exist along the fieldlines (e.g. Tsinganos
1982). These are the mass to magnetic flux ratio ΨA, the angular
velocity of the footpoints of the fieldlinesΩ and the total angular
momentum flux to mass flux ratio1 L. IfΛ = (Γ−γ)P∇·V, where
γ is the polytropic index (see Sect. 3.4), also the total energy flux

1 In Paper I, VTST00, STT02 and all previous studies on self-similar
outflows, this integral was defined as “specific angular momentum”.
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Table 1. Parameters characterizing the adopted analytical solutions.

ADO solution
x γ λ μ K

0.75 1.05 11.7 2.99 2.00
ASO solution

κ β δ λ′ ε ν
2.10 × 10−2 1.00 7.78 × 10−2 7.75 1.2 × 10−2 1.50

to mass flux E and the specific entropy Q are conserved along
the streamlines.

In the paper we adopt the following notation: subscripts D
and S are used to refer to the ADO and ASO solutions, respec-
tively, while (r, φ, z) and (R, θ, φ) are the cylindrical and spherical
coordinates. Note that in Paper I the subscript r was used for the
ADO model and θ for the ASO solution. The subscript ∗ denotes
a constant of the order of unity which is used for the relative
normalization of the two solutions in order to correspond, for
instance, to a solution of the same protostellar mass, as will be
explained in Sect. 3. The values of the starred quantities corre-
spond to the non-dimensional physical variables at the Alfvénic
surfaces of each model at the reference fieldline α = 1 (see be-
low). Finally, subscript zero in a quantity U0 is used to introduce
dimensions in the code units U, i.e. U′ = U0U, where U ′ is the
physical value of a variable given in cgs.

2.1. The analytical models

We employ the ADO solution which is described in VTST00
and implemented in Paper I, that successfully crosses all three
critical surfaces. The ASO model we adopt is a solution simi-
lar to the one presented in the first article of this series, taken
from STT02, but with different parameter values: higher mass
loss rate, larger magnetic lever arm and a non spherically sym-
metric gas pressure. Here we only provide a few aspects of the
analytical solutions, whereas the model parameters are reported
in Table 12,3 and the explicit formulae of the physical variables
are provided in Appendix A. Further technical information on
the solutions can be found in Paper I and references therein.

Recalling a few useful expressions, the starred quantities for
each analytical model are related in the following manner:

VD∗ =
BD∗√
ρD∗

, PD∗ =
μB2

D∗
2

, K =
√

g

r∗V2
D∗
, (5)

VS∗ =
BS∗√
ρS∗

, PS∗ =
1
2

B2
S∗ , ν =

√
2g

R∗V2
S∗
, (6)

where r∗ and R∗ correspond to the non-dimensional distances
of the Alfvénic surfaces of the ADO and ASO solutions,

2 The value of the parameter x = 0.75, is related to the ejection index
ξ of Ferreira (1997) and corresponds to zero ejection according to its
expression. However, from Figs. 5 and 6 of VTST00 it is evident that
the solution with x = 0.7575, i.e. ξ = 0.0025, is almost identical to
the one with x = 0.75 for z � 0.1. Therefore, we argue that the ADO
solution employed here should not contradict the theoretical arguments
presented in Ferreira (1997).
3 λ and λ′ are related to the rotational velocity, κ and δ to the longitu-
dinal profile of the pressure and density, respectively, ε to the energetic
balance across the poloidal fieldlines and β to the energy input. The
constants K and ν measure the gravitational potential for each solution,
whereas μ is associated to the relative magnitudes of magnetic and ther-
mal pressure.

respectively, and g = 4 is the constant of the gravitational force
in code units.

The magnetic field of each solution is given by the following
formula:

B =
1
r
∇A × φ̂ + Bφφ̂, (7)

labels the iso-surfaces that enclose constant poloidal magnetic
flux, i.e. the magnetic fieldlines. In particular, for the ADO solu-
tion, A is given by:

AD =
BD∗r2∗

x
αx/2

D , where αD =
r2

r2∗G2
D

· (8)

Similarly, for the ASO model:

AS =
BS∗R2∗

2
αS, where αS =

r2

R2∗G2
S

· (9)

The values of GD(θ) and GS(R) are provided by the analytical
solutions (see Paper I and references therein for more details).

We provide here the measure of the magnetic lever arm,
braking the disk or star for each solution, as defined in Ferreira
et al. (2006). This is the same for all fieldlines, and is given by
the relation λ � r2

A/r
2
fp:

λD � 1

G2
D(π/2)

� 40, (10)

λS � 1

G2
S(Rbs)

� 330, (11)

where rfp is the cylindrical distance of the footpoint of a partic-
ular fieldline and rA is the cylindrical distance of its Alfvénic
point. GD(π/2) and GS(Rbs) correspond to the values of the an-
alytical solutions at the equatorial plane and at the base of the
stellar wind, Rbs, respectively.

3. The numerical models

In order to choose physical scales, we set the length, and den-
sity code units equivalent to r0 = 1 AU and ρ0 = 10−12 g cm−3.
In addition we assume the protostar to be of one solar mass,
M = 1 M�. Then, since the MHD Eqs. (1)–(4) are written
in non dimensional form, it can be easily derived that: V0 =√GM/gr0 = 14.9 km s−1, P0 = ρ0V2

0 = 2.22 dyne cm−2 and
B0 =

√
4πP0 = 5.28 G. Hence, the time unit corresponds to

t0 = 0.32 y.

3.1. Normalization

Now, we normalize the solutions to each other by defining the
three ratios, which are parameters of the two-component jet
models:

�l =
R∗
r∗
, �V =

VS∗
VD∗

, �B =
BS∗
BD∗

, (12)

where the subscripts l, V and B stand for length, velocity and
magnetic field, respectively. As it will be seen, only �B can
be chosen freely, while the other two are fixed by physical ar-
guments and the properties of the analytical solutions. More
precisely, observations indicate that the launching region of
disk winds lies in the range 0.2−3 AU (Bacciotti et al. 2002;



220 T. Matsakos et al.: Two-component jet simulations. II.

Anderson et al. 2003; Coffey et al. 2004). Therefore, demand-
ing that the reference fieldline αD = 1 is rooted at 0.16 AU on
the equatorial plane, we find r∗ = 1. Moreover, assuming that
the region where the stellar wind is being launched is roughly
at 0.01 AU or at Rbs = 0.01 in code units, we derive R∗ = 0.1
and hence �l = 0.1. It follows from relations (5) and (6) that
VD∗ = 1, VS∗ = 5.96, and thus �V = 5.96. Finally, we arbitrarily
set BD∗ = 1 and the choice of BS∗ will control �B.

3.2. The mixing function

Since the mixing will depend on the magnetic fieldlines, we de-
fine a trial magnetic flux function by the simple sum: Atr =
AD + AS. We point out that this quantity will help only in the
mixing procedure and will not be used to generate the magnetic
field present in the initial conditions. We further define the mix-
ing function:

U2comp = wDUD + wSUS, (13)

with the weights wD and wS given by:

wD = 1 − wS and wS = exp

⎡⎢⎢⎢⎢⎢⎣−
(

Atr

qAm

)d
⎤⎥⎥⎥⎥⎥⎦ . (14)

In the latter expressions, Am = 1.33 is a constant correspond-
ing to the matching surface rooted at 0.16 r∗, i.e. at 0.16 AU
on the equatorial plane, q is a parameter that effectively moves
this surface closer to the protostar and d sets the steepness of the
transition from the inner ASO to the outer ADO solution.

The initial values of the physical variables ρ, P, Vz, Vφ, Bφ

are set up using relation (13). Moreover, with the help of the
same expression, we initialize the two-component magnetic flux
function4 A, from which the poloidal component of the magnetic
field is generated using Eq. (7). Finally, Vr is initialized follow-
ing the ideal MHD condition, i.e. demanding that the poloidal
magnetic field is parallel to the poloidal velocity:

Vr =
VzBr

Bz
· (15)

Essentially, such a mixing function provides an exponential
damping of each solution around a particular fieldline of the
combined magnetic field. Therefore, close to the axis, the ASO
model dominates, whereas the ADO becomes the main contrib-
utor at the outer regions.

The two-component jet numerical models can be constructed
by specifying the three normalization parameters, �l, �V , �B, and
the three mixing parameters, Am, q, d. As it has already been ex-
plained, �l, �V and Am are given a fixed value, leaving �B, q and d
free to examine a variety of two-component scenarios. The latter
three parameters control the respective dominance, the location
of the matching surface in between the protostar-disk region and
the steepness of the transition region. Different values in this pa-
rameter space may address the various T Tauri outflow types and
their evolutionary stage. One would expect that in many cases
the efficiency of disk winds would manifest the early phases of
the YSO-disk system, whereas stellar winds would eventually
dominate, especially after the disk has accreted and during the
arrival of the star on the main sequence.

4 Note that Atr should not be confused with A. Although the former
is a simple sum of AD and AS, the latter is computed from the mixing
function, as the rest of the variables.

3.3. Time variability

Accretion, which controls the conditions at the base of stellar
winds, is not steady in time but rather varies over different time
scales ranging from hours, to days, months, even years (Alencar
& Batalha 2002; Stempels & Piskunov 2002; Johns & Basri
1995). On the other hand, the protostar is expected to show some
sort of variability as well, for instance the phenomenon of the
11 yr solar cycle. Therefore, the introduction of time variability
in the inner stellar component will allow us to study the stability
issues of more general and realistic scenarios. In order to achieve
this we prescribe the following function:

fS(r, t) = 1 +
1
2

sin

(
2πt
Tvar

)
exp

⎡⎢⎢⎢⎢⎢⎣−
(

r
2rm

)2⎤⎥⎥⎥⎥⎥⎦ , (16)

where Tvar is the period of the pulsation and rm = 5 is roughly
the cylindrical radius at which the matching separatrix intersects
the lower boundary z = 10 of the computational box. We enforce
a sinusoidal time variability depending on Tvar, by multiplying a
physical quantity of the lower boundary with f (t). The exponen-
tial in Eq. (16) helps to contain the perturbation only at the inner
regions, i.e. the stellar component. Note that flow fluctuations
induce the formation of knot-like structures. Therefore, also in-
cluding radiation cooling during the evolution (Tesileanu et al.
2008) would allow a direct comparison with observational data.
However, this is left to a future article of this series.

Since it is believed that a sporadic outflow is driven by the
star-disk magnetic interaction (Ferreira et al. 2000; Matt et al.
2002), we examine such cases as well. In this case we adopt a
similar function:

fX (r, t) = 1 +
1
2

sin

(
2πt
Tvar

)
exp

⎡⎢⎢⎢⎢⎢⎣−
(

r − rm

rm

)2⎤⎥⎥⎥⎥⎥⎦ · (17)

3.4. Energetics

We setΛ = (Γ−γ)P(∇·V) in Eq. (3) with γ = 1.05. This assump-
tion, originally made for the derivation of the ADO solution, is
equivalent to a polytropic relation P ∝ ργ along each fieldline.
Essentially, it represents the adiabatic evolution of a gas with
a ratio of specific heats γ, which corresponds to the following
energy conservation law that is solved over time:

∂P
∂t
+ V · ∇P + γP∇ · V = 0 . (18)

Recall that in Paper I, simulations were carried out both for the
ADO and the super Alfvenic regions of the ASO solution to test
the effects of such an energetic assumption (γ = 1.05), as well
as an isothermal (γ = 1.0) or an adiabatic one (γ = Γ = 5/3).
For each model, these different cases produced almost identical
results, thus allowing us to safely adopt this simplification of the
energy equation.

3.5. The numerical two-component jet models

Table 2 lists the unperturbed numerical two-component jet mod-
els along with their parameters. Table 3 presents those con-
structed to investigate the stability and structure when time vari-
ability is applied at the stellar wind or at the matching surface,
effectively mimicking an X-type wind. In particular, the sec-
ond column of Table 3 reports the ratio of the periodicity of
the enforced fluctuation, Tvar, over the Keplerian rotation pe-
riod TK (∼0.4 days) of the protostellar radius, located roughly



T. Matsakos et al.: Two-component jet simulations. II. 221

Table 2. A short description and the parameters of the unperturbed numerical models.

Name �B q d Description
1-q01 1.0 0.1 2.0 Small ASO contribution, matching very close to protostar (Fig. 8)
2-q02 1.0 0.2 2.0 Small ASO contribution, matching close to protostar
3-q05 1.0 0.5 2.0 Small ASO contribution, matching close to disk (Fig. 8)
4-q01 2.0 0.1 2.0 Medium ASO contribution, matching very close to protostar (Fig. 8)
5-q02 2.0 0.2 2.0 Medium ASO contribution, matching close to protostar (Figs. 1, 2, 3, 4, 5, 7)
6-q05 2.0 0.5 2.0 Medium ASO contribution, matching close to disk (Fig. 8)
7-B05 0.5 0.2 2.0 Very small ASO contribution (Fig. 9)
8-B5 5.0 0.2 2.0 Large ASO contribution (Fig. 9)
9-B10 10.0 0.2 2.0 Very large ASO contribution
10-d1 2.0 0.2 1.0 Medium ASO contribution, smooth transition (Fig. 10)
11-d4 2.0 0.2 4.0 Medium ASO contribution, steep transition (Fig. 10)

The non listed parameters are common for all models and have the following values: �l = 0.1, �V = 5.96 and Am = 1.33.

Table 3. The time variable numerical models.

Name Tvar/TK Variability Variable wind Description
1-S1 1 Vz Stellar Very high frequency velocity fluctuations of the stellar component (Fig. 11)
2-S10 10 Vz Stellar High frequency velocity fluctuations of the stellar component
3-S102 102 Vz Stellar Medium frequency velocity fluctuations of the stellar component (Figs. 11, 12)
4a-S103 103 Vz Stellar Low frequency velocity fluctuation of the stellar component (Fig. 14)
4b-S103 103 Vz Stellar Low freq. vel. fluct. (lower magnitude: ±20%) of the stellar component (Fig. 14)
5-S104 104 Vz Stellar Very low frequency velocity fluctuations of the stellar component (Fig. 14)
6-X1 1 Vz & ρ X-type Very high frequency momentum fluctuations around the X-point (Fig. 13)
7-X10 10 Vz & ρ X-type High frequency momentum fluctuations around the X-point
8-X102 102 Vz & ρ X-type Medium frequency momentum fluctuations around the X-point (Fig. 13)

The two-component jet parameters are the same for all cases: �l = 0.1, �V = 5.96, �B = 2.0, Am = 1.33, q = 0.2 and d = 2.0.

at 0.01 AU. This means that we address phenomena with time
scales associated with accretion and the physical conditions
present at the star-disk region. Note that in our models, the
Keplerian period of the equatorial footpoint of the matching sur-
face is of the order of 10 days. In the third and fourth columns of
Table 2 we indicate the physical quantity that is varied and where
it is perturbed, respectively (i.e. adopting Eq. (16) or (17)).

3.6. PLUTO code and the numerical setup

The simulations are performed with PLUTO5 (Mignone et al.
2007), a versatile shock-capturing numerical code suitable for
the solution of high-mach number flows. The grid is set up in
axisymmetric cylindrical coordinates (2.5D), leaving the study
of azimuthal stability for a future work. Second order accuracy
is applied in both space and time, and the Lax-Friedrichs solver
is adopted. However, the choice of a particular solver was not
found to influence the results. The ∇·B = 0 condition is ensured
with the 8-wave formulation.

The length code unit is equivalent to 1 AU, and therefore
the correspondence to real physical distances is straightforward.
We consider a computational box with 0 ≤ r ≤ 100 and
10 ≤ z ≤ 210 for the unperturbed models, and with 0 ≤ r ≤ 50
and 10 ≤ z ≤ 110 for the time variable ones, omitting the ac-
celeration region of the ASO solution. There are two reasons for
doing so. The first argument concerns the complexities appear-
ing when the ADO solution is initialized in a computational do-
main that approaches the origin in cylindrical coordinate systems
(as demonstrated in Paper I). Second, the ASO solution pro-
vides a time independent energy source term, which if included,
will artificially constrain time evolution, as shown in Paper I. In

5 Publicly available at http://plutocode.to.astro.it

addition, the complicated processes of the ejection and acceler-
ation of stellar winds are as yet unresolved and hence it is bet-
ter to first address the simpler dynamics of two-component jets
with the stellar outflow already being super Alfvénic. Besides,
the launching of each component takes place at different and ex-
tended locations of the YSO-disk system and therefore the inter-
action happens at higher altitudes. Moreover, the low frequency
models, 4a-S103, 4b-S103 and 5-S105, are obviously associated
with larger length scales and therefore the vertical direction is
chosen 10 ≤ z ≤ 610 for the former and 10 ≤ z ≤ 1210 for the
latter. Essentially, we address the length scales of a few tens AU
radially to a thousand AU vertically.

All models have a uniform resolution of 256 zones for ev-
ery 100 AU. However, we have evolved a typical model, 5-q02,
also in a finer grid of 512 × 1024 to investigate the properties
common to all models, such as time evolution features, poten-
tial steady states, deviations from analytical solutions and shock
formation. Nevertheless, the cell size was not found to affect the
outcome of the numerical evolution, a feature of the self-similar
models that is also supported by Paper I. Furthermore, the un-
perturbed simulations have been carried out up to a final time of
80 y, equivalent to 8 × 104TK, i.e. 80 000 Keplerian rotations of
the protostar, or for up to t = 250 in code units. The time unit
in the code corresponds to 0.32 y. Due to the greater length and
time scales involved in models 4a-S103, 4b-S103 and 5S104 the
simulations were run up to a final time of 160 y.

At the lower boundary, we keep all variables fixed to their
initial values after the mixing, in agreement with the conclusions
of Paper I (wherein a detailed discussion of the correct treatment
of the boundary conditions can be found). Outflow or extrapo-
lated boundary conditions in the region where the flow enters
the computational domain might artificially influence the long
term simulations. At the axis we apply axisymmetric boundary
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Fig. 1. Logarithms of the density at different times for a typical model (5-q02). The time unit is 0.32 y (or 10 Keplerian rotations of the footpoint of
the matching surface). In the rightmost plot, a weak shock is observed along the diagonal. In addition, the initial matching surface, approximately
at r = 5 on the lower boundary, is still evident. To check this, compare it with the leftmost plot which describes a configuration very close to the
initial one.

conditions, whereas at the upper and right boundaries, we apply
outflow conditions. Note that setting the derivative of Bφ equal
to zero at the right boundary could cause artificial collimation.
However, the ADO solution dominates at this boundary both in
the initial conditions and over time (as will be seen in the next
section). Therefore, recalling from Paper I that the ADO model
maintains its exact equilibrium in the rightmost regions despite
the specification of outflow conditions, we argue that the config-
urations studied here are not prone to such a numerical enforce-
ment.

4. Results

We outline first the results obtained that are common to all two-
component jet simulations and then we discuss the effects of the
mixing parameters and the time variability.

4.1. Time evolution and steady state

The logarithm of the density is plotted in Fig. 1 for different evo-
lutionary stages of a typical two-component jet model (5-q02).
The initial conditions correspond to equilibrium in the regions
where each analytical solution dominates. However, around the
matching surface, the models are modified and hence a strong
perturbation is generated during the first timesteps of the sim-
ulation. An MHD wave propagates through the ADO solution
without leaving behind any significant rearrangements. On the
contrary, the equilibrium of the ASO model is substantially re-
structured, with its density dropping roughly by an order of mag-
nitude. In only ∼100 Keplerian rotations of the footpoint of the
matching surface, the stellar component has already been totally
and self consistently modified in the presence of the ADO solu-
tion.

From the rightmost plot of Fig. 1, notice that the initial
matching surface is still evident. Indeed, this is expected, due to
the fixed boundary conditions at the lower boundary. At t = 50,

Fig. 2. The density fluctuations as a function of time calculated at the
points (r0 , z0) = (5 , 50), (15 , 50) and (30 , 50). The first is located
in the ASO dominated region, the second close to the matching sur-
face upstream of the shock and the third in the ADO dominated region
(model 5-q02).

the initial perturbation has almost left the domain, with the two-
component jet having reached a steady state. Notice the forma-
tion of a weak steady shock, which can be seen almost along the
diagonal direction of the computational domain.

In order to establish the conclusion that the two components
can co-exist in a steady state, we plot in Fig. 2 the density fluc-
tuations for different time scales of three specific points. One is
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located inside the stellar component and the other two upstream
of the shock, at the matching surface and in the disk wind, re-
spectively. Evidently, for t > 2.5 the solution remains almost
unchanged up to t = 250, i.e. a time longer by two orders of
magnitude. The disk wind reaches the final exact equilibrium a
bit later (at t ∼ 25), due to the slower wave velocities of this
region. Therefore, the rightmost plot of Fig. 1 represents a very
well preserved steady state of the two intrinsically different jet
components.

Both the physical and geometrical properties of the two
winds are by definition considerably diverse, since their self-
similar symmetries are orthogonal to each other. In turn, the
same holds true for their respective poloidal critical surfaces.
Therefore, the steady state of such a two-component jet was not
a straightforward expectation. Nevertheless, it is clearly shown
in Figs. 1 and 2 that the two complementary winds manage to
co-exist. Also taking into account the artificial boundary effects
present in long term simulations, investigated in Paper I, the
above results are adequate to argue that the two-component jet
models reach a well defined steady state.

Despite the fact that the plots concern a particular model,
the same conclusions are valid for all the unperturbed scenarios
presented in Table 2.

4.2. Deviations from the analytical solutions

Another crucial question that arises concerns how close the final
outcome of the simulations is to the initial analytical solutions.
In particular, the smaller the deviations are found to be, the more
valid and robust are the analytical studies on the self-similar
MHD outflows. This also implies the easy and appropriate ex-
tension of their conclusions to the two-component jet scenario,
especially for the analytically derived disk winds.

Therefore, in Fig. 3 we plot the critical surfaces of the ADO
solution (red crosses) and those of the final numerical two-
component jet (thick blue lines), along with the logarithmic den-
sity contours and the magnetic fieldlines (red lines). The prop-
agation of the perturbation described in Sect. 4.1 results in the
slight modification of the fast magnetosonic and Alfvénic crit-
ical surface, as can be seen from their almost perfect match in
Fig. 3. On the other hand, the slow magnetosonic critical sur-
face seems to have collapsed towards the lower boundary. The
slow waves generated initially at the matching surface by defi-
nition cannot pass to the sub slow domain. Consequently, if the
surface stayed at its initial location, the waves would not have
been able to leave the lower right region of the computational
box. Such a phenomenon is observed in SC3 and SC5 runs of
Stute et al. (2008), where matter accumulates downstream of the
slow critical surface. However, in our case, the separatrix is be-
ing bent downward, tangentially to the lower boundary, hence
allowing the initial perturbation to exit the simulated box. As a
result, the lower right region shows a significantly higher degree
of deviation from the initial conditions than the rest of the do-
main. Nonetheless, it does reach a steady state asymptotically.
Note that the critical surface cannot be dragged away, due to the
fixed boundary conditions, which describe a sub slow flow at
z = 10. Similar features are also observed in Gracia et al. (2006)
and in most runs of Stute et al. (2008).

The fact that the system finds an equilibrium so close to the
analytical solution is due to the topological stability of the ADO
model discussed in Paper I. No matter if the central part of the
disk wind is substituted as a whole with a physically and geo-
metrically different kind of outflow, the solution maintains all its
properties, proving its stability.

Fig. 3. Logarithmic density contours (thin blue lines) for model 5-q02
at t = 50. The magnetic poloidal fieldlines are overplotted with red
lines. In the lower right part, going clockwise, the fast magnetosonic,
the Alfvénic and the slow magnetosonic critical surfaces are plotted
with red crosses for the ADO solution and with thick blue lines for the
final numerical two-component flow.

The poloidal critical surfaces plotted in Fig. 3 also provide
other insights into the two-component scenario. Close to the
axis, they have an elliptical shape, as can be seen in the region
very close to (0, 10), and eventually become conical, after the
matching surface. Intuitively, this makes sense due to the dif-
ference in the symmetry of the accelerating mechanisms of the
two winds. In Kwan et al. (2007), two types of outflows are ob-
served, one emanating radially out of the protostar and the other
being ejected at a constant angle with respect to the disk mid-
plane. This implies a geometry of the poloidal critical surfaces
similar to Fig. 3.

In Fig. 4, the physical variables are plotted at the constant
height z = 50, for the initial setup (diamonds) and final con-
figuration (crosses) of model 5-q02. In addition, the initial ADO
(solid lines) and ASO (dashed lines) solutions are also shown be-
fore their combination. All plots present the effect of the mixing
function. Close to the axis, the ASO model dominates, whereas
approaching the right boundary, the ADO becomes the main
contributor. A jump can be observed in most quantities, which
represents the weak shock discussed in Sect. 4.3. Apart from the
density and the poloidal component of the magnetic field, the
initial and final configurations converge at large distances, show-
ing the stability of the ADO solution. However, this happens far
from the slow magnetosonic critical surface. The modifications
the initial ASO solution undergoes can be seen from the final
equilibrium reached close to the axis. Note that the temperature
plot can be used as a guide when looking for two-component jet
parameters appropriate to address observed jets.

Finally, the normalized integrals of motion (Eqs. (5)–(9) of
Paper I) are plotted in Fig. 5 along three selected fieldlines rooted
at the points (3, 10), (6, 10), and (9, 10). One is in the ASO
dominated part, one is in the ADO domain and the other is al-
most along the matching surface crossing the shock. In all cases
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Fig. 4. The physical variables plotted at z = 50 for the ADO model
alone (solid line), the ASO model alone (dashed line), the initial setup
of 5-q02 (diamonds) and its final configuration (crosses). The quantities
displayed from left to right are: in the top row log ρ, log P and log T , in
the middle row Vr, Vz and Vφ, in the bottom row Br, Bz and Bφ.

Fig. 5. The normalized integrals of motion plotted along three fieldlines
of model 5-q02, rooted at the positions (from bottom to top) (3, 10),
(6 , 10), and (9 , 10), corresponding to the ASO, mixing and ADO dom-
inated regions, respectively. The distance from the lower boundary is
parametrized by s.

the integrals are conserved with high accuracy, varying only
within a few %. At large distances from the shock, they tend
to become constant, which indicates that the system reaches a
steady state in all three regions. For the two inner fieldlines, at
s = 5 and s = 100, respectively, the observed jumps are related
to the crossing of the shock. In particular, the larger deviation
from constancy occurs for the specific entropy integral Q, as ex-
pected.

Fig. 6. Normalized discontinuities (from left to right) of the density,
total pressure (thermal plus magnetic) and the entropy Q) across the
shock, close to the point (5 , 30). Notice that s is increasing in the inverse
direction of r.

Fig. 7. A family of the characteristics (thin solid lines) of the fast mag-
netosonic waves in a zoomed super fast magnetosonic region around
the shock (thick solid line) for model 5-q02. The thick dashed line is
the initial matching surface.

4.3. Shock formation

In Fig. 6, we plot the normalized density, total pressure (P +
B2/2) and entropy Q across the shock (direction right to left)
around the position (5 , 30), very close to the one assumed in
Paper I. This point is located inside the domain where the stellar
outflow dominates. Apparently, the density seems to increase by
a factor of 2, whereas the pressure increases by a factor of 4. On
the contrary, the jump seen in the entropy is very weak, being
an order of magnitude smaller: this is not surprising, recalling
that γ = 1.05, i.e. conditions very close to isothermal, wherein
entropy remains unchanged across shocks. Also there is no heat-
ing/cooling present in any simulation of this paper, thus making
the above analysis simpler.

In Fig. 7 we plot one of the two families of the characteris-
tics of the fast magnetosonic waves (thin lines) for model 5-q02,
along with the initial matching surface (dashed line). It is evident
that the shock (thick solid line) is not crossed by the downstream
characteristics. This shows the causal disconnection of the two
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Fig. 8. Logarithm of the density for the final numerical solutions of
models 1-q01, 3-q05, 4-q01, 6-q05 (left to right). The two leftmost cases
have a weaker stellar component compared to the two rightmost.

domains, upstream and downstream of the shock. In other words,
the shock represents the horizon for the propagation of all MHD
waves, coinciding with the numerical FMSS.

This feature is closely related to the ADO solution and was
studied in detail in Paper I. However, the two-component case
we present here is especially interesting for the following rea-
son. The shock manifests even in the central area, where the
contribution of the ASO model is total. This implies that it is
not associated with the lower boundary, but on the contrary, it
forms above it, intersecting the symmetry axis. Taking also into
account the results of Paper I, the shock seems to be an intrinsic
feature of the ADO solution. Consequently, the presence of the
disk wind model in the two-component jet scenario has the re-
markable characteristic of producing outflows that are causally
disconnected to their launching region, despite the fact that the
initial conditions causally connect the whole computational box.

4.4. Parameter study

In this section, we present the behavior of the two-component
jets when we change the model parameters.

Figure 8 shows the logarithm of the final density of the sim-
ulations carried out for models 1-q01, 3-q05, 4-q01, 6-q05 (left
to right). When the position of the matching surface is rooted
closer to the disk rather than the star, the shock seems to bend
towards the midplane, confining the unmodified ADO solution in
a smaller domain. This result indicates that as the spatial domi-
nation of the ASO solution becomes larger, the ADO model con-
trols a smaller portion of the box, thus forming the shock closer
to the disk.

Recalling that models 1-q01 and 3-q05 have a weaker ASO
contribution (�B = 1), compared to 4-q01 and 6-q05 (�B = 2),
Fig. 8 also suggests that the relative strength of the ASO model
does not seem to considerably affect the position of the shock,
although larger deviations are seen around the slow critical sur-
face of the initial ADO model. The same result is derived from
models 7-B05, 8-B5 (bottom of Fig. 9) and 9-B10, where the
location of the shock is found farther from the axis, the larger
the value of �B. Nevertheless, this might be related to the previ-
ous result since a large �B also spatially reduces the contribution
coming from the ADO model.

Furthermore, Fig. 9 presents the logarithm of the poloidal ve-
locity and the streamlines (dashed lines) for the ADO and ASO
solutions separately, as well as for models 7-B05 (�B = 0.5)
and 8-B5 (�B = 5). The left plot of the bottom panel suggests
that for disk wind dominated jets, the ADO solution is effec-
tively collimating the central component. However, we know

Fig. 9. Logarithmic poloidal velocity and streamlines (dashed lines) for
the unmixed ADO (top left) and ASO (top right) models separately. In
the lower panel, models 7-B05 (�B = 0.5; left) and 8-B5 (�B = 5;right)
are shown. The maximum values of the poloidal velocity of both of
these two-component cases are ∼500 km s−1, despite the misleading col-
orbar, which was accordingly chosen to match that of the top panel.

that polytropically evolved ASO solutions become more colli-
mated and less dense than the non polytropic initial ASO models
(Paper I). So, it is rather difficult to disentangle the collimation
due to the disk wind and that due to the change in energetics.

Moreover, increasing by one order of magnitude the contri-
bution of the ASO model, the streamlines take an almost radial
geometry (lower panel, right plot of Fig. 9). A similar result was
obtained by Meliani et al. (2006) when the mass loss rate of the
inner stellar wind becomes comparable to the disk mass loss rate.
Although this might contradict the parallel flow structure seen in
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Fig. 10. Logarithmic pressure contours for model 10-d1 on the left and
11-d4 on the right.

the right plot of the top panel of Fig. 9, where the ASO solution
is plotted alone, we note that such a strong collimation comes
from the linear increase of Bφ (Fig. 4, dashed line). However, the
two-component jet presents a more realistic distribution of cur-
rent, with a decreasing toroidal field at large distances (Fig. 4,
crosses) and hence the hoop stress is not capable of collimating
the flow.

Finally, we examine how the third free parameter, d, which
defines the steepness of the transition region, influences the final
steady state reached by the two-component jets.

The pressure contours of models 10-d1 and 11-d4 shown
in Fig. 10 suggest that no matter how smoothly the variables
change from one solution to the other, the matching surface
reaches the same sort of structure at the end of the simulations.
On the other hand, the shock is affected more dramatically. In
the d = 1 case, it has a shape very similar to the one forming
without the presence of the ASO solution (see Paper I), with a
polar angle of ∼10◦ as calculated close to the origin. On the con-
trary, the shock intersects the axis with a wider polar angle ∼15◦
in the d = 4 case. Note that although the value of the parameter
may change inside the computational box, it is kept fixed at the
lower boundary and hence influences the evolution.

4.5. Time variable stellar or X-type winds

This last section is dedicated to the stability issues raised by a
potential time variability in the YSO’s outflow. We apply time
dependency (Eq. (16) or (17)) either at the stellar wind’s base or
around the X-point located at the interface between the stellar
magnetosphere and the disk. The two-component jet parameters
adopted are identical to model 5-q02.

High frequency velocity (or density) variations, associated
with the Keplerian rotation at roughly a stellar radius, seem to
fade away on larger scales, as shown on the left of Fig. 11.
The structure remains very close to the unperturbed model.
Two orders of magnitude lower frequency fluctuations, result

Fig. 11. Magnetic fieldlines (red) and logarithmic density contours at
t = 250 for models 1-S1 (left) and 3-S100 (right).

Fig. 12. Logarithmic density contours (thin blue lines) and the magnetic
field (red lines) for model 3-S102 at t = 50. The red crosses and the
thick blue lines denote the critical poloidal velocity surfaces of the ADO
solution and those of the final equilibrium, respectively. This plot is
equivalent to Fig. 3.

in stronger gradients along the flow, as seen in the right panel
of Fig. 11. Considering that the velocity varies by ±50% of its
initial value, it is surprising how well the two-component jet
structure is retained. Despite the “wiggling” of the magnetic
field, the same flow features are found as in the unperturbed
cases.

Figure 12 displays a plot equivalent to Fig. 3 in order to
understand how the shock and critical surfaces change in the
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Fig. 13. Logarithm of the density along with magnetic fieldlines (red
lines) at t = 50 for models 6-X1 and 8-X102.

time-variable stellar wind case. The picture is very similar, apart
from the perturbations seen in the density throughout the com-
putational box. The poloidal critical surfaces show the same be-
havior as in the unperturbed models and the weak steady shock
is still present, being slightly curved locally as the fluctuations
propagate.

Analogous results are derived by the models where time vari-
ability is enforced at the density and velocity of the outflow
around the X-point. The momentum changes periodically by an
order of magnitude. However, at the ASO and ADO dominated
regions, the wind characteristics do not seem to be affected, es-
pecially in the high frequency variability case (model 6-X1, plot
of left panel of Fig. 13). On the other hand, more evident struc-
tures are produced in the 100 times lower frequency fluctuations,
still without destroying the basic pattern (model 8-X102, plot of
right panel Fig. 13). This behaviour is similar to the stellar wind
variability, but with a lesser degree of collimation.

In order to see how the low frequency variability can affect
the jet far away from the launching region, we plot the quantity
ρ2
√

T for models 4a-S103 (top left), 4b-S103 (bottom left) and
5-S104 (right) in Fig. 14. Close to the base, the numerical solu-
tions remain close to the initial ADO and ASO models. However,
at higher altitudes, the fluctuations create knot-like structures. It
is evident that such models can be associated with some jet vari-
ability. We have checked that both stellar and X-wind type pulsa-
tions produce very similar structures far away from the disk-star
system. This was expected, since kAU scales cannot distinguish
the ejections coming from within 1 AU. The regular knot spac-
ing observed in the jet of HH30 (∼100 AU, Bacciotti et al. 1999)
can be reasonably compared with our models 4a-S103 and 4b-
S103, with a structure periodicity of ∼1 yr. Model 5-S104, with a
periodicity of 10 yrs, could be associated with the knots detected
in the jet of HH34 where the condensation spacing is ∼1000 AU
(Cohen & Jones 1987). Nevertheless, in this case there is a gap
between the blobs and the star, suggesting a contribution of other
processes to the knot formation. Note that the time scales of such
fluctuations also correspond to typical stellar variabilities (e.g.
the 11 y period of the solar cycle).

Fig. 14. The quantity ρ2
√

T , which is roughly related with emissiv-
ity, is plotted for the low frequency variability models examined in
large scales. In the left, models 4a-S103 (top) and 4b-S103 (bottom)
are shown, whereas in the right model 5-S104 is displayed. Note that
max(ρ2

√
T ) = 5.39×10−2 for model 4a-S103, max(ρ2

√
T ) = 3.97×10−2

for model 4b-S103 and max(ρ2
√

T ) = 7.49 × 10−3 for model 5-S104.
However, the colorbars in the online version use a lower maximum
value in order to enhance the displayed features. The length code unit
corresponds to 1 AU.

Finally, Fig. 15 provides the proof that these knot-like struc-
tures are in fact shocks. The top panel displays the periodic den-
sity and pressure jumps along the jet axis, with the change being
approximately an order of magnitude for both. Note that close
to the base the discontinuities are not yet well developed. We
also remark that these shocks are stronger than that associated
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Fig. 15. Density, pressure and sonic Mach number plotted along the jet
axis for model 4a-S103.

with the FMSS (see Fig. 6). The lower panel reports the sonic
Mach number as a function of z. Its mean value of the back-
ground flow is ∼10, in good accordance with YSO jet obser-
vations. The shocks propagate faster by ∼50%, as expected in
agreement with the inflow time variability. Although Fig. 15 sug-
gests that the flow values converge to a similar periodic structure,
a larger computational box is needed to verify such an argument.
In a future study, we plan to apply radiation cooling effects to
these time variable models, effectively producing realistic emis-
sion maps to be compared to real data.

5. Summary and conclusions

In this work, we have constructed two-component numerical jet
models by properly combining two well studied analytical solu-
tions, each one describing separately a disk wind (ADO) and a
stellar outflow (ASO). We have investigated the features of the
time evolution and the characteristics of the final outcome of the
simulations as a function of the two-component jet parameters
and the enforced time variability. Although the detailed launch-
ing mechanisms of each component are not taken into account,
the two-component jet models presented here seem able to cap-
ture the dynamics and describe a variety of interesting scenarios.

The main conclusions of this work are the following:

– The two-component jet models show remarkable stability
and always reach a well defined steady state. This result is
robust despite the fact that the two solutions have orthogonal
symmetries, different geometry and different physics (i.e.
launching mechanisms). In addition, the conclusion holds
true independently of the choice of the parameters and even
in the cases where time variability is enforced at the stel-
lar wind’s base or around the X-point. Therefore, the ana-
lytical solutions provide solid foundations for realistic two-
component jet scenarios.

– The system remains close to the initial analytical solutions.
In particular, the disk wind dominated regions are barely
changed in the presence of the stellar outflow, with the ex-
ception of the slow magnetosonic regions. On the other hand,
the central component is self consistently modified due to
the assumption of a polytropic equation of state and because
of the effective collimation caused by the surrounding disk
wind. This implies that specific YSO systems can be ad-
dressed more accurately by constructing analytical outflow
solutions with the desirable characteristics, before merging
them into a two-component regime.

– A shock manifests during the time evolution, preventing any
information from the downstream domain from reaching the
base of the outflow. This separatrix causally disconnects the
two-component jet from its launching regions, although ini-
tially there is no such “horizon” present in the computational
box. The initial ASO solution does not exhibit any modified
fast separatrix (Sauty et al. 2002), whereas despite the exis-
tence of the FMSS in the initial ADO model (at small polar
angles), it is effectively replaced by the stellar wind in the
initial setup. Nonetheless, the final equilibria reached by the
numerical models show the formation of a weak shock cor-
responding to such a surface, causally disconnecting the ac-
celeration regions from the jet propagation physics and sub-
sequent interaction with the outer medium.

– We may address various two-component jet scenarios, by
means of two parameters controlling the relative contribu-
tion of each component, �B, and the time variability function,
f (t). With the former, we can smoothly switch the physics
from a totally magneto-centrifugal wind to a pressure driven
jet. With the latter, flow fluctuations are introduced, produc-
ing knot-like structures on large scales that are quantitatively
similar to HH30 and HH34 observations.

Thus, most of the technical part concerning two-component jets,
e.g. 2.5D stability, steady states, parameter study, time variabil-
ity etc., is now available, providing us with all the necessary
ingredients to address YSO jets. With a) the proper analytical
solutions, i.e. desirable lever arm, mass loss rate etc., b) the cor-
rect choice of the mixing parameters and c) an enforced time
variability that effectively produces knot structures, we are now
ready to qualitatively study different and realistic scenarios, ad-
dress observed jet properties and ultimately understand the var-
ious outflow phases of specific T Tauri stars. However, such ap-
plications and comparison with relevant observational data is be-
yond the scope of this paper and will be presented in a future
work.

Acknowledgements. We acknowledge V. Cayatte and the rest of the group in
LUTh for fruitful discussions, and an anonymous referee for helpful comments
and suggestions that resulted in a better presentation of this work. We would
also like to thank Capt. D. Kalogeras whose support during the revision of this
paper prevented a delay of several months. The present work was supported in
part by the European Community’s Marie Curie Actions - Human Resource and
Mobility within the JETSET (Jet Simulations, Experiments and Theory) network
under contract MRTN-CT-2004 005592 and in part by the HPC-EUROPA++
project (project number: 211437), with the support of the European Community
– Research Infrastructure Action of the FP7 “Coordination and support action”
Programme.

Appendix A: The self-similar outflow formulation

Axisymmetry, steady state and self-similarity assumptions sim-
plify the ideal MHD equations to a set of coupled ODEs in spher-
ical coordinates. These equations are solved numerically, provid-
ing the values of some key functions for each model.
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For the ADO solution (radially self-similar), the physical
variables are provided in terms of the tabulated key functions
GD(θ), MD(θ) and ψD(θ):

ρD = ρD∗αx−3/2
D

1

M2
D

, PD = PD∗αx−2
D

1

M2γ
D

,

VDp = −VD∗α−1/4
D

M2
D

G2
D

sin θ
cos(ψD + θ)

(cosψDr̂ + sinψD ẑ) ,

VDφ = VD∗λα−1/4
D

G2
D − M2

D

GD(1 − M2
D)
,

BDp = −BD∗αx/2−1
D

1

G2
D

sin θ
cos(ψD + θ)

(cosψDr̂ + sinψDẑ) ,

BDφ = −BD∗λαx/2−1
D

1 −G2
D

GD(1 − M2
D)
,

where p denotes the poloidal component.
The ASO solution (meridionally self-similar) is described

with the help of the key functions GS(R), MS(R), FS(R) and
ΠS(R):

ρS = ρS∗
1

M2
S

(1 + δαS), PS = PS∗ΠS(1 + καS),

VSr = VS∗
M2

S

G2
S

sin θ cos θ√
1 + δαS

(
1 − FS

2

)
,

VSz = VS∗
M2

S

G2
S

1√
1 + δαS

(
cos2 θ + sin2 θ

FS

2

)
,

VSφ = VS∗λ′α1/2
S

G2
S − M2

S

GS(1 − M2
S)

1√
1 + δαS

,

BSr = BS∗
sin θ cos θ

G2
S

(
1 − FS

2

)
,

BSz = BS∗
1

G2
S

(
cos2 θ + sin2 θ

FS

2

)
,

BSφ = −BS∗λ′α1/2
S

1 −G2
S

GS(1 − M2
S)
·
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